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local controllability for scalar-input systems

Karine Beauchard*, Frédéric Marbach*
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Abstract

We propose a unified approach to determine and prove obstructions to small-time local
controllability of scalar-input control systems. Our approach relies on a recent Magnus-type
representation formula of the state, a new Hall basis of the free Lie algebra over two generators
and an appropriate use of Sussmann’s infinite product to compute the Magnus expansion.

First, we recover the necessary conditions, due to Sussmann [19] and Stefani [18], concern-
ing the strongest obstruction at each even order of the control. We also recover our classifi-
cation of quadratic obstructions of [3], involving the regularity of the control, and Kawski’s
tight necessary condition of [11] concerning the second quadratic drift.

Then, we prove and generalize a conjecture of 1986 due to Kawski [10] on a new family
of loose necessary conditions, linked with quadratic drifts. In the particular case of the third
quadratic drift, we state and prove a tight necessary condition, which is new.

Eventually, as a further illustration of the approach, we derive an entirely new obstruction,
linked with a bracket of the sixth order with respect to the control and for which the functional
measuring the amplitude of the drift is not directly a Sobolev norm of the control.
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1 Introduction

1.1 Scalar-input control-affine systems

In this article, we consider an affine control system

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) (1.1)

where the state x(t) lives in Rd (d ≥ 1), the control is a scalar input u(t) ∈ R, f0 and f1 are vector
fields on Rd, real analytic on a neighborhood of 0, such that f0(0) = 0. These assumptions are
valid for the whole article and will not be recalled in the statements. Nevertheless, the analyticity
assumption can be removed, and all our results hold assuming only finite regularity on the vector
fields, as we prove in Section 10.

For each t > 0 and u ∈ L1((0, t);R), there exists a unique maximal mild solution to (1.1) with
initial data 0, which we will denote by x(·;u). We will consider either small enough controls or
small enough times so that this solution is defined up to time t.

1.2 Definitions of small-time local controllability

In this article, we study the small-time local controllability of system (1.1) in the sense of Defini-
tion 1.1 below, which requires the following notions.

For t > 0 and m ∈ N, we consider the usual Sobolev space Wm,∞(0, t) equipped with the
usual norm ‖u‖Wm,∞ := ‖u‖L∞ + · · ·+ ‖u(m)‖L∞ . For j ∈ N, we define by induction the iterated

primitives of u, denoted uj : (0, t)→ R and defined by: u0 := u and uj+1(t) =
∫ t
0
uj . We let

‖u‖W−1,∞ := ‖u1‖L∞ . (1.2)

For scalar-input systems such as (1.1), the W−1,∞ norm of the control is important because it is
an accurate measure of the size of the state (see Lemma 4.3 and [3, Lemma 20]).

Definition 1.1 (Wm,∞-STLC). Let m ∈ J−1,∞J. We say that system (1.1) is Wm,∞-STLC
when, for every t, ρ > 0, there exists δ = δ(t, ρ) > 0 such that, for every x? ∈ B(0, δ), there exists
u ∈Wm,∞(0, t) with ‖u‖Wm,∞ ≤ ρ, such that x(t;u) = x?.

Any positive answer to the STLC problem may be thought of as a nonlinear local open mapping
theorem, which underlines the deepness and intricacy of this problem, when the inverse mapping
theorem (or linear test, see [6, Section 3.1]) cannot be used.

The STLC notions used in the literature usually correspond to what we refer to as L∞-STLC
(i.e. m = 0 in Definition 1.1 above), where controls have to be arbitrarily small in L∞ norm (see
e.g. [6, Definition 3.2]]). Sometimes (see [18, 19]) authors investigate the ρ-bounded-STLC: ρ > 0
is fixed and system (1.1) is ρ-bounded-STLC if, for every t > 0, there exists δ > 0 such that, for
every x? ∈ B(0, δ), there exists u ∈ L∞(0, t) with ‖u‖L∞ ≤ ρ such that x(t;u) = x?.

