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Abstract

We present a unified approach for determining and proving obstructions to small-time local
controllability of scalar-input control systems. Our approach views obstructions to controlla-
bility as resulting from interpolation inequalities between the functionals associated with the
formal Lie brackets of the system.

Using this approach, we give compact unified proofs of all known necessary conditions, we
prove a conjecture of 1986 due to Kawski, and we derive entirely new obstructions. Our work
doubles the number of previously-known necessary conditions, all established in the 1980s.
In particular, for the third quadratic bracket, we derive a new necessary condition which is
complementary to the Agrachev–Gamkrelidze sufficient ones.

We rely on a recent Magnus-type representation formula for the state, a new Hall basis of
the free Lie algebra over two generators, an appropriate use of Sussmann’s infinite product to
compute the Magnus expansion, and Gagliardo–Nirenberg interpolation inequalities.
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1 Introduction

1.1 Scalar-input control-affine systems

In this article, we consider an affine control system

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) (1.1)

where the state x(t) lives in Rd (d ≥ 1), the control is a scalar input u(t) ∈ R, f0 and f1 are
vector fields on Rd, analytic on a neighborhood of 0, such that f0(0) = 0. These assumptions are
valid for the whole article and will not be recalled in the statements. Nevertheless, the analyticity
assumption can be removed, and all our results hold assuming only finite regularity on the vector
fields, as we prove in Section 11.

For each t > 0 and u ∈ L1((0, t);R), there exists a unique maximal mild solution to (1.1) with
initial data 0, which we will denote by x(·;u). We will consider small enough controls and small
enough times so that this solution is defined up to time t.

1.2 Definitions of small-time local controllability

In this article, we study the small-time local controllability of system (1.1) in the sense of Defini-
tion 1.1 below, which requires the following notions.

For t > 0 and m ∈ N, we consider the usual Sobolev space Wm,∞(0, t) equipped with the
usual norm ‖u‖Wm,∞ := ‖u‖L∞ + · · ·+ ‖u(m)‖L∞ . For j ∈ N, we define by induction the iterated

primitives of u, denoted uj : (0, t)→ R and defined by: u0 := u and uj+1(t) =
∫ t

0
uj . For p ∈ [1,∞],

we let
‖u‖W−1,p := ‖u1‖Lp . (1.2)

For scalar-input systems such as (1.1), the W−1,∞ norm of the control is important because it is
an accurate measure of the size of the state (see Lemma 4.3 and [5, Lemma 20]).

For m ∈ Z, we use the notation Jm,∞J for [m,∞) ∩ Z.

Definition 1.1 (Wm,∞-STLC). Let m ∈ J−1,∞J. We say that system (1.1) is Wm,∞-STLC
when, for every t, ρ > 0, there exists δ = δ(t, ρ) > 0 such that, for every x? ∈ B(0, δ), there exists
u ∈Wm,∞((0, t);R) ∩ L1((0, t);R) with ‖u‖Wm,∞ ≤ ρ, such that x(t;u) = x?.

Any positive answer to the STLC problem may be thought of as a nonlinear local open mapping
theorem, which underlines the deepness and intricacy of this problem, when the inverse mapping
theorem (or linear test, see [13, Section 3.1]) cannot be used.

STLC in the literature usually corresponds to what we refer to as L∞-STLC (i.e. m = 0
in Definition 1.1 above), where controls have to be arbitrarily small in L∞ norm (see e.g. [13,
Definition 3.2] or STLCε in [23]). Sometimes (see [40, 41]) authors investigate the ρ-bounded-
STLC: ρ > 0 is fixed and system (1.1) is ρ-bounded-STLC if, for every t > 0, there exists δ > 0
such that, for every x? ∈ B(0, δ), there exists u ∈ L∞(0, t) with ‖u‖L∞ ≤ ρ such that x(t;u) = x?.

For any m ∈ N∗, ρ > 0 and t ∈ (0, 1), ‖u‖W−1,∞ ≤ t‖u‖L∞ ≤ ‖u‖Wm,∞ thus

(Wm,∞-STLC)⇒ (L∞-STLC)⇒ (ρ-bounded-STLC)⇒ (W−1,∞-STLC), (1.3)

where any reciprocal implication is false (see Appendix A.1). See also [7] for a recent comparison
of various controllability definitions. The interest of the W−1,∞-STLC is that it is equivalent to
the small-state small-time local controllability for scalar-input systems (see [5, Section 8.2]).

In the excellent survey [23], Kawski recalls the known necessary conditions (see Theorems 3.1,
3.4 and 3.5 therein) and sufficient conditions (see Theorems 3.6 ad 3.7 therein) for L∞-STLC.
Then he explains, on clever examples, the obstacles that a more complete theory has to overcome.
Kawski’s survey is at the root of the present article: our main results are generalizations to any
systems, of its observations on particular examples which will be recalled and discussed later in
the present article (see Sections 6.1, 7.1, 8.1 and 9.1).
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1.3 Algebraic notations and Lie brackets

The STLC is closely related to the evaluations at 0 of the iterated Lie brackets of the vector fields
f0 and f1. We, therefore, introduce the following definitions and notations.

Let X := {X0, X1} be a set of two non-commutative indeterminates.

Definition 1.2 (Free algebra). We consider A(X) the free algebra generated by X over the field
R, i.e. the unital associative algebra of polynomials of the indeterminates X0 and X1.

Definition 1.3 (Free Lie algebra). Within A(X) one can define the Lie bracket of two elements
as [a, b] := ab − ba. This operation is anti-symmetric and satisfies the Jacobi identity. Let L(X)
be the free Lie algebra generated by X over the field R, i.e. the smallest linear subspace of A(X)
containing X and stable by the Lie bracket [·, ·].

Definition 1.4 (Iterated brackets). Let Br(X) be the free magma over X, or, more visually, the set
of iterated brackets of elements of X, defined by induction: X0, X1 ∈ Br(X) and if a, b ∈ Br(X),
then the ordered pair (a, b) belongs to Br(X).

There is a natural evaluation mapping e from Br(X) to L(X) defined by induction by e(Xi) :=
Xi for i = 0, 1 and e((a, b)) := [e(a),e(b)]. Through this mapping, Br(X) spans L(X).

Definition 1.5 (Homogeneous layers within L(X)). For b ∈ Br(X), n0(b) (respectively n1(b))
denotes the number of occurrences of the indeterminate X0 (resp. X1) in b. For A1, A0 ⊂ N,
SA1

(X) and SA1,A0
(X) are the vector subspaces of L(X) defined by

SA1(X) := span{e(b); b ∈ Br(X), n1(b) ∈ A1}, (1.4)

SA1,A0(X) := span{e(b); b ∈ Br(X), n1(b) ∈ A1, n0(b) ∈ A0}. (1.5)

For i, j ∈ N, we write1 Si(X) and Si,j(X) instead of S{i}(X) and S{i},{j}(X).

Definition 1.6 (Bracket integration b0ν). For b ∈ Br(X) and ν ∈ N, we use the unconventional
short-hand b0ν to denote the right-iterated bracket (· · · (b,X0), . . . , X0), where X0 appears ν times.

Definition 1.7 (Lie bracket of vector fields). For smooth vector fields f and g, we define

[f, g] := (Dg)f − (Df)g. (1.6)

Definition 1.8 (Evaluated Lie bracket). Let f0, f1 be C∞ vector fields on an open subset Ω of Rd
and f = {f0, f1}. For B ∈ L(X), we define fB := Λ(B), where Λ : L(X) → C∞(Ω;Rd) is the
unique homomorphism of Lie algebras such that Λ(X0) = f0 and Λ(X1) = f1.

To simplify the notation, we will write fb instead of fe(b) when b ∈ Br(X). The vector field fb
is obtained by replacing the indeterminates Xi with the corresponding vector field fi in the formal
bracket b. For instance if b = (X1, (X0, X1)) then fb = [f1, [f0, f1]] and if B = α1e(b1) + · · · +
αne(bn) ∈ L(X) where b1, . . . , bn ∈ Br(X) and α1, . . . , αn ∈ R then fB = α1fb1 + · · ·+ αnfbn .

Eventually, for a subset N of Br(X) we use the notation

N (f)(0) := span{fb(0); b ∈ N} ⊂ Rd. (1.7)

All the known necessary conditions for STLC are stated in the following way. One focuses on
a “bad” bracket b ∈ Br(X) and one identifies a subset N of Br(X) containing all the brackets
susceptible to neutralize b. Then the necessary condition for STLC is fb(0) ∈ N (f)(0).

This is linked with Krener’s fundamental result [29, Theorem 1], which states that, if two
control systems of the form (1.1) have linearly isomorphic brackets evaluated at 0, then they are
diffeomorphic. Thus the entire information about STLC is contained in the subset of Rd made of
the evaluations at 0 of the Lie brackets of the vector fields f0 and f1.

1Some authors use the notation Si(X) for what is referred to here as SJ1,iK(X).
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1.4 A new basis of the free Lie algebra

In this article, we construct a new basis of the free Lie algebra L(X), which is of the form e(B?),
where B? is a Hall set of Br(X) (see Definition 2.6). All our results are expressed using this basis.

The main interest of B? is the particular form of the associated coordinates of the second kind,
which appear to be very well suited for control results and functional analysis (see Section 3.3).
In particular, a key point is that B? seems to allow to immediately guess from the structure of a
Lie bracket and/or from its associated coordinate of the second kind if this bracket will lead to
an obstruction or not. As noted by Kawski in [23, Section 4], such a feature (“splitting” bad and
good Lie brackets) is not satisfied by the usual length-compatible or Chen–Fox–Lyndon bases of
the free Lie algebra. We plan to investigate further this property of B? in a forthcoming paper.

The first elements of B? are given explicitly in the following statement.

Proposition 1.9. The first X1-homogeneous layers B?k := {b ∈ B?;n1(b) = k} of our basis B? are

B?1 = {Mν}, (1.8)

B?2 = {Wj,ν}, (1.9)

B?3 = {Pj,k,ν ; j ≤ k}, (1.10)

B?4 = {Qj,k,l,ν ; j ≤ k ≤ l} ∪ {Q]j,µ,k,ν ; j < k} ∪ {Q[j,µ,ν}, (1.11)

B?5 = {Rj,k,l,m,ν ; j ≤ k ≤ l ≤ m} ∪ {R]j,k,l,µ,ν ; j ≤ k}, (1.12)

where, implicitly, j, k, l,m ∈ N∗, µ, ν ∈ N and we define (using the notation 0ν of Definition 1.6),

Mν := X10ν , (1.13)

Wj,ν := (Mj−1,Mj)0
ν , (1.14)

Pj,k,ν := (Mk−1,Wj,0)0ν , (1.15)

Qj,k,l,ν := (Ml−1, Pj,k,0)0ν , Q]j,µ,k,ν := (Wj,µ,Wk)0ν , Q[j,µ,ν := (Wj,µ,Wj,µ+1)0ν , (1.16)

Rj,k,l,m,ν := (Mm−1, Qj,k,l,0)0ν , R]j,k,l,µ,ν := (Wl,µ, Pj,k,0)0ν . (1.17)

To lighten the notations, Wj, Pj,k and Qj,k,l will denote Wj,0, Pj,k,0 and Qj,k,l,0.
Moreover, to avoid cluttering the formulas, all these symbols will indifferently denote either the

elements of Br(X) themselves or their evaluation by e in L(X) (recall Definition 1.4).

We only write explicitly the elements B?J1,5K, because notations for the elements of B?J6,∞J will
not be required in the sequel. Of course, the list could go further, albeit with increasing complexity.

One could also probably extend our construction of B? to the case of control systems with
multiple inputs. For such systems, one needs a basis of the free Lie algebra over {X0, X1, . . . , Xq}.
Many such extended constructions could be proposed and the “correct” one might depend on the
intended applications. We discuss some key structural features of B? (which could be preserved
with multiple inputs) in Remark 3.5.

1.5 Main results: old and new necessary conditions

First, we recover (slightly improved versions of) the necessary conditions for STLC, due to Suss-
mann [41, Proposition 6.3] (for k = 1) and Stefani [40, Theorem 1] (for k > 1), concerning the
strongest obstruction at each even order of the control, which were historically derived for the
stronger ρ-bounded-STLC notion (recall the implications (1.3)).

Theorem 1.10. If system (1.1) is W−1,∞-STLC (or, equivalently, small-state-STLC), then

∀k ∈ N∗, ad2k
f1 (f0)(0) ∈ SJ1,2k−1K(f)(0). (1.18)
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Then we prove the following necessary conditions for controllability on the Lie brackets Wk for
k ∈ N∗ (see (1.14)), which we call “quadratic Lie brackets”, as they involve X1 twice.

Theorem 1.11. Let m ∈ J−1,∞J. If system (1.1) is Wm,∞-STLC, then

∀k ∈ N∗, fWk
(0) ∈ SJ1,π(k,m)K\{2}(f)(0) (1.19)

where

π(k,m) := 1 +

⌈
2k − 2

m+ 1

⌉
(1.20)

with the convention π(k,−1) = +∞ and π(1,−1) = 1.

As particular cases, this result contains necessary conditions on Wk for

• W−1,∞-STLC (small-state STLC), which is new and requires particular care (see Section 10),

• L∞-STLC: fWk
(0) ∈ SJ1,2k−1K\{2}(f)(0), which was conjectured in 1986 in [22, p. 63],

• Wm,∞-STLC with 1 ≤ m ≤ 2k − 4, which is a new result,

• W 2k−3,∞-STLC: fWk
(0) ∈ S1(f)(0), which we had already proved in [5, Theorem 3].

An interest of condition (1.19) is that it illustrates that some kind of compensation on fWk
(0)

is necessary for controllability. We say that this condition is “loose” because we only focused on
obtaining the optimal threshold π(k,m) (see Section 6.7), but, within SJ3,π(k,m)K(X), we did not
try to obtain the minimal list of brackets. Depending on one’s needs, our general approach can be
used to shrink this list. As an illustration, one has the following result.

Theorem 1.12. Let m ∈ J−1,∞J. If system (1.1) is Wm,∞-STLC, then, for all k ∈ N∗ such that
π(k,m) ≥ 3 (defined in (1.20)),

fWk
(0) ∈ S1(f)(0) + Pk(f)(0) + SJ4,π(k,m)K(f)(0) (1.21)

where
Pk := {Pj,l,ν ∈ B?3 ; j < k} ( B?3 . (1.22)

For k ∈ {2, 3}, a careful analysis allows to refine even more the necessary conditions of Theo-
rems 1.11 and 1.12. In particular, in the case m = 0, we prove the following results.

Theorem 1.13. If system (1.1) is L∞-STLC, then fWk
(0) ∈ Nk(f)(0) for k = 1, 2, 3, where

N1 := B?1 , (1.23)

N2 := N1 ∪ {P1,1,ν ; ν ∈ N}, (1.24)

N3 := N2 ∪ {P1,l,ν , Q1,1,1, Q1,1,2,ν , Q
[
1,0, Q

[
1,1, Q

[
1,2, R1,1,1,1,ν , R

]
1,1,1,µ,ν ; l ∈ N∗, µ, ν ∈ N}. (1.25)

The statement concerning W2 is proved by Kawski in [24, Theorem 1], using the Chen–Fliess
expansion and technical results from Stefani [40]. We propose a different strategy, that allows us to
obtain similarly the condition concerning W3, which is new. Moreover, the lists Nk are “minimal”
in the sense that, for any bracket in Nk, we exhibit a system where it restores STLC when in
competition with Wk. In the hardest case k = 3, we prove these controllability results using
the Agrachev–Gamkrelidze sufficient condition of [1, Theorem 4], illustrating that, the necessary
condition fW3(0) ∈ N3(f)(0) is somehow complementary to their sufficient conditions theory.

To go beyond necessary conditions involving quadratic Lie brackets, we prove the following new
necessary condition linked with a bracket of the sixth order with respect to the control.
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Theorem 1.14. If system (1.1) is L∞-STLC, then

fad2
P1,1

(X0)(0) ∈ span
{
fb(0); b ∈ B?J1,7K, b 6= ad2

P1,1
(X0)

}
. (1.26)

Throughout the paper, we will discuss the optimality of all these necessary conditions by
comparing them with the known sufficient conditions, including the ones due to Agrachev and
Gamkrelidze [1, Theorem 4] or Krastanov [28, Theorem 2.7]. In particular, let us already point out
that, due to their structure, all the brackets involved in the above-mentioned obstructions, namely
ad2k
X1

(X0), Wk = ad2
Mk−1

(X0) and ad2
P1,1

(X0) are indeed always seen as “bad” and required to be
compensated by such sufficient conditions (see Appendix A.2).

Eventually, we explain in Section 11 why all these results, derived for analytic vector fields,
remain valid without change for C∞ vector fields. More precisely, we show that assuming only
finite regularity on f0 and f1 is sufficient to preserve the conclusions, provided that one gives the
appropriate meaning to the evaluations at 0 of the considered brackets (the brackets themselves
being undefined elsewhere).

1.6 Our unified approach of obstructions

We provide a general overview of the approach that we use in this paper to conjecture and prove
necessary conditions of STLC. We claim that the method is fairly general: it already allowed us
to recover all known or conjectured obstructions, and prove multiple new ones.

1.6.1 An interpretation of obstructions to STLC as drifts

Our results are of the form: Wm,∞-STLC⇒ fb(0) ∈ N (f)(0), where m ∈ J−1,∞J, b ∈ B? and N
is a subset of B?. We prove these results by contraposition, starting from the assumption

fb(0) /∈ N (f)(0). (1.27)

Our strategy consists in proving that, when (1.27) holds, the state x(t;u) “drifts” along fb(0), in
the sense of Definition 1.16 below, which requires the following notion.

Definition 1.15 (Component). Let N be a vector subspace of Rd and e ∈ Rd \N . We say that a
linear form P : Rd → R is a component along e parallel to N when Pe = 1 and N ⊂ kerP.

Definition 1.16 (Drift). Let b ∈ B?, N ⊂ Br(X) and m ∈ J−1,∞J. We say that system (1.1)
has a drift along fb(0), parallel to N (f)(0), as (t, ‖u‖Wm,∞) → 0 when there exists C > 0 and
β > 1 such that, for every ε > 0, there exists ρ > 0 such that, for every t ∈ (0, ρ) and every
u ∈Wm,∞((0, t);R) ∩ L1((0, t);R) with ‖u‖Wm,∞ ≤ ρ,

Px(t;u) ≥ (1− ε)ξb(t, u)− C|x(t;u)|β , (1.28)

where P gives a component along fb(0) parallel to N (f)(0) and (ξb)b∈B? are the coordinates of the
second kind associated with B? (see Definition 2.10 and Proposition 3.7).

Lemma 1.17. Let b ∈ B?, N ⊂ Br(X) and m ∈ J−1,∞J. Assume that ξb(t, u) ≥ 0 for all u ∈
L1((0, t);R) and that system (1.1) has a drift along fb(0), parallel to N (f)(0), as (t, ‖u‖Wm,∞)→ 0.
Then system (1.1) is not Wm,∞-STLC.

Proof. For small enough times and controls, when ξb ≥ 0, estimate (1.28) prevents x(t;u) from
reaching targets of the form x? = −afb(0) with 0 < a� 1, because this would entail −a = Px? ≥
−C|x?|β = −C|fb(0)|βaβ , which fails for a small enough, since β > 1. Thus, estimate (1.28) comes
into contradiction with Wm,∞-STLC. Indeed, Definition 1.1 requires that, even for arbitrarily
small times and controls, one may reach a whole neighborhood of 0.
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Remark 1.18. To deny STLC, it is sufficient (as is done in the previous proof), to negate the
possibility of reaching locally a half line R∗−fb(0). Nevertheless, since β > 1, when ξb ≥ 0, esti-
mate (1.28) actually also implies that the unreachable set contains locally a whole half-space.

This property is quite satisfactory as it somehow complements the fact that most known suf-
ficient conditions for STLC yield a locally convex reachable set. More precisely, these conditions
rely on “variations” or “tangent vector”, and it is known that the set of such tangent vectors is
almost convex [23, Lemma 2.3].

This motivates our definition of drifts, which therefore entails not only a lack of STLC but
also a description of the unreachable space. A weaker definition, such as Definition 10.1, replacing
C|x|β by ε|x| would not yield such a precise conclusion.

Example 1.19. To illustrate the definitions, consider the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2
1 − x2

2 − x3
1 − 4x1x2.

(1.29)

Written in the form (1.1), this system satisfies

fX1
(0) = e1, fM1

(0) = e2, fW1
(0) = 2e3, fW2

(0) = −2e3, fP1,1
(0) = −6e3 (1.30)

and fb(0) = 0 for any other b ∈ B?. Therefore, it does not satisfy Sussmann’s necessary condition
(case k = 1 of (1.18)) which requires that fW1

(0) ∈ S1(f)(0) .
Using the notations u1 and u2 of Section 1.2 for the first and second primitive of u, explicit

integrations lead to x1(t) = u1(t), x2(t) = u2(t) and

x3(t) =

∫ t

0

u2
1 −

∫ t

0

u2
2 −

∫ t

0

u3
1 − 2x2

2(t). (1.31)

Here, P : x 7→ 1
2x3 is a component along fW1

(0), parallel to Re1 + Re2 = S1(f)(0).

Moreover, since ξW1
(t, u) = 1

2

∫ t
0
u2

1 (see (3.12)), one has, by Poincaré’s inequality

Px(t) ≥
(
1− t2 − ‖u1‖L∞

)
ξW1(t, u)− x2

2(t). (1.32)

Therefore, this estimate indeed matches (1.28) provided that both the time and the control are
small enough. One also checks that the |x(t;u)|β term is required, reflecting the fact that changes
of coordinates in the state-space can locally bend the unreachable set.

In Example 1.19, proving the presence of the drift is easy as the system is explicitly integrable.
To prove our results in a general setting, we will rely on the following more robust approach.

1.6.2 A recent approximate representation formula for the state

Unlike historical proofs which all rely on Chen’s expansion (see Remark 2.4), the starting point of
our strategy is a recent approximate representation formula, introduced in [3] and explained more
precisely in Section 4.3, which states that, as (t, ‖u‖W−1,∞)→ 0,

x(t;u) = ZJ1,MK(t, f, u)(0) +O
(
‖u‖M+1

W−1,M+1 + |x(t;u)|1+ 1
M

)
, (1.33)

where, for M ∈ N∗, ZJ1,MK(t, f, u) is an analytic vector field belonging to SJ1,MK(f) and given by

ZJ1,MK(t, f, u) =
∑

b∈B?J1,MK

ηb(t, u)fb, (1.34)

where the ηb are functionals of t and u, which we call “coordinates of the pseudo-first kind” (see
Remark 2.15) and the infinite sum converges (in the sense of analytic functions).

A remarkable feature of (1.33)-(1.34) is that, when computing the state x(t;u) as almost
ZJ1,MK(t, f, u)(0), each term ηb(t, u)fb(0) of the series decouples:
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• on one side, a scalar ηb(t, u) ∈ R, which carries the time and control dependency, but in a
universal (i.e. system-independent) way,

• on the other side, a vector fb(0) ∈ Rd, which encodes the algebraic and geometric dependency
on the system, in a coordinate-independent way, as only Lie brackets of f0, f1 are involved.

A technical drawback of (1.34) is that, unlike the coordinates of the second kind ξb, associated
with Sussmann’s infinite product expansion (see Section 2.3), the functionals ηb are not given by
nice explicit expressions. Our insight to deal with this difficulty is to rely on the heuristic that,
somehow, ηb ≈ ξb (see Proposition 2.19 for a statement, and Section 4.5 for limits to this belief).
Since both sets of coordinates are linked by iterated applications of the usual Campbell–Baker–
Hausdorff formula, for each b ∈ B?, the difference ηb− ξb is given by a sum of products of the form
ξb1(t, u) · · · ξbq (t, u) (for some q ≥ 2 and other lower-order bi’s) which we call “cross terms”.

Hence, we work with the formula

ZJ1,MK(t, f, u)(0) =
∑

b∈B?J1,MK

ξb(t, u)fb(0) +
∑

b∈B?J1,MK

(ηb(t, u)− ξb(t, u))fb(0)

︸ ︷︷ ︸
cross terms

. (1.35)

1.6.3 An heuristic to conjecture drifts

Our formula can be used to conjecture necessary conditions for STLC in the following way.

1. One starts by considering a bracket b ∈ B? for which ξb(t, ·) is positive-definite (i.e. for every
t > 0 and u ∈ L1((0, t);R) \ {0}, ξb(t, u) > 0). The identification of such candidate “bad”
brackets is particularly easy within B? (see Section 3.3) and part of the reasons for which we
believe that this basis is well adapted to control theory.

2. One also fixes a regularity index m ∈ J−1,∞J (one can think m = 0 if one is mostly interested
in the usual notion of L∞-STLC).

3. One then determines M ∈ N∗ large enough such that the main remainder of (1.33) will satisfy

‖u‖M+1
W−1,M+1 . ‖u‖M+1−n1(b)

Wm,∞ ξb(t, u). (1.36)

Heuristically, this is an interpolation inequality, bounding the W−1,M+1 norm between the
stronger norm ‖u‖Wm,∞ and the term ξb(t, u) which plays the role of the weaker norm.
Choosing M larger makes (1.36) easier to prove as it requires even less coercivity from ξb.
See (6.17) or (9.32) for examples of such interpolation inequalities.

4. One then determinesN as the set of b ∈ B?J1,MK\{b} such that ξb 6= o(ξb) as (t, ‖u‖Wm,∞)→ 0.
N can be interpreted as the set of “neutralizing” brackets whose coordinate would be strong
enough (from a functional analysis point of view) to counterbalance the coercivity of ξb and
could lead to restoring STLC (see e.g. Section 8.1 for detailed examples in the case b = W3).

Eventually, the heuristic is that fb(0) ∈ N (f)(0) will be a necessary condition for Wm,∞-STLC.
Indeed, by contraposition, if one assumes (1.27), this allows to consider P : Rd → R, a component
along fb(0) parallel to N (f)(0). Then, using Section 1.6.2,

Px(t;u) = ξb(t, u) +O
( ∑
b∈B?J1,MK
b/∈N∪{b}

|ξb(t, u)Pfb(0)|
)

+O
( ∑
b∈B?J1,MK
b/∈N

|(ηb − ξb)(t, u)Pfb(0)|
)

+O
(
‖u‖M+1

W−1,M+1

)
+O

(
|x(t;u)|1+ 1

M

) (1.37)

In this formula, within the big O remainders, the intuition is that
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• the first term should be bounded by εξb(t, u) thanks to the choice of N in Item 4 above (such
sums are estimated in Proposition 4.5),

• the second term should be negligible if the intuition ηb ≈ ξb is valid (such sums are estimated
in Proposition 4.6),

• the third term is bounded by εξb(t, u) thanks to the choice of M in Item 3 above and (1.36),

• the fourth term is part of the definition of a drift in (1.28),

therefore establishing the presence of a drift as in Definition 1.16.

1.6.4 Arguments used in the proofs

From a technical point of view, the most painful task is to estimate the cross terms involved
in (1.37), i.e. in the differences |ηb − ξb| for b ∈ B?J1,MK \ N (including |ηb − ξb|). To obtain these

estimates, the proofs of this paper share a common structure and involve (to various degrees of
complexity) the following ingredients of different natures.

Geometric arguments. To bound the cross terms, we prove that assumption (1.27) implies
what we call “vectorial relations” involving other elements fb(0) for b ∈ B?. Then, we prove that
these vectorial relations entail what we call “closed-loop estimates”, i.e. that some coordinates
ξbi(t, u) for some particular bi ∈ B? involved in the cross terms can be estimated from |x(t;u)| and
higher-order terms involving the control. This is a key argument of the method. The essence of
closed-loop estimates can be spotted implicitly in previous literature: for example [40, Lemma 3.2]
is a (slightly less general) version of Lemma 5.4, while [24, p. 148] uses a static-state feedback to
guarantee that u1(t) = 0.

Analysis arguments. Almost all estimates involve interpolation inequalities. As this paper
mostly concerns quadratic obstructions to controllability, most of the proofs rely on the usual
Gagliardo–Nirenberg interpolation inequalities of Section 4.6. Nevertheless, in the sextic case, we
need the new unusual interpolation inequalities of Section 9.6. When working on other obstructions,
it is likely that many new interpolation inequalities will be required, such as the ones we derived
(for this purpose) in [35].

Algebraic arguments. The previous arguments might be insufficient to bound some cross terms
ξb1(t, u) · · · ξbq (t, u). In the Baker–Campbell–Hausdorff formula, these products are coefficients of
Lie brackets such as [[b1, b4], [b2, b3]] involving each bi exactly once. Luckily, in such cases, we
are able to prove that the decomposition in B? of these Lie brackets is contained in N , so that
these cross terms are not involved in (1.37). Such arguments are purely algebraic computations
in B?, and totally independent from any system or functional analysis. They are for example of
paramount importance in Section 6.8 or Section 9.2.

1.6.5 The low-regularity case m = −1

For m = −1 and some choices of b, estimate (1.36) may fail (even for arbitrarily large M) and then
the remainder ‖u‖M+1

W−1,M+1 in the representation formula (1.33) cannot be absorbed. We developed
an extension of our method which encompasses this difficult low-regularity case (see Section 10),
and relies on “embedded semi-nilpotent systems”.
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1.7 On the invariance by change of coordinates and feedbacks

As can be seen by inspection of Definition 1.1 (see also [5, Lemma 16] for the case m > 0), two
important classes of transformations preserve small-time local controllability.

First, analytic changes of coordinates in the state space. As recalled in Section 1.3, stating
conditions involving only Lie brackets evaluated at 0 automatically guarantees that our conditions
are coordinate-invariant, since the Lie brackets evaluated at 0 in the new coordinates are linearly
isomorphic to the ones in the old coordinates (see [29, Theorem 1] or also [3, Section 8.2]).

Second, static-state feedbacks (so particular classes of changes of coordinates for the couple
(x, u) which preserve the control-affine nature of the system), or even changes of time-scale (see [20,
Weak feedback equivalence]). As criticized by Lewis in [31], methods based on the identification
of vector fields with a free Lie algebra generally don’t embed the invariance under such feedback
transformations. To preserve such an invariance, other approaches are necessary, such as Agrachev
and Gamkrelidze’s “control of diffeomorphisms” [1, 2] or Lewis’ “tautological systems” [32, 33].

While some of the above necessary conditions are definitely not feedback-invariant (and we plan
to study this difficult and very interesting matter further in a forthcoming work), they still pro-
vide computationally checkable necessary conditions, and provide a nice counterpoint to sufficient
conditions such as [1, Theorem 4] or [28, Theorem 2.7]. Moreover, some of them are feedback-
invariant. Indeed, [9, Theorem 1] implies that Theorem 1.10 and Theorem 1.13 for k = 1, 2 are
feedback-invariant.

1.8 Structure of the article

This paper is organized in three parts:

• First, we introduce the tools required to use our unified approach.

– In Section 2, we recall the notion of formal differential equations set in the algebra of
formal series over X, which allows to model (1.1) independently on f0 and f1.

– In Section 3, we introduce a new Hall set B? over {X0, X1} which yields a Hall basis of
L(X) particularly well adapted to control problems.

– In Section 4, we explain how the formal results of Section 2 translate to system (1.1)
driven by analytic vector fields. We formulate useful black-box estimates.

• Then, we implement the method to prove all results of Section 1.5.

– In Section 5, we prove Theorem 1.10.

– In Section 6, we prove Theorems 1.11 and 1.12 for m ≥ 0.

– In Section 7, we prove Theorem 1.13 for W2.

– In Section 8, we prove Theorem 1.13 for W3.

– In Section 9, we prove Theorem 1.14.

• Eventually, we describe two extensions of our method.

– In Section 10, we study the notion of embedded semi-nilpotent systems, which we use
to prove Theorems 1.11 and 1.12 in the low-regularity case m = −1.