For any m ∈ N∗, ρ > 0 and t ∈ (0, 1), ‖u‖W−1,∞ ≤ t‖u‖L∞ ≤ ‖u‖Wm,∞ thus

(Wm,∞-STLC)⇒ (L∞-STLC)⇒ (ρ-bounded-STLC)⇒ (W−1,∞-STLC), (1.3)

where any reciprocal implication is false. See also [4] for a recent comparison of various control-
lability definitions. The interest of the W−1,∞-STLC is that it is equivalent to the small-state
small-time local controllability for scalar-input systems (see [3, Section 8.2]).

In the excellent survey [14], Kawski recalls the known necessary conditions (see Theorems 3.1,
3.4 and 3.5 therein) and sufficient conditions (see Theorems 3.6 ad 3.7 therein) for L∞-STLC.
Then, he explains, on clever examples, the obstacles a more complete theory has to overcome.
Kawski’s survey is at the root of the present article: our main results are generalizations to any
systems, of its observations on particular examples which will be recalled and discussed later in
the present article (see Sections 6.1, 7.1, 8.1 and 9.1).
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1.3 Algebraic notations and Lie brackets

The STLC is closely related to the evaluations at 0 of the iterated Lie brackets of the vector fields
f0 and f1. We therefore introduce the following definitions and notations.

Let X := {X0, X1} be a set of two non commutative indeterminates.

Definition 1.2 (Free algebra). We consider A(X) the free algebra generated by X over the field
R, i.e. the unital associative algebra of polynomials of the indeterminates X0 and X1.

Definition 1.3 (Free Lie algebra). Within A(X) one can define the Lie bracket of two elements
as [a, b] := ab − ba. This operation is anti-symmetric and satisfies the Jacobi identity. Let L(X)
be the free Lie algebra generated by X over the field R, i.e. the smallest linear subspace of A(X)
containing X and stable by the Lie bracket [·, ·].

Definition 1.4 (Iterated brackets). Let Br(X) be the free magma over X, or, more visually, the set
of iterated brackets of elements of X, defined by induction: X0, X1 ∈ Br(X) and if a, b ∈ Br(X),
then the ordered pair (a, b) belongs to Br(X).

There is a natural evaluation mapping e from Br(X) to L(X) defined by induction by e(Xi) :=
Xi for i = 0, 1 and e((a, b)) := [e(a),e(b)]. Through this mapping, Br(X) spans L(X).

Definition 1.5 (Homogeneous layers within L(X)). For b ∈ Br(X), n0(b) (respectively n1(b))
denotes the number of occurrences of the indeterminate X0 (resp. X1) in b. For A1, A0 ⊂ N,
SA1

(X) and SA1,A0
(X) are the vector subspaces of L(X) defined by

SA1
(X) := span{e(b); b ∈ Br(X), n1(b) ∈ A1}, (1.4)

SA1,A0
(X) := span{e(b); b ∈ Br(X), n1(b) ∈ A1, n0(b) ∈ A0}. (1.5)

For i, j ∈ N, we write1 Si(X) and Si,j(X) instead of S{i}(X) and S{i},{j}(X).

Definition 1.6 (Bracket integration b0ν). For b ∈ Br(X) and ν ∈ N, we use the unconventional
short-hand b0ν to denote the right-iterated bracket (· · · (b,X0), . . . , X0), where X0 appears ν times.

Definition 1.7 (Lie bracket of vector fields). For smooth vector fields f and g, we define

[f, g] := (Dg)f − (Df)g. (1.6)

Definition 1.8 (Evaluated Lie bracket). Let f0, f1 be C∞ vector fields on an open subset Ω of Rd.
For B ∈ L(X), we define fB := Λ(B), where Λ : L(X)→ C∞(Ω;Rd) is the unique homomorphism
of Lie algebras such that Λ(X0) = f0 and Λ(X1) = f1.

Overloading this notation, we will write fb instead of fe(b) when b ∈ Br(X). The vector field fb
is obtained by replacing the indeterminates Xi with the corresponding vector field fi in the formal
bracket b. For instance if b = (X1, (X0, X1)) then fb = [f1, [f0, f1]] and if B = α1e(b1) + · · · +
αne(bn) ∈ L(X) where b1, . . . , bn ∈ Br(X) and α1, . . . , αn ∈ R then fB = α1fb1 + · · ·+ αnfbn .

Eventually, for a subset N of Br(X) we use the notation

N (f)(0) := span{fb(0); b ∈ N} ⊂ Rd. (1.7)

All the known necessary conditions for STLC are stated in the following way. One focuses on
a “bad” bracket b ∈ Br(X) and one identifies a subset N of Br(X) containing all the brackets
susceptible to neutralize b. Then the necessary condition for STLC is fb(0) ∈ N (f)(0).

This is linked with Krener’s fundamental result [15, Theorem 1], which states that, if two
control systems of the form (1.1) have linearly isomorphic brackets evaluated at 0, then they are
diffeomorphic. Thus the entire information about STLC is contained in the subset of Rd made of
the evaluations at 0 of the Lie brackets of the vector fields f0 and f1.

1This choice is different from the usual choice in control theory where, for example, other authors most often
write Si(X) to denote what we refer to here as SJ1,iK(X).
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1.4 A new basis of the free Lie algebra

In this article, we construct a new basis of the free Lie algebra L(X), which is of the form e(B?),
where B? is a Hall set of Br(X) (see Definition 2.5). All our results are expressed within this basis.

The first elements of B? are given explicitly in the following statement. The main interest of B?
is the particular form of the associated coordinates of the second kind, which appear to be very
well suited for control results and functional analysis (see Section 3.3).

The basis B? answers, in some sense, the first open problem of [13]: “construct a basis for the
free Lie algebra such that the corresponding coordinates of the first kind have simple formulas” (see
also Remark 3.7 for more details).

Proposition 1.9. The first X1-homogeneous layers B?k := {b ∈ B?;n1(b) = k} of our basis B? are
given by

B?1 = {Mν}, (1.8)

B?2 = {Wj,ν}, (1.9)

B?3 = {Pj,k,ν ; j ≤ k}, (1.10)

B?4 = {Qj,k,l,ν ; j ≤ k ≤ l} ∪ {Q]j,µ,k,ν ; j < k} ∪ {Q[j,µ,ν}, (1.11)

B?5 = {Rj,k,l,m,ν ; j ≤ k ≤ l ≤ m} ∪ {R]j,k,l,µ,ν ; j ≤ k}, (1.12)

where, implicitly, j, k, l,m ∈ N∗, µ, ν ∈ N and we define successively

Mν := X10ν , (1.13)

Wj,ν := (Mj−1,Mj)0
ν , (1.14)

Pj,k,ν := (Mk−1,Wj,0)0ν , (1.15)

Qj,k,l,ν := (Ml−1, Pj,k,0)0ν , Q]j,µ,k,ν := (Wj,µ,Wk)0ν , Q[j,µ,ν := (Wj,µ,Wj,µ+1)0ν , (1.16)

Rj,k,l,m,ν := (Mm−1, Qj,k,l,0)0ν , R]j,k,l,µ,ν := (Wl,µ, Pj,k,0)0ν . (1.17)

To lighten the notations, Wk, Pj,k and Qj,k,l will denote Wk,0, Pj,k,0 and Qj,k,l,0.

1.5 Main results: old and new necessary conditions

First, we recover the necessary conditions for STLC, due to Sussmann [19, Proposition 6.3] (for
k = 1) and Stefani [18, Theorem 1] (for k > 1), concerning the strongest obstruction at each even
order of the control, which were historically derived for the weaker ρ-bounded-STLC notion (recall
the chain (1.3)).

Theorem 1.10. If system (1.1) is W−1,∞-STLC (or, equivalently, small-state-STLC), then

∀k ∈ N∗, ad2k
f1 (f0)(0) ∈ SJ1,2k−1K(f)(0). (1.18)

Then we prove the following statement, that contains necessary condition for controllability on
all the quadratic Lie brackets Wk for k ∈ N∗.

Theorem 1.11. Let m ∈ N∗. If system (1.1) is Wm,∞-STLC, then

∀k ∈ N∗, fWk
(0) ∈ SJ1,π(k,m)K\{2}(f)(0) (1.19)

where

π(k,m) := max

{
2,

⌈
2k +m− 1

m+ 1

⌉}
. (1.20)

As particular cases, this result contains necessary conditions on Wk for
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� W 2k−3,∞-STLC: fWk
(0) ∈ S1(f)(0), which is already proved in [3, Theorem 3],

� L∞-STLC: fWk
(0) ∈ SJ1,2k−1K\{2}(f)(0), which was conjectured in 1986 in [10, p. 63],

� Wm,∞-STLC with 1 ≤ m ≤ 2k − 4, which is a new result.