– In Section 11, we remove the analyticity assumption used throughout the paper.

2 Tools from formal power series

In Section 2.1, we introduce the formal differential equation (2.1) whose solution x(t), is a formal
power series. In Section 2.2, we recall the well-known notions of Hall sets, which yield bases
of L(X), within which one can express the solutions to (2.1). In Sections 2.3 to 2.6, we present
formulas which allow to compute these solutions within such bases.
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2.1 The formal differential equation

Fundamental in this project is the use of the formal differential equation{
ẋ(t) = x(t)(X0 + u(t)X1),

x(0) = 1.
(2.1)

Although this equation is linear, a classical linearization principle (see [3, Section 4.1]) allows to
recast the study of nonlinear ODEs such as (1.1) driven by vector fields to this setting. A key
benefit of this abstract formulation is that it is now independent on f0 and f1.

The goal of this section is to define the solutions to (2.1). This requires the following notions.

Definition 2.1 (Graded algebra). The free associative algebra A(X) (see Definition 1.2) can be
seen as a graded algebra:

A(X) = ⊕
n∈N
An(X), (2.2)

where An(X) is the finite-dimensional R-vector space spanned by monomials of degree n over X.
In particular A0(X) = R and A1(X) = spanR(X).

Definition 2.2 (Formal series). We consider the (unital associative) algebra Â(X) of formal series

generated by A(X). An element a ∈ Â(X) is a sequence a = (an)n∈N written a =
∑
n∈N an, where

an ∈ An(X) with, in particular, a0 ∈ R being its constant term.

We also define the Lie algebra of formal Lie series L̂(X) as the Lie algebra of formal power

series a ∈ Â(X) for which an ∈ L(X) for each n ∈ N.

Within the realm of formal series, one can define the operators exp and log. For instance, for

a ∈ Â(X) with a0 = 0, exp(a) :=
∑∞
k=0

ak

k! is a well-defined formal series.

The solutions to (2.1) are defined in the following way.

Definition 2.3 (Solution to (2.1)). Let t > 0 and u ∈ L1((0, t);R). The solution to the formal

differential equation (2.1) is the formal-series valued function x : [0, t] → Â(X), whose homoge-
neous components xn : R+ → An(X) are the unique continuous functions that satisfy, for every
s ≥ 0, x0(s) = 1 and, for every n ∈ N∗,

xn(s) =

∫ s

0

xn−1(s′)(X0 + u(s′)X1) ds′. (2.3)

Iterating the integral formula (2.3) yields the following power series expansion, known as the
Chen series (introduced in [11, 12]), which is the most direct way to compute the solution to (2.1):

x(t) =
∑
ω∈X∗

(∫ t

0

uω

)
ω, (2.4)

where the sum ranges over all elements ω of X∗, the free monoid over X (i.e. non-commutative

monomials built as products of X0 and X1), and
∫ t

0
uω is a notation for a coefficient which can be

computed recursively (see [3, Section 2.2] for a gentle introduction).

Remark 2.4. Although this expansion is the one which was used to prove all known necessary
conditions (in [24, 40, 41]), we will not use it in this paper. Indeed, although it enjoys nice
convergence properties when substituting X0 and X1 with analytic vector fields f0 and f1 (see [3,

Section 5]), it is not expressed in the Lie algebra L̂(X) but in the whole algebra Â(X). This makes
it, in our opinion, difficult to use to conjecture and prove more complex obstructions such as our
new results stated in Section 1.5.
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2.2 Hall sets and bases

We recall the notion of Hall sets and Hall bases. For more details on theses bases of L(X), we
refer to [10], [38, Chapter 4] or [44, Chapter 1].

Definition 2.5 (Length, left and right factors). For b ∈ Br(X), |b| denotes the length of b. If
|b| > 1, b can be written in a unique way as b = (b1, b2), with b1, b2 ∈ Br(X). We use the notations
λ(b) = b1 and µ(b) = b2, which define maps λ, µ : Br(X) \X → Br(X).

Definition 2.6 (Hall set). A Hall set is a subset B of Br(X), totally ordered by a relation < and
such that

• X ⊂ B,

• for b = (b1, b2) ∈ Br(X), b ∈ B iff b1, b2 ∈ B, b1 < b2 and either b2 ∈ X or λ(b2) ≤ b1,

• for every b1, b2 ∈ B such that (b1, b2) ∈ B, one has b1 < (b1, b2).

The main interest of Hall sets is that their images by e (recall Definition 1.4) yield algebraic
bases of L(X), called Hall bases, as proved in [44, Corollary 1.1, Proposition 1.1 and Theorem 1.1].

Theorem 2.7 (Viennot). Let B ⊂ Br(X) be a Hall set. Then e(B) is a basis of L(X).

Remark 2.8. Historically, Hall sets were introduced by Marshall Hall in [16], based on ideas of
Philip Hall in [17]. In his historical narrower definition, the third condition in Definition 2.6 was
replaced by the stronger condition: for every b1, b2 ∈ B, b1 < b2 ⇒ |b1| ≤ |b2|.

Two famous families of Hall sets are the Chen–Fox–Lyndon ones (see [44, p. 15-16]) whose
order stems from the lexicographic order on words and the historical length-compatible Hall sets,
for which b1 < b2 ⇒ |b1| ≤ |b2|. Other examples, such as the Spitzer–Foata basis are studied in [4]
and [44, Chapter 1].

We define in Section 3 below our new Hall set B?, which combines important features of the
Chen–Fox–Lyndon and length-compatible ones (see Remark 3.5) as well as new ones.

Definition 2.9 (Support). Let B be a Hall set of Br(X) and a ∈ L(X). For b ∈ B, we denote by
〈a, b〉B the coefficient of e(b) in the expansion of a on the basis e(B). We define

suppB(a) := {b ∈ B; 〈a, b〉B 6= 0} . (2.5)

For a ∈ Br(X), suppB(a) := suppB(e(a)). If A ⊂ Br(X), we let suppB(A) := ∪a∈A suppB(a). We
drop the subscripts B when there is no possible confusion on which basis is used.

2.3 Sussmann’s infinite product expansion

We present an expansion for the formal power series x(t) solution to (2.1) as a product of expo-
nentials of the elements of a Hall set, multiplied by coefficients that have simple expressions.

This infinite product is an extension to all Hall sets of Sussmann’s infinite product on length-
compatible Hall sets [42], suggested in [25] and proved in [3, Section 2.5].

Definition 2.10. Let B ⊂ Br(X) be a Hall set. The coordinates of the second kind associated
with B is the unique family (ξb)b∈B of functionals R+ × L1

loc(R+;R) → R defined by induction in
the following way: for every t > 0 and u ∈ L1((0, t);R)

• ξX0(t, u) := t and ξX1(t, u) :=
∫ t

0
u = u1(t),

• for b ∈ B \X, there exists a unique couple (b1, b2) of elements of B such that b1 < b2 and a
unique maximal integer m ∈ N∗ such that b = admb1(b2) and then

ξb(t, u) :=
1

m!

∫ t

0

ξmb1(s, u)ξ̇b2(s, u) ds. (2.6)
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Theorem 2.11. Let B ⊂ Br(X) be a Hall set, t > 0 and u ∈ L1((0, t);R). The solution to the
formal differential equation (2.1) satisfies,

x(t) =
←−∏
b∈B

eξb(t,u)e(b). (2.7)

Remark 2.12. In (2.7), the right-hand side is an infinite oriented product, indexed by elements
of B which are increasing towards the left (see [3, Section 2.5] for more precise definitions).

Outside of the length-compatible case, Hall sets can have infinite segments, i.e. for some fixed
b1 < b2 ∈ B, there might exist an infinite number of b ∈ B such that b1 < b < b2. Hence, one must
be careful when defining and interpreting the product (2.7).

This situation occurs for our basis B?, in which X1 < Mν < W1 for all ν > 0 (see Section 3.1).
Hence, in this basis

x(t) = etX0 · · · eξW1
W1 · · · eξM2

M2eξM1
M1eξX1

X1 . (2.8)

2.4 Magnus expansion in the usual setting

Let us mention the following classical expansion, due to Magnus [34], to contrast it with our variant
of the next subsection. Multiple proofs of the following result are known (see [3, Section 2.3]).

Theorem 2.13. For t > 0 and u ∈ L1((0, t);R), the solution x to (2.1) satisfies

x(t) = exp
(
ZJ1,∞J(t,X, u)

)
(2.9)

where ZJ1,∞J(t,X, u) ∈ L̂(X). Moreover, if B ⊂ Br(X) is a Hall set, there exists a unique family
(ζb)b∈B of functionals R+ × L1

loc(R+) → R, called coordinates of the first kind associated with B,
such that

ZJ1,∞J(t,X, u) =
∑
b∈B

ζb(t, u)e(b), (2.10)

with, in particular, ζX0(t, u) = t and ζX1(t, u) = u1(t).

This expansion is naturally well-suited for truncations with respect to the total length of the
involved brackets. When substituting the formal indeterminates X0 and X1 with vector fields f0

and f1, such truncations lead to error estimates of the form O(tM+1) (see e.g. [3, Proposition 93]).
As explained in (1.36), our method to prove obstructions requires error estimates scaling like

powers of the control, which can be absorbed by interpolation. Hence, we will not use expansion
(2.9), but rather the one described in the following paragraph, which naturally yields such error
estimates. Another approach could be to try to sum infinite subseries of (2.10) (say all terms with
n1(b) ≤M), but there are convergence issues associated with such an approach, even for analytic
vector fields (see [3, Proposition 138]). These convergence issues do not occur for our expansion
presented below (see Theorem 4.4).

2.5 Our formal expansion

We present another expansion for the formal power series x(t) solution to (2.1), which we recently
developed for control theory in [3, Section 2.4], for which we proved the following result. This
expansion is the one at the root of the current work.

Theorem 2.14. For t > 0 and u ∈ L1((0, t);R), the solution x to (2.1) satisfies

x(t) = exp(tX0) exp
(
ZJ1,∞J(t,X, u)

)
, (2.11)
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where ZJ1,∞J(t,X, u) ∈ L̂(X). Moreover, if B ⊂ Br(X) is a Hall set, there exists a unique family
(ηb)b∈B of functionals R+ × L1

loc(R+) → R, called coordinates of the pseudo-first kind associated
with B, such that

ZJ1,∞J(t,X, u) =
∑
b∈B

ηb(t, u)e(b), (2.12)

with, in particular, ηX0
(t, u) = 0 and ηX1

(t, u) = u1(t).

Remark 2.15. In [3, Section 2.4], we named this expansion “Magnus expansion in the interaction
picture”. Indeed, the interaction picture is a representation used in quantum mechanics when the
dynamics can be written as the sum of a time-independent part, which can be solved exactly, and
a time-dependent perturbation. It corresponds to factoring out the etX0 part of the dynamics.

As in [3, Section 2.4.2], we call the ηb coordinates of the pseudo-first kind. This is our own
wording to denote that these coordinates are somewhere in between those of the first kind (used in
(2.10)) and those of the second kind (used in (2.7)), but much closer to the former. First kind and
second kind are well established names [8, III.4.3].

Since we will work with truncated version of this expansion, we also introduce, for M ∈ N∗, the
notation ZJ1,MK(t,X, u) to denote the canonical projection of ZJ1,∞J(t,X, u) onto A1(X) ⊕ · · · ⊕
AM (X), so that one has

ZJ1,MK(t,X, u) =
∑

n1(b)≤M

ηb(t, u)e(b). (2.13)

These truncations still contain an infinite number of terms (since n0(b) is unbounded). However,
when substituting X0 and X1 with analytic vector fields f0 and f1, then enjoy nice convergence
properties (see Theorem 4.4).

2.6 Computing coordinates of the pseudo-first kind

Unlike coordinates of the second kind, which enjoy the nice explicit recursive integral expres-
sion (2.6), no such formula is known for the coordinates of the first kind or pseudo-first kind. Our
viewpoint in this work is to compute the latter from those of the second kind, by means of the
Campbell–Baker–Hausdorff formula, leading to formula (2.15) and estimate (2.20).

Proposition 2.16. There exists a family of elements Fq,h(Y1, . . . , Yq) ∈ L({Y1, . . . , Yq}) for q ∈ N∗
and h ∈ (N∗)q, such that, Fq,h(Y1, . . . , Yq) is of degree hi with respect to Yi for each i ∈ J1, qK and,
for every Hall set B ⊂ Br(X) with X0 as maximal element, t > 0 and u ∈ L1((0, t);R),

ZJ1,∞J(t,X, u) =
∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B\{X0}

ξh1

b1
(t, u) . . . ξ

hq
bq

(t, u)Fq,h(b1, . . . , bq). (2.14)

Equivalently, for every b ∈ B, one has

ηb(t, u) = ξb(t, u) +
∑

q≥2,h∈(N∗)q
b1>···>bq∈B\{X0}

ξh1

b1
(t, u) . . . ξ

hq
bq

(t, u)〈Fq,h(b1, . . . , bq), b〉B. (2.15)

Proof. We deduce from Theorems 2.11 and 2.13 and the maximality of X0 (see also (2.8)) that

eZJ1,∞J(t,X,u) =
←−∏

b∈B\{X0}

eξb(t,u)e(b). (2.16)

Then (2.14) and (2.15) follow from the multivariate CBHD formula [3, Proposition 34]2.
2Technically, this proposition is stated for finite products. Nevertheless, one can use the graded structure of

Â(X) to reduce the proof to this finite setting.
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Remark 2.17. The elements Fq,h are deeply linked with the CBHD formula and can be it-
eratively computed from its usual two-variables coefficients. One has for example for q = 1,
F1,(1)(Y1) = Y1, for q = 2, F2,(1,1)(Y1, Y2) = 1

2 [Y1, Y2], F2,(2,1)(Y1, Y2) = 1
12 [Y1, [Y1, Y2]], and

for q = 3, F3,(1,1,1)(Y1, Y2, Y3) = 1
4 [Y1, [Y2, Y3]] (see [3, Proposition 34] for more details).

Equality (2.15) leads to the idea that, in some sense, one has ηb ≈ ξb, provided that one can
estimate the appropriate cross terms of the right-hand side.

Definition 2.18 (F). Given q ≥ 2 and b1, . . . , bq ∈ Br(X), we define F(b1, . . . , bq) as the subset
of Br(X) of brackets of b1, . . . , bq involving each of these elements exactly once. For example

F(b1, b2) = {(b1, b2), (b2, b1)}, (2.17)

F(b1, b2, b3) = {(b1, (b2, b3)), ((b1, b2), b3), . . . and 10 others}. (2.18)

Proposition 2.19. Let B be a Hall set with X0 maximal. Let b ∈ B. There exists Cb > 0 such
that the following property holds. Assume that there exists Ξ : R∗+×L1

loc(R+)→ R+ such that, for
all q ≥ 2, b1 ≥ · · · ≥ bq ∈ B \ {X0} such that b ∈ suppF(b1, . . . , bq), for every u ∈ L1

loc(R+) and
t > 0,

|ξb1(t, u) · · · ξbq (t, u)| ≤ Ξ(t, u). (2.19)

Then, for every u ∈ L1
loc(R+) and t > 0,

|ηb(t, u)− ξb(t, u)| ≤ CbΞ(t, u). (2.20)

Proof. This is a straightforward consequence of (2.15) and the fact that the sum in the right-
hand side of this equality is finite. Indeed, 〈Fq,h(b1, . . . , bq), b〉B 6= 0 implies in particular that
h1|b1|+ · · ·+ hq|bq| = |b|, so there is a finite number of possibilities for q, h and the bi.

3 A new Hall basis of the free Lie algebra

In this section, we define our new basis of the free Lie algebra over two generators {X0, X1},
designed for applications to control theory, and compute some of its elements.

In Section 3.1, we introduce our definition of a new Hall set, which we call B? and motivate
its interest for control problems. In Section 3.2, we give an exhaustive description of the elements
of B? involving X1 at most 5 times. In Section 3.3, we compute the associated coordinates of the
second kind, while in Section 3.4, we provide estimates of these coordinates.

3.1 Definition of B? and first properties

The main result of this paragraph is Theorem 3.4 which states the existence and uniqueness of our
basis B?. We start by introducing some notations and definitions which will make the presentation
more meaningful.

First, we define by induction a subset G of Br(X) by requiring that, X0, X1 ∈ G and, for every
a, b ∈ G with a 6= X0, (a, b) ∈ G. Heuristically, G is the subset of b ∈ Br(X) for which X0 is never
the left factor of any sub-bracket within b. This leads to the following definition.

Definition 3.1 (Germ). For any b ∈ G \ {X0}, there exists a unique couple (b∗, νb) ∈ G×N such
that b = b∗0νb , with b∗ = X1 or b∗ = (b1, b2) with b1 6= X0 and b2 6= X0, where the notation 0ν is
introduced in Definition 1.6. We call b∗ the germ of b and we say that b is a germ when b = b∗

(i.e. νb = 0). Let G∗ be the subset of G made of germs.

Example 3.2. Let b := ((X1, X0), X0) = X102. Then b ∈ G, the germ of b is X1 and νb = 2.
Hence b /∈ G∗. However c := (X1, (X1, X0)) ∈ G and c is a germ.

Definition 3.3 (Order for B?). We endow G with the following total order.
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(B0) X0 is the maximal element.

(B1) for a, b ∈ G \ {X0}, a < b if and only if a∗ < b∗ or a∗ = b∗ and νa < νb.

(B2) for a∗, b∗ ∈ G∗, a∗ < b∗ if and only if

• either n1(a∗) < n1(b∗),

• or n1(a∗) = n1(b∗) and λ(a∗) < λ(b∗),

• or n1(a∗) = n1(b∗) and λ(a∗) = λ(b∗) and µ(a∗) < µ(b∗).

In other words, X1 is minimal, X0 is maximal and, on G \ X, the order is the lexicographic
order on the quadruple b 7→ (n1(b∗), λ(b∗), µ(b∗), νb).

Theorem 3.4. There exists a unique Hall set B? ⊂ G ⊂ Br(X) associated with Definition 3.3.

Proof. By [4, Lemma 1.37], it suffices to check that < is a Hall order on G, i.e. a total order such
that, for every (a, b) ∈ G \X, a ∈ G and a < (a, b).
Step 1: We prove that, for every a, b ∈ G, if neither a < b nor b < a holds, then a = b. By
contradiction, let a and b be a pair, of minimal total length |a|+ |b|, such that a 6= b, and neither
a < b nor b < a. By (B0), a 6= X0 and b 6= X0. By (B1), a∗ 6= b∗ (otherwise νa = νb so a = b). By
(B2), n1(a∗) = n1(b∗) and,

• either λ(a∗) 6= λ(b∗), and these two brackets are an incomparable pair of shorter total length,

• or λ(a∗) = λ(b∗), but then µ(a∗) 6= µ(b∗) is an incomparable pair of shorter total length.

Step 2: We prove that, for every (a, b) ∈ G \X, a ∈ G and a < (a, b). Let (a, b) ∈ G \X. Then
a ∈ G by construction of G by induction. If b = X0 then a < (a, b) by (B1). If b 6= X0, then
n1(a) < n1((a, b)) so a < (a, b) by (B2).

Remark 3.5. In B?, X0 is maximal. This is similar to the fact that X0 would be maximal in the
Chen–Fox–Lyndon basis associated with the order X1 < X0 on X. So B? shares some properties
of this basis (for example, the fact that b ∈ B? ⇒ ∀ν ∈ N, b0ν ∈ B?).

If b ∈ B? is a germ, then, by (B2), µ(b) < b, because n1(µ(b)) < n1(b). This is similar to
the situation in length-compatible Hall sets where one always has µ(b) < b because |µ(b)| < |b|. In
the Chen–Fox–Lyndon basis however, one has b < µ(b). So B? shares some properties of length-
compatible Hall sets.

By analogy with (1.4) and (1.5), for A1, A0 ⊂ N, we will also adopt the notations

B?A1
:= {b ∈ B?;n1(b) ∈ A1} and B?A1,A0

:= {b ∈ B?;n1(b) ∈ A1, n0(b) ∈ A0}. (3.1)

3.2 Elements of B? up to the fifth order

The goal of this section is to prove Proposition 1.9, i.e. to determine the germs of B?J1,5K.

If b∗ is such a germ, then, by Definition 2.6, for every ν ∈ N, b∗0ν ∈ B? and, by (B1), for every
ν1 < ν2 ∈ N then b∗0ν1 < b∗0ν2 .

Proof of Proposition 1.9. X1 is the only possible germ in B?1 , which proves (1.8). Moreover, the
sequence (Mν)ν∈N is increasing

∀ν ≤ ν′, Mν ≤Mν′ . (3.2)

By Definition 2.6, any germ of B?J2,5K is of the form (a, b) where a, b ∈ B?J1,4K, and λ(b) ≤ a < b.

By (B1), this implies that either a∗ = b∗ and then b = (a,X0) so (a, b) = ad2
a(X0), or a∗ < b∗ and

then b = b∗ and n1(a) ≤ n1(b). We proceed by increasing degree in X1.
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• Germs of B?2: By Definition 2.6, for every j ∈ N∗, Wj,0 belongs to B?. Indeed Wj,0 =
adM2

j−1
(X0) and Mj−1 < X0 by (B0). These are the only elements of B?2 that one may

construct by bracketing two elements of B?1 . Moreover, by (B2), Wj,0 < Wk,0 when j < k,
thus, by (B1),

∀j < k ∈ N∗,∀µ ∈ N, Wj,µ < Wk,0. (3.3)

• Germs of B?3: By Definition 2.6, for j ≤ k ∈ N∗,

Pj,k,0 = (Mk−1,Wj,0) = (Mk−1, (Mj−1,Mj)) (3.4)

belongs to B?. Indeed, Mj−1 ≤ Mk−1 < Wj,0 by (3.2) and (B2) because n1(Mk−1) <
n1(Wj,0). These are the only elements of B?3 that one may construct by bracketing an
element of B?1 with an element of B?2 .

• Germs of B?4 in (B?1 ,B?3): By Definition 2.6, for j ≤ k ≤ l ∈ N∗,

Qj,k,l,0 = (Ml−1, Pj,k,0) = (Ml−1, (Mk−1,Wj,0)) (3.5)

belongs to B? because Mk−1 ≤Ml−1 < Pj,k by (3.2) and (B2). These are the only elements
of B?4 that one may construct by bracketing an element of B?1 with an element of B?3 .

• Germs of B?4 in (B?2 ,B?2): By Definition 2.6, for j < k ∈ N∗ and µ ∈ N,

Q]j,µ,k,0 = (Wj,µ,Wk,0) = (Wj,ν , (Mk−1,Mk)) (3.6)

belongs to B?. Indeed, Mk−1 < Wj,µ < Wk,0 by (B2) and (3.3). These are the only elements
of B?4 that one may construct by bracketing two elements of B?2 having different germs.

For j ∈ N∗ and µ ∈ N,
Q[j,µ,0 = (Wj,µ,Wj,µ+1) = ad2

Wj,µ
(X0) (3.7)

belongs to B?. Indeed, by (B0), Wj,µ < X0. These are the only elements of B?4 that one may
construct by bracketing two elements of B?2 having the same germ.

• Germs of B?5 in (B?1 ,B?4): By Definition 2.6, for j ≤ k ≤ l ≤ m ∈ N∗,

Rj,k,l,m,0 = (Mm−1, Qj,k,l,0) = (Mm−1, (Ml−1, Pj,k,0)) (3.8)

belongs to B?. Indeed, Ml−1 ≤ Mm−1 < Qj,k,l,0 by (3.2) and (B2). These are the only
elements of B?5 that one may construct by bracketing an element of B?1 with an element
of B?4 .

• Germs of B?5 in (B?2 ,B?3): By Definition 2.6, for j, k, l ∈ N∗ such that j ≤ k and µ ∈ N,

R]j,k,l,µ,0 = (Wl,µ, Pj,k,0) = (Wl,µ, (Mk−1,Wj)) (3.9)

belongs to B?. Indeed, Mk−1 < Wl,µ < Pj,k,0 by (B2). These are the only elements of B?5
one may construct by bracketing an element of B?2 with an element of B?3 .

This concludes the proof.

3.3 Expressions of coordinates of the second kind up to the fifth order

In this paragraph, we give explicit expressions of the coordinates of the second kind, as defined in
Definition 2.10 associated with the elements of B? up to the fifth order in the control introduced
in Section 3.2. We start with the following lemma, which helps in visualizing the coordinates of
the second kind associated with the elements of B?J1,5K listed in Proposition 1.9.
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Lemma 3.6. For b ∈ B? and ν ∈ N,

ξb0ν (t, u) =

∫ t

0

(t− s)ν

ν!
ξ̇b(s, u) ds. (3.10)

Proof. By induction on ν, this follows from Definition 2.10 and the fact that B? satisfies (B0).

Proposition 3.7. For every j ≤ k ≤ l ≤ m ∈ N∗, µ, ν ∈ N, we have

ξMν
(t, u) =

∫ t

0

(t− s)ν

ν!
u(s) ds = uν+1(t), (3.11)

ξWj,ν
(t, u) =

1

2

∫ t

0

(t− s)ν

ν!
u2
j (s) ds, (3.12)

ξPj,k,ν (t, u) = αj,k

∫ t

0

(t− s)ν

ν!
uk(s)u2

j (s) ds, (3.13)

ξQj,k,l,ν (t, u) = βj,k,l

∫ t

0

(t− s)ν

ν!
ul(s)uk(s)u2

j (s) ds, (3.14)

ξQ[j,µ,ν (t, u) =
1

8

∫ t

0

(t− s)ν

ν!

(∫ s

0

(s− s′)µ

µ!
u2
j (s
′) ds′

)2

ds, (3.15)

ξQ]j,µ,k,ν
(t, u) =

1

4

∫ t

0

(t− s)ν

ν!

(∫ s

0

(s− s′)µ

µ!
u2
j (s
′) ds′

)
u2
k(s) ds, (3.16)

ξRj,k,l,m,ν (t, u) = γj,k,l,m

∫ t

0

(t− s)ν

ν!
um(s)ul(s)uk(s)u2

j (s) ds, (3.17)

ξR]j,k,l,µ,ν
(t, u) =

αj,k
2

∫ t

0

(t− s)ν

ν!

(∫ s

0

(s− s′)µ

µ!
u2
l (s
′) ds′

)
uk(s)uj(s)

2 ds, (3.18)

where j < k in (3.16) (only), and the coefficients are given by

αj,k =
1

2!
δj<k +

1

3!
δj=k, (3.19)

βj,k,l = αj,kδk<l +
1

(2!)2
δj<k=l +

1

4!
δj=k=l, (3.20)

γj,k,l,m = βj,k,lδl<m +
1

5!
δj=k=l=m +

1

(2!)2
δj<k<l=m +

1

2!3!
(δj<k=l=m + δj=k<l=m). (3.21)

Proof. It follows from the application of Definition 2.10 to the elements of Proposition 1.9.

Remark 3.8. In [26], motivated by questions of control theory, Kawski formulated the following
open problem: “ construct a basis for the free Lie algebra such that the corresponding coordinates
of the first kind have simple formulas”. In this paper, we follow a slightly different approach:
we construct the basis B?, whose coordinates of the second kind have particularly nice explicit
expressions, and we use these to obtain controllability results by bounding the differences ηb − ξb
(the cross terms), even though formula (2.20) for these differences is quite messy.

A key strength of the basis B? is that it is easy to visualize if a given coordinate of the second
kind is positive-definite, and will lead to an obstruction to STLC. We observe in particular that,
for every k ∈ N∗, the quadratic form ξWk

is positive-definite: this is a key point for Theorem 1.11.
The positivity of the values of ξQj,k,k is a key point for the quartic necessary conditions which we
intend to study in a forthcoming work. Finally, one may expect that for any germ b ∈ B? such
that ξb is positive-definite, a necessary condition for Wm,∞-STLC of the form fb(0) ∈ N (f)(0)
holds, at least for m large enough. As an example, the lie bracket D := ad2

P1,1
(X0) ∈ B? studied in

Section 9 is associated with ξD(t, u) := 1
72

∫ t
0
(
∫ s

0
u3

1)2 ds ≥ 0 and indeed leads to an obstruction.
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3.4 Estimates on the coordinates of the second kind up to the fifth order

We start with a rough estimate valid for all brackets of B? \X, which will be mainly used to prove
convergence of the considered series. This statement follows from [3, Lemma 156] and is thus valid
within any Hall set such that X1 < X0. For self-containedness, we give a direct proof in the case
of B? in Appendix A.3.

Proposition 3.9. For every k ∈ N∗, there exists c = c(k) > 0 such that, for every b ∈ B? \ {X1}
with n1(b) = k, t > 0 and u ∈ L1((0, t);R),

|ξb(t, u)| ≤ (ct)|b|

|b|!
t−(1+k)‖u1‖kLk . (3.22)

To prove our obstruction results, we need more accurate estimates on the coordinates of the
second kind associated with B?J1,5K, in terms of Sobolev norms of primitives of the control. This is
the goal of the following statement, proved in Appendix A.4

Proposition 3.10. The following bounds hold.

1. Let p ∈ [1,∞] and j0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, t > 0 and
u ∈ L1((0, t);R), ` := |Mj | ≥ j0 + 1 and

|ξMj
(t, u)| ≤ (ct)`

`!
t−(j0+1)t1−

1
p ‖uj0‖Lp . (3.23)

2. Let p ∈ [1,∞] and j0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, ν ≥ 0, t > 0 and
u ∈ L1((0, t);R), ` := |Wj,ν | ≥ 2j0 + 1 and

|ξWj,ν
(t, u)| ≤ (ct)`

`!
t−(2j0+1)t1−

1
p ‖uj0‖2L2p . (3.24)

3. Let p1, p2 ∈ [1,∞] such that 1
p1

+ 1
p2
≤ 1 and j0, k0 ∈ N∗. There exists c > 0 such that, for

every j ≥ j0, k ≥ k0 with j ≤ k, ν ≥ 0, t > 0 and u ∈ L1((0, t);R), ` := |Pj,k,ν | ≥ 2j0 +k0 +1
and

|ξPj,k,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+1)t1−

1
p1
− 1
p2 ‖uj0‖2L2p1 ‖uk0‖Lp2 . (3.25)

4. Let p1, p2, p3 ∈ [1,∞] such that 1
p1

+ 1
p2

+ 1
p3
≤ 1 and j0, k0, l0 ∈ N∗. There exists c > 0 such

that, for every j ≥ j0, k ≥ k0, l ≥ l0 with j ≤ k ≤ l, ν ≥ 0, t > 0 and u ∈ L1((0, t);R),
` := |Qj,k,l,ν | ≥ 2j0 + k0 + l0 + 1 and

|ξQj,k,l,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+l0+1)t1−

1
p1
− 1
p2
− 1
p3 ‖uj0‖2L2p1‖uk0‖Lp2 ‖ul0‖Lp3 . (3.26)

5. Let p ∈ [1,∞] and j0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, µ, ν ∈ N, t > 0
and u ∈ L1((0, t);R), ` := |Q[j,µ,ν | ≥ 4j0 + 3 and

|ξQ[j,µ,ν (t, u)| ≤ (ct)`

`!
t−(4j0+3)t3−

2
p ‖uj0‖4L2p . (3.27)

6. Let p1, p2 ∈ [1,∞] and j0, k0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, k ≥ k0,

with j < k, µ, ν ≥ 0, t > 0 and u ∈ L1((0, t);R), ` := |Q]j,µ,k,ν | ≥ 2j0 + 2k0 + 2 and

|ξQ]j,µ,k,ν (t, u)| ≤ (ct)`

`!
t−(2j0+2k0+2)t2−

1
p1
− 1
p2 ‖uj0‖2L2p1‖uk0‖2L2p2 . (3.28)
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7. Let p1, p2, p3, p4 ∈ [1,∞] such that 1
p1

+ 1
p2

+ 1
p3

+ 1
p4
≤ 1 and j0, k0, l0,m0 ∈ N∗. There exists

c > 0 such that, for every j ≥ j0, k ≥ k0, l ≥ l0, m ≥ m0 with j ≤ k ≤ l ≤ m, ν ≥ 0, t > 0
and u ∈ L1((0, t);R), ` := |Rj,k,l,m,ν | ≥ 2j0 + k0 + l0 +m0 + 1 and

|ξRj,k,l,m,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+l0+m0+1)t1−

1
p1
− 1
p2
− 1
p3
− 1
p4

× ‖uj0‖2L2p1‖uk0‖Lp2 ‖ul0‖Lp3‖um0
‖Lp4 .