Moreover, it would be natural to expect that Theorem 1.11 holds for m = −1 with π(k,−1) := +∞.
We discuss this topic in Section 6.8.

For k ∈ {2, 3}, a careful analysis allows to refine the necessary condition of Theorem 1.11. In
particular, in the case m = 0, we prove the following results.

Theorem 1.12. If system (1.1) is L∞-STLC, then fWj (0) ∈ Nj(f)(0) for j = 1, 2, 3, where

N1 := B?1 , (1.21)

N2 := N1 ∪ {P1,1,ν ; ν ∈ N}, (1.22)

N3 := N2 ∪ {P1,l,ν , Q1,1,1,ν , Q1,1,2,ν , Q
[
1,µ,ν , R1,1,1,1,ν , R

]
1,1,1,µ,ν ; l ∈ N∗, µ, ν ∈ N}. (1.23)

The statement concerning W2 is proved by Kawski in [11, Theorem 1], using the Chen-Fliess
expansion and technical results from Stefani [18]. We propose a different strategy, that allows to
obtain similarly the condition concerning W3, which is new.

To go beyond quadratic phenomenons, we prove the following necessary condition linked with
a bracket of the sixth order with respect to the control, which is entirely new.

Theorem 1.13. If system (1.1) is L∞-STLC, then

fad2
P1,1

(X0)(0) ∈ span
{
fb(0); b ∈ B?J1,7K, b 6= ad2

P1,1
(X0)

}
. (1.24)

Eventually, we explain in Section 10 why all these results, derived for real analytic vector fields,
remain valid without change for C∞ vector fields. More strikingly, we show that assuming only
finite regularity on f0 and f1 is sufficient to preserve the conclusions, provided that one gives the
appropriate meaning to the evaluations at 0 of the considered brackets (the brackets themselves
being undefined elsewhere).

1.6 Heuristic of the unified approach for obstructions to STLC

Our theorems are of the form

Wm,∞-STLC ⇒ fb(0) ∈ N (f)(0) (1.25)

where m ∈ J−1,∞J, b ∈ B? and N is a subset of B?. Our strategy consists in proving a drift of
x(t;u), along fb(0) when

fb(0) /∈ N (f)(0) (1.26)

in the sense of Definition 1.15 below, which requires the following notion.

Definition 1.14 (Component along a vector parallel to a subspace). Let N be a vector subspace
of Rd and e ∈ Rd \N . We say that a linear form P : Rd → R is a component along e parallel to
N when there exists a supplementary G of Re⊕N in Rd such that, for every x ∈ Rd there exists
a unique (xN , xG) ∈ N ×G such that x = (Px)e+ xN + xG.
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Definition 1.15 (Drift). Let b ∈ B?, N ⊂ Br(X) and m ∈ J−1,∞K. We say that system (1.1)
has a drift along fb(0), parallel to N (f)(0), in the regime t → 0 and ‖u‖Wm,∞ → 0 when there
exists C > 0, β > 1 such that, for every ε > 0, there exists t∗ = t∗(ε) > 0 such that, for every
t ∈ (0, t∗), there exists ρ = ρ(ε, t) > 0 such that, for every u ∈Wm,∞((0, t);R) with ‖u‖Wm,∞ < ρ,

Px(t;u) ≥ (1− ε)ξb(t, u)− C|x(t;u)|β , (1.27)

where P gives a component along fb(0) parallel to N (f)(0) and (ξb)b∈B? are the coordinates of the
second type associated with B? (see Definition 2.9 and Proposition 3.6).

When ξb is a positive definite coordinate, estimate (1.27) prevents x(t;u) from reaching targets
of the form x? = −afb(0) with a > 0, because they satisfy Px? = −a < −C|x?|β , when a is small
enough. Thus estimate (1.27) falsifies Wm,∞-STLC. It also proves that the unreachable space
contains locally a half-space because β > 1.