(3.29)

8. Let p, p1, p2 ∈ [1,∞] such that 1
p1

+ 1
p2
≤ 1 and j0, k0, l0 ∈ N∗. There exists c > 0 such

that, for every j ≥ j0, k ≥ k0, l ≥ l0, with j ≤ k, µ, ν ≥ 0, t > 0 and u ∈ L1((0, t);R),

` := |R]j,k,l,µ,ν | ≥ 2j0 + k0 + 2l0 + 2 and

|ξR]j,k,l,µ,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+2l0+2)t2−

1
p−

1
p1
− 1
p2 ‖uj0‖2L2p1 ‖uk0‖Lp2‖ul0‖2L2p . (3.30)

4 Toolbox for our approach to obstructions

In this section, we gather results of various nature as a toolbox for the sequel.
First, we recall elementary definitions and estimates for analytic vector fields in Section 4.1 and

introduce in Section 4.2 a notation O(·) which will be used heavily throughout the paper.
Then, we state in Section 4.3 the counterpart for system (1.1) of the formal expansion (2.11)

and give in Section 4.4 a sufficient condition to replace, in some sense, the coordinates of the
pseudo-first kind by those of the second kind in (2.12). We show nevertheless in Section 4.5 that
this simplification is not always valid.

Eventually, we recall in Section 4.6 the Gagliardo–Nirenberg interpolation inequalities, and
state straight-forward consequences of the Jacobi identity in Section 4.7.

4.1 Analytic estimates for vector fields

For a ∈ N∗ and a multi-index α = (α1, . . . , αa) ∈ Na, we use the notations |α| := α1 + · · · + αa,

∂α := ∂α
1

x1
· · · ∂αaxa and α! := α1! · · ·αa!. Then, the following estimate can be proved by iterating

2−(p+q)(p+ q)! ≤ p!q! ≤ (p+ q)! for every p, q ∈ N,

∀a ∈ N∗,∀α = (α1, . . . , αa) ∈ Na, 2−(a−1)|α||α|! ≤ α! ≤ |α|! (4.1)

Definition 4.1 (Analytic vector fields, analytic norms). Let δ > 0 and Bδ be the closed ball of
radius δ, centered at 0 ∈ Rd. For r > 0, we define Cω,r(Bδ;Rd) as the subspace of analytic vector
fields on an open neighborhood of Bδ, for which the following norm is finite

|||f |||r :=

b∑
i=1

∑
α∈Nd

r|α|

α!
‖∂αfi‖L∞(Bδ). (4.2)

For each a analytic vector field f on a neighborhood of 0, there exist r, δ > 0 such that f ∈
Cω,r(Bδ;Rd) (see [27, Proposition 2.2.10]).

The following classical result is proved, for instance in [3, Lemma 80].

Lemma 4.2 (Analytic estimate). Let r, δ > 0, r′ := r/e, f0, f1 ∈ Cω,r(Bδ;Rd) and b ∈ Br(X).
Then, fb ∈ Cω,r

′
(Bδ;Rd) and

|||fb|||r′ ≤
r

9
(|b| − 1)!

(
9 |||f |||r
r

)|b|
, (4.3)

where |||f |||r := max{|||f0|||r ; |||f1|||r}.
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4.2 Implicit limit for the big O notation

Given two functions A(x, u) and B(x, u) of interest, we will write that A(x, u) = O(B(x, u)) when
there exists C, ρ > 0 such that, for every t ∈ (0, ρ), u ∈ L1((0, t);R) with ‖u‖W−1,∞ ≤ ρ (recall
definition (1.2)), then

|A(x(t;u), u)| ≤ CB(x(t;u), u). (4.4)

Hence, throughout this paper, this notation refers to the implicit limit (t, ‖u‖W−1,∞)→ 0.
As examples, one has t = O(1) and ‖u1‖ = O(1). A deeper result is the following estimate

which states that, for scalar-input systems of the form (1.1), the W−1,∞ norm of the control is an
upper bound for the size of the sate.

Lemma 4.3. Let f0, f1 be analytic vector fields on a neighborhood of 0 with f0(0) = 0. Then

x(t;u) = O(‖u1‖L∞). (4.5)

Proof. This follows from [3, Proposition 145].

4.3 A new representation formula for ODEs

As stated in Section 1.6.2, our proofs rely on the following recent representation formula, which is
the counterpart of the formal expansion (2.11) for solutions to nonlinear ODEs of the form (1.1)
involving analytic vector fields.

Theorem 4.4. Let M ∈ N∗, δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd) with f0(0) = 0. Then

x(t;u) = ZJ1,MK(t, f, u)(0) +O
(
‖u1‖M+1

LM+1 + |x(t;u)|1+ 1
M

)
, (4.6)

where
ZJ1,MK(t, f, u) =

∑
b∈B?J1,MK

ηb(t, u)fb, (4.7)

where this infinite sum converges absolutely in Cω,r′(Bδ;Rd) for any r′ ∈ [r/e, r).

Proof. Equality (4.6) is the third item of [3, Proposition 161]. The absolute convergence in (4.7)
is proved in [3, Proposition 103] and relies on the fundamental observation that the structure
constants of Hall bases exhibit “asymmetric geometric growth” (see [4, Theorem 1.9]).

4.4 Black-box estimates for infinite sums and cross terms

In order to carry out the program sketched in Section 1.6.3, we will need to estimate infinite sums
of terms of the form ηbfb (say for b ranging over E ⊂ B?). We state below two important black-box
estimates to deal with such sums. Proposition 4.5 deals with sums of the main terms

∑
b∈E ξbfb

and Proposition 4.6 deals with the associated cross terms
∑
b∈E(ηb − ξb)fb (in particular, it can

be seen as a uniformly summed version of Proposition 2.19, which involved a constant depending
on b). In the sequel, we will only rely on the “packaged” version given by Corollary 4.7.

The statements are quite technical since bounding such infinite sums requires a lot of uniformity
in the assumptions. We postpone the proofs to Appendix A.5.

Proposition 4.5 (Estimate of main terms). Let M,L ∈ N∗. Let E ⊂ B?J1,MK. Assume that there

exist c > 0, and a functional Ξ : R∗+ × L1
loc(R+)→ R+ such that the following holds:

• for all b ∈ E, there exists an exponent σ ≤ min{L, |b|},
such that, for all t > 0 and u ∈ L1((0, t);R),

|ξb(t, u)| ≤ (ct)|b|

|b|!
t−σΞ(t, u). (4.8)
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Let δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd). Then, for any r′ ∈ [r/e, r),∑
b∈E

|||ξb(t, u)fb|||r′ = O(Ξ(t, u)). (4.9)

Proposition 4.6 (Estimate of cross terms). Let M,L ∈ N∗. Let E ⊂ B?J1,MK. Assume that there

exist c > 0, and Ξ : R∗+ × L1
loc(R+)→ R+ with Ξ(t, u) = O(1) such that the following holds:

• for all q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that suppF(b1, . . . , bq) ∩ E 6= ∅, there exist
σ1, . . . , σq ≤ L with σi ≤ |bi| and (α1, . . . , αq) ∈ [0, 1]q with α := α1 + · · ·+ αq ≥ 1,
such that, for all t > 0 and u ∈ L1((0, t);R),

|ξbi(t, u)| ≤ (ct)|bi|

|bi|!
t−σi(Ξ(t, u))αi . (4.10)

Let δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd). Then, for any r′ ∈ [r/e, r),∑
b∈E

|||(ηb − ξb)(t, u)fb|||r′ = O(Ξ(t, u)). (4.11)

Corollary 4.7. Let M,L ∈ N∗. Let b ∈ B?J1,MK and N ⊂ B?J1,MK with b /∈ N . Assume that there

exist c > 0 and a functional Ξ : R∗+ × L1
loc(R+)→ R+ with Ξ(t, u) = O(1) such that

• the assumption of Proposition 4.5 holds for E = B?J1,MK \ (N ∪ {b}),

• the assumption of Proposition 4.6 holds for E = B?J1,MK \ N .

Let f0, f1 be analytic vector fields on a neighborhood of 0. If fb(0) /∈ N (f)(0) and P is a component
along fb(0) parallel to N (f)(0), then

PZJ1,MK(t, f, u)(0) = ξb(t, u) +O (Ξ(t, u)) . (4.12)

Proof. This is a direct consequence of the definition (4.7) of ZJ1,MK and the above propositions.

4.5 Cross terms are not negligible in general

The expression (2.15) of ηb as ξb plus a finite sum of cross terms leads to the idea that one could
maybe replace the coordinates of the pseudo-first kind by those of the second kind in (4.6), by
absorbing the difference in the remainder terms which already appear in the right-hand side. One
could define

Zpure
J1,MK(t,X, u) :=

∑
b∈B?J1,MK

ξb(t, u)e(b) (4.13)

and ask whether the estimate (4.6) holds when ZJ1,MK(t, f, u)(0) is replaced by Zpure
J1,MK(t, f, u)(0).

The following example gives a negative answer to this question, which motivates the introduction
of appropriate techniques (sketched in Section 1.6.4) to deal with the cross terms.

Proposition 4.8. The estimate

x(t;u) = Zpure
J1,MK(t, f, u)(0) +O

(
‖u1‖M+1

LM+1 + |x(t;u)|1+ 1
M

)
(4.14)

is false with M = 4 for the system 
ẋ1 = u

ẋ2 = x1 + 1
2x

2
1

ẋ3 = −x1x2.

(4.15)
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Proof. Step 1: Computation of Zpure
J1,4K(t, f, u)(0). Let f0, f1 : R3 → R3 be defined by f0(x) :=

(x1 + x2
1/2)e2 − x1x2e3 and f1(x) := e1. Elementary computations prove that, for every j ∈ N∗

and ν ∈ N,

fMj
(x) =


e1 if j = 0,

(1 + x1)e2 − x2e3 if j = 1,
1
2x

2
1e3 if j = 2,

0 if j ≥ 3,

fWj,ν
(x) =


e2 if (j, ν) = (1, 0),

−x1e3 if (j, ν) = (1, 1),

0 otherwise

(4.16)

fP1,2(x) = e3 and fb(x) = 0 for any other b ∈ B?J3,4K. Thus

fX1
(0) = e1, fM1

(0) = fW1
(0) = e2, fP1,2

(0) = e3, (4.17)

and fb(0) = 0 for any other b ∈ B?J1,4K. Using Proposition 3.7, we obtain

Zpure
J1,4K(t, f, u)(0) = ξX1(t, u)e1 + (ξM1 + ξW1)(t, u)e2 + ξP1,2(t, u)e3

= u1(t)e1 +

(
u2(t) +

∫ t

0

u2
1

2

)
e2 +

∫ t

0

u2
u2

1

2
e3.

(4.18)

Step 2: Computation of x(t;u) − Zpure
J1,4K(t, f, u)(0). By solving explicitly the system and using an

integration by parts, one obtains

x(t;u) = u1(t)e1 +

(
u2(t) +

∫ t

0

u2
1

2

)
e2 +

(
−1

2
u2(t)2 − u2(t)

∫ t

0

u2
1

2
+

∫ t

0

u2
u2

1

2

)
e3 (4.19)

thus

x(t;u)−Zpure
J1,4K(t, f, u)(0) = −1

2
u2(t)

(
u2(t) +

∫ t

0

u2
1

)
e3. (4.20)

In particular, for any u ∈ L1((0, t);R) such that x2(t;u) = 0, one has

x(t;u)−Zpure
J1,4K(t, f, u)(0) =

1

8

(∫ t

0

u2
1

)2

e3. (4.21)

Step 3: We prove that, for every t > 0 and u ∈ L∞(0, t) with u1(t) = 0,∫ t

0

|u1|5 ≤ 3‖u‖L∞
(∫ t

0

u2
1

)2

. (4.22)

Using an integration by parts, we obtain∫ t

0

|u1|5 =

∫ t

0

u2
1|u1|3 = −3

∫ t

0

(∫ τ

0

u2
1

)
u(τ)u1(τ)|u1(τ)|dτ ≤ 3‖u‖L∞

(∫ t

0

u2
1

)2

. (4.23)

Step 4: Conclusion. Working by contradiction we assume there exists C, ρ > 0 such that, for every
t ∈ (0, ρ) and u ∈ L1(0, t) with ‖u1‖L∞ < ρ,

|x(t;u)−Zpure
J1,4K(t, f, u)(0)| ≤ C

(
‖u1‖5L5 + |x(t;u)| 65

)
. (4.24)

Then, by Step 2, for every t ∈ (0, ρ) and u ∈ L1(0, t) such that ‖u1‖L∞ < ρ and x2(t;u) = 0, one
has

1

8

(∫ t

0

u2
1

)2

≤ C
(
‖u1‖5L5 + |x(t;u)| 65

)
(4.25)
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System (4.15) is L∞-STLC (for example thanks to Hermes’ sufficient condition of [18, Theorem
3.2]). In particular, for every ε > 0 there exists t ∈ (0, ε) and u ∈ L∞(0, t) \ {0} with ‖u‖L∞ ≤ ε
such that x(t;u) = 0 and then (4.25) and (4.22) prove

1

8

(∫ t

0

u2
1

)2

≤ C
∫ t

0

|u1|5 ≤ 3Cε

(∫ t

0

u2
1

)2

(4.26)

which gives a contradiction when ε is small enough, precisely ε < ρ, ε2 < ρ and 24Cε < 1.

4.6 Interpolation inequalities

We recall below the Gagliardo–Nirenberg interpolation inequalities (see [15, 36]) used in this article.

Proposition 4.9. Let p, q, r, s ∈ [1,+∞], 0 ≤ j < l ∈ N and α ∈ (0, 1) such that

j

l
≤ α and

1

p
= j +

(
1

r
− l
)
α+

1− α
q

. (4.27)

There exists C > 0 such that, for every t > 0 and φ ∈ C∞([0, t];R),

‖Djφ‖Lp ≤ C‖Dlφ‖αLr‖φ‖1−αLq + Ct
1
p−j−

1
s ‖φ‖Ls . (4.28)

Remark 4.10. For functions on bounded intervals, adding the lower-order term in the right-hand
side of (4.28) is mandatory (see [36, item 5, p. 126]). To obtain the dependency of the constant
on t > 0, one uses scaling arguments to work within a fixed domain, say [0, 1].

4.7 A consequence of the Jacobi identity

The following straightforward consequences of the Jacobi identity will be useful to compute the
expansion of brackets of two elements of B? (see Definition 1.6 for the notation 0ν).

Lemma 4.11. Using the notation 0ν of Definition 1.6, the following expansions hold.

1. For any ν ∈ N and any a, b ∈ L(X),

[a, b0ν ] =

ν∑
ν′=0

(
ν

ν′

)
(−1)ν

′
[a0ν

′
, b]0ν−ν

′
. (4.29)

2. For any ν ∈ N∗, there exist coefficients ανj ∈ Z for 1 ≤ 2j + 1 ≤ ν, such that, for any
b ∈ L(X),

[b, b0ν ] =
∑

1≤2j+1≤ν

ανj [b0j , b0j+1]0ν−2j−1. (4.30)

Proof. The validity of (4.29) for any a, b can be proved by induction on ν ∈ N, the heredity relies
on the Jacobi identity and the binomial relation

(
ν−1
ν′

)
+
(
ν−1
ν′−1

)
=
(
ν
ν′

)
for ν′ = 1, . . . , ν − 1. The

validity of (4.30) for any b can be proved by induction on ν ∈ N∗; the Jacobi relation leads to
ανj = αν−1

j − αν−2
j−1 .

5 Sussmann’s and Stefani’s obstructions

The goal of this section is to give a new proof of Theorem 1.10, within the framework of the unified
approach proposed in this paper, as a consequence of the following more precise statement.

Theorem 5.1. Assume that (1.18) does not hold. Let k ∈ N∗ such that

ad2k
f1 (f0)(0) /∈ SJ1,2k−1K(f)(0). (5.1)

Then system (1.1) has a drift along ad2k
f1 (f0)(0), parallel to SJ1,2k−1K(f)(0), as (t, ‖u‖W−1,∞)→ 0.
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5.1 Dominant part of the logarithm

Lemma 5.2. Let k ∈ N∗ such that (5.1) holds. Let P be a component along ad2k
f1 (f0)(0), parallel

to SJ1,2k−1K(f)(0). Then

PZJ1,2kK(t, f, u)(0) = ξad2k
X1

(X0)(t, u) +O
(
|u1(t)|2k + t

1
2k−1 ‖u1‖2kL2k

)
. (5.2)

Proof. We intend to apply Corollary 4.7 with M ← 2k, L ← 2k + 2, b ← ad2k
X1

(X0) and N ←
B?J1,2k−1K, so that (5.2) will follow from (4.12), for the appropriate choice of Ξ(t, u). Let us check
that the required estimates are satisfied.
Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,2kK such that b /∈ N ∪ {b}.

Since N = B?J1,2k−1K, one has n1(b) = 2k and n0(b) ≥ 2. Hence |b| ≥ 2k + 2. By (3.22) of

Proposition 3.9, estimate (4.8) holds with σ = 2k + 2 and Ξ(t, u) = t‖u1‖2kL2k .

Step 2: Estimates of cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · +
n1(bq) ≤ 2k and suppF(b1, . . . , bq) 6⊂ N .

For each i ∈ J1, qK,

• if bi = X1, then
|ξbi(t, u)| = |u1(t)|, (5.3)

so (4.10) holds with σi = 1 and αi = 1/(2k) = n1(bi)/2k and Ξ(t, u) = |u1(t)|2k.

• otherwise, |bi| ≥ 1 + n1(bi) and, by (3.22) of Proposition 3.9 and Hölder’s inequality,

|ξbi(t, u)| ≤ (ct)|bi|

|bi|!
t−1−n1(bi)‖u1‖n1(bi)

Ln1(bi)
≤ (ct)|bi|

|bi|!
t−σi

(
t

1
αi
−1‖u1‖2kL2k

)αi
(5.4)

with σi = 1 +n1(bi) and αi = n1(bi)/(2k). Since q ≥ 2, n1(bi) ≤ 2k− 1. Thus 1
αi
− 1 ≥ 1

2k−1
and, assuming t ≤ 1,

t
1
αi
−1‖u1‖2kL2k ≤ t

1
2k−1 ‖u1‖2kL2k , (5.5)

so (4.10) holds with Ξ(t, u) = t
1

2k−1 ‖u1‖2kL2k .

Since N = B?J1,2k−1K, one has n1(b1) + · · ·+ n1(bq) = 2k. Hence α = α1 + · · ·+ αq = 1.

5.2 Vectorial relation

Lemma 5.3. Let k ∈ N∗ such that (5.1) holds. Then, f1(0) 6= 0.

Proof. By contradiction, if f1(0) = 0, since f0(0) = 0, all iterated Lie brackets of f0 and f1 vanish
so ad2k

f1 (f0)(0) = 0 ∈ SJ1,2k−1K(f)(0) = {0}.

5.3 Closed-loop estimate

Lemma 5.4. Assume that f1(0) 6= 0. Then,

|u1(t)| = O (|x(t;u)|+ ‖u1‖L1) . (5.6)

Proof. This estimate is proved in [3, Proposition 162]. For the sake of self-containedness, and as
an illustration of the approach used in the following sections, let us give another proof.

Let P be a component along f1(0), parallel to the null vector space {0}. By Corollary 4.7 with
M ← 1, L← 2, b← X1 and N ← ∅, (4.12) entails that

PZ1(t, f, u)(0) = u1(t) +O(‖u1‖L1). (5.7)
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Indeed, on the one hand, for every b ∈ B?1 \ {X1}, by (3.23) with (p, j0) ← (1, 1), one has |b| ≥ 2
and

|ξb(t, u)| ≤ (ct)|b|

|b|!
t−2‖u1‖L1 , (5.8)

so (4.8) holds with σ = 2 and Ξ(t, u) = ‖u1‖L1 . On the other hand, we don’t need to estimate any
cross terms because, when q ≥ 2 and b1, . . . , bq ∈ B? \ {X0}, n1(b1) + · · ·+ n1(bq) > 1.

By Theorem 4.4 with M ← 1,

x(t;u) = Z1(t, f, u)(0) +O
(
‖u1‖2L2 + |x(t;u)|2

)
. (5.9)

Then (5.6) follows from (5.7), (5.9) and the small-state estimate of Lemma 4.3.

5.4 Interpolation inequality

Lemma 5.5. For t > 0 and u ∈ L1((0, t);R),

‖u1‖2k+1
L2k+1 ≤ ‖u1‖L∞‖u1‖2kL2k . (5.10)

5.5 Proof of the presence of the drift

Proof of Theorem 5.1. Let P be a component along ad2k
f1 (f0)(0) parallel to SJ1,2k−1K(f)(0). By

Theorem 4.4,

x(t;u) = ZJ1,2kK(t, f, u)(0) +O
(
‖u1‖2k+1

L2k+1 + |x(t;u)|1+ 1
2k

)
(5.11)

and, by (5.2) and (2.6),

PZJ1,2kK(t, f, u)(0) =
1

(2k)!

∫ t

0

u2k
1 +O

(
|u1(t)|2k + t

1
2k−1 ‖u1‖2kL2k

)
. (5.12)

Moreover, by the closed-loop estimate (5.6) and Hölder’s inequality,

|u1(t)|2k = O
(
|x(t;u)|2k + t2k−1‖u1‖2kL2k

)
. (5.13)

Gathering these equalities and (5.10) yields

Px(t;u) =

∫ t

0

u2k
1

(2k)!
+O

((
t

1
2k−1 + ‖u1‖L∞

)∫ t

0

u2k
1 + |x(t;u)|1+ 1

2k

)
, (5.14)

which establishes the presence of drift, in the sense of Definition 1.16, along ad2k
f1 (f0)(0), parallel

to SJ1,2k−1K(f)(0), as (t, ‖u‖W−1,∞)→ 0.

6 New loose quadratic obstructions, conjectured by Kawski

We start by proving Theorem 1.11 when m ∈ N, as a consequence of the following more precise
statement (the proof of Theorem 1.11 for m = −1 will be done in Section 10). The case k = 1 is
already covered by Theorem 5.1 so we can assume without loss of generality in this section that
k ≥ 2 (hence π(k,m) ≥ 2, by (1.20)).

Theorem 6.1. Let m ∈ N and k ≥ 2. We assume k is the smallest integer for which

fWk
(0) /∈ SJ1,π(k,m)K\{2}(f)(0), (6.1)

where π(k,m) is defined in (1.20). Then system (1.1) has a drift along fWk
(0), parallel to

SJ1,π(k,m)K\{2}(f)(0), as (t, t−α‖u‖Wm,∞)→ 0 where α = π(k,0)−π(k,m)
π(k,m)−1 .
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Remark 6.2. When m > 0, the smallness assumption on the control in Theorem 6.1 depends on t.
See Remark 6.7 for a comment on the source of this dependency. For example, with k = 2 and
m = 1, one gets a limit of the form (t, t−1‖u‖W 1,∞)→ 0. One checks that Lemma 1.17 still holds
for such limits, so that Theorem 6.1 indeed denies Wm,∞-STLC in the sense of Definition 1.1.
This time-dependency is not technical (see [5, Section 2.4.4] for a counter-example).

6.1 A previous result on a prototype example

In [23, System (32)], Kawski considers the system

ẋ1 = u

ẋ2 = x1

. . .

ẋk = xk−1

ẋk+1 = x2
k − λx

p
1,

(6.2)

where λ > 0. Written in the form (1.1), this system satisfies

fMj−1(0) = ej for j ∈ J1, kK, fWk
(0) = 2ek+1, fadpX1

(X0)(0) = −λp!ek+1 (6.3)

and fb(0) = 0 for any other b ∈ B?. In [23, Proposition 5.1], Kawski proves that, if p ≥ 2k+1 then
the system (6.2) is not L∞-STLC. This result can be recovered by applying Theorem 6.1 to system
(6.2) with m← 0. Indeed, p ≥ 2k+1 > 2k − 1 = π(k, 0).

With respect to this previous result, Theorem 6.1 can be viewed as an improvement in the
following directions:

• any perturbation in B?Jp,∞J is allowed (not only adpX1
(X0)),

• as correctly conjectured in [22, section 2.4, p. 63], the critical threshold for L∞-STLC is
proved to be 2k − 1 (instead of 2k+1 − 1 obtained in [23, Proposition 5.1]),

• other regularity scales Wm,∞ for m > 0 are included.

6.2 Dominant part of the logarithm

Lemma 6.3. Let m ∈ N and k ≥ 2. Assume that k is the minimal value for which (6.1) holds.
Let P be a component along fWk

(0), parallel to SJ1,π(k,m)K\{2}(f)(0). Then

PZJ1,π(k,m)K(t, f, u)(0) = ξWk
(t, u) +O

(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (6.4)

Proof. By minimality of k, for every j ∈ J1, k − 1K,

fWj (0) ∈ SJ1,π(j,m)K\{2}(f)(0) ⊂ SJ1,π(k,m)K\{2}(f)(0), (6.5)

since π(·,m) is non-decreasing. Since SJ1,π(k,m)K\{2}(X) is stable by right bracketing with X0, one
also has

fWj,ν (0) ∈ SJ1,π(k,m)K\{2}(f)(0), (6.6)

for every j ∈ J1, k − 1K and ν ≥ 0. Hence SJ1,π(k,m)K\{2}(f)(0) = N (f)(0) where

N := B?J1,π(k,m)K\{2} ∪ {Wj,ν ; j ∈ J1, k − 1K, ν ∈ N} . (6.7)

We intend to apply Corollary 4.7 with M ← π(k,m), L ← 2k + 2, b ← Wk and N as in (6.7),
so that (6.4) will follow from (4.12), for the appropriate choice of Ξ(t, u). Let us check that the
required estimates are satisfied.
Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,π(k,m)K such that b /∈ N ∪{b}.
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By definition (6.7), one necessarily has n1(b) = 2 and b = Wj,ν with either j > k or (j = k and
ν ≥ 1). By estimate (3.24) with (p, j0)← (1, k), (4.8) holds with σ = 2k + 2 and

Ξ(t, u) := t‖uk‖2L2 . (6.8)

Step 2: Estimates of other cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that n1(b1) + · · · +
n1(bq) ≤ π(k,m) and suppF(b1, . . . , bq) 6⊂ N .

We start with preliminary estimates.

• If bi = Mj for some j ∈ J0, k − 1K, by (3.11),

|ξbi(t, u)| = |uj+1(t)| = t|bi|

|bi|!
t−(j+1)(j + 1)!|uj+1(t)| (6.9)

so (4.10) holds with σi = j + 1, αi = 1/2 and Ξ(t, u) = |(u1, . . . , uk)(t)|2.

• If bi = Mj for j ≥ k, by (3.23) (with (p, j0)← (2, k)), (4.10) holds with σi = k+ 1, αi = 1/2
and Ξ(t, u) = t‖uk‖2L2 .

Since suppF(b1, . . . , bq) 6⊂ N , one has q = 2 and b1, b2 ∈ B?1 . So the previous estimates apply and
α1 = α2 = 1/2 so α1 + α2 = 1.

6.3 Vectorial relations

Lemma 6.4. Let k ∈ N∗, π : N∗ → J1,∞K be a non-decreasing map and ϑ : N∗ → J1,∞K be

defined by ϑ(k) = max{1; bπ(k)
2 c}, with the convention ϑ(k) = +∞ when π(k) = +∞. Assume

that k is the minimal value for which fWk
(0) /∈ SJ1,π(k)K\{2}(f)(0). Then,

1. the vectors fM0(0), . . . , fMk−1
(0) are linearly independent,

2. if ϑ(k) ≥ 2, then span{fM0
(0), . . . , fMk−1

(0)} ∩ SJ2,ϑ(k)K(f)(0) = {0}.
Proof. Let H0 := f ′0(0). Since f0(0) = 0, for any b ∈ Br(X), f(b,X0)(0) = H0fb(0). Thus, for each
A ⊂ N, the space SA(f)(0) is stable by left multiplication by H0. In particular, by minimality of k,
for each l ∈ J1, k − 1K and ν ∈ N,

fWl,ν
(0) = Hν

0 fWl,0
(0) ∈ SJ1,π(l)K\{2}(f)(0) ⊂ SJ1,π(k)K\{2}(f)(0), (6.10)

where the last inclusion results from the monotony of π. Thus,

S2,J1,2k−2K(f)(0) ⊂ SJ1,π(k)K\{2}(f)(0). (6.11)

Step 1: Proof of statement 1. By contradiction, assume that there exists (β0, . . . , βk−1) ∈ Rk \ {0}
such that β0fM0

(0)+ · · ·+βk−1fMk−1
(0) = 0, i.e. fB1

(0) = 0 where B1 := βk−1Mk−1 + · · ·+β0M0.

One may assume that βk−1 6= 0; otherwise replace B1 by adk−1−K
X0

(B1) where K = max{j;βj 6= 0}.
By linearity, one may assume βk−1 = 1. Then fB2

(0) = 0 where

B2 := ad2
B1

(X0) = [Mk−1 + · · ·+ β0M0,Mk + · · ·+ β0M1] = Wk −B3, (6.12)

where B3 ∈ S2,J1,2k−2K(X). Finally, by (6.11), fWk
(0) = fB3

(0) ∈ SJ1,π(k)K\{2}(f)(0), which
contradicts (6.1).

Step 2: Proof of statement 2. By contradiction, assume that ϑ(k) ≥ 2 and that there exists
B ∈ SJ2,ϑ(k)K(X) and (γ0, . . . , γk−1) ∈ Rk \ {0} such that fB4

(0) = 0 where B4 := γk−1Mk−1 +

· · · + γ0M0 + B. One may assume γk−1 = 1; otherwise, replace B4 by adk−1−K
X0

(B4) where
K = max{j; γj 6= 0} and renormalize. Then fB5(0) = 0 where

B5 := ad2
B4

(X0) = [Mk−1 + · · ·+ γ0M0 +B,Mk + · · ·+ γ0M1 + [B,X0]]

∈Wk + S2,J1,2k−2K(X) + SJ3,2ϑ(k)K(X).
(6.13)

This fact and (6.11) contradict (6.1) because 2ϑ(k) ≤ π(k).
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6.4 Closed-loop estimate

Lemma 6.5. Let k ∈ N∗, π : N∗ → N∗ be a non-decreasing map and ϑ : N∗ → N∗ be defined by

ϑ(k) = max{1; bπ(k)
2 c}. Assume that k is the minimal value for which fWk

(0) /∈ SJ1,π(k)K\{2}(f)(0).
Then,

|(u1, . . . , uk)(t)| = O
(
|x(t;u)|+ ‖u1‖ϑ(k)+1

Lϑ(k)+1 + t
1
2 ‖uk‖L2

)
. (6.14)

Proof. By Theorem 4.4 with M ← ϑ(k),

x(t;u) = ZJ1,ϑ(k)K(t, f, u)(0) +O
(
‖u1‖ϑ(k)+1

Lϑ(k)+1 + |x(t;u)|1+ 1
ϑ(k)

)
. (6.15)

Let i ∈ J0, k−1K. By Lemma 6.4, we can consider P, a component along fMi
(0), parallel to N (f)(0)

where N := ({M0, . . . ,Mk−1} \Mi)∪B?J2,ϑ(k)K. We intend to apply Corollary 4.7 with M ← ϑ(k),

L← k+ 1, b←Mi and N as above, so that (4.12), for the appropriate choice of Ξ(t, u), will yield

PZJ1,ϑ(k)K(t, f, u)(0) = ui+1(t) +O
(
t
1
2 ‖uk‖L2

)
. (6.16)

Then, combining (6.15) and (6.16) concludes the proof of (6.14). Let us check that the required
estimates are satisfied.
Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,ϑ(k)K such that b /∈ N ∪ {b}.

By choice of N , one has necessarily n1(b) = 1. Then b = Mj for j ≥ k. Thus, by (3.23) (with

(p, j0)← (2, k)), |b| ≥ k + 1 and (4.8) holds with σ = k + 1 and Ξ(t, u) := t
1
2 ‖uk‖L2 .

Step 2: Estimates of cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · +
n1(bq) ≤ ϑ(k) and suppF(b1, . . . , bq) 6⊂ N .

By construction of N , there is no such cross term.

6.5 Interpolation inequality

Lemma 6.6. Let m ∈ N, k ≥ 2 and π := π(k,m) ≥ 2 as in (1.20). There exists C > 0 such that,
for every t > 0 and u ∈ L1((0, t);R),

‖u1‖π+1
Lπ+1 ≤ C

(
‖u1‖π+1−p

L∞ ‖u‖pWm,∞ + tπ+1−2k‖u‖π−1
L∞

)
‖uk‖2L2 , (6.17)

where p := (2m+ 2k)/(m+ 1) satisfies p ≤ π + 1.

Proof. By Proposition 4.9 with φ ← uk, (p, q, r, s) ← (p, 2,∞, 2), (j, l) ← (k − 1,m + k), α ←
(p− 2)/p, we obtain

‖u1‖pLp ≤ C‖u
(m)‖p−2

L∞ ‖uk‖
2
L2 + Ct1−pk+ p

2 ‖uk‖pL2 . (6.18)

By Hölder’s inequality,

‖uk‖p−2
L2 ≤ t(

1
2 +k)(p−2)‖u‖p−2

L∞ . (6.19)

Moreover, by (1.20),

π(k,m) + 1 ≥ 2k +m− 1

m+ 1
+ 1 =

2k + 2m

m+ 1
= p, (6.20)

and this concludes the proof of (6.17), writing

‖u1‖π+1
Lπ+1 ≤ ‖u1‖π+1−p

∞ ‖u1‖pLp (6.21)

and ‖u1‖L∞ ≤ t‖u‖L∞ .
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6.6 Proof of the presence of the drift for m ≥ 0

Proof of Theorem 6.1. Let P be a component along fWk
(0) parallel to SJ1,π(k,m)K\{2}(f)(0). Let

M := π(k,m). Let ϑ := max{1; bπ(k,m)
2 c}. By Theorem 4.4,

x(t;u) = ZJ1,MK(t, f, u)(0) +O
(
‖u1‖M+1

LM+1 + |x(t;u)|1+ 1
M

)
, (6.22)

where, by (6.4) and (3.12),

PZJ1,MK(t, f, u)(0) =
1

2

∫ t

0

u2
k +O

(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (6.23)

Moreover, by the closed-loop estimate (6.14),

|(u1, . . . , uk)(t)|2 = O
(
|x(t;u)|2 + ‖u1‖2ϑ+2

Lϑ+1 + t‖uk‖2L2

)
. (6.24)

By definition of ϑ, one has 2(ϑ+ 1) ≥ π(k,m) + 1. Hence, in particular,

‖u1‖2ϑ+2
Lϑ+1 = O

(
‖u1‖M+1

LM+1

)
. (6.25)

Gathering these equalities and the interpolation estimate (6.17) yields

Px(t;u) =
1

2

∫ t

0

u2
k +O

((
t+ (1 + tπ(k,m)+1−2k)‖u‖π(k,m)−1

Wm,∞

)
‖uk‖2L2 + |x(t;u)|1+ 1

M

)
. (6.26)

This implies, in the sense of Definition 1.16, a drift along fWk
(0), parallel to SJ1,π(k,m)K\{2}(f)(0),

as (t, t−α‖u‖Wm,∞)→ 0 where α = 2k−1−π(k,m)
π(k,m)−1 = π(k,0)−π(k,m)

π(k,m)−1 .

Remark 6.7. When m = 0, the smallness assumption on the control does not depend on the final
time t (because α = 0). When m > 0, the dependence on time of the smallness assumption on the
control stems from the second term in the right-hand side of the Gagliardo–Nirenberg inequality
of Proposition 4.9. For appropriate classes of functions, for instance φ ∈ Wm,∞

0 , the Gagliardo–
Nirenberg inequality holds without this second term. Thus, for controls u ∈ Wm,∞

0 , the argument
above proves a drift as (t, ‖u‖Wm,∞

0
)→ 0.

6.7 Optimality of the functional framework

We illustrate the optimality of the functional framework given in Theorem 6.1 by an example in the
case m = 0 and k = 2. In this case, the condition fW2

(0) ∈ S{1,3}(f)(0) is necessary for L∞-STLC,
but not for a different small-time local controllability notion involving large enough controls in L∞

(instead of arbitrarily small controls in L∞), called ρ-bounded-SLTC in Section 1.2. In this sense,
our result is optimal.

To prove this claim, let us consider the following system (introduced in [39, Example 5.2]):
ẋ1 = u

ẋ2 = x1

ẋ3 = x2
2 − x4

1.

(6.27)

Written in the form (1.1), this system satisfies

fM0
= e1, fM1

(0) = e2, fW2
(0) = 2e3, fQ1,1,1

(0) = −24e3 (6.28)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,W2, Q1,1,1}. Thus fW1
(0) ∈ S1(f)(0) and fW2

(0) /∈
S{1,3}(f)(0). By Theorem 1.11, this system is not L∞-STLC, i.e. locally controllable in small time
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with L∞-small controls. By Theorem 6.1, solutions associated to controls small in L∞ cannot
reach in small time targets of the form −βe3 with β > 0.

In [23, Example 5.1 and p. 452], Kawski claims that this system is STLC with controls large
enough in L∞. This can also be deduced from the arguments given in [39, Example 5.2] by a
scaling argument. Let us indeed construct explicit controls (large in L∞) achieving a motion along
−e3. Let ϕ ∈ C∞c ((0, 1);R) \ {0} and A > 0 large enough such that

C := −
∫ 1

0

ϕ2 +A2

∫ 1

0

(ϕ′)4 > 0. (6.29)

Let t > 0 and u ∈ L1((0, t);R) be defined by u(s) := Aϕ′′ (s/t). Then u1(s) = Atϕ′(s/t) and
u2(s) = At2ϕ(s/t). Thus

x3(t) =

∫ t

0

u2
2 − u4

1 =

∫ t

0

((
At2ϕ′

(s
t

))2

−
(
Atϕ′

(s
t

))4
)

ds = −t5A2C. (6.30)

Therefore x(t;u) = −t5A2Ce3, so we have indeed achieved a motion along −e3. Standard ar-
guments using either tangent vectors or power series expansions (see e.g. [23, Appendix] or [13,
Section 8.1]) then allow to prove that there exists ρ > 0 large enough such that (6.27) is indeed
ρ-bounded-STLC.

6.8 A coarse screening of cubic brackets

Theorem 1.12 for m ∈ N is a corollary of the following more precise statement.

Theorem 6.8. Let m ∈ N and k ∈ N∗ with π(k,m) ≥ 3. We assume k is the smallest integer for
which

fWk
(0) /∈

(
B?1 ∪ Pk ∪ B?J4,π(k,m)K

)
(f)(0), (6.31)

where Pk is defined in (1.22). Then system (1.1) has a drift along fWk
(0), parallel to the subspace

(B?1 ∪ Pk ∪ B?J4,π(k,m)K)(f)(0), as (t, t−α‖u‖Wm,∞)→ 0 where α = π(k,0)−π(k,m)
π(k,m)−1 .

Theorem 6.8 follows from the same strategy as Theorem 6.1, presented in Sections 6.2 to 6.6.
We explain below how to adapt Sections 6.2 to 6.4 in order to conclude with the same Sections 6.5
and 6.6. We will make repeated use of the following algebraic result.

Lemma 6.9 (Algebraic preliminaries). Let j, k ∈ N∗.

1. If j ≤ k, then (Mk−1,Wj) = Pj,k ∈ B?.

2. If j > k, then supp[Mk−1,Wj ] ⊂ {Pj′,k′,ν′ ; j′ < j}.

3. If ν ∈ N, then supp[Mk−1,Wj,ν ] ⊂ {Pj′,k′,ν′ ; j′ ≤ j}.

Proof. For Item 2, let b ∈ supp[Mk−1,Wj ]. Since B?3 spans S3(X), b = Pj′,k′,ν′ with j′ ≤ k′ ∈ N∗
and ν′ ∈ N. On the one hand n0(b) = 2j′ + k′ − 2 + ν′ ≥ 3j′ − 2. On the other hand [Mk−1,Wj ] ∈
S3,k+2j−2(X), where k + 2j − 2 ≤ 3j − 3. Thus 3j′ − 2 ≤ 3j − 3 so j′ < j.

Thanks to (4.29), Item 3 follows from Items 1 and 2.

Lemma 6.10 (Dominant part of the logarithm). Under the assumptions of Theorem 6.8, let P be
a component along fWk

(0), parallel to the subspace (B?1 ∪Pk ∪B?J4,π(k,m)K)(f)(0). Then (6.4) holds.
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Proof. We follow the proof of Lemma 6.3. By minimality of k, for every j < k,

fWj (0) ∈
(
B?1 ∪ Pj ∪ B?J4,π(j,m)K

)
(f)(0) ⊂

(
B?1 ∪ Pk ∪ B?J4,π(k,m)K

)
(f)(0), (6.32)

since j 7→ Pj and j 7→ π(j,m) are non-decreasing. Since B?1 ∪ Pk ∪ B?J4,π(k,m)K is stable by right
bracketing with X0, one also has

fWj,ν
(0) ∈

(
B?1 ∪ Pk ∪ B?J4,π(k,m)K

)
(f)(0), (6.33)

for every j < k and ν ≥ 0. Hence (B?1 ∪ Pk ∪ B?J4,π(k,m)K)(f)(0) = N (f)(0) where

N := B?1 ∪Wk ∪ Pk ∪ B?J4,π(k,m)K and Wk := {Wj,ν ; j < k} . (6.34)

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,π(k,m)K such that b /∈ N ∪{b}.
The only case which is not already treated in the proof of Lemma 6.3 is b = Pj,l,ν with j ≥ k.
Then (3.25) (with (p1, p2, j0, k0)← (1,∞, k, k)) proves (4.8) with σ = 3k+1 and Ξ(t;u) = t‖uk‖2L2 .
Indeed, ‖uk‖2L2‖uk‖L∞ ≤ t‖uk‖2L2 when ‖u1‖∞ ≤ 1 and k ≥ 2.

Step 2: Estimates of other cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that n1(b1) + · · · +
n1(bq) ≤ π(k,m) and suppF(b1, . . . , bq) 6⊂ N . The only cases which are not already treated in the
proof of Lemma 6.3 are

• q = 3 and b1, b2, b3 ∈ B?1 , then (4.10) holds with α1 = α2 = α3 = 1/2 (see the preliminary
estimates in the Step 2 of the proof of Lemma 6.3),

• q = 2, b1 = Wj1,ν1 , b2 = Mk1−1 and supp[b1, b2] ∩ {Pj2,k2,ν ; j2 ≥ k} 6= ∅.
In this last case, (4.10) holds for i = 2 with α2 = 1/2 (see the preliminary estimates in the
Step 2 of the proof of Lemma 6.3). By Lemma 6.9, j1 ≥ k, thus (3.24) (with (p, j0) ← (1, k))
proves that (4.10) holds for i = 1 with σ1 = 2k + 1, α1 = 1/2 and Ξ(t, u) = t‖uk‖2L2 . Indeed,

‖uk‖2L2 ≤
√
t‖uk‖L2 when ‖u1‖L∞ ≤ 1 and k ≥ 2.

Lemma 6.11 (Vectorial relations). Under the assumptions of Theorem 6.8,

1. the vectors fM0(0), . . . , fMk−1
(0) are linearly independent,

2. if ϑ(k) ≥ 2, then span{fM0(0), . . . , fMk−1
(0)} ∩ (Wk + SJ3,ϑ(k)K)(f)(0) = {0},

where ϑ(k) is defined in Lemma 6.5 and Wk = {Wj,ν ; j < k} as in (6.34).

Proof. We adapt the proof of Lemma 6.4. For Item 1, one replaces (6.11) by

S2,J1,2k−2K(f)(0) ⊂
(
B?1 ∪ Pk ∪ B?J4,π(k,m)K

)
(f)(0). (6.35)

For Item 2, B is assumed to belong to Wk + SJ3,ϑ(k)K(X) thus, by Lemma 6.9,

B5 := ad2
B4

(X0) = [Mk−1 + · · ·+ γ0M0 +B,Mk + · · ·+ γ0M1 + [B,X0]]

∈Wk + S2,J1,2k−2K(X) + Pk + SJ4,2ϑ(k)K(X),
(6.36)

yielding the same contradiction as in the proof of Lemma 6.4.

Lemma 6.12 (Closed-loop estimates). Under the assumptions of Theorem 6.8, one has (6.14).

Proof. We adapt the proof of Lemma 6.5 with N := ({M0, . . . ,Mk−1} \Mi) ∪Wk ∪ B?J3,ϑ(k)K.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,ϑ(k)K such that b /∈ N ∪ {b}.
The only case which is not treated in the proof of Lemma 6.5 is b = Wj,ν with j ≥ k. Then (3.24)
with (p, j0)← (1, k) proves that (4.8) holds with σ = (2k + 1) and Ξ(t, u) = ‖uk‖2L2 ≤

√
t‖uk‖L2 .

Step 2: Estimates of cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · +
n1(bq) ≤ ϑ(k) and suppF(b1, . . . , bq) 6⊂ N . Then q = 2, b1, b2 ∈ B?1 and supp[b1, b2] ∩ {Wj,ν ; j ≥
k} 6= ∅. One may assume b1 = M` with ` ≥ k and then (4.10) holds with σi = k + 1, αi = 1 and
Ξ(t, u) =

√
t‖uk‖L2 .
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7 Kawski’s refined W2 obstruction

The goal of this section is to prove the case k = 2 in Theorem 1.13, as a consequence of the
following more precise statement.

Theorem 7.1. Assume that fW1
(0) ∈ N1(f)(0) and fW2

(0) /∈ N2(f)(0). Then, system (1.1) has
a drift along fW2

(0), parallel to N2(f)(0), as (t, ‖u‖L∞)→ 0.

7.1 Limiting examples

Let us illustrate that the set N2 defined in (1.24) of brackets which can compensate W2 must
include P1,1,ν for every ν ∈ N. As an illustration, we prove the following controllability results
using classical sufficient conditions due to Sussmann or Bianchini and Stefani because they are
simpler to apply. Nevertheless, the same results would follow from Agrachev and Gamkrelidze
conditions as in Section 8.1.

Limiting example for P1,1,0. Consider the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2
2 + x3

1.

(7.1)

Written in the form (1.1), this system satisfies

fM0
(0) = e1, fM1

(0) = e2, fP1,1,0
(0) = 6e3, fW2

(0) = 2e3 (7.2)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,W2, P1,1,0}.
This system was proposed by Jakubczyk and is known to be L∞-STLC since3 [41, p. 711-712].

It also satisfies Sussmann’s S(θ) condition (see [43, Theorem 7.3] or [13, Theorem 3.29]) for any
θ > 1/2 (see also [5, Section 2.4.1] for a short direct proof).

Limiting example for P1,1,ν . Let ν ∈ N∗. We consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x3
1

ẋ3+i = x3+i−1 for i = 1, . . . , ν − 1

ẋ3+ν = x2
2 + x3+ν−1.

(7.3)

Written in the form (1.1), this system satisfies

fM0
(0) = e1, fM1

(0) = e2, fP1,1,µ
(0) = 3!e3+µ for µ = 0, . . . , ν, fW2

(0) = 2e3+ν (7.4)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,W2, P1,1,µ;µ ∈ J0, νK}.
For ν = 3, this system corresponds to [19, Example 2.4]. To prove that it is L∞-STLC, the

key point is to prove that ±e3 = ±6fP1,1,0
(0) are tangent vectors. Then, the L∞-STLC follows

from the elementary remark that, if, for some b ∈ B?, ±fb(0) are tangent vectors, then so are
±f(b,X0)(0) (see [19, Theorem 6] or [6, claim P2]). As in the case ν = 0, the fact that ±e3 are
tangent vectors can be proved using oscillating controls or Sussmann’s S(θ) condition with θ > 1/2
as reformulated in [6, Theorem 2] by Bianchini and Stefani.

A non-controllable example involving Q1,1,1. In Section 6.7, we recalled that system (6.27) is
small-time locally controllable with large enough controls in L∞, but not L∞-STLC in the sense
of Definition 1.1. For this system, one has 6fW2(0) = −fQ1,1,1(0) (and Q1,1,1 is the only bracket
“compensating” W2). But Q1,1,1 does not belong to the set N2 defined in (1.24) of brackets which
can compensate W2 for L∞-STLC. Hence, the fact that (6.27) is not L∞-STLC can be seen as an
application of the case j = 2 of Theorem 1.13.

3Sussmann’s initial proof involves controls with ‖u‖L∞ ≤ 1, but extends easily to any bound on u.
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7.2 Dominant part of the logarithm

Lemma 7.2. Assume that fW1
(0) ∈ N1(f)(0) and fW2

(0) /∈ N2(f)(0). Let P be a component
along fW2(0), parallel to N2(f)(0). Then

PZJ1,3K(t, f, u)(0) = ξW2(t, u) +O
(
|(u1, u2)(t)|2 + t‖u2‖2L2 + ‖u1‖2L4‖u2‖L2 + ‖u1‖4L4

)
. (7.5)

Proof. By assumption, fW1
(0) ∈ N1(f)(0). Since N1 is stable by right bracketing with X0,

fW1,ν
(0) ∈ N1(f)(0) for every ν ≥ 0. Thus, since N1 ⊂ N2, N2(f)(0) = N (f)(0), where N is

defined as
N := N2 ∪ {W1,ν ; ν ∈ N}, (7.6)

where N2 is defined in (1.24). By assumption, fW2
(0) /∈ N2(f)(0) = N (f)(0).

We intend to apply Corollary 4.7 with M ← 3, L ← 6, b ← W2 and N as in (7.6), so that
(7.5) will follow from (4.12), for the appropriate choice of Ξ(t, u). Let us check that the required
estimates are satisfied.
Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,3K such that b /∈ N ∪ {b}.

We investigate the different possibilities depending on n1(b).

• One cannot have n1(b) = 1 since B?1 ⊂ N2.

• If n1(b) = 2, by (1.9) and (7.6), one has b = Wj,ν with either (j ≥ 3) or (j = 2 and ν ≥ 1).
Thus |b| ≥ 6. By estimate (3.24) with (p, j0)← (1, 2), (4.8) holds with σ = 6 and

Ξ(t, u) := t‖u2‖2L2 . (7.7)

• If n1(b) = 3, by (1.10) and (1.24), b = Pj,k,ν with k ≥ 2. Thus |b| ≥ 5. By estimate (3.25)
with (p1, p2, j0, k0)← (2, 2, 1, 2), (4.8) holds with σ = 5 and

Ξ(t, u) := ‖u1‖2L4‖u2‖L2 . (7.8)

Step 2: Estimates of cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · +
n1(bq) ≤ 3 and suppF(b1, . . . , bq) 6⊂ N .

We start with preliminary estimates.

• If bi = Mj for some j ∈ J0, 1K, by (3.11),

|ξbi(t, u)| = |uj+1(t)| = t|bi|

|bi|!
t−(j+1)(j + 1)!|uj+1(t)| (7.9)

so (4.10) holds with σi = j + 1, αi = 1/2 and Ξ(t, u) = |(u1, u2)(t)|2.

• If bi = Mj for j ≥ 2, by (3.23) (with (p, j0)← (2, 2)), (4.10) holds with σi = 3, αi = 1/2 and
Ξ(t, u) = t‖u2‖2L2 .

• By (3.22), for each bi ∈ B?2 , (4.10) holds with σi = 3, αi = 1/2 and Ξ(t, u) = t‖u1‖4L4 .

Since n1(b1) + · · ·n1(bq) ≤ 3 and q ≥ 2, all the bi belong to B?J1,2K. Thanks to the preliminary

estimates, α = q/2 ≥ 1.

7.3 Vectorial relation

Lemma 7.3. Assume that fW1
(0) ∈ N1(f)(0) and fW2

(0) /∈ N2(f)(0). Then, the vectors fM0
(0)

and fM1(0) are linearly independent.

Proof. This statement is implied by the case k = 2 and π(k) = 2 in Lemma 6.4.
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7.4 Closed-loop estimate

Lemma 7.4. Assume that fM0
(0) and fM1

(0) are linearly independent. Then,

|(u1, u2)(t)| = O
(
|x(t;u)|+ ‖u1‖2L2 + t

1
2 ‖u2‖L2

)
. (7.10)

Proof. This statement is implied by the case k = 2 and π(k) = 2 in Lemma 6.5.

7.5 Interpolation inequality

Lemma 7.5. There exists C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u1‖4L4 ≤ C‖u‖2L∞‖u2‖2L2 . (7.11)

Proof. Inequality (7.11) follows from Proposition 4.9 with φ← u2, (p, q, r, s)← (4, 2,∞, 2), (j, l)←
(1, 2), α← 1/2. The lower-order term in (4.28) is absorbed using the estimate ‖u2‖L2 ≤ t 5

2 ‖u‖L∞ ,

which stems from Hölder’s inequality and the equality u2(t) =
∫ t

0
(t− s)u(s) ds.

7.6 Proof of the presence of the drift

Proof of Theorem 7.1. Let P be a component along fW2(0) parallel to N2(f)(0). By Theorem 4.4
with M ← 3,

x(t;u) = ZJ1,3K(t, f, u)(0) +O
(
‖u1‖4L4 + |x(t;u)|1+ 1

3

)
, (7.12)

where, by (7.5) and (3.12),

PZJ1,3K(t, f, u)(0) =
1

2

∫ t

0

u2
2 +O

(
|(u1, u2)(t)|2 + t‖u2‖2L2 + ‖u1‖2L4‖u2‖L2 + ‖u1‖4L4

)
. (7.13)

Moreover, by the closed-loop estimate (7.10),

|(u1, u2)(t)|2 = O
(
|x(t;u)|2 + ‖u1‖4L4 + t‖u2‖2L2

)
. (7.14)

Gathering these equalities and the interpolation estimate (7.11) yields

Px(t;u) =
1

2

∫ t

0

u2
2 +O

(
(t+ ‖u‖L∞)

∫ t

0

u2
2 + |x(t;u)|1+ 1

3

)
. (7.15)

This implies a drift along fW2
(0), parallel to N2(f)(0), as (t, ‖u‖L∞) → 0, in the sense of Defini-

tion 1.16.

8 New refined W3 obstruction

The goal of this section is to prove the case k = 3 of Theorem 1.13, as a consequence of the
following more precise statement.

Theorem 8.1. Assume that fW1
(0) ∈ N1(f)(0), fW2

(0) ∈ N2(f)(0) and fW3
(0) /∈ N3(f)(0).

Then there exist a linear form PW3 : Rd → R giving a component along fW3(0), another linear
form P : Rd → R, C > 0, β > 1 such that, for every ε > 0, there exists ρ = ρ(ε) > 0 such that for
every t ∈ (0, ρ) and u ∈ L∞((0, t),R) with ‖u‖L∞ < ρ,

(PW3 + tP)x(t;u) ≥ (1− ε)ξW3(t, u)− C|x(t;u)|β . (8.1)
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The conclusion (8.1) is not exactly a drift45 along fW3
(0), parallel to N3(f)(0), as (t, ‖u‖L∞)→

0, in the sense of Definition 1.16, because the left-hand side of the inequality involves a linear form
Pt := PW3

+ tP that may not give a component along fW3
(0). Nevertheless this result is still an

obstruction to L∞-STLC. Indeed, one may assume PW3 and P are linearly independent, then by
considering e ∈ Rd such that PW3e = 1 and Pe = 0, estimate (8.1) prevents x(t;u) from reaching
targets of the form x? = −ae with 0 < a� 1, because this would entail −a = (PW3

+ tP)x(t;u) ≥
−C|x?|β = −Caβ , which fails for a small enough, because β > 1.

The proof of Theorem 8.1 is a slight variation of the unified approach as presented in Sec-
tion 1.6.4, in which closed-loop estimates are used not only for cross terms of coordinates of the
second kind, but also for some coordinates of the second kind.

8.1 Limiting examples

We illustrate that the set N3 defined in (1.25) of brackets which can compensate W3 is “minimal”
in the following sense: for each bracket b of N3, we construct an example of an L∞-STLC system
for which there is a competition between W3 and b. One has

N3 = {Mν , P1,l,ν , Q1,1,2,ν , R1,1,1,1,ν , R
]
1,1,1,µ,ν ; l ∈ N∗, µ, ν ∈ N} ∪ {Q1,1,1, Q

[
1,0, Q

[
1,1, Q

[
1,2}. (8.2)

The brackets of the first list can be considered as “good”, and those of the second list as “bad” in
senses detailed below. We treat both lists separately.

8.1.1 Good-bad competitions

We consider the first list of (8.2). We skip the case of the Mν since it is clear by the linear test that
any system with fW3

(0) ∈ S1(f)(0) and S1(f)(0) = Rd is L∞-STLC. For all the other brackets,
we will prove the L∞-STLC property thanks to Agrachev and Gamkrelidze’s sufficient condition
[1, Theorem 4], of which we now recall a version well-suited to our setting.

Theorem 8.2. Let σ ∈ [0, 1], r ≥ 0 and Π1 ⊂ Br(X) such that Π1 generates a Lie algebra
Lie(Π1) ⊂ L(X) with the following properties:

• Π1 is a set of free generators of Lie(Π1),

• for each b ∈ Br(X) with n1(b) even and n0(b) odd, e(b) ∈ Lie(Π1).

For k ∈ N∗ let Πk+1 := [Π1,Πk] and Π∞ := ∪k∈N∗Πk. For k ∈ N∗ and π ∈ Πk, let ω(π) := |π|−σk.
Suppose that, for all k ∈ N, and every π ∈ Π2k+1 with n1(π) even and n0(π) odd, and ω(π) ≤ r,

fπ(0) ∈ span{fπ′(0);π′ ∈ Π∞, ω(π′) < ω(π)}. (8.3)

Assume moreover that

Rd = S1(f)(0) + span{fπ(0);π ∈ Π∞, ω(π) ≤ r}. (8.4)

Then, the system is L∞-STLC.

To apply Theorem 8.2, the key point is thus to find a set Π1 and a parameter σ ∈ [0, 1] such
that the “good” brackets that one intends to use have a smaller weight ω than the “bad” ones. All
the following examples will be handled with σ = 1 and the following choice of Π1:

Π1 := {adi2M2
adi1M1

adi0X1
(X0); i0, i1, i2 ∈ N, (i0, i1) /∈ {1} × N∗, (i0, i1, i2) /∈ {0} × {1} × N∗}. (8.5)

By the elimination theorem [44, Proposition 1.1], Π1 is a set of free generators of Lie(Π1) and
L(X) = RX1 ⊕ RM1 ⊕ RM2 ⊕ Lie(Π1). In particular, Lie(Π1) contains e(b) for every b ∈ Br(X)
of type (even, odd). We compute the associated weights for all brackets of interest with σ = 1.

4One can see (8.1) as a particular case of a “weak drift” as (t, ‖u‖L∞ ) → 0 in the sense of Definition 10.1 of
Section 10.

5This is not a technical limitation. See Section 8.7.
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• Since W3 = ad2
M2

(X0) ∈ Π1, ω(W3) = |W3| − 1 = 6.

• For l ∈ {1, 2, 3} and ν ∈ N, P1,l,ν = adMl−1
ad2
M0

(X0)0ν ∈ Π1+ν , so ω(P1,l,ν) = 2 + l ≤ 5.

• For l ≥ 4 and ν ∈ N, P1,l,ν = (adM2
(X0)0l−3, ad2

M0
(X0))0ν ∈ Πl−1+ν , so ω(P1,l,ν) = 4.

• For ν ∈ N, Q1,1,2,ν = adM1
ad3
M0

(X0)0ν ∈ Π1+ν , so ω(Q1,1,2,ν) = 5.

• For ν ∈ N, R1,1,1,1,ν = ad5
M0

(X0)0ν ∈ Π1+ν , so ω(R1,1,1,1,ν) = 5.

• For µ, ν ∈ N, R]1,1,1,µ,ν = (ad2
M0

(X0)0µ, ad3
M0

(X0))0ν ∈ Π2+µ+ν , so ω(R]1,1,1,µ,ν) = 5.

Hence, all these brackets have a smaller weight than W3. Moreover, Theorem 8.2 does not require
for them to be compensated. Indeed, the P s and Rs have an odd n1. Moreover, n0(Q1,1,2,ν) = 2+ν
and Q1,1,2,ν ∈ Π1+ν so Q1,1,2,ν is never simultaneously of type (even, odd) and inside Π2k+1.

We now provide limiting examples of systems, whose L∞-STLC can be established by the above
argument. These examples prove that the first list of (8.2) is minimal.

Limiting example for P1,l,ν with l ∈ {1, 2, 3}. Let ν ∈ N. For ν = 0, we consider the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x2
3 + x2

1xl

(8.6)

while for ν > 0 we consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x2
1xl

ẋ4+µ = x4+µ−1 for µ = 1, . . . , ν − 1

ẋ4+ν = x2
3 + x4+ν−1.

(8.7)

Written in the form (1.1), these systems satisfy

fMi−1
(0) = ei for i ∈ J1, 3K, fP1,l,µ

(0) = ce4+µ for µ ∈ J0, νK, fW3
(0) = 2e4+ν , (8.8)

where c = 6 if l = 1 and c = 2 otherwise, and fb(0) = 0 for any other b ∈ B?.

Limiting example for P1,l,ν for l ≥ 4. Let ν ∈ N. For ν = 0, consider the system
ẋ1 = u

ẋi = xi−1 for i = 2, . . . , l

ẋl+1 = x2
3 + x2

1xl

(8.9)

while for ν > 0 we consider the system

ẋ1 = u

ẋi = xi−1 for i = 2, . . . , l

ẋl+1 = x2
1xl

ẋl+1+µ = xl+µ for µ = 1, . . . , ν − 1

ẋl+1+ν = x2
3 + xl+ν .

(8.10)
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Written in the form (1.1), these systems satisfy

fMi−1(0) = ei for i ∈ J1, lK, fP1,l,µ
(0) = cel+1+µ for µ ∈ J0, νK, fW3(0) = 2el+1+ν , (8.11)

where c = 6 if l = 1 and c = 2 otherwise, and fb(0) = 0 for any other b ∈ B?.

Limiting example for Q1,1,2,ν . Let ν ∈ N. For ν = 0, we consider the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x2
3 + x3

1x2

(8.12)

while for ν > 0 we consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x3
1x2

ẋ4+µ = x4+µ−1 for µ = 1, . . . , ν − 1

ẋ4+ν = x2
3 + x4+ν−1.

(8.13)

Written in the form (1.1), these systems satisfy

fMi−1(0) = ei for i = 1, 2, 3 fQ1,1,2,µ = 2e4+µ for µ = 0, . . . , ν fW3(0) = 2e4+ν , (8.14)

and fb(0) = 0 for any other b ∈ B?.