Remark 1.16. We will use the terminology “in the regime t→ 0 and ‖u‖Wm,∞ → 0” in the sense
given in Definition 1.15. We will sometimes use the slightly different terminology “in the regime
(t, ‖u‖Wm,∞)→ 0” to mean that the smallness assumption on u does not depend on T , i.e. in the
quantification above, ρ = ρ(ε) does not depend on t.

The starting point of our strategy is an approximate representation formula, explained in
Section 4.3, that holds in the regime (t, ‖u‖W−1,∞)→ 0,

x(t;u) = ZM (t, f, u)(0) +O
(
‖u‖M+1

W−1,∞ + |x(t;u)|1+ 1
M

)
, (1.28)

where, for every M ∈ N∗, ZM (t, f, u) is an analytic vector field that belongs to SJ1,MK(f). By
applying the CBHD-formula to Sussmann’s infinite product representation formula, we obtain an
expression of ZM (T, f, u) of the form

ZM (T, f, u) =
∑

b∈B?J1,MK

ξb(t, u)fb + some cross products, (1.29)

where the functionals ξb(t, u) are the coordinates of the second type associated with B? (see Defi-
nition 2.9 and Proposition 3.6). They do not depend on f and are explicitly given by an induction
relation on B?

We consider a bracket b ∈ B? for which ξb(t, ·) is positive definite, and a subset N of B?. We
assume (1.26) which allows to consider P : Rd → R, a component along fb(0) parallel to N (f)(0).
Then, for every M ∈ N∗,

Px(t;u) = ξb(t, u) +
∑

b∈B?J1,MK\(N∪{b})

ξb(t, u)Pfb(0) + P(cross products)

+O
(
‖u‖M+1

W−1,∞ + |x(t;u)|1+ 1
M

)
.

(1.30)

Now, we work in the regime (t, ‖u‖Wm,∞)→ 0 for some given m ∈ J−1,∞J:

1. we choose M such that ‖u‖M+1
W−1,∞ = o(ξb(t, u)) in the regime (t, ‖u‖Wm,∞)→ 0,

2. we choose N as the set of b ∈ B? \ {b} such that ξb 6= o(ξb) in the regime (t, ‖u‖Wm,∞)→ 0,

3. we prove bounds on the cross products, of the form: cross products = o(ξb(t, u) + |x(t;u)|)

and we conclude that
Px(t;u) = ξb(t, u) + o (|x(t;u)|+ ξb(t, u)) . (1.31)
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In the above method, all three steps rely on various interpolation inequalities.
The third step is the hardest, and is not guaranteed to work systematically. To bound the

cross products, we first prove that the assumption (1.26) implies vectorial relations among other
elements fb(0) for b ∈ B?. Then, we prove that these vectorial relations entail what we call “closed-
loop estimates”, i.e. that some coordinates ξb(t, u) for some particular b ∈ B? involved in the cross
products can be estimated from |x(t;u)| and higher-order terms involving the control. This is a
key argument of the method.

1.7 Structure of the article

First, in Section 2, we recall the fundamental notion of formal differential equations set in the
algebra of formal series over X, which allows to model control systems of the form (1.1) in a way
which is independent of f0 and f1. We give two important expansions of its solutions: Sussmann’s
infinite product based on coordinates of the second kind within a Hall basis, and our Magnus in
the interaction picture expansion. We explain how coordinates of the second kind can be used to
compute coefficients of the Magnus-type formula.

In Section 3, we introduce a new Hall set B? over {X0, X1} which yields a Hall basis of L(X)
particularly well adapted to control problems, and provide explicit expressions and estimates of
these up to the fifth order in the control.

In Section 4, we explain how the formal results of Section 2 translate to system (1.1) driven by
analytic vector fields. We state key propositions which will be used as black-boxes in the proofs of
the main obstruction results.

We then turn to the proof of the main obstruction results. Each necessary condition for con-
trollability stated in the introduction is derived as a consequence of a more precise drift statement.

In Section 5, we prove Theorem 1.10.
In Section 6, we prove Theorem 1.11.
In Section 7, we prove Theorem 1.12 for the case j = 2.
In Section 8, we prove Theorem 1.12 for the case j = 3.
In Section 9, we prove Theorem 1.13.

Eventually, Section 10 removes