Limiting example for R1,1,1,1,ν . Let ν ∈ N. For ν = 0, we consider the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x2
3 + x5

1

(8.15)

while for ν > 0 we consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x5
1

ẋ4+µ = x4+µ−1 for µ = 1, . . . , ν − 1

ẋ4+ν = x2
3 + x4+ν−1.

(8.16)

Written in the form (1.1), these systems satisfiy

fMi−1
(0) = ei for i = 1, 2, 3, fR1,1,1,1,µ

(0) = 5!e4+µ for µ ∈ J0, νK, fW3
(0) = 2e4+ν (8.17)

and fb(0) = 0 for any other b ∈ B?.
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Limiting example for R]1,1,1,µ,ν . Let µ, ν ∈ N. For ν = 0, we consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x3
1

ẋ4+µ′ = x4+µ′−1 for µ′ = 1, . . . , µ

ẋ5+µ = x2
3 + x2

1x4+µ

(8.18)

while for ν > 0 we consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x3
1

ẋ4+µ′ = x4+µ′−1 for µ′ = 1, . . . , µ

ẋ5+µ = x2
1x4+µ

ẋ5+µ+ν′ = x5+µ+ν′−1 for ν′ = 1, . . . , ν − 1

ẋ5+µ+ν = x2
3 + x5+µ+ν−1.

(8.19)

Written in the form (1.1), this system satisfies

fMi−1
(0) = ei for i = 1, 2, 3, fP1,1,µ′ (0) = 6e4+µ′ for µ′ ∈ J0, µK,

fR]
1,1,1,µ,ν′

(0) = −12(−1)µe5+µ+ν′ for ν′ ∈ J0, νK, fW3
(0) = 2e5+µ+ν

(8.20)

and fb(0) = 0 for any other b ∈ B?.

8.1.2 Bad-bad competitions

The second list of (8.2) consists of brackets which are associated with sign-definite coordinates
of the second-kind. Hence, they restore controllability in competition with W3 only in situations
where both sign-definite terms push the state in opposite directions. Such “bad-bad” competitions
(see e.g. [23, Section 5] for an introduction) are not handled by classicial sufficient conditions such
as [1, Theorem 4]. We present the straightforward case of Q1,1,1 here, and postpone the examples
involving Q[1,0, Q

[
1,1 and Q[1,2, for which the proofs are more intricate, to Appendix A.6.

Limiting example for Q1,1,1. We consider the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x2
3 − x4

1.

(8.21)

Written in the form (1.1), this system satisfies

fM0
(0) = e1, fM1

(0) = e2, fM2
(0) = e3, fW3

(0) = 2e4, fQ1,1,1
(0) = −24e4 (8.22)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,M2,W3, Q1,1,1}. In [23, Example 5.2], Kawski proves that
system (8.21) is L∞-STLC. This can also be proved using oscillating controls as in Section 6.7.
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8.2 Dominant part of the logarithm

The following lemma is a little intricate due to the fact that the list (1.25) is minimal. If one only
wishes to prove an easier version with N3 ← N3 ∪ {Q1,1,1,ν , Q

[
1,µ,ν}, the proof could be shorter.

Lemma 8.3. Let N ′3 := N3 \ {Q[1,0, Q[1,1, Q[1,2} i.e.,

N ′3 = {Mν , P1,l,ν , Q1,1,1, Q1,1,2,ν , R1,1,1,1,ν , R
]
1,1,1,µ,ν ; l ∈ N∗, µ, ν ∈ N}, (8.23)

N ′′3 := N ′3 \ {Q1,1,1} and PW3
: Rd → R be a component along fW3

(0) parallel to N ′3(f)(0). Under
the assumptions of Theorem 8.1,

PW3
ZJ1,5K(t, f, u)(0) = ξW3

(t, u) +O
(
tξW3

(t, u) + ‖u2‖3L3 + ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6

+ |(u1, u2, u3)(t)|2 + aξ2
W1

(t, u) + a′tξQ1,1,1
(t, u)

)
.

(8.24)

where

• a = 1 if fW1
(0) 6= 0 and a = 0 otherwise,

• a′ = 1 if fQ1,1,1
(0) /∈ N ′′3 (f)(0) and a′ = 0 otherwise.

Proof. For i ∈ {1, 2}, fWi
(0) ∈ Ni(f)(0) and Ni is stable by right bracketing with X0 thus

fWi,ν
(0) ∈ Ni(f)(0) for every ν ≥ 0. Since N1 ⊂ N2 ⊂ N ′3 then fWi,ν

(0) ∈ N ′3(f)(0) for every
i ∈ {1, 2} and ν ∈ N.

When a = 0, i.e. fW1(0) = 0, then fQ[1,µ,ν (0) = 0 for every µ, ν ∈ N because it is an iterated

bracket of the vector fields fW1 and f0 that vanish at 0, see (1.16).
When a′ = 0, i.e. fQ1,1,1

(0) ∈ N ′′3 (f)(0) then for every ν ∈ N, fQ1,1,1,ν
(0) ∈ N ′′3 (f)(0) because

N ′′3 is stable by right bracketing with X0, thus fQ1,1,1,ν
(0) ∈ N ′3(f)(0).

These remarks prove that N ′3(f)(0) = N (f)(0) where

N =


N ′3 ∪ {W1,ν ,W2,ν , Q1,1,1,ν , Q

[
1,µ,ν ;µ, ν ∈ N} when (a, a′) = (0, 0),

N ′3 ∪ {W1,ν ,W2,ν , Q
[
1,µ,ν ;µ, ν ∈ N} when (a, a′) = (0, 1),

N ′3 ∪ {W1,ν ,W2,ν , Q1,1,1,ν , ;µ, ν ∈ N} when (a, a′) = (1, 0),
N ′3 ∪ {W1,ν ,W2,ν ;µ, ν ∈ N} when (a, a′) = (1, 1).

(8.25)

By assumption, fW3(0) /∈ N3(f)(0), so fW3(0) /∈ N (f)(0).
We intend to apply Corollary 4.7 with M ← 5, L ← 11, b ← W3 and N as in (8.25), so that

(8.24) will follow from (4.12), for the appropriate choice of Ξ(t, u) (corresponding to the quantities
within the O(·) in (8.24)). Let us check that the required estimates are satisfied.
Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,5K such that b /∈ N ∪ {b}.

We investigate the different possibilities depending on n1(b).

• One cannot have n1(b) = 1 since B?1 ⊂ N ′3 ⊂ N .

• If n1(b) = 2, by (1.9) and (8.25), one has b = Wj,ν with either (j ≥ 4) or (j = 3 and ν ≥ 1).
Thus |b| ≥ 8. By estimate (3.24) with (p, j0)← (1, 3), (4.8) holds with σ = 8 and

Ξ(t, u) := t‖u3‖2L2 . (8.26)

• If n1(b) = 3, by (1.10) and (8.25), b = Pj,l,ν with 2 ≤ j ≤ l. Thus |b| ≥ 7. By estimate (3.25)
with (p1, p2, j0, k0)← (3/2, 3, 2, 2), (4.8) holds with σ = 7 and

Ξ(t, u) := ‖u2‖3L3 . (8.27)

• If n1(b) = 4, by (1.11) and (8.25), we are in one of the following cases.
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– b = Q1,1,1,ν with ν ≥ 1 and a′ = 1 thus |b| ≥ 6 and by estimate (3.26) with

(p1, p2, p3, j0, k0, l0)← (2, 4, 4, 1, 1, 1), (4.8) holds with σ = 6 and

Ξ(t, u) := a′t‖u1‖4L4 = a′4!tξQ1,1,1
(t, u). (8.28)

– b = Q1,1,l,ν with l ≥ 3, thus |b| ≥ 7 and, by estimate (3.26) with

(p1, p2, p3, j0, k0, l0)← (3, 6, 2, 1, 1, 3), (4.8) holds with σ = 7 and

Ξ(t, u) := ‖u1‖3L6‖u3‖L2 . (8.29)

– b = Qj,k,l,ν with 2 ≤ k, thus |b| ≥ 7 and, by estimate (3.26) with

(p1, p2, p3, j0, k0, l0) ← (3, 3, 3, 1, 2, 2), (4.8) holds with σ = 7 and

Ξ(t, u) := ‖u1‖2L6‖u2‖2L3 . (8.30)

– b = Q]j,µ,k,ν , thus |b| ≥ 8 and, by estimate (3.28) with (p1, p2, j0, k0) ← (3, 3/2, 1, 2),
(4.8) holds with σ = 8 and

Ξ(t, u) := t‖u1‖2L6‖u2‖2L3 . (8.31)

– b = Q[j,µ,ν and a = 1 thus |b| ≥ 8 and, by estimate (3.27) with (p, j0) ← (1, 1), (4.8)
holds with σ = 7 and

Ξ(t, u) := at‖u1‖4L2 = 4atξ2
W1

(t, u). (8.32)

• If n1(b) = 5, by (1.12) and (1.25), we are in one of the following cases.

– b = Rj,k,l,m,ν with m ≥ 2, thus |b| ≥ 7 and, by estimate (3.29) with
(p1, p2, p3, p4, j0, k0, l0,m0)← (3, 6, 6, 3, 1, 1, 1, 2), (4.8) holds with σ = 7 and

Ξ(t, u) := ‖u1‖4L6‖u2‖L3 . (8.33)

– b = R]j,k,l,µ,ν with l ≥ 2, thus |b| ≥ 9 and, by estimate (3.30) with (p, p1, p2, j0, k0, l0)←
(3/2, 3, 6, 1, 1, 2), (4.8) holds with σ = 9 and

Ξ(t, u) := t
5
6 ‖u1‖3L6‖u2‖2L3 . (8.34)

Step 2: Estimates of cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · +
n1(bq) ≤ 5 and suppF(b1, . . . , bq) 6⊂ N .

We start with preliminary estimates.

• By (3.22), for each bi ∈ B? with n1(bi) ≤ 5, (4.10) holds with σi = n1(bi) + 1, αi = n1(bi)/6
and Ξ(t, u) = t6/n1(bi)−1‖u1‖6L6 .

• If bi = Mj for some j ∈ J0, 2K, by (3.11),

|ξbi(t, u)| = |uj+1(t)| = t|bi|

|bi|!
t−(j+1)(j + 1)!|uj+1(t)| (8.35)

so (4.10) holds with σi = j + 1, αi = 1/2 and Ξ(t, u) = |(u1, u2, u3)(t)|2.

• If bi = Mj for j ≥ 3, by (3.23) with (p, j0) ← (2, 3), (4.10) holds with σi = 4, αi = 1/2 and
Ξ(t, u) = t‖u3‖2L2 .

We now consider the different possibilities, based on the condition n1(b1) + · · ·+ n1(bq) ≤ 5.
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• Case: at least two bi ∈ B?1 . Then, by the preliminary steps, α ≥ 1/2 + 1/2 = 1.

• Case: q = 3, b1, b2 ∈ B?2, b3 ∈ B?1 . Then, by the preliminary steps, α = 1/3 + 1/3 + 1/2 > 1.

• Case: q = 2, b1 ∈ B?J3,4K, b2 ∈ B?1 . Then, by the preliminary steps, α = n1(b1)/6 + 1/2 ≥ 1.

• Case: q = 2, b1 ∈ B?2, b2 ∈ B?1 . Say b1 = Wj,ν and b2 = Mk−1. One cannot have j = 1
because, by (4.29), supp[b1, b2] would be contained in {P1,k′,ν′ , k

′ ≥ 1, ν′ ≥ 0} ⊂ N . So
j ≥ 2. Then, by (3.24) with (p, j0)← (3/2, 2), (4.10) holds for b1 with σ1 = 5, α1 = 2/3 and
Ξ(t, u) = t1/2‖u2‖3L3 . By the preliminary steps, α1 + α2 = 2/3 + 1/2 > 1.

• Case: q = 2, b1, b2 ∈ B?2 . Say b1 = Wj,ν and b2 = Wj′,ν′ .

– If j = j′ = 1, one cannot have a = 0 because, by (4.30), supp[b1, b2] would be contained
in {Q[1,µ′,ν′ ;µ′, ν′ ∈ N} ⊂ N , see (8.25). So a = 1. By (3.24) with (p, j0)← (1, 1), (4.10)

holds for σ1 = σ2 = 3 and Ξ(t, u) = a‖u1‖2L2 = 4aξ2
W1

(t, u).

– If j ≥ 2, then, by (3.24) with (p, j0)← (3/2, 2), (4.10) holds for b1 with σ1 = 5, α1 = 2/3
and Ξ(t, u) = t1/2‖u2‖3L3 . By the preliminary steps, α1 + α2 = 2/3 + 1/3 = 1.

• Case: q = 2, b1 ∈ B?3, b2 ∈ B?2 . Say b1 = Pj,k,ν and b2 = Wl,µ. One cannot have j = k = l = 1

because, by (4.30), supp[b1, b2] would be contained in {R]1,1,1,µ′,ν′ ;µ′, ν′ ∈ N} ⊂ N . Thus
l ≥ 2 or k ≥ 2.

– If l ≥ 2, using (3.24) with (p, j0) ← (3/2, 2), (4.10) holds for b2 with σ2 = 5, Ξ(t, u) =
t1/2‖u2‖3L3 and α2 = 2/3. By the preliminary step α1 + α2 = 1/2 + 2/3 > 1.

– If k ≥ 2, then using (3.25) with (p1, p2, j0, k0) ← (3, 3, 1, 2), (4.10) holds for b1 with

σ1 = 5, α1 = 2/3 and Ξ(t, u) = t1/2‖u1‖3L6‖u2‖3/2L3 . By the preliminary step α1 + α2 =
2/3 + 1/2 > 1.

8.3 Vectorial relations

Lemma 8.4. Under the assumptions of Theorem 8.1,

1. the vectors fM0(0), fM1(0), fM2(0) are linearly independent,

2. if fW1
(0) 6= 0 then fW1

(0) /∈ span{fM0
(0), fM1

(0), fM2
(0)}.

Proof. We have S2,J1,4K(f)(0) ⊂ N2(f)(0) because S2,J1,4K(X) = span{Wj,ν ; 2j + ν − 1 ≤ 4},
fW1

(0), fW2
(0) ∈ N2(f)(0) and N2 is stable by right bracketing with X0. Thus, since N2 ⊂ N3,

S2,J1,4K(f)(0) ⊂ N3(f)(0). (8.36)

Step 1: Proof of Item 1. We assume there exists (β0, β1, β2) ∈ R3 \ {0} such that fB1(0) = 0
where B1 = β2M2 + β1M1 + β0M0. One may assume that β2 = 1; otherwise consider [B1, X0] or
[[B1, X0], X0] and renormalize. Then fB2

(0) = 0 where

B2 = ad2
B1

(X0) = [M2 + β1M1 + β0M0,M3 + β1M2 + β0M1] ∈W3 + S2,J1,4K(X) (8.37)

and (8.36) leads to a contradiction with the assumption fW3
(0) /∈ N3(f)(0).

Step 2: Proof of Item 2. Proceeding by contradiction, we assume that there exists (γ0, γ1, γ2) ∈
R3 \ {0} such that fB4

(0) = 0 where B4 = γ2M2 + γ1M1 + γ0M0 + W1. Let κ = max{j ∈
{0, 1, 2}; γj 6= 0}. Then fB5

(0) = 0 where B5 = [B402−κ, B403−κ] i.e.

B5 = [γκM2 + · · ·+γ0M2−κ+W1,2−κ, γκM3 + · · ·+γ0M3−κ+W1,3−κ] = γ2
κW3 +Q[1,2−κ+B6 +B7

(8.38)
where B6 ∈ span{[Ml,W1,ν ]; l ∈ N, ν ∈ N} and B7 ∈ S2,J1,4K(X). By (4.29), suppB6 ⊂ {P1,l,ν ; l ∈
N∗, ν ∈ N} ⊂ N3. Together with (8.36), this leads to a contradiction.
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8.4 Closed-loop estimates

Lemma 8.5. Under the assumptions of Theorem 8.1,

|(u1, u2, u3)(t)| = O
(
|x(t;u)|+ ‖u1‖3L3 + ‖u2‖2L2 + t

1
2 ‖u3‖L2

)
(8.39)

and if fW1
(0) 6= 0 then

ξW1(t, u) = O
(
|x(t;u)|+ ‖u1‖3L3 + ‖u2‖2L2 + t

1
2 ‖u3‖L2

)
. (8.40)

Proof. By Theorem 4.4 with M ← 2,

x(t;u) = ZJ1,2K(t, f, u)(0) +O
(
‖u1‖3L3 + |x(t;u)|1+ 1

2

)
. (8.41)

First case: fW1
(0) = 0. Then fW1,ν

(0) = 0 for every ν ∈ N because it is an iterated bracket of
the vector fields fW1 and f0 that vanish at 0. Let i ∈ J0, 2K and P be a component along fMi(0)
parallel to N (f)(0) where N = {M0,M1,M2} \ {Mi}. We have N (f)(0) = N (f)(0) for

N = {M0,M1,M2,W1,ν ; ν ∈ N} \ {Mi} (8.42)

because fW1,ν
(0) = 0 for every ν ∈ N. We intend to apply Corollary 4.7 with M ← 2, L ← 5,

b←Mi and N as above, so that (4.12), for the appropriate choice of Ξ(t, u), will yield

PZJ1,2K(t, f, u)(0) = ui+1(t) +O
(
|(u1, u2, u3)(t)|2 + t

1
2 ‖u3‖L2 + ‖u2‖2L2

)
. (8.43)

Then, combining (8.41) and (8.43) concludes the proof of (8.39). Let us check that the required
estimates are satisfied.
Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,2K such that b /∈ N ∪ {b}.

• If n1(b) = 1, then by (1.8) and (8.42), b = Mj for j ≥ 3. Thus |b| ≥ 4. By (3.23) with

(p, j0)← (2, 3), (4.8) holds with σ = 4 and Ξ(t, u) := t
1
2 ‖u3‖L2 .

• If n1(b) = 2, by (1.9) and (8.42), b = Wj,ν with j ≥ 2. Thus |b| ≥ 5. By (3.24) with
(p, j0)← (1, 2), (4.8) holds with σ = 5 and Ξ(t, u) := ‖u2‖2L2 .

Step 2: Estimates of cross terms. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · +
n1(bq) ≤ 2 and suppF(b1, . . . , bq) 6⊂ N .

Thus q = 2 and b1 = Mj1 , b2 = Mj2 for some j1, j2 ∈ N. By the preliminary estimates of Step 2
of the proof of Lemma 8.3, b1 and b2 satisfy (4.10) with Ξ(t, u) = |(u1, u2, u3)(t)|2 + t‖u3‖2L2 and
α1 = α2 = 1/2.

Second case: fW1
(0) 6= 0. First, we apply Corollary 4.7 with M ← 2, L ← 5, b ← W1 and

N = {M0,M1,M2} so that (4.12), for the appropriate choice of Ξ, will yield

PZJ1,2K(t, f, u)(0) = ξW1(t, u) +O
(
tξW1(t, u) + t

1
2 ‖u3‖L2 + ‖u2‖2L2 + |(u1, u2, u3)(t)|2

)
(8.44)

where P is a component along fW1
(0) parallel toN (f)(0). The only difference in the estimates, with

respect to the first case above, concerns the estimate of coordinates of the second kind associated
with b ∈ B?2 such that b /∈ N ∪ {b}: then b = Wj,ν with (j, ν) 6= (1, 0) thus |b| ≥ 4. By estimate
(3.24) with (p, j0)← (1, 1), (4.8) holds with σ = 4 and Ξ(t, u) := t‖u1‖2L2 = 2tξW1(t, u).

We deduce from (8.41) and (8.44) that

ξW1
(t, u) = O

(
|x(t;u)|+ ‖u1‖3L3 + t

1
2 ‖u3‖L2 + ‖u2‖2L2 + |(u1, u2, u3)(t)|2

)
. (8.45)
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By Theorem 4.4 with M ← 1,

x(t;u) = Z1(t, f, u)(0) +O
(
‖u1‖2L2 + |x(t;u)|2

)
. (8.46)

Let i ∈ J0, 2K. By applying Corollary 4.7 with M ← 1, L ← 4, b ← Mi and N = {M0,M1,M2} \
{Mi}, and using (3.23) with (p, j0)← (2, 3) to prove the only required estimate, we obtain

PZ1(t, f, u)(0) = ui+1(t) +O
(
t
1
2 ‖u3‖L2

)
. (8.47)

We deduce from (8.46) and (8.47) that

|(u1, u2, u3)(t)| = O
(
|x(t;u)|+ t

1
2 ‖u3‖L2 + ‖u1‖2L2

)
. (8.48)

By incorporating (8.45) into (8.48) thanks to ξW1
(t, u) = 2‖u1‖2L2 one proves (8.39). And by

incorporating (8.39) into (8.45) one proves (8.41).

Lemma 8.6. Under the assumptions of Theorem 8.1, if fQ1,1,1(0) /∈ N ′′3 (f)(0)

PQ1
x(t;u) = ξQ1,1,1

(t, u) +O
(
tξQ1,1,1

(t, u) + ξW3
(t, u) + ‖u2‖3L3 + |x(t;u)| 54

)
(8.49)

where PQ1 is a component along fQ1,1,1(0) parallel to (N ′′3 ∩ B?J1,4K)(f)(0).

Proof. By Theorem 4.4 with M ← 4,

x(t;u) = ZJ1,4K(t, f, u)(0) +O
(
‖u1‖5L5 + |x(t;u)|1+ 1

5

)
. (8.50)

For i ∈ {1, 2}, fWi
(0) ∈ Ni(f)(0) and Ni is stable by right bracketing with X0 thus, for every

ν ∈ N, fWi,ν
(0) ∈ Ni(f)(0) ⊂ (N ′′3 ∩ B?J1,4K)(f)(0). Thus (N ′′3 ∩ B?J1,4Kf)(0) = N (f)(0) where

N = (N ′′3 ∩ B?J1,4K) ∪ {W1,ν ,W2,ν ; ν ∈ N} i.e.

N = {Mν ,W1,νW2,ν , P1,l,ν , Q1,1,2,ν , ; l ∈ N∗, µ, ν ∈ N}. (8.51)

We intend to apply Corollary 4.7 with M ← 4, L ← 11, b ← Q1,1,1 and N as in (8.51), so that
(4.12), for the appropriate choice of Ξ(t, u), will yield

PQ1
ZJ1,4K(t, f, u)(0) = ξQ1,1,1

(t, u) +O
(
tξQ1,1,1

(t, u) + ξW3
(t, u) + ‖u2‖3L3

+ ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6 + |(u1, u2, u3)(t)|2
)
.

(8.52)

All the needed estimates are contained in the proof of Lemma 8.3, except for

• b ∈ B?2 , i.e. b = Wj,ν with j ≥ 3, for which |b| ≥ 7 and (3.24) with (p, j0) ← (1, 3) proves
that (4.8) holds with σ = 7 and Ξ(t, u) := ‖u3‖2L2 = 2ξW3(t, u),

• b = Q[j,µ,ν for which |b| ≥ 7 and (3.27) with (p, j0) ← (2, 1) proves that (4.8) holds with

σ = 7 and Ξ(t, u) := t2‖u1‖4L4 = 4!t2ξQ1,1,1(t, u),

• q = 2, b1, b2 ∈ B?2 for which |bi| ≥ 3 and (3.24) with (p, j0)← (2, 1) proves that (4.10) holds
for σi = 3, αi = 1/2 and Ξ(t, u) = t‖u1‖4L4 = 4tξQ1,1,1(t, u).

Then, using ‖u1‖6L6 = O(t2‖u1‖4L4), we deduce from (8.52) that

PQ1
ZJ1,4K(t, f, u)(0) = ξQ1,1,1

(t, u) +O
(
tξQ1,1,1

(t, u) + ξW3
(t, u) + ‖u2‖3L3 + |(u1, u2, u3)(t)|2

)
.

(8.53)

Then, by combining (8.50), (8.53) and ‖u1‖5L5 = O(t‖u1‖4L4) we obtain

PQ1
x(t;u) = ξQ1,1,1

(t, u) +O
(
tξQ1,1,1

(t, u) + ξW3
(t, u) + ‖u2‖3L3 + |(u1, u2, u3)(t)|2 + |x(t;u)| 54

)
.

(8.54)
Finally by incorporating (8.39) in the previous estimate we obtain (8.49).
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8.5 Interpolation inequalities

Lemma 8.7. There exists C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u2‖3L3 ≤ C‖u‖L∞‖u3‖2L2 , (8.55)

‖u1‖6L6 ≤ C‖u‖4L∞‖u3‖2L2 . (8.56)

Proof. Inequality (8.55) follows from Proposition 4.9 with φ ← u3, (p, q, r, s) ← (3, 2,∞, 2),
(j, l) ← (1, 3), α ← 1/3. Similarly, (8.56) follows from Proposition 4.9 with φ ← u3, (p, q, r, s) ←
(6, 2,∞, 2), (j, l) ← (2, 3), α ← 2/3. In both cases, the lower-order term in (4.28) is absorbed

using the estimate ‖u3‖L2 ≤ t
7
2 ‖u‖L∞ , which stems from Hölder’s inequality and the equality

u3(t) = 1
2

∫ t
0
(t− s)2u(s) ds.

8.6 Proof of the presence of the drift

Proof of Theorem 8.1. In this proof, to lighten the notations, we write x and ξb instead of x(t;u)
and ξb(t, u). By Theorem 4.4 with M ← 5,

x = ZJ1,5K(t, f, u)(0) +O
(
‖u1‖6L6 + |x|1+ 1

5

)
. (8.57)

We deduce from (8.57), (8.24), (8.39) and (8.40) that

PW3x = ξW3 +O
(
tξW3 + ‖u2‖3L3 + ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6 + a′tξQ1,1,1 + |x| 65

)
. (8.58)

We deduce from the above estimate (see Section 4.2) the existence of C, ρ > 0 such that, for every
t ∈ (0, ρ), u ∈ L1((0, t);R) with ‖u‖W−1,∞ ≤ ρ,

PW3
x+ Ca′tξQ1,1,1

≥ (1− Ct)ξW3
− C

(
‖u2‖3L3 + ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6 + |x| 65

)
(8.59)

where, when a′ 6= 0, by (8.49),

ξQ1,1,1
≤ 2PQ1

x+ C
(
ξW3

+ ‖u2‖3L3 + |x| 54
)
. (8.60)

Thus

PW3x+ 2Ca′tPQ1x ≥ (1− 2Ct)ξW3 − 2C
(
‖u2‖3L3 + ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6 + |x| 65

)
. (8.61)

Gathering this inequality and the interpolation estimates (8.55) and (8.56) yields

(PW3 + 2Ca′tPQ1)x ≥ 1

2

∫ t

0

u2
3 − C ′

(
(t+ ‖u‖L∞)

∫ t

0

u2
3 + |x| 65

)
(8.62)

for some constant C ′ independent of t and u.

8.7 A comment on the time-dependent drift direction

As already stated, the conclusion (8.1) is not exactly a drift in the sense of Definition 1.16, since
the left-hand side of the inequality involves a time-dependent component Pt that may not give
a component exactly along fW3

(0). This is not a technical limitation of our approach, since this
phenomenon does occur. Consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x4
1 + x3

3

ẋ5 = x2
3 − x4.

(8.63)
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One can check that this system satisfies the assumptions of Theorem 8.1. Moreover, by Hermes’
condition [18, Theorem 3.2], the subsystem (x1, x2, x3, x4) is L∞-STLC. However, using oscillating
controls as in Section 6.7, one can prove that there is no drift along fW3

(0) = 2e5, parallel to
N3(f)(0) = Re1 + · · · + Re4 as (t, ‖u‖L∞) → 0. Heuristically, the proof of Theorem 8.1 considers
the quantity y(t;u) := x5(t;u)+tx4(t;u) to obtain a drift in a direction which tends towards fW3(0).

Another way to look at this system is to consider z(t;u) := x5(t;u) + x4(t;u). One computes

z(t;u) =

∫ t

0

(1− (t− s))u4
1(s) ds+

∫ t

0

(1 + u3(s)(1− (t− s))u2
3(s) ds. (8.64)

Hence, as (t, ‖u‖L∞)→ 0,

z(t;u) ≥ (1− ε)
(∫ t

0

u4
1 +

∫ t

0

u2
3

)
, (8.65)

so there somehow is a strong composite drift in the (fixed) direction e4 + e5.

9 New obstruction of the sixth order

The goal of this section is to prove Theorem 1.14, as a consequence of the following more precise
statement. In this section, we use the short-hand notation D for the following bracket of B?6 :

D := ad2
P1,1

(X0) (9.1)

and we introduce
ND := B?J1,7K \ {D}. (9.2)

Theorem 9.1. Assume that fD(0) /∈ ND(f)(0). Then system (1.1) has a drift along fD(0),
parallel to ND(f)(0), as (t, ‖u‖L∞)→ 0.

9.1 Limiting examples

Let us give an example motivating the threshold 7 for this necessary condition. In [23, Example
6.1], Kawski considers the systems 

ẋ1 = u

ẋ2 = x1

ẋ3 = x3
1

ẋ4 = x2
3 − x

p
2

(9.3)

for p ∈ {7, 8}. Written in the form (1.1), these systems satisfy

fM0
(0) = e1, fM1

(0) = e2, fP1,1
(0) = 6e3, fD(0) = 72e4, fadpM1

(X0)(0) = −p!e4 (9.4)

and fb(0) = 0 for all b ∈ B? \ {M0,M1, P1,1, D, adpM1
(X0)}. Thus, they feature a competition

between D and adpM1
(X0).

Kawski proves that this system is L∞-STLC for p = 7 (see [23, Claim 6.1]) but not L∞-STLC
for p = 8 (see [23, Claim 6.3]). This both motivates and is consistent with Theorem 1.14, which
can be seen as a generalization of Kawski’s negative claim.

Remark 9.2. As Theorem 1.11, Theorem 1.14 is a loose condition, in the sense that we have not
attempted to separate, within B?6 and B?7, which brackets can or cannot compensate for the drift.
It is possible that our method could also be used to perform such a distinction.
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An interesting example is studied by Kawski in [23, Example 5.3];
ẋ1 = u

ẋ2 = x1

ẋ3 = x3
1

ẋ4 = x2
3 − x2

2x
4
1,

(9.5)

which exhibits in B? a competition between D and ad2
M1

ad4
X1

(X0). Kawski proves that this systems
is L∞-STLC.

Conversely, the system 
ẋ1 = u

ẋ2 = x1

ẋ3 = x3
1

ẋ4 = x2
3 + x3x

4
1

(9.6)

exhibits in B? a competition between D and adP1,1
ad4
X1

(X0) because fadP1,1
ad4
X1

(X0)(0) = 144e4.

Using the estimates of the next paragraphs, one can prove that this system is not L∞-STLC. This
hints towards the fact that it is not necessary to include the bracket adP1,1 ad4

X1
(X0) (of B?7) in the

list of brackets which can compensate D.

9.2 Algebraic preliminaries

To lighten the proof of the following paragraph, we start with algebraic preliminaries concerning
the expansions on B? of some brackets of order 6, linked with cross terms along D. We use the
trailing zero notation of Definition 1.6 and compute the expansions of the considered brackets on
B? using Jacobi’s identity as many times as necessary (see [4, Section 2.1] for an exposition and a
more theoretical point of view on the classical recursive decomposition algorithm on Hall bases).

For B ∈ L(X), 〈B,D〉 denotes the coefficient of D in the expansion of B on B?.

9.2.1 Brackets of two elements

Lemma 9.3. Let a < b ∈ B?3 such that 〈[a, b], D〉 6= 0. Then a = P1,1 and b = P1,10.

Proof. First n0(a) + n0(b) = n0(D) = 3. Thus a = P1,1 and b ∈ {P1,10, P1,2}. Since (P1,1, P1,2) ∈
B? \ {D}, the conclusion follows.

Lemma 9.4. Let a ∈ B?2 and b ∈ B?4. Then 〈[a, b], D〉 = 0.

Proof. First n0(a) + n0(b) = n0(D) = 3. Since n0(b) ≥ 1, n0(a) ∈ J0, 2K so a ∈ {W1,W10}.

• Case a = W10. Then b = ad4
X1

(X0) and [a, b] = [W10, ad4
X1

(X0)], which is in B? \ {D}.

• Case a = W1. Then either,

– b = ad4
X1

(X0)0 and

[a, b] = [W1, ad4
X1

(X0)]0− [W10, ad4
X1

(X0)], (9.7)

both terms being in B? \ {D}.
– b = (M1, ad3

X1
(X0)) and [a, b] = [W1, [M1, ad3

X1
(X0)]], which is in B? \ {D}.

Hence, in all cases 〈[a, b], D〉 = 0.

Lemma 9.5. Let a ∈ B?1 and b ∈ B?5, such that 〈[a, b], D〉 6= 0. Then a = X1 and b = R]1,1,1,1.
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Proof. First n0(a) + n0(b) = n0(D) = 3. Since n0(b) ≥ 1, n0(a) ∈ J0, 2K so a ∈ {X1,M1,M2}.

• Case a = M2. Then b = ad5
X1

(X0) and [a, b] = [M2, ad5
X1

(X0)], which is in B? \ {D}.

• Case a = M1. Then either,

– b = ad5
X1

(X0)0 and

[a, b] = [M1, ad5
X1

(X0)]0− [M2, ad5
X1

(X0)], (9.8)

both terms being in B? \ {D}.
– b = (M1, ad4

X1
(X0)) and [a, b] = ad2

M1
ad4
X1

(X0), which is in B? \ {D}.
– b = (W1, ad3

X1
(X0)) and

[a, b] = [W1, [M1, P1,1]]− [P1,1, P1,2], (9.9)

both terms being in B? \ {D}.

• Case a = X1. Then either,

– b = ad5
X1

(X0)02 and

[a, b] = ad6
X1

(X0)02 − 2[M1, ad5
X1

(X0)] + [M2, ad5
X1

(X0)], (9.10)

all terms being in B? \ {D}.
– b = (M1, ad4

X1
(X0))0 and

[a, b] = [W1, ad4
X1

(X0)]0 + [M1, ad5
X1

(X0)]0− ad2
M1

ad4
X1

(X0), (9.11)

all terms being in B? \ {D}.
– b = ad2

M1
ad3
X1

(X0) and

[a, b] = 2[W1, [M1, P1,1]] + ad2
M1

ad4
X1

(X0)− [P1,1, P1,2], (9.12)

all terms being in B? \ {D}.
– b = (M2, ad4

X1
(X0)) and

[a, b] = [W10, ad4
X1

(X0)] + [M2, ad5
X1

(X0)], (9.13)

both terms being in B? \ {D}.
– b = (W1, ad3

X1
(X0))0 and

[a, b] = [W1, ad4
X1

(X0)]0− [W1, [M1, P1,1]] + [P1,1, P1,2] (9.14)

all terms being in B? \ {D}.
– b = (W10, ad3

X1
(X0)) and

[a, b] = −D + [P1,1, P1,2] + [W10, ad4
X1

(X0)], (9.15)

so 〈[a, b], D〉 = −1.

– b = (W1, (M1,W1)) and

[a, b] = [P1,1, P1,2] + [W1, [M1, ad3
X1

(X0)] (9.16)

both terms being in B? \ {D}.

Hence, the only case where 〈[a, b], D〉 = −1 6= 0 is a = X1 and b = (W10, ad3
X1

(X0)) = R]1,1,1,1.
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9.2.2 Brackets of three elements

Lemma 9.6. For every a, b, c ∈ B?2, 〈[a, [b, c]], D〉 = 0.

Proof. By contradiction, assume that 〈[a, [b, c]], D〉 6= 0. Then n0(a) + n0(b) + n0(c) = 3. Thus
a = b = c = W1, so [a, [b, c]] = 0.

Lemma 9.7. Let a ∈ B?1, b ∈ B?2, c ∈ B?3 such that 〈[a, [b, c]], D〉 6= 0 or 〈[[a, b], c], D〉 6= 0. Then
a = X1 and, either (b = W10 and c = P1,1) or (b = W1 and c = P1,10).

Proof. First n0(a) + n0(b) + n0(c) = 3.
Step 1: First form: [a, [b, c]].

• Case a = M1. Then b = W1, c = P1,1 and

[a, [b, c]] = −[P1,1, P1,2] + [W1, [M1, P1,1]], (9.17)

both terms being in B? \ {D}.

• Case a = X1.

– Case b = W10. Then c = P1,1 and 〈[a, [b, c]], D〉 = −1.

– Case b = W1. Then either,

∗ c = P1,10 and 〈[a, [b, c]], D〉 = +1.

∗ c = P1,2 and [a, [b, c]] = [W1, [M1, P1,1]] + [P1,1, P1,2] both terms being in B? \ {D}.

Step 2: Second form: [[a, b], c].

• Case a = M1. Then b = W1 and c = P1,1 and [[a, b], c] = −[P1,1, P1,2] which is in B? \ {D}.

• Case a = X1.

– Case b = W10. Then c = P1,1 and 〈[[a, b], c], D〉 = −1.

– Case b = W1. Then either

∗ c = P1,10 and 〈[[a, b], c], D〉 = 1.

∗ c = P1,2 and [[a, b], c] = [P1,1, P1,2], which is in B? \ {D}.

This concludes the case disjunction.

Lemma 9.8. Let a, b ∈ B?1 and c ∈ B?4 such that 〈[a, [b, c]], D〉 6= 0, or 〈[[a, b], c]〉 6= 0. Then
a = b = X1.

Proof. First n0(a) + n0(b) + n0(c) = 3.
Step 1: First form: [a, [b, c]] with a ≤ b.

• Case a = b = M1. Then c = ad4
X1

(X0) and [a, [b, c]] = ad2
M1

ad4
X1

(X0), which is in B? \ {D}.

• Case a = X1, b = M2. Then c = ad4
X1

(X0) and

[a, [b, c]] = [W10, ad4
X1

(X0)] + [M2, ad5
X1

(X0)], (9.18)

both terms being in B? \ {D}.

• Case a = X1, b = M1. Then either,
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– c = ad4
X1

(X0)0 and

[a, [b, c]] = [W1, ad4
X1

(X0)]0− [W10, ad4
X1

(X0)]− [M2, ad5
X1

(X0)]

− ad2
M1

ad4
X1

(X0) + [M1, ad5
X1

(X0)]0,
(9.19)

all terms being in B? \ {D}.
– c = (M1, ad3

X1
(X0)) and

[a, [b, c]] = −[P1,1, P1,2] + 2[W1, [M1, ad3
X1

(X0)]] + ad2
M1

ad4
X1

(X0), (9.20)

all terms being in B? \ {D}.

• Case a = b = X1. One may have 〈[a, [b, c]], D〉 6= 0. Since the conclusion of the lemma does
not concern c, we do not need to study all possible cases.

Thus, the only case leading to a (possibly) nonzero value of 〈[a, [b, c]], D〉 is a = b = X1.

Step 2: Second form: [[a, b], c] with a < b. Since n0(a) + n0(b) ≤ 2, a = X1 and b = M1. Thus
[a, b] = W1. By Lemma 9.4, 〈[W1, c], D〉 = 0.

Step 3: Third form: [a, [b, c]] with a > b. Then [a, [b, c]] = [[a, b], c] + [b, [a, c]] so the conclusions of
the previous forms apply.

9.3 Dominant part of the logarithm

Lemma 9.9. Assume that fD(0) /∈ ND(f)(0). Let P be a component along fD(0) parallel to
ND(f)(0). Then

PZJ1,7K(t, f, u)(0) = ξD(t, u) +O
(
|u1(t)|4 + |ξP1,1

(t, u)|2 + |ξP1,10(t, u)|2

+ |u1(t)ξR]1,1,1,1
(t, u)|+ ‖u1‖8L8

)
.

(9.21)

Proof. We start with a preliminary estimate. By (3.22) and Hölder’s inequality, there exists c > 0
such that, for every t ≤ 1, u ∈ L1((0, t);R) and b ∈ B?J1,6K \ {X1},

|ξb(t, u)| ≤ c‖u1‖n1(b)
L8 . (9.22)

By (4.7) and definition of P,
PZJ1,7K(t, f, u)(0) = ηD(t, u). (9.23)

To apply Proposition 2.19, let us prove that, for every q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that
D ∈ suppF(b1, . . . , bq), for every t > 0 and u ∈ L1((0, t);R), the estimate (2.19) holds, for an
appropriate choice of Ξ. We split cases depending on q.
Step 1: Case q = 2.

• Case n1(b1) = 5 and n1(b2) = 1. By Lemma 9.5, b1 = R]1,1,1,1 and b2 = X1 so (2.19) holds
with Ξ(t, u) := |u1(t)ξR]1,1,1,1

(t, u)|.

• Case n1(b1) = 4 and n1(b2) = 2. By Lemma 9.4, D /∈ suppF(b1, b2) in this case.

• Case n1(b1) = 3 and n1(b2) = 3. By Lemma 9.3, b1 = P1,10 and b2 = P1,1 so (2.19) holds
with Ξ(t, u) := |ξP1,1

(t, u)ξP1,10(t, u)|.

Step 2: Case q = 3.
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• Case n1(b1) = 4, n1(b2) = 1, n1(b3) = 1. By Lemma 9.8, b2 = b3 = X1. Hence, using (9.22),
(2.19) holds with Ξ(t, u) := c|u1(t)|2‖u1‖4L8 .

• Case n1(b1) = 3, n1(b2) = 2, n1(b3) = 1. By Lemma 9.7, b3 = X1 and b1 ∈ {P1,1, P1,10}.
Hence, using (9.22), (2.19) holds with Ξ(t, u) := c|u1(t)|‖u1‖2L8(|ξP1,1(t, u)|+ |ξP1,10(t, u)|).

• Case n1(b1) = 2, n1(b2) = 2, n1(b3) = 2. By Lemma 9.6, D /∈ suppF(b1, b2, b3) in this case.

Step 3: Case q = 4.

• Case n1(b1) = 3, n1(b2) = 1, n1(b3) = 1, n1(b4) = 1. Counting the occurrences of X0 and
using (9.22) implies that either,

– b3 = b4 = X1, and (2.19) holds with Ξ(t, u) := c‖u1‖4L8 |u1(t)|2.

– b1 = P1,1, b2 = b3 = M1 and b4 = X1, and thus (2.19) holds with Ξ(t, u) :=
|ξP1,1(t, u)|‖u1‖2L8 |u1(t)|.

• Case n1(b1) = 2, n1(b2) = 2, n1(b3) = 1, n1(b4) = 1. Counting the occurrences of X0 and
using (9.22) implies that either,

– b1 = b2 = W1, b3 = M1 and b4 = X1 and D /∈ suppF(b1, b2, b3, b4). Indeed, a non-zero
bracket of W1, W1, M1 and X1 is either a bracket over (M1, W1 and (X1,W1)) or over
(X1, W1 and (M1,W1)). But such brackets have a vanishing coefficient along D by
Lemma 9.7.

– b1 = W10, b2 = W1, b3 = b4 = X1 and (2.19) holds with Ξ(t, u) := ‖u1‖4L8 |u1(t)|2.

Step 4: Case q ∈ {5, 6}. Counting the occurrences of X0 implies that bq−1 = bq = X1. Using
(9.22) implies that (2.19) holds with Ξ(t, u) := (1 + c)4|u1(t)|k‖u1‖6−kL8 for some k ∈ J2, 5K.

Step 5: Conclusion. Gathering the previous estimates and using Young’s inequality proves (9.21).

9.4 Vectorial relations

Lemma 9.10. Assume that fD(0) /∈ ND(f)(0). Then

1. fX1
(0) /∈ span{fb(0); b ∈ B?1 \ {X1}},

2. fP1,1(0) /∈ span{fb(0); b ∈ B?J1,3K \ {P1,1}}.

Proof. We proceed by contradiction.
Step 1: First statement. Assume that fX1

(0) =
∑
j≥1 αjfMj

(0) where αj ∈ R and the sum is

finite. Hence fB1
(0) = 0 where B1 := X1 −

∑
j≥1 αjMj ∈ S1(X). Let B2 := ad2

ad3
B1

(X0)(X0).

Then fB2
(0) = 0. Moreover, by definition of B1 and B2, one checks that B2 = D + B3 where

B3 ∈ span{b ∈ B?6 ;n0(b) ≥ 4}. The equality fD(0) = −fB3
(0) contradicts the assumption on

fD(0).

Step 2: Second statement. Assume that there exists B0 ∈ span{b ∈ B?J1,3K;n1(b) < 3 or n0(b) > 1}
such that fP1,1(0) = fB0(0). Let B1 := P1,1 − B0 so that fB1(0) = 0. Then fB2(0) = 0 where

B2 := ad2
B1

(X0). Thus fD(0) = fB3
(0) where B3 ∈ span{b ∈ B?J1,6K;n1(b) ≤ 5 or n0(b) ≥ 4}, which

contradicts the assumption on fD(0).
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9.5 Closed-loop estimates

Lemma 9.11. Assume that fD(0) /∈ ND(f)(0). Then

|u1(t)| = O
(
|x(t;u)|+ ‖u1‖2L2

)
, (9.24)∣∣ξP1,1(t, u)

∣∣ = O
(
|x(t;u)|+ ‖u1‖4L4

)
. (9.25)

Proof. We rely on Lemma 9.10.
Step 1: First estimate. By Theorem 4.4 with M ← 1,

x(t;u) = Z1(t, f, u)(0) +O
(
‖u1‖2L2 + |x(t;u)|1+1

)
. (9.26)

By Lemma 9.10, we can consider P, a component along f1(0), parallel to N (f)(0) where N :=
B?1 \ {X1}. Hence PZ1(t, f, u)(0) = u1(t). Thus (9.26) yields (9.24).

Step 2: Second estimate. By Theorem 4.4 with M ← 3,

x(t;u) = ZJ1,3K(t, f, u)(0) +O
(
‖u1‖4L4 + |x(t;u)|1+ 1

3

)
. (9.27)

By Lemma 9.10, we can consider P, a component along fP1,1
(0), parallel to N (f)(0) where N :=

B?J1,3K \ {P1,1}. By (4.7),

PZJ1,3K(t, f, u)(0) = ηP1,1(t, u). (9.28)

We apply Proposition 2.19 (see below) to obtain

ηP1,1
(t, u) = ξP1,1

(t, u) +O
(
|u1(t)|‖u1‖2L2 + |u1(t)|2‖u1‖L1

)
. (9.29)

Then (9.27), (9.28) and (9.29), combined with the previous estimate (9.24), yield (9.25).
Let us check the required conditions to obtain (9.29). Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that

P1,1 ∈ suppF(b1, . . . , bq). Since n1(P1,1) = 3 and n0(P1,1) = 1, the only possibilities are

• q = 2, b1 = W1, b2 = X1, in which case

|ξb1(t, u)ξb2(t, u)| = |u1(t)|
∫ t

0

u2
1

2
≤ |u1(t)|‖u1‖2L2 . (9.30)

• q = 3, b1 = M1, b2 = b3 = X1, in which case

|ξb1(t, u)ξb2(t, u)ξb3(t, u)| = |u1(t)|2|u2(t)| ≤ |u1(t)|2‖u1‖L1 . (9.31)

This concludes the proof of (9.29) by Proposition 2.19.

9.6 Interpolation inequalities

Lemma 9.12. There exits C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u1‖8L8 ≤ Ct|u1(t)|8 + C‖u‖2L∞ξD(t, u), (9.32)

|ξP1,10(t, u)|2 ≤ 2tξD(t, u), (9.33)

|ξR]1,1,1,1(t, u)| ≤ Ct‖u1‖2L2 |ξP1,1(t, u)|+ Ct
1
2 ‖u1‖2L2ξD(t, u)

1
2 . (9.34)

Proof. Step 1: First estimate. By integration by parts,∫ t

0

u8
1 = u5

1(t)

∫ t

0

u3
1 − 5

∫ t

0

u(s)u4
1(s)

(∫ s

0

u3
1

)
ds. (9.35)
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By Cauchy–Schwarz and Hölder inequalities and (2.6), we obtain

‖u1‖8L8 ≤ t
5
8 |u1(t)|5‖u1‖3L8 + 30

√
2‖u‖L∞‖u1‖4L8ξD(t, u)

1
2 , (9.36)

which proves (9.32) using Young’s inequality.

Step 2: Second estimate. By (2.6), ξP1,10 =
∫
ξP1,1

and ξD = 1
2

∫
ξ2
P1,1

so (9.33) follows directly
from the Cauchy–Schwarz inequality.

Step 3: Third estimate. By (2.6) and since R]1,1,1,1 = (W10, P1,1), integration by parts yields

ξR]1,1,1,1
(t, u) =

∫ t

0

ξW10ξ̇P1,1
= ξW10(t)ξP1,1

(t)−
∫ t

0

ξW1
ξP1,1

. (9.37)

Then (9.34) follows by the Cauchy–Schwarz inequality and the estimates ξW1
(0)(t) ≤ t‖u1‖2L2 and

ξW1
(t) ≤ ‖u1‖2L2 .

Remark 9.13. Estimate (9.32) is not exactly of the form (1.36) since it involves a “boundary
term” t|u1(t)|8. In our context, this boundary term is harmless since it will immediately be absorbed
thanks to the closed-loop estimate (9.24). Moreover, it is likely that (9.32) also holds without this
additional term, up to a slightly more complex proof.

9.7 Proof of the presence of the drift

Proof of Theorem 9.1. Let P be a component along fD(0) parallel to ND(f)(0). By Theorem 4.4
with M ← 7,

x(t;u) = ZJ1,7K(t, f, u)(0) +O
(
‖u1‖8L8 + |x(t;u)|1+ 1

7

)
, (9.38)

where PZJ1,7K(t, f, u)(0) satisfies (9.21). Combining the closed-loop estimate (9.24) and the inter-
polation estimate (9.32), one obtains

‖u1‖8L8 = O
(
|x(t;u)|8 + ‖u‖2L∞ξD(t, u)

)
. (9.39)

Substituting in the closed-loop estimate (9.24) yields

|u1(t)|4 = O
(
|x(t;u)|4 + ‖u‖2L∞ξD(t, u)

)
(9.40)

and in the closed-loop estimate (9.25) yields

|ξP1,1
(t, u)|2 = O

(
|x(t;u)|2 + ‖u‖2L∞ξD(t, u)

)
. (9.41)

Eventually, using (9.34) and Young’s inequality,

|u1(t)ξR]1,1,1,1
(t, u)| = O

(
|ξP1,1(t, u)|2 + ‖u1‖8L2 + |u1(t)|4 + tξD(t, u)

)
= O

(
|x(t;u)|2 + (t+ ‖u‖2L∞)ξD(t, u)

)
.

(9.42)

Gathering all these equalities in (9.21) and the interpolation estimate (9.33) yields

Px(t;u) = ξD(t, u) +O
((
t+ ‖u‖2L∞

)
ξD(t, u) + |x(t;u)|1+ 1

7

)
. (9.43)

This implies a drift along fD(0), parallel to ND(f)(0), as (t, ‖u‖L∞) → 0, in the sense of Defini-
tion 1.16.
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10 Embedded semi-nilpotent systems and the m = −1 case

As announced in Section 1.6.5, for m = −1 and particular choices of b, estimate (1.36) may
fail (even for arbitrarily large M) and then the remainder ‖u‖M+1

W−1,M+1 in the representation for-
mula (1.33) cannot be absorbed by interpolation. This is for example the case for Theorem 1.11
with m = −1 and k ≥ 2. In this section, we describe extensions of our unified approach which
can be used to deal with such cases, and in particular we use them to prove Theorem 1.11 and
Theorem 1.12 for m = −1 and k ≥ 2.

First, we present a general methodology relying on the notion of “weak drifts” (Section 10.1),
which are a slightly weaker version of Definition 1.16. We show in Section 10.3 that our general
strategy entails weak drifts for semi-nilpotent vector fields (see Section 10.2), because they satisfy
an approximate representation formula without the remainder term ‖u‖M+1

W−1,M+1 , see (10.6). Then,
using an argument of embedded semi-nilpotent system (see Section 10.4), we extend the weak drift
conclusion to systems that do not satisfy the semi-nilpotency assumption (see Section 10.5).

Eventually, in Section 10.6, we prove that one can also work even more precisely and prove
drifts in the strong sense of Definition 1.16 even when m = −1.

10.1 Weak drifts

We start with the following weaker version of Definition 1.16.

Definition 10.1 (Weak drift). Let b ∈ B? and N ⊂ Br(X). We say that system (1.1) has a weak
drift along fb(0), parallel to N (f)(0), as (t, ‖u‖W−1,∞) → 0 when, for every ε > 0, there exists
ρ = ρ(ε) > 0 such that, for every t ∈ (0, ρ) and every u ∈ L1((0, t);R) with ‖u‖W−1,∞ ≤ ρ,

Px(t;u) ≥ (1− ε)ξb(t, u)− ε|x(t;u)| (10.1)

where P gives a component along fb(0) parallel to N (f)(0) and (ξb)b∈B? are the coordinates of the
second kind associated with B? (see Definition 2.10 and Proposition 3.7).

For instance, the conclusion of Theorem 8.1 can be interpreted as a weak drift along fW3
(0),

parallel to N3(f)(0), as (t, ‖u‖L∞)→ 0.
A drift, in the strong sense of Definition 1.16, implies a weak drift in the sense of Definition 10.1.

The reciprocal may not be true. Nevertheless, a weak drift is sufficient to prevent STLC, and one
can prove the following lemma as Lemma 1.17.

Lemma 10.2. Let b ∈ B? and N ⊂ Br(X). Assume that ξb(t, u) ≥ 0 for all u ∈ L1((0, t);R) and
that system (1.1) has a weak drift along fb(0), parallel to N (f)(0), as (t, ‖u‖W−1,∞) → 0. Then
system (1.1) is not W−1,∞-STLC.

Estimate (10.1) proves that, in the limit (t, ‖u‖W−1,∞) → 0, the “ultimately unreachable” set
contains a half space. But for t and ‖u‖W−1,∞ fixed (even small), estimate (10.1) only guarantees
that the unreachable set contains a convex cone, which is slightly weaker than Definition 1.16 as
commented in Remark 1.18.

10.2 Semi-nilpotent systems and their representation formula

As sketched in Section 1.6.5, our methodology for m = −1 relies on the notion of “semi-nilpotent”
systems, which enjoy the representation formula (10.6) below.

Definition 10.3 (Semi-nilpotent family of vector fields). Let Ω be an open subset of Rd, f0, f1 ∈
C∞(Ω;Rd) and M ∈ N∗. We say that the vector field f1 is semi-nilpotent (resp. semi-nilpotent at
zero) of index M with respect to f0 when

∀b ∈ Br(X), n1(b) ≥M ⇒ fb = 0 on Ω (10.2)
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(resp. ∀b ∈ Br(X), n1(b) ≥M ⇒ fb(0) = 0) (10.3)

and M is the smallest positive integer for which this property holds6.

Clearly, the semi-nilpotency implies the semi-nilpotency at zero. The converse is true for
analytic vector fields under the Lie algebra rank condition at 0, as stated in Corollary 10.5 below.

Lemma 10.4. Let Ω ⊂ Rd be a connected open neighborhood of 0, f0, f1 ∈ Cω(Ω;Rd). Let I be
an ideal of L(X). Assume that L(f)(0) = Rd and that, for every B ∈ I, fB(0) = 0.

Then, for every B ∈ I, fB ≡ 0 on Ω.

Proof. Step 1: We prove that, if f ∈ Cω(Ω;Rd) and g1, . . . , gd ∈ C∞(Ω;Rd) satisfy span{gi(0); i ∈
J1, dK} = Rd and

∀n ∈ N,∀i1, . . . , in ∈ J1, dKn, [gin , [gin−1
, . . . , [gi1 , f ] · · · ]](0) = 0, (10.4)

then f ≡ 0 on Ω. Since Ω is connected and f is analytic, it is sufficient to prove that, for every
n ∈ N, its n-th differential vanishes at zero: Dnf(0) = 0. We work by induction on n ∈ N. The
initialization for n = 0 holds. Let n ∈ N∗ and assume Dkf(0) = 0 for k = 0, . . . , n− 1. Then, for
every i1, . . . , in ∈ J1, dKn, by expanding the iterated Lie brackets

Dnf(0) · (gin(0), . . . , gi1(0)) = [gin , [gin−1
, . . . , [gi1 , f ] · · · ]](0) = 0. (10.5)

This implies Dnf(0) = 0 because span{gi(0); i ∈ J1, dK} = Rd.

Step 2: Proof of Corollary 10.5. By the Lie algebra rank condition there exist b1, . . . , bd ∈ Br(X)
such that span{fbi(0); i ∈ J1, dK} = Rd. Let B ∈ I. We prove that fB ≡ 0 on Ω by applying
Step 1. Indeed, for n ∈ N and i1, . . . , in ∈ J1, dKn, we have [fbin , . . . , [fbi1 , fB ] · · · ](0) = fB(0) = 0,
where B := [bin , . . . [bi1 , B] · · · ] ∈ I since I is an ideal of L(X).

Corollary 10.5. Let Ω ⊂ Rd be a connected open neighborhood of 0, f0, f1 ∈ Cω(Ω;Rd) and
M ∈ N∗. If L(f)(0) = Rd and f1 is semi-nilpotent at zero of index M with respect to f0, then f1

is semi-nilpotent of index M with respect to f0.

Proof. This follows from Lemma 10.4 applied with the ideal I = SJM,∞J(X).

Proposition 10.6. Let f0, f1 be analytic vector fields on a neighborhood of 0 with f0(0) = 0 and
M ∈ N∗. Assume that L(f)(0) = Rd and f1 is semi-nilpotent at zero of index M + 1 with respect
to f0. Then

x(t;u) = ZJ1,MK(t, f, u)(0) +O (‖u1‖L∞ |x(t;u)|) . (10.6)

Proof. By Corollary 10.5, f1 is semi-nilpotent of index M+1 with respect to f1 on a neighborhood
of 0. Then, the third item of [3, Corollary 163] gives the estimate.

10.3 Weak quadratic drift for semi-nilpotent systems

We now prove that, thanks to the modified representation formula (10.6), one can prove Theo-
rems 1.11 and 1.12 for m = −1 and k ≥ 2 for such semi-nilpotent systems.

Theorem 10.7. Let k ≥ 2. Assume7 that L(f)(0) = Rd, f1 is semi-nilpotent at zero with respect
to f0 and k is the minimal value for which fWk

(0) /∈ SN∗\{2}(f)(0). Then system (1.1) has a weak
drift along fWk

(0), parallel to SN∗\{2}(f)(0), as (t, ‖u‖W−1,∞)→ 0.

The proof is the same as the one of Theorem 6.1, merely replacing (4.6) by (10.6) everywhere.
In particular, this yields the following closed-loop estimate.

6Condition (10.2) is equivalent to its variant with only n1(b) = M , as can be checked by writing any bracket
with n1(b) > M as a left-nested one by Jacobi’s identity. This does not hold for condition (10.3).

7This assumption is not restrictive as one can always work within the integral manifold generated by f0 and f1.
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Lemma 10.8. Under the assumptions of Theorem 10.7,

|(u1, . . . , uk)(t)| = O
(
|x(t;u)|+ t

1
2 ‖uk‖L2

)
. (10.7)

Proof. The proof is performed along the same lines as in Lemma 6.5. Instead of M = ϑ(k), one
uses M such that f1 is semi-nilpotent of index (M + 1) with respect to f0. One replaces (6.15)
by (10.6) and concludes as previously. Note that the vectorial relations of Lemma 6.4 hold with
π(k) = V(k) =∞.

Proof of Theorem 10.7. Let P be a component along fWk
(0) parallel to SN∗\{2}(f)(0). Let M ∈ N∗

be such that f1 is semi-nilpotent of index (M + 1) with respect to f0 (see Definition 10.3). By
Proposition 10.6,

x(t;u) = ZJ1,MK(t, f, u)(0) +O (‖u1‖L∞ |x(t;u)|) , (10.8)

where, by (6.4) and (3.12),

PZJ1,MK(t, f, u)(0) =
1

2

∫ t

0

u2
k +O

(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (10.9)

Gathering (10.8) and (10.7) yields

Px(t;u) =
1

2

∫ t

0

u2
k +O

(
t‖uk‖2L2 + ‖u1‖L∞ |x(t;u)|

)
, (10.10)

proving the presence of the weak drift.

Theorem 10.9. Let k ≥ 2. Assume7 that L(f)(0) = Rd, f1 is semi-nilpotent at zero with respect
to f0 and k is the minimal value for which fWk

(0) /∈ (B?1 ∪ Pk ∪ B?J4,∞J)(f)(0). Then system (1.1)

has a weak drift along fWk
(0), parallel to (B?1 ∪ Pk ∪ B?J4,∞J)(f)(0), as (t, ‖u‖W−1,∞)→ 0.

Proof. The proof follows the same steps as the proof of Theorem 6.8, the truncated formula (4.6)
being replaced by (10.6). Let P be a component along fWk

(0) parallel to (B?1 ∪Pk ∪B?J4,∞J)(f)(0).

Let M ∈ N∗ be such that f1 is semi-nilpotent of index (M + 1) with respect to f0 (see Defini-
tion 10.3). The dominant part of the logarithm satisfies (10.9). The proof of the vectorial relations
in Section 6.8 holds with π(k) = V(k) = ∞, which proves the closed-loop estimate (10.7). Thus,
the proof ends as above.

10.4 Embedded semi-nilpotent systems

In this section, we explain how to extract from a possibly rich large system, smaller parts of which
the controllability may be easier to analyze. Our motivation is to extract from a large system a
semi-nilpotent one to which we can apply the results of the previous subsection. We apply this
idea in the next subsection.

Definition 10.10. Let f0, f1 be analytic vector fields in a neighborhood of 0 ∈ Rd. Let r ∈ J0, dK
and g0, g1 be analytic vector fields in a neighborhood of 0 ∈ Rr. We say that the smaller system
ẏ = g0(y) + ug1(y) is embedded in the larger system ẋ = f0(x) + uf1(x) when there exist an open
neighborhood Ωx (resp. Ωy) of 0 in Rd (resp. Rr) and an analytic map λ : Ωx → Ωy with λ(0) = 0
such that

∀j ∈ {0, 1},∀x ∈ Ωx, Dλ(x)fj(x) = gj(λ(x)). (10.11)

In this case, their evaluated Lie brackets satisfy

∀b ∈ Br(X), gb(0) = Dλ(0)fb(0) (10.12)

and for every T > 0 and u ∈ L1(0, T ) such that x([0, T ];u) ⊂ Ωx then y(t;u) = λ(x(t;u)) on [0, T ].
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Equality (10.11) corresponds to the notion of λ-related fields (see [30, Page 182]) and im-
plies that, for every b ∈ Br(X), gb and fb are also λ-related (see [30, Proposition 8.30]), which
entails (10.12). The equality y = λ(x) along trajectories follows from the chain rule and (10.11).

Moreover, by Krener’s result [29, Theorem 1], given g0, g1, the existence of (Ωx,Ωy, λ) is equiv-
alent to the existence of a linear map L : Rd → Rr such that, for all b ∈ Br(X), gb(0) = Lfb(0) (in
which case, one has L = Dλ(0)).

We now proceed in the converse direction, and derive a sufficient condition on such a linear
map L to guarantee the existence of g0, g1 satisfying gb(0) = Lfb(0) for all b ∈ Br(X).

Proposition 10.11. Let f0, f1 be analytic vector fields in a neighborhood of 0 ∈ Rd. Let I be an
ideal of L(X) and r := codim(I(f)(0)). Then there exists an embedded system (g0, g1, λ) set on Rr
such that kerDλ(0) = I(f)(0).

Remark 10.12. If Vg and Vf denote the following linear maps

Vg : b ∈ L(X) 7→ gb(0) ∈ Rr, Vf : b ∈ L(X) 7→ fb(0) ∈ Rd (10.13)

then ker(Vg) = ker(Vf ) + I. In particular, if I = SJn,∞J(X) for some n ∈ N∗ then g1 is semi-
nilpotent at zero with respect to g0.

Remark 10.13. Proposition 10.11 only provides a sufficient condition on kerDλ(0) for the ex-
istence of an embedded system, which is however not necessary as illustrated by the following
example.

Consider on R3 the system ẋ = (u, x1, x
2
1) and on R2 the system ẏ = (u, y2

1). One has y(t, u) =
λ(x(t;u)) with λ(x) = (x1, x3). Hence kerDλ(0) = Re2. By contradiction, consider I an ideal
of L(X) such that kerDλ(0) = I(f)(0). Take b ∈ I such that fb(0) = e2. Expanding b on B?,
b = α0X0 +α1X1 + β[X1, X0] + γ[X1, [X1, X0]] + δ[[X1, X0], X0] +B where B is a sum of brackets
of length at least 4. Since fb(0) = e2, α1 = γ = 0 and β = 1. Since I is an ideal, [X1, b] ∈ I so
f[X1,b](0) ∈ kerDλ(0). But f[X1,b](0) = α0e2 + e3 so Dλ(0)f[X1,b](0) = e3 6= 0.

It could be interesting to derive a necessary and sufficient condition for the existence of an
embedded system. Such a result might be linked with the theory of realization of control systems
(see e.g. [14, 21, 37]).

Our proof of Proposition 10.11 is inspired by the one of [29, Theorem 1]. It relies on the
following classical expansion, proved for instance in [3, Lemma 90, item 3].

Lemma 10.14. Let δ > 0, f0, f1 ∈ Cω(B2δ,Rd) and Φ0(t, p) := etf0(p) the flow associated with
f0. If t is small enough then, for each p ∈ Bδ,

(∂pΦ0(t, p))
−1
f1 (Φ0(t, p)) =

+∞∑
k=0

tk

k!
adkf0(f1)(p). (10.14)

Proof of Proposition 10.11. By the assumptions on f0, f1 and I there exist b1, . . . bd ∈ L(X) such
that the vectors fbi(0) form a basis of Rd for 1 ≤ i ≤ d and a basis of I(f)(0) with bi ∈ I for
r < i ≤ d. (One can assume that 1 ≤ r < d, since λ = 0 works when r = 0 and λ = Id works when
r = d.)

For s = (s1, . . . , sd) ∈ Rd small enough, let

F (s) := esdfbd · · · es1fb1 (0). (10.15)

Since f0, f1 are analytic near 0, F is an analytic map on a neighborhood of 0. Moreover, since the
fbi(0) are a basis of Rd, F is a local diffeomorphism of Rd around 0. Let P : s = (s1, . . . , sd) ∈ Rd 7→
(s1, . . . , sr, 0, . . . , 0) ∈ Rd. Then λ(x) := PF−1(x) defines an analytic map λ on a neighborhood
of 0 in Rd, taking values in Rr × {0} ⊂ Rd, such that λ(0) = 0.
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In the rest of this proof, we will implicitly consider s, x ∈ Rd small enough for the formu-
las/statements to hold. We write s′ := (s1, . . . , sr).
Step 1: We introduce vectors hi(s) ∈ Rd and a linear map Q(s′) : Rd → Rd such that:.

∀1 ≤ i ≤ d, Q(s′)hi(s) = eiδi≤r and ker(Q(s′)) = I(f)(0). (10.16)

For 1 ≤ i ≤ d, we introduce the flow Φi associated with fbi , i.e. Φi(t, p) = etfbi (p), the linear map
Li(s) : Rd → Rd and the vector hi(s) ∈ Rd defined by

Li(s) := ∂pΦi(si, e
si−1fbi−1 . . . es1fb1 (0)) , (10.17)

hi(s) := L1(s)−1 · · ·Li(s)−1fbi
(
esifbi · · · es1fb1 (0)

)
. (10.18)

These vectors are analytic functions of s such that hi(0) = fbi(0). For 1 ≤ i ≤ r, then only depend
on s′ = (s1, . . . , sr), thus may be denoted hi(s

′).
The family (hi(s

′))1≤i≤r is linearly independent and in direct sum with the vector space
I(f)(0) = span{hi(0); r < i ≤ d} thus one may consider the linear map Q(s′) : Rd → Rd such that

Q(s′)hi(s
′) = ei for 1 ≤ i ≤ r and ker(Q(s′)) = I(f)(0). (10.19)

To end Step 1, it remains to prove that, for every r < i ≤ d, hi(s) ∈ ker(Q(s′)). By Lemma 10.14,

hi(s) =

+∞∑
k1,...,ki=0

sk11 · · · s
ki
i

k1! · · · ki!
adk1fb1

· · · adkifbi
(fbi)(0). (10.20)

For r < i ≤ d, bi ∈ I and I is an ideal of L(X) thus, for every k ∈ Ni, b := adk1b1 · · · adkibi (bi) ∈ I
and fb(0) ∈ I(f)(0) = ker(Q(s′)).

Step 2: We prove that Dλ(x) = Q(s′)L1(s)−1 . . . Ld(s)
−1.. Since both sides are linear maps on

Rd, it suffices to check that they coincide on a basis of Rd. Since the vectors ∂F
∂si

(0) = fbi(0) for

1 ≤ i ≤ d form a basis of Rd, then so do the vectors ∂F
∂si

(s) for s small enough. Using successively
the definitions of F and hi, Step 1, the definition of P and the chain rule in λ, one obtains

Q(s′)L1(s)−1 . . . Ld(s)
−1 ∂F

∂si
(s) = Q(s′)hi(s) = eiδi≤r =

∂P

∂si
(s) = Dλ(F (s))

∂F

∂si
(s). (10.21)

This ends Step 2, which, together with Step 1 proves Dλ(0) = Q(0) and ker(Dλ(0)) = I(f)(0).

Step 3: We prove that, for j ∈ {0, 1}, Dλ(x)fj(x) depends only on λ(x) or equivalently on s′ =
(s1, . . . , sr). Using Step 2 and Lemma 10.14

Dλ(x)fj(x) = Q(s′)L1(s)−1 . . . Ld(s)
−1fj(e

sdfbd . . . e
s1fb1 (0))

= Q(s′)

+∞∑
k1,...,kd=0

sk11 · · · s
kd
d

k1! · · · kd!
adk1fb1

· · · adkdfbd
(fj)(0)

=

+∞∑
k1,...,kr=0

sk11 · · · skrr
k1! · · · kr!

Q(s′)f
ad
k1
b1
··· adkrbr (Xj)

(0) =: gj(λ(x)).

(10.22)

Indeed any term involving ki > 0 for r < i ≤ d vanishes because bi ∈ I thus adk1b1 · · · adkdbd (Xj) ∈ I
by the ideal property, and f

ad
k1
b1
··· ad

kd
bd

(Xj)
(0) ∈ I(f)(0) = ker(Q(s′)).
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10.5 Drift: from semi-nilpotent systems to all systems

We now explain how embedded semi-nilpotent systems can be used to prove drift results.

Lemma 10.15. Let b ∈ B? and N ⊂ Br(X). With the notations of Definition 10.10, if ẏ = g0+ug1

has a weak drift along gb(0), parallel to N (g)(0), as (t, ‖u‖W−1,∞) → 0, then ẋ = f0 + uf1 has a
weak drift along fb(0) parallel to N (f)(0) as (t, ‖u‖W−1,∞)→ 0.

Proof. By Lemma 4.3, there exist r, ρ1 > 0 such that, for every t ∈ (0, ρ1) and u ∈ L1(0, t) with
‖u‖W−1,∞ ≤ ρ1 then x(t;u) ∈ BRd(0, r) ⊂ Ωx. The map λ is C1 thus locally Lipschitz: there exists
C ≥ 1 such that, for every x ∈ BRd(0, r), |λ(x)| ≤ C|x|.

Let ε > 0. The weak drift assumption on ẏ = g0 + ug1 gives ρ2 ∈ (0, ρ1) such that, for every
t ∈ (0, ρ2) and u ∈ L1(0, t) with ‖u‖W−1,∞ ≤ ρ2 then

Py(t;u) ≥
(

1− ε

2C

)
ξb(t, u)− ε

2C
|y(t;u)|. (10.23)

Since λ is of class C2, by Lemma 4.3

y(t;u) = λ(x(t;u)) = Dλ(0)x(t;u) +O
(
|x(t;u)|2

)
. (10.24)

Thus there exists ρ3 ∈ (0, ρ2) such that, for every t ∈ (0, ρ3) and u ∈ L1(0, t) with ‖u‖W−1,∞ ≤ ρ3

then

PDλ(0)x(t;u) ≥ Py(t;u)− ε

2
|x(t;u)| ≥

(
1− ε

2C

)
ξb(t, u)− ε

2C
|λ(x(t;u))| − ε

2
|x(t;u)|

≥ (1− ε)ξb(t, u)− ε|x(t;u)|.

Finally, PDλ(0) is a projection on fb(0) parallel to N (f)(0) because PDλ(0)fb(0) = Pgb(0) = 1
and for all b ∈ N (X), PDλ(0)fb(0) = Pgb(0) = 0.

Definition 10.16. Let H be a boolean property on subsets of L(X). We say that H is X1-truncable
when there exists n ∈ N∗ such that, for every vectorial subspace F of L(X) such that F satisfies H
then F + SJn,∞J(X) satisfies H.

Lemma 10.17. For subsets F of L(X), any finite boolean combination of conditions of the form
(E + SJq,∞J) ∩ F 6= ∅ with E ⊂ L(X) and q ∈ N∗ is X1-truncable.

Proof. Let F be a vector subspace of L(X). First, we consider the case of a single such condition.
We claim that, for every n ≥ q,

(E + SJq,∞J) ∩ F 6= ∅ ⇔ (E + SJq,∞J(X)) ∩ (F + SJn,∞J(X)) 6= ∅. (10.25)

Indeed, ⇒ holds because 0 ∈ SJn,∞J(X). For ⇐, if e ∈ E, B ∈ SJq,∞J(X), f ∈ F , B′ ∈ SJn,∞J(X)
and e+B = f +B′ then f = e+B −B′ ∈ (E + SJq,∞J(X)) ∩ F because n ≥ q.

The same equivalence follows easily for a boolean combination of such elementary conditions,
by taking for n the maximum value of the q.

Proposition 10.18. Let H be an X1-truncable property. We assume that for every d ∈ N∗, f0, f1

analytic vector fields on a neighborhood of 0 in Rd such that f1 is semi-nilpotent at zero with
respect to f0 and ker(b ∈ L(X) 7→ fb(0) ∈ Rd) satisfies H, system (1.1) has a weak drift along
fb(0), parallel to N (f)(0), as (t, ‖u‖W−1,∞)→ 0.

Then, the same conclusion holds without the semi-nilpotency assumption.

Proof. Let d ∈ N∗, f0, f1 analytic vector fields on a neighborhood of 0 in Rd such that ker(Vf )
satisfies H, where Vf : b ∈ L(X) 7→ fb(0) ∈ Rd. Let n ∈ N∗ be given by Definition 10.16. By
Proposition 10.11 applied with I = SJn,∞J(X), we obtain an embedded system (g0, g1, λ) for which
g1 is semi-nilpotent with respect to g0 (see Remark 10.12). Moreover, the kernel of the linear map
Vg : b ∈ L(X) 7→ gb(0) is ker(Vg) = ker(Vf ) + SJn,∞J(X) thus it satisfies the property H. Hence
the result follows from Lemma 10.15.
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All the necessary conditions for W−1,∞-STLC proved in this article take the form of conditions
of Lemma 10.17 with F = ker(Vf ):

• fWk
(0) /∈ SN∗\{2}(f)(0) corresponds to E = Wk + S1(X) and q = 3,

• fWk
(0) /∈ (B?1 ∪ Pk ∪ B?J4,∞J)(f)(0) corresponds to E = Wk + S1(X) + span(Pk) and q = 4.

In particular, this entails that the results of Section 10.3 prove Theorems 1.11 and 1.12 for
m = −1 and k ≥ 2 without the semi-nilpotency assumption.

10.6 Drift or weak drift?

The notions of weak drift, semi-nilpotent vector fields, and X1-truncable properties are very con-
venient because they provide a systematic way to generalize our unified approach to the case
m = −1. In this section, we show that, for Theorems 1.11 and 1.12 for m = −1 and k ≥ 2, one
can actually cleverly manipulate the representation formula to obtain (strong) drifts. Of course,
as done in Lemma 10.15 for weak drifts, one can transfer a drift from an embedded system to the
large system.

Lemma 10.19. Let b ∈ B? and N ⊂ Br(X). With the notations of Definition 10.10, if ẏ = g0+ug1

has a drift along gb(0), parallel to N (g)(0), as (t, ‖u‖W−1,∞) → 0, then ẋ = f0 + uf1 has a drift
along fb(0) parallel to N (f)(0) as (t, ‖u‖W−1,∞)→ 0.

Theorem 10.20. Let k ≥ 2. Assume7 that L(f)(0) = Rd and that k is the minimal value for
which fWk

(0) /∈ (B?1 ∪ Pk ∪ B?J4,∞J)(f)(0). Then system (1.1) has a drift along fWk
(0), parallel to

(B?1 ∪ Pk ∪ B?J4,∞J)(f)(0), as (t, ‖u‖W−1,∞)→ 0.

Proof. Recalling Wk = {Wj,ν ; j < k} of (6.34) and Pk = {Pj,l,ν ; j < k} of (1.22), let

I := spanWk + spanPk + SJ4,∞J(X). (10.26)

Using Lemma 6.9, one checks that I is an ideal of L(X). Let (g0, g1, λ) be the embedded system
associated with I given by Proposition 10.11. In particular, since L(f)(0) = Rd, L(g)(0) = Rr
where r := codim I(f)(0). By Lemma 10.4, for every B ∈ I, gB ≡ 0 in a neighborhood of 0 ∈ Rr.
Since SJ4,∞J(X) ⊂ I, g1 is semi-nilpotent of index at most 4 with respect to g0 (in the sense of
(10.2)). By [3, Corollary 122], the solution to ẏ = g0(y) + ug1(y) satisfies

y(t;u) = (expZJ1,3K(t, g, u))(0) (10.27)

where

ZJ1,3K(t, g, u) =

∞∑
i=1

ui(t)gMi
+

∑
k≤j,ν∈N

ηWj,ν
(t, u)gWj,ν

+
∑

k≤j≤l,ν∈N
ηPj,l,ν (t, u)gPj,l,ν . (10.28)

Using that k ≤ j, we obtain8 from Propositions 4.5 and 4.6 that

‖ZJ1,3K(t, g, u)‖C1 = O (|(u1, . . . , uk(t))|+ ‖uk‖L2) . (10.29)

Since k is assumed to be minimal, one proves as in Lemma 6.10 that fWk
(0) /∈ N (f)(0) where

N := S1(X) + I. Since ker(Vg) = ker(Vf ) + I (see Remark 10.12), one checks that

gWk
(0) /∈ (B?1 ∪ Pk ∪ B?J4,∞J)(g)(0) (10.30)

8To avoid repeating once more similar arguments, we skip here the verification of the assumptions of these black-
box estimates, which can be carried out as in Section 6. Moreover, Propositions 4.5 and 4.6 conclude to analytic
estimates, which of course entail C1 estimates.
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and that k is the minimal such integer. In particular, by Lemma 10.8,

|(u1, . . . , uk(t))| = O(|y(t;u)|+ t
1
2 ‖uk‖L2). (10.31)

From (10.27), we derive that (see [3, Lemma 160])

y(t;u) = ZJ1,3K(t, g, u)(0) +O
(
‖ZJ1,3K(t, g, u)‖C1 |y(t;u)|

)
. (10.32)

Thus, by (10.31) and (10.29),

y(t;u) = ZJ1,3K(t, g, u)(0) +O ((|y(t;u)|+ ‖uk‖L2)|y(t;u)|) . (10.33)

Let P denote a component along gWk
(0) parallel to (B?1 ∪Pk ∪B?J4,∞J)(g)(0). The same arguments

as in Lemma 6.10 prove that

PZJ1,3K(t, g, u)(0) = ξWk
(t, u) +O

(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (10.34)

Thus

Py(t;u) =
1

2

∫ t

0

u2
k +O(t‖uk‖2L2 + |(u1, . . . , uk(t))|2 + |y(t;u)|2 + |y(t;u)|‖uk‖L2). (10.35)

Using (10.31) once more and writing

|y(t;u)|‖uk‖L2 = O
(
‖uk‖3L2 + |y(t;u)| 32

)
(10.36)

proves the presence of a drift along gWk
(0), parallel to (B?1∪Pk∪B?J4,∞J)(g)(0) as (t, ‖u‖W−1,∞)→ 0,

in the strong sense of Definition 1.16. This concludes the proof by Lemma 10.19.

11 Obstructions without analyticity

Except for this section, all our paper is written with an analyticity assumption on the vector fields f0

and f1. This allows to work with convergent series. However, as announced in the introduction, the
obstruction mechanisms on which our necessary conditions for controllability rely are sufficiently
robust to absorb an approximation scheme for non-analytic vector fields.

Let δ > 0. For smooth vector fields f0 and f1 in C∞(Bδ;Rd), one can still define all Lie brackets
fb ∈ C∞(Bδ;Rd) for b ∈ Br(X). The arguments of the next paragraphs will prove that all9 the
statements of Section 1.5 remain true without any change under this (weaker) regularity setting.

Furthermore, even in a finite regularity setting, one can give a sense to some Lie brackets, once
evaluated at zero. This stems from the equilibrium assumption f0(0) = 0. More precisely, the
value of fb(0) only depends on the coefficients of the Taylor expansion at 0 of f0 up to order n1(b)
and of f1 up to order n1(b)− 1 (see Lemma 11.6 below). This leads to the following definition.

Definition 11.1. Let M ∈ N∗, δ > 0, f0 ∈ CM (Bδ;Rd) with f0(0) = 0 and f1 ∈ CM−1(Bδ;Rd).
Let f̂0 := TMf0 (respectively f̂1 := TM−1f1) be the truncated Taylor series at 0 of f0 (resp. f1) of

order M (resp. M − 1). For b ∈ Br(X) with n1(b) ∈ J1,MK, we define fb(0) := f̂b(0).

With this notation, we will prove that the following corollaries of the main theorems of Sec-
tion 1.5 hold. As a rule of thumb, the theorems continue to hold as soon as the vector fields have
enough regularity for the involved Lie brackets to be defined as above. More rigorously, we assume
one extra derivative to be able to estimate the truncation error properly (see Lemma 11.7).

We make the blanket hypothesis that f0(0) = 0.

9The only exception is the case m = −1 of Theorem 1.11 which is not included in Corollary 11.3.
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Corollary 11.2. Let M ∈ N∗. Assume that f0 ∈ CM+1, f1 ∈ CM . If system (1.1) is W−1,∞-
STLC, then, for every k ∈ N∗ such that 2k ≤M ,

ad2k
f1 (f0)(0) ∈ SJ1,2k−1K(f)(0). (11.1)

Corollary 11.3. Let M ∈ N∗. Assume that f0 ∈ CM+1, f1 ∈ CM . Let m ∈ N. If system (1.1) is
Wm,∞-STLC, then, for every k ∈ N∗ such that π(k,m) ≤M ,

fWk
(0) ∈ SJ1,π(k,m)K\{2}(f)(0), (11.2)

where π(k,m) is defined in (1.20), or, more precisely when π(k,m) ≥ 3, (1.21) holds.

Corollary 11.4. Assume that system (1.1) is L∞-STLC. If f0 ∈ C4 and f1 ∈ C3, then fW2
(0) ∈

N2(f)(0) (see (1.24)). If f0 ∈ C6 and f2 ∈ C5, then fW3
(0) ∈ N3(f)(0) (see (1.25)).

Corollary 11.5. Assume that f0 ∈ C8 and f1 ∈ C7. Then Theorem 1.14 holds.

All these corollaries follow form the main theorems and the approximation result Lemma 11.7.
One writes x ≈ x̂, where x̂ is the solution to a system driven by the truncated Taylor expansions
of f0 and f1. For the x̂ system, one can apply the drift results of the previous sections. Since
the truncation error is of the same size as (or smaller than) the error terms which were already
absorbed by the drift, the drift conclusion remains true on the state x.

11.1 Brackets at zero only depend on low-order Taylor coefficients

Lemma 11.6. Let M ∈ N∗, δ > 0, f0 ∈ C∞(Bδ;Rd) with f0(0) = 0 and f1 ∈ C∞(Bδ;Rd). Let

f̂0 := TMf0 (respectively f̂1 := TM−1f1) be the truncated Taylor series at 0 of f0 (resp. f1) of

order M (resp. M − 1). For all b ∈ Br(X) with n1(b) ≤M , fb(0) = f̂b(0).

Proof. Step 1: Notations and preliminary remarks. As in [5, Section 3.1], for two vector fields
g, h ∈ C∞(Bδ;Rd) and k ∈ N∗, we write g =[k] h when the Taylor expansions of g and h at 0

are equal up to order k − 1. When k ≥ 2, g =[k] ĝ and h =[k] ĥ, straightforward computations

prove that [g, h] =[k−1] [ĝ, ĥ]. When k ≥ 1, g(0) = 0, g =[k+1] ĝ and h =[k] ĥ, straightforward

computations prove that [g, h] =[k] [ĝ, ĥ], so that there is “no loss of derivative” in this weak sense.

Step 2: Computation of brackets. We now proceed by induction on n1(b) ∈ J1,MK, proving that,

for every b ∈ Br(X) with 1 ≤ n1(b) ≤M , fb =[M+1−n1(b)] f̂b.

When n1(b) = 1, by symmetry, we can assume that b = X10ν for some ν ∈ N. Since f1 =[M ] f̂1,

iterating the previous remarks yields fX10ν =[M ] f̂X10ν , which gives the initialization.
Now let b ∈ Br(X). By symmetry, we can assume that b = (b1, b2)0ν for some ν ∈ N, with

b1, b2 6= X0. By the induction hypothesis fb1 =[M+1−n1(b1)] f̂b1 and fb2 =[M+1−n1(b2)] f̂b2 . Hence,

by the preliminary remark, f(b1,b2) =[M+1−n] f̂(b1,b2) with n := 1 + maxn1(b1), n1(b2) ≤ n1(b).
And by the preliminary remark, bracketing with f0 preserves this approximation level, so we have
proved that fb =[M+1−n1(b)] f̂b.

Step 3: Evaluation at zero. When b = X0, f0(0) = f̂0(0). When b ∈ Br(X) with 1 ≤ n1(b) ≤ M ,

we have proved that fb =[M+1−n1(b)] f̂b so fb =[1] f̂b and thus fb(0) = f̂b(0).

11.2 Estimate of the approximation error

Lemma 11.7. Let M ∈ N∗, δ > 0, f0 ∈ CM+1(Bδ;Rd) with f0(0) = 0 and f1 ∈ CM (Bδ;Rd). Let

f̂0 := TMf0 (respectively f̂1 := TM−1f1) be the truncated Taylor series at 0 of f0 (resp. f1) of
order M (resp. M − 1). Then

x(t;u)− x̂(t;u) = O
(
‖u1‖M+1

LM+1 + |u1(t)|M+1
)
, (11.3)
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where x̂(t;u) denotes the solution with initial data 0 to

˙̂x = f̂0(x̂) + u(t)f̂1(x̂). (11.4)

Proof. Such an estimate is straightforward to prove when the right-hand side of (11.3) is replaced
by ‖u‖M+1

L1 . To obtain an estimate involving only u1, we need to consider an appropriate “auxiliary
system” as in [3, Section 7] or [5, Section 6.3].
Step 1: Computations on the auxiliary system. Let Φ1 denote the flow of f1, which is well-defined
locally. We then introduce

y(t;u) := Φ1(−u1(t), x(t;u)). (11.5)

This new unknown satisfies y(0;u) = 0 and

ẏ = (Φ1(−u1(t))∗f0) (ŷ), (11.6)

where Φ1(−u1(t))∗f0 is the push-forward of the vector field f0 by the diffeomorphism Φ1(−u1(t), ·).
In particular, for v ∈ R and p ∈ Rd small enough, (see e.g. [3, equation (169)], albeit with swapped
indexes),

(Φ1(−v)∗f0)(p) =

M−1∑
k=0

vk

k!
adkf1(f0)(p) +

∫ v

0

(v − v′)M−1

(M − 1)!

(
Φ1(−v′)∗ adMf1 (f0)

)
(p) dv′. (11.7)

By Lemma 11.8 (with k ←M) and Lemma 11.9 (with g ← adMf1 (f0) and ν ← 0),

adMf1 (f0)(p) = adMf1 (f0)(0) + O
|p|→0

(|p|). (11.8)

Moreover, since f1 ∈ C1,
Φ1(v, p) = 0 + O

v→0,|p|→0
(|v|+ |p|) (11.9)

and
(∂pΦ1(v, p))

−1
= Id + O

v→0,|p|→0
(|v|+ |p|). (11.10)

Thus, combining the last three estimates proves that, for |v′| ≤ |v|(
Φ1(−v′)∗ adMf1 (f0)

)
(p) = adMf1 (f0)(0) + O

v→0,|p|→0
(|v|+ |p|). (11.11)

Substituting in (11.7) and using Young’s inequality proves that

(Φ1(−v)∗f0) (p) =

M−1∑
k=0

vk

k!
adkf1(f0)(p) +

vM

M !
adMf1 (f0)(0) + O

v→0,|p|→0
(|v|M+1 + |p|M+1). (11.12)

Step 2: Grönwall estimate for the auxiliary systems. We introduce similarly ŷ(t;u) using Φ̂1 (the

flow of f̂1) and f̂0. Then the counterpart for (11.12) holds, mutatis mutandis, since f̂0 and f̂1 are
smooth. Using these estimates, one obtains

ẏ − ˙̂y =

M−1∑
k=0

uk1(t)

k!

(
adkf1(f0)(y)− adk

f̂1
(f̂0)(ŷ)

)
+
uM1 (t)

M !

(
adMf1 (f0)(0)− adM

f̂1
(f̂0)(0)

)
+O

(
|u1(t)|M+1 + |y|M+1 + |ŷ|M+1

)
.

(11.13)

For k = 0, since f0 ∈ CM+1 and f̂0 = TMf0,

f0(y)− f̂0(ŷ) = f0(y)− f̂0(y) + f̂0(y)− f̂0(ŷ) = O
(
|y|M+1 + |y − ŷ|

)
. (11.14)
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For k ∈ J1,M − 1K, one has

adkf1(f0)(y)− adk
f̂1

(f̂0)(ŷ) = adkf1(f0)(y)− adk
f̂1

(f̂0)(y) + adk
f̂1

(f̂0)(y)− adk
f̂1

(f̂0)(ŷ)

= O
(
|y|M+1−k + |y − ŷ|

)
,

(11.15)

where we used the estimate

adkf1(f0)(p) = (TM−k adkf1(f0))(p) +O(|p|M+1−k), (11.16)

which follows from Lemma 11.8 and Lemma 11.9 (with g ← adkf1(f0) and ν ←M −k). Eventually,
we obtain

ẏ − ˙̂y = O
(
|y − ŷ|+ |u1(t)|M+1 + |y|M+1 + |ŷ|M+1

)
. (11.17)

Moreover, from classical estimates |y| = O(‖u1‖L1) and |ŷ| = O(‖u1‖L1) (see e.g. [5, Lemma 9]).
Thanks to Grönwall’s lemma, we conclude

y(t;u)− ŷ(t;u) = O
(
‖u1‖M+1

LM+1

)
. (11.18)

Step 3: Conclusion. First, using similar estimates as above, one proves that

Φ1(v, p)− Φ̂1(v, p) = O
v→0,|p|→0

(
|p|M+1 + |v|M+1

)
. (11.19)

(For example, one can bound the difference between the trajectories to ż = f1(z), z(0) = p

and ˙̂z = f̂1(ẑ), ẑ(0) = p, at time v, using a Grönwall estimate, then apply Young’s inequality).
Therefore, we obtain

x− x̂ = Φ1(u1(t), y)− Φ1(u1(t), ŷ) + Φ1(u1(t), ŷ)− Φ̂1(u1(t), ŷ)

= O
(
|y − ŷ|+ |ŷ|M+1 + |u1(t)|M+1

)
,

(11.20)

where we can use again the estimate ŷ = O(‖u1‖L1), which concludes the proof of (11.3).

Lemma 11.8. Let M ∈ N∗ and δ > 0. Let f0 ∈ CM+1(Bδ;Rd) and f1 ∈ CM (Bδ;Rd). For each
k ∈ J1,MK, there exists hk ∈ CM+1−k(Bδ;Rd) such that

adkf1(f0) = −Dkf1 · (f0, f1, . . . , f1) + hk. (11.21)

Proof. For k = 1, this holds with h1 := Df0 · f1 ∈ CM . Then the general formula follows by
induction on k.

Lemma 11.9. Let ν ∈ N and δ > 0. Assume that g ∈ Cν(Bδ;Rd) is of the form g = Af0 + h
where A ∈ Cν(Bδ;Md(R)) and h ∈ Cν+1(Bδ;Rd). Then, if f0(0) = 0 and f0 ∈ Cν+1(Bδ;Rd),

g(p) = (Tνg)(p) + O
p→0

(|p|ν+1), (11.22)

where Tνg denotes the truncated Taylor series at 0 of g.

Proof. The claimed estimate is straightforward when g ∈ Cν+1. In particular, by linearity, one can
assume that h = 0. When ν = 0, A ∈ C0 so is locally bounded, and, since f0 ∈ C1 with f0(0) = 0,
f0(p) = O

p→0
(|p|) and g(p) = A(p)f0(p) = O

p→0
(|p|). Then, one proceeds by induction. Assuming

Lemma 11.9 holds for some ν ∈ N, let us prove it at step ν + 1. Using Taylor’s formula

g(p) = g(0) +

∫ 1

0

(Dg(sp))p ds. (11.23)

64



Moreover, Dg = (DA)f0 + A(Df0), where DA ∈ Cν , f0 ∈ Cν+2, ADf0 ∈ Cν+1. In particular, the
induction assumption applies and

Dg(sp) = (Tν(Dg))(sp) + O
p→0

(|sp|ν+1). (11.24)

Combining both equalities yields

g(p) = g(0) +

∫ 1

0

(Tν(Dg))(sp)p ds+ O
p→0

(|p|ν+2) = (Tν+1g)(p) + O
p→0

(|p|ν+2), (11.25)

which concludes the proof.

A Proofs of technical results and estimates

A.1 On the differences between STLC definitions

In this paragraph, we prove the claim made in Section 1.2 concerning the invalidity of the three
reciprocal implications in (1.3). For k ∈ {3, 4, 5}, consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2
2 − xk1 .

(A.1)

Proposition A.1. The following results hold for system (A.1):

• For k = 3, it is L∞-STLC but not W 1,∞-STLC.

• For k = 4, it is not L∞-STLC, but there exists ρ > 0 such that it is ρ-bounded-STLC.

• For k = 5, it is W−1,∞-STLC, but not ρ-bounded-STLC for any ρ > 0.

Proof. Step 1: Case k = 3. With k = 3, the L∞-STLC of system (A.1) follows from the same
arguments as for system (7.1) (with the opposite sign), studied in Section 7.1. The fact that it
is not W 1,∞-STLC follows from Theorem 1.11 with m = 1 and k = 2 (or [5, Theorem 3]), which
states that fW3

(0) ∈ S1(f)(0) is a necessary condition of W 1,∞-STLC (see also [5, Section 2.3.3]).

Step 2: Case k = 4. Both claims are proved in Section 6.7 concerning system (6.27).

Step 3: Case k = 5. The fact that system (A.1) is W−1,∞-STLC for k = 5 follows from Sussmann’s
S(θ) condition10 (see [43, Theorem 7.3] or [13, Theorem 3.29]) with θ > 3/2 (here fW2

(0) of type
(2,3) is compensated by fR1,1,1,1,0(0) of type (5,1)). It can also be proved explicitly using oscillating
controls as in [5, Section 2.4.1] or Section 6.7.

Let ρ > 0. Let us prove that (A.1) is not ρ-bounded-STLC. Let u ∈ L∞((0, T );R) with
‖u‖L∞ ≤ ρ such that x1(T ;u) = 0,

∫ T

0

u4
1 = −3

∫ T

0

uu2
1u2 ≤ 3ρ

(∫ T

0

u4
1

∫ T

0

u2
2

) 1
2

. (A.2)

Thus ∣∣∣∣∣
∫ T

0

u5
1

∣∣∣∣∣ ≤ ‖u1‖L∞
∫ T

0

u4
1 ≤ ρT‖u1‖4L4 ≤ 9ρ3T

∫ T

0

u2
2. (A.3)

In particular, if T ≤ 1/(9ρ3), one has x3(T ;u) ≥ 0 and the system is not controllable.

10Sussmann’s initial proof requires θ ≤ 1, but, if one is only interested in W−1,∞-STLC, it is possible to work
with any θ ∈ [0,+∞).
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A.2 On the structure of “bad” brackets

In this paragraph, we prove the claim made in Section 1.5 that, due to the structure of the brackets
ad2k
X1

(X0), Wk and D := ad2
P1,1

(X0), they are always required to be compensated by the Agrachev–
Gamkrelidze sufficient condition of Theorem 8.2. Since they are of type (even, odd), this follows
from the following claims.

Lemma A.2. Let Π1 ⊂ Br(X) as in Theorem 8.2. Then X0 ∈ Π1.

Lemma A.3. Let Π1 ⊂ Br(X) as in Theorem 8.2. Let k ∈ N∗. Then

e(ad2k
X1

(X0)) /∈ span{e(π);π ∈ Πeven} in L(X). (A.4)

Proof. By contradiction, assume that there exist r ∈ N∗, π1, . . . , πr ∈ Πeven and α1, . . . , αr ∈ R
such that e(ad2k

X1
(X0)) = α1e(π1) + · · · + αre(πr) in L(X). Thus, there exists π = πj ∈ Πeven

such that ad2k
X1

(X0) ∈ suppB? e(π). Since n0(π) = 1 and n0(π) = 2k, e(π) = ±e(ad2k
X1

(X0)). Since

e(π) 6= 0 and n0(π) = 1, one has λ(π) = X1 or µ(π) = X1. Thus X1 ∈ Π1, and ad2k
X1

(X0) ∈
Π1+2k ⊂ Πodd, which contradicts the initial assumption since Π1 freely generates Lie(Π1).

Lemma A.4. Let Π1 ⊂ Br(X) as in Theorem 8.2. Let k ∈ N∗. Then

e(Wk) /∈ span{e(π);π ∈ Πeven} in L(X). (A.5)

Proof. By contradiction, let r ∈ N∗, π1, . . . , πr ∈ Πeven and α1, . . . , αr ∈ R such that e(Wk) =
α1e(π1) + · · ·+ αre(πr) in L(X). Thus, there exists π = πj ∈ Πeven such that Wk ∈ suppB? e(π).
Since Wk is a germ (see Definition 3.1), one cannot have λ(π) = X0 or µ(π) = X0. Thus n1(λ(π)) =
n1(µ(π)) = 1. This implies the existence of a unique l ∈ J0, k − 1K and π∗ ∈ Π1 such that
e(π∗) = ±e(Ml). Thus Wk ∈ span{e(π);π ∈ Π1+2(k−l) ⊂ Πodd}, which contradicts the initial
assumption since Π1 freely generates Lie(Π1).

Lemma A.5. Let Π1 ⊂ Br(X) as in Theorem 8.2. Then

e(D) /∈ span{e(π);π ∈ Πeven} in L(X). (A.6)

Proof. By contradiction, let r ∈ N∗, π1, . . . , πr ∈ Πeven and α1, . . . , αr ∈ R such that e(D) =
α1e(π1) + · · · + αre(πr) in L(X). Thus, there exists π = πj ∈ Πeven such that D ∈ suppB? e(π).
Thus n1(π) = 6 and n0(π) = 3. We write π = (a, b). Since D is a germ (see Definition 3.1) and
B? is stable by bracketting with X0, one cannot have a = X0 or b = X0. By symmetry, one can
assume 1 ≤ n1(a) ≤ n1(b) ≤ 5.
Step 1: Case n1(a) = 1 and n1(b) = 5. If n0(a) ≥ 1, up to decomposing a and b on B?, by
Lemma 9.5, D /∈ suppB? e((a, b)), which contradicts D ∈ supB? e(π). Thus a = X1 ∈ Π1 and
Π1 = {X0, X1}. Hence D ∈ span{e(π);π ∈ Π9 ⊂ Πodd} which contradicts the initial assumption
since Π1 freely generates Lie(Π1).

Step 2: Case n1(a) = 2 and n1(b) = 4. Then, up to decomposing a and b on B?, by Lemma 9.4,
D /∈ suppB? e((a, b)), which contradicts D ∈ supB? e(π). Hence this case doesn’t happen.

Step 3: Case n1(a) = n1(b) = 3. By symmetry, one can assume that n0(a) = 1 and n0(b) = 2.
Thus e(a) = ±e(P1,1) and e(b) = ±e(P1,2) or e(b) = ±e((P1,1, X0)). Since (P1,1, P1,2) ∈ B? and
D ∈ suppB? e(π), we are in the second case, i.e. π = (P1,1, (P1,1, X0)) (or a permutation thereof).
In particular e(π) = ±e(D). Thus P1,1 = λ(π) (or a permutation thereof) belongs to Π1, and thus
π ∈ Π3, which contradicts the initial assumption.
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A.3 Universal rough estimate for coordinates of the second kind

Proof of Proposition 3.9. The proof is by induction on k ∈ N∗.
Step 1: Case k = 1. Then b = X10ν for some ν ≥ 1 and |b| = ν + 1. Thus, for every t > 0 and
u ∈ L1((0, t);R),

|ξb(t, u)| =
∣∣∣∣∫ t

0

(t− s)ν−1

(ν − 1)!
u1(s) ds

∣∣∣∣ ≤ tν−1

(ν − 1)!
‖u1‖L1 ≤ 2

(2t)ν+1

(ν + 1)!
t−2‖u1‖L1 , (A.7)

which gives the conclusion with c(1) := 4.

Step 2: Case k ≥ 2. To simplify notations, we write c instead of c(k − 1) and, without loss of
generality, we assume that 1 ≤ c(1) ≤ · · · ≤ c(k − 1) = c. Let b ∈ B? \ {X1} with n1(b) = k.
Then b = b∗0ν for some ν ≥ 0 and there exists j ∈ N∗, m1, . . . ,mj ∈ N∗, m ∈ N and b1 > · · · >
bj > X1 ∈ B?J1,k−1K such that b∗ = adm1

b1
. . . ad

mj
bj

admX1
(X0). In particular, k = n1(b) = n1(b∗) =

m1n1(b1) + · · ·+mjn1(bj) +m and |b| = m1|b1|+ · · ·+mj |bj |+m+ ν + 1.
First, for each i ∈ J1, jK, using the induction assumption and Hölder’s inequality,

|ξbi(t, u)| ≤ (ct)|bi|

|bi|!
t−n1(bi)(1+ 1

k )‖u1‖n1(bi)

Lk
. (A.8)

Thus, by (2.6),

|ξb∗(t, u)| =

∣∣∣∣∣
∫ t

0

ξm1

b1
(s, u)

m1!
. . .

ξ
mj
bj

(s, u)

mj !

um1 (s)

m!
ds

∣∣∣∣∣
≤ (ct)1+m+

∑
mi|bi|

m!|b1|!m1 · · · |bj |!mj
t−(m+

∑
min1(bi))(1+ 1

k )‖u1‖m+
∑
min1(bi)

Lk

≤
(
2k+1ct

)|b∗|
|b∗|!

t−(1+k)‖u1‖kLk ,

(A.9)

where we used ‖u1‖mLm ≤ t1+mt−m(1+ 1
k )‖u1‖mLk and

|b∗|! =

(
1 +m+

j∑
i=1

mi|bi|

)
! ≤ 2((

∑
mi+2)−1)|b∗|1!m!

j∏
i=1

|bi|!mi (A.10)

which follows from (4.1) and the estimate m+m1 + · · ·+mj ≤ k.
Finally, if ν ≥ 1, using Lemma 3.6 and (4.1),

|ξb(t, u)| =
∣∣∣∣∫ t

0

(t− s)ν−1

(ν − 1)!
ξb∗(s, u) ds

∣∣∣∣
≤ tν

ν!

(2k+1ct)|b
∗|

|b∗|!
t−(1+k)‖u1‖kLk

≤ (2k+2ct)|b|

|b|!
t−(1+k)‖u1‖kLk ,

(A.11)

which gives the conclusion with c(k) := 2k+2c.

A.4 Precise estimates of coordinates up to the fifth order

We start with an elementary estimate.
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Lemma A.6. For every p ∈ [1,∞], j0 ≤ j ∈ N∗, t > 0 and u ∈ L1((0, t);R),

‖uj‖Lp ≤
tj−j0

(j − j0)!
‖uj0‖Lp . (A.12)

Proof. One can assume j > j0 By definition, uj is the (j − j0)-th primitive of uj0 vanishing
iteratively at zero, i.e.

uj(s) =

∫ s

0

(s− s′)j−j0−1

(j − j0 − 1)!
uj0(s′) ds′. (A.13)

Thus uj = gj−j0−1∗ūj0 , where ūj0 is the extension of uj0 from (0, t) to R by zero and gν(s) := sν/ν!
for s ∈ (0, t) and 0 elsewhere, so that ‖gν‖L1 = tν+1/(ν + 1)!. Hence, (A.12) follows from Young’s
convolution inequality.

This leads to the following estimates.

Proof of Proposition 3.10. We prove the bounds one by one.

1. By (3.11), Hölder’s inequality, (A.12) and (4.1),

|ξMj
(t, u)| ≤ ‖uj‖L1 ≤ t1−

1
p ‖uj‖Lp

≤ tj−j0

(j − j0)!
t1−

1
p ‖uj0‖Lp

≤ (j0 + 1)!
(2t)j+1

(j + 1)!
t−(j0+1)t1−

1
p ‖uj0‖Lp ,

(A.14)

which proves (3.23) with c := 2(j0 + 1)! since |Mj | = j + 1.

2. By (3.12), Hölder’s inequality, (A.12) and (4.1),

|ξWj,ν (t, u)| ≤ tν

ν!
t1−

1
p ‖uj‖2L2p ≤

tν

ν!

t2(j−j0)

(j − j0)!2
t1−

1
p ‖uj0‖2L2p

≤ (2j0 + 1)!
(23t)2j+ν+1

(2j + ν + 1)!
t−(2j0+1)t1−

1
p ‖uj0‖2L2p ,

(A.15)

which proves (3.24) with c := 22(2j0 + 1)! since |Wj,ν | = 2j + ν + 1.

3. For (3.25), we proceed as in the second item, starting from (3.13).

4. For (3.26), we proceed as in the second item, starting from (3.14).

5. By (3.15) and (3.24), there exists c2 > 0 such that

|ξQ[j,µ,ν (t, u)| = 1

2

∣∣∣∣∫ t

0

(t− s)ν

ν!
ξ2
Wj,µ

(s, u) ds

∣∣∣∣
≤ tν+1

(ν + 1)!

(
(c2t)

|Wj,µ|

|Wj,µ|!
t−(2j0+1)t1−

1
p ‖uj0‖2L2p

)2

≤ (22c2t)
2|Wj,µ|+ν+1

(2|Wj,µ|+ ν + 1)!
t−(4j0+3)t3−

2
p ‖uj0‖4L2p

(A.16)

using (4.1), which proves (3.27) with c := 22c2 since |Q[j,µ,ν | = 2|Wj,µ|+ ν + 1.
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6. By (3.16), (A.12) and (3.24), there exists c2 > 0 such that

|ξQ]j,µ,k,ν (t, u)| = 1

2

∣∣∣∣∫ t

0

(t− s)ν

ν!
ξWj,µ

(s, u)u2
k(s) ds

∣∣∣∣
≤ tν

ν!

(
(c2t)

|Wj,µ|

|Wj,µ|!
t−(2j0+1)t1−

1
p1 ‖uj0‖2L2p1

)
t1−

1
p2

(
tk−k0

(k − k0)!
‖uk0‖L2p2

)2

≤ (2k0 + 1)!
(24c2t)

|Wj,µ|+2k+ν+1

(|Wj,µ|+ 2k + ν + 1)!

× t−(2j0+2k0+2)t2−
1
p1
− 1
p2 ‖uj0‖2L2p1 ‖uk0‖2L2p2

(A.17)

using (4.1), which proves (3.27) with c := 24c2(2k0 +1)! since |Q]j,µ,k,ν | = 2|Wj,µ|+2k+ν+1.

7. For (3.29), we proceed as in the second item, starting from (3.17).

8. By (3.18), Hölder’s inequality, (A.12), and (3.24), there exists c2 > 0 such that

|ξR]j,k,l,µ,ν (t, u)| = αj,k

∣∣∣∣∫ t

0

(t− s)ν

ν!
ξWl,µ

(s, u)uk(s)u2
j (s) ds

∣∣∣∣
≤ tν

ν!

(
(c2t)

|Wl,µ|

|Wl,µ|!
t−(2l0+1)t1−

1
p ‖ul0‖2L2p

)
t1−

1
p1
− 1
p2

×
(

tj−j0

(j − j0)!
‖uj0‖L2p1

)2
tk−k0

(k − k0)!
‖uk0‖Lp2

≤ (2j0 + k0 + 1)!
(24c2)t|Wl,µ|+2j+k+ν+1

(|Wl,µ|+ 2j + k + ν + 1)!
t−(2l0+2j0+k0+2)

× t2−
1
p−

1
p1
− 1
p2 ‖ul0‖2L2p‖uj0‖2L2p1‖uk0‖Lp2

(A.18)

using (4.1), which proves (3.30) with c := 24c2(2j0 + k0 + 1)! since |R]j,k,l,µ,ν | = |Wl,µ|+ 2j+
kν + 1.

A.5 Black-box estimates for the dominant part of the logarithm

We prove Propositions 4.5 and 4.6 of Section 4.4.

Proof of Proposition 4.5. We have, using (4.8), (4.3) and |{b ∈ B?; |b| = `}| ≤ 2`,∑
b∈E

|||ξb(t, u)fb|||r′ ≤
L∑
σ=1

+∞∑
`=σ

∑
b∈E

|b|=`,σ(b)=σ

(ct)`

`!
t−σΞ(t, u)

r

9
(`− 1)!

(
9 |||f |||r
r

)`

≤ r

9
Ξ(t, u)

L∑
σ=1

+∞∑
`=σ

(
18ct |||f |||r

r

)`
t−σ

(A.19)

which converges provided that 18ct |||f |||r < r, and is then bounded by CΞ(t, u) for an appropriate
constant C depending on r, c and |||f |||r (independent of t for t� 1, e.g. when 18ct |||f |||r < r/2).

The proof of Proposition 4.6 relies on the following algebraic lemmas.

Lemma A.7. Let M ∈ N∗. There exists C1(M) > 0 such that, for all a ∈ Br(B?) and b ∈ B?J1,MK,

|〈i(a), b〉B? | ≤ C(|a|B?−1)|b|
1 , (A.20)

where i denotes the canonical morphism of magmas from Br(Br(X)) to Br(X). For example, when
a = (X1,M1) ∈ Br(B?), |a|B? = 2, and i(a) = (X1, (X1, X0)) ∈ Br(X) with |i(a)| = 3.
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Proof. For B ∈ L(X), let ‖B‖ :=
∑
c∈B? |〈B, c〉B? |. By [4, Theorem 1.9], there exists C1(M) > 0

such that, for all b1, b2 ∈ B? with n1(b1) + n1(b2) ≤M ,

‖[b1, b2]‖ ≤ C |b1|+|b2|1 . (A.21)

Let us prove by induction on |a|B? ≥ 1 that, when n1(i(a)) ≤M ,

‖i(a)‖ ≤ C(|a|B?−1)|i(a)|
1 . (A.22)

The case |a|B? = 1 is trivial since then 〈i(a), b〉B? ∈ {0, 1}. The case |a|B? = 2 is exactly (A.21).
Now if |a|B? > 2, a = (a1, a2) with a1, a2 ∈ Br(B?), where, by the induction assumption

e(i(ai)) =
∑
c∈B?

αcie(c) where
∑
|αci | ≤ C

(|ai|B?−1)|i(ai)|
1 . (A.23)

Then, using (A.21) once more,

‖i(a)‖ ≤
∑

c1,c2∈B?
|αc11 ||α

c2
2 |‖[c1, c2]‖ ≤ C(|a1|B?−1+|a2|B?−1+1)|i(a)|

1 , (A.24)

proving (A.22). Eventually, when 〈i(a), b〉B? 6= 0, n1(i(a)) = n1(b) ≤ M and |i(a)| = |b| so that
(A.20) follows from (A.22).

Lemma A.8. Let M ∈ N∗. There exists a constant CM > 0 such that, for every q ≥ 2, h ∈ (N∗)q,
b1 < · · · < bq ∈ B? and b ∈ B?J1,MK,

|〈Fq,h(b1, . . . , bq), b〉B? | ≤ C |b|M . (A.25)

Proof. By homogeneity, 〈Fq,h(b1, . . . , bq), b〉B? 6= 0 entails that

h1n1(b1) + · · ·+ hqn1(bq) = n1(b) ≤M, (A.26)

h1|b1|+ · · ·+ hq|bq| = |b|. (A.27)

For each q ≥ 2 and h ∈ (N∗)q, there exists a finite subset A ⊂ Br({Y1, . . . , Yq}) and coefficients
(αa)a∈A such that Fq,h(Y1, . . . , Yq) =

∑
αae(a). By (A.26), the set of considered q and h is finite,

so there exists a constant CF (M) > 0 (depending only on M) such that
∑
|αa| ≤ CF . Let a ∈ A

of homogeneity h1, . . . , hq with respect to Y1, . . . , Yq. In particular |a| =
∑
hi ≤M by (A.26). By

Lemma A.7,

|〈a(b1, . . . , bq), b〉B? | ≤ C(|a|−1)|b|
1 ≤ CM |b|1 , (A.28)

where a(b1, . . . , bq) denotes the image of a through the homomorphism of Lie algebras sending Yi
to bi ∈ L(X). Eventually, we conclude that (A.25) holds with CM := CFC

M
1 .

Proof of Proposition 4.6. By Proposition 2.16, for b ∈ B?J1,MK,

ηb(t, u)− ξb(t, u) =
∑

q≥2,h∈(N∗)q
b1>···>bq∈B?\{X0}

ξh1

b1
(t, u) . . . ξ

hq
bq

(t, u)〈Fq,h(b1, . . . , bq), b〉B? . (A.29)

When 〈Fq,h(b1, . . . , bq), b〉B? 6= 0, there are at most M choices for q, MM choices for h and (2|b|)M

choices for the bi (since |{c ∈ B?; |c| ≤ `}| ≤ 2`). Hence, using (A.25), (4.1), (4.10) and Ξ = O(1),
we obtain

|ηb(t, u)− ξb(t, u)| ≤MM2M |b|C
|b|
M

M∑
q=1

min{qL,|b|}∑
σ=1

2(M−1)|b| (ct)
|b|

|b|!
t−σΞ(t, u)

≤ (DM t)
|b|

|b|!
t−σbΞ(t, u),

(A.30)

where σb := min{ML, |b|} and DM > 0, and the summations over b ∈ E follows exactly as in the
proof of Proposition 4.5 above.
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A.6 Bad-bad limiting examples involving W3 versus Q[

As announced in Section 8.1.2, in this paragraph, we give examples illustrating that one must
include Q[1,0, Q[1,1 and Q[1,2 in the list N3 of (1.25).

Limiting example for Q[1,0. Consider the system

ẋ1 = u

ẋ2 = x1

ẋ3 = x2 + x2
1

ẋ4 = x3

ẋ5 = x2
3 + 2x2

1x4.

(A.31)

Written in the form (1.1), this system satisfies

fMi−1
(0) = ei for i ∈ J1, 4K, fW1

(0) = 2e3, fW1,1
(0) = 2e4,

fQ[1,0(0) = −8e5, fW3
(0) = 2e5

(A.32)

and fb(0) = 0 for any other b ∈ B?.

Proposition A.9. System (A.31) is L∞-STLC (but not W 1,∞-STLC).

Proof. By Theorem 1.11, if a system is W 1,∞-STLC, then fW3(0) ∈ S3(f)(0). Since this condition
is not satisfied by system (A.31), it is not W 1,∞-STLC. We now prove that it is L∞-STLC.
Step 1: Computation of the state. Let us fix T > 0. Explicit integrations lead to x1(T ) = u1(T ),
x2(T ) = u2(T ) and

x3(T ) = u3(T ) +

∫ T

0

u2
1(t) dt,

x4(T ) = u4(T ) +

∫ T

0

(T − t)u2
1(t) dt,

x5(T ) =

∫ T

0

u2
3(t) dt−

∫ T

0

(∫ t

0

u2
1(s) ds

)2

dt+ 2x4(T )

∫ T

0

u2
1(t) dt.

(A.33)

Step 2: Motions in the linear directions. Let i ∈ J1, 4K. By the usual linear theory, there exists
ūi ∈ L∞((0, T );R) such that, for a ∈ [−1, 1], x(T ; aūi) = aei +O(a2).

Step 3: Motion in the easy quadratic direction +e5. Take a non-zero function χ ∈ C∞c ((0, T );R),
normalized such that ‖χ(1)‖L2 = 1 and define, for a ∈ [0, 1],

Ue5(a) := aχ(4) − a2

(∫ T

0

(χ(3))2(t) dt

)
ū3 − a2

(∫ T

0

(T − t)(χ(3))2(t) dt

)
ū4. (A.34)

Using (A.33), one checks that x(T,Ue5(a)) = a2e5 +O(a3).

Step 4: Motion in the difficult quartic direction −e5. In order to benefit from the quartic term,
we use oscillating controls. Let φ ∈ C∞(R;R) be a fixed non-zero T -periodic function with φ(0) =
φ′(0) = φ′′(0) = 0, 〈φ〉 = 0 and 〈φ2〉 = 1

4 . Let χ ∈ C∞c ((0, T ];R) such that χ′(T ) = χ′′(T ) = 0 to
be chosen later. For a ∈ [0, 1] small enough, we use controls of the form

u3(t) = a4χ(t) (1 + φ((T − t)/a)) . (A.35)
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In particular, ui(0) = ui(T ) = 0 for i = 1, 2. Moreover, the map (a, χ) → u is continuous from
[0, 1]× C3([0, T ];R) to L∞((0, T );R) and

‖u‖L∞ = O (a‖χ‖C3) . (A.36)

Differentiating (A.35) twice yields

u1(t) = a4χ′′(t) (1 + φ((T − t)/a))− 2a3χ′(t)φ′((T − t)/a) + a2χ(t)φ′′((T − t)/a). (A.37)

Hence, heuristically, u1 ≈ a2χφ′′. Substituting in (A.33) and using a Riemann–Lebesgue-type
argument (see Lemma A.12 in Appendix A.7 below) yields

x3(T ) = a4 (G3(χ) + F3(a, χ)) , G3(χ) := χ(T ) + 〈(φ′′)2〉
∫ T

0

χ2 (A.38)

x4(T ) = a4 (G4(χ) + F4(a, χ)) , G4(χ) :=

∫ T

0

χ+ 〈(φ′′)2〉
∫ T

0

(T − t)χ2(t) dt (A.39)

where F3 and F4 are C1 maps on [0, 1] × C5
c ((0, T ];R) with F3(0, ·) = F4(0, ·) = 0. Similar

arguments prove that

x5(T ) = a8 (G5(χ) + F5(a, χ)) + 2x4(T )

∫ T

0

u2
1,

G5(χ) := 〈(1 + φ)2〉
∫ T

0

χ2 − 〈(φ′′)2〉2
∫ T

0

(∫ t

0

χ2

)2

dt

(A.40)

where F5 is a C1 map on [0, 1]× C5
c ((0, T ];R) with F5(0, ·) = 0.

We now prove that there exists χ∗ such that G3(χ∗) = G4(χ∗) = 0, G5(χ∗) < 0, and χ 7→
(G3(χ), G4(χ)) is locally onto. More precisely, given 0 < τ � 1, let χ̄ ∈ C∞c ((0, T ); [0, 1]) with
χ̄ ≡ 1 on [2τ, T − 2τ ], suppχ ⊂ [τ, T − τ ], and h̄ ∈ C∞c ([0, 1]; [0, 1]) with h̄′ compactly supported
in (0, 1) and h̄(0) = 1. We look for χ under the form

χ(t) = c0χ̄(t) + c1h̄((T − t)/τ) (A.41)

Let Λ := 〈(φ′′)2〉. Using the assumptions on φ,

G3(χ) = c1 + Λc20T +O(τ),

G4(χ) = c0T + Λc20
T 2

2
+O(τ), (A.42)

G5(χ) =
5

4
c20T − Λ2c40

T 3

3
+O(τ).

At τ = 0, one checks that, for c̄0 = −2/(ΛT ) and c̄1 = −Λc̄0T , G3 = G4 = 0 and G5 < 0. By
the implicit function theorem, there exists (c∗0, c

∗
1, τ
∗) with τ∗ > 0, c∗0 ≈ c̄0 and c∗1 ≈ c̄1 such that

G3(χ∗) = G4(χ∗) = 0 and G5(χ∗) < 0. Moreover, since ∂c1(G3, G4)|c̄0,c̄1,τ = (1, 0) + O(τ) and
∂c0(G3, G4)|c̄0,c̄1,τ = (0,−T ), the C1 map (c0, c1) 7→ (G3, G4)(χc0,c1,τ∗) vanishes at (c∗0, c

∗
1) and its

differential is onto.

By the implicit function theorem, there thus exists a C1 map a 7→ χa from [0, 1] to C5
c ((0, T ];R)

such that G3(χa)+F3(a, χa) = G4(χa)+F4(a, χa) = 0, with G5(χ0) < 0. Thus x(T ) = a8(G5(χa)+
F5(a, χa))e5 = a8G5(χ0)e5 +O(a9), so one can move in the direction −e5.

Step 5: Conclusion. Standard arguments using either tangent vectors or power series expansions
(see e.g. [23, Appendix] or [13, Section 8.1]) entail that (A.31) is L∞-STLC.
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Limiting example for Q[1,1. Consider the system

ẋ1 = u

ẋ2 = x1 + x2
1

ẋ3 = x2

ẋ4 = x3

ẋ5 = x4

ẋ6 = x2
3 − 2x2

1x5.

(A.43)

Written in the form (1.1), this system satisfies

fMi−1
(0) = ei for i ∈ J1, 5K, fW1,ν

(0) = 2e2+ν for ν ∈ J0, 3K,
fQ[1,1(0) = −8e6, fW3

(0) = 2e6
(A.44)

and fb(0) = 0 for any other b ∈ B?.

Lemma A.10. System (A.43) is L∞-STLC.

Proof. Let us perform the (nonlinear) static-state-feedback transformation v(t) := u(t)(1+2x1(t)).
Then system (A.43) is mapped to a system which satisfies

fMi−1
(0) = ei for i ∈ J1, 5K, fW3

(0) = 2e6, fP1,5
= −4e6,

f(M4,adkX1
(X0))(0) = cke6 for k ≥ 3

(A.45)

for some constant ck ∈ R and fb(0) = 0 for every other b ∈ B?. In particular, as (8.9) with l = 5,
it mainly features a competition between W3 and P1,5,0, which was proved to be L∞-STLC in
Section 8.1 using Theorem 8.2. Let us check that we can indeed ignore the added brackets. For
k ≥ 3, using the set Π1 of (8.5), one has

(M4, adkX1
(X0)) = ((adM2

(X0), X0), adkX1
(X0)) ∈ Π3. (A.46)

Thus ω((M4, adkX1
(X0))) = |(M4, adkX1

(X0))| − 3 = 3 + k ≥ 6 > 5 = ω(P1,5). Hence, the system
after feedback is L∞-STLC, so (A.43) is L∞-STLC.

Limiting example for Q[1,2. Consider the system

ẋ1 = u+ x2
1

ẋ2 = x1

ẋ3 = x2

ẋ4 = x3

ẋ5 = x4

ẋ6 = x5

ẋ7 = x2
3 + 2x2

1x6.

(A.47)

Unlike the previous examples, this system is not nilpotent. Nevertheless, written in the form (1.1),
it satisfies

fW3(0) = 2e7, fQ[1,2(0) = −8e7,

∀b ∈ N3 \ {Q[1,2}, fb(0) ∈ Re1 + · · ·+ Re6.
(A.48)

Hence, along the line e7, there is only a competition between W3, Q[1,2, and brackets outside of
N3, so that yield negligible contributions with respect to

∫
u2

3. It particular, it satisfies

fW3
(0) /∈ (N3 \ {Q[1,2})(f)(0). (A.49)
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Lemma A.11. System (A.47) is L∞-STLC.

Proof. Let us perform the (nonlinear) static-state-feedback transformation v(t) := u(t) + x2
1(t).

Then system (A.47) is mapped to example (8.9) with l = 6, featuring a competition between W3

and P1,6,0, which was proved to be L∞-STLC in Section 8.1. Hence (A.47) is L∞-STLC.

A.7 A Riemann–Lebesgue-type lemma

Lemma A.12. Let T > 0 and V := {h ∈ C3([0, T ];R);h(0) = h′(0) = h′′(0) = 0} endowed with
its usual topology. Let θ ∈ C0(R;R) be a T -periodic function. The map

F :

{
(0, 1]× V → R,
(τ, h) 7→

∫ T
0
h(t)θ((T − t)/τ) dt

(A.50)

admits a C1 extension to [0, 1]× V which satisfies F (0, h) = (1/T )
∫ T

0
θ
∫ T

0
h for every h ∈ V.

Proof. Let θ0 := θ. For k ∈ N, we set θk+1(t) := (t/T )
∫ T

0
θk −

∫ t
0
θk. In particular, for all k ∈ N,

θk+1(0) = 0, θk+1 is T -periodic and θ′k+1 = 〈θk〉 − θk. Integrating by parts in (A.50) yields

F (τ, h) = 〈θ〉
∫ T

0

h+ τ [hθ1((T − t)/τ)]T0 − τ
∫ T

0

h′(t)θ1((T − t)/τ) dt

= 〈θ〉
∫ T

0

h− τ
∫ T

0

h′(t)θ1((T − t)/τ) dt.

(A.51)

Hence F admits a continuous extension setting F (0, h) = 〈θ〉
∫ T

0
h. Repeating the process twice,

F (τ, h) = 〈θ〉
∫ T

0

h− τ〈θ1〉h(T ) + τ2〈θ2〉h′(T )− τ3

∫ T

0

h′′′(t)θ3((T − t)/τ) dt. (A.52)

This development with respect to τ can be used to prove that F enjoys C1 regularity up to τ = 0,
since the τ3 factor allows to absorb the derivative with respect to τ of the last integral as τ → 0.
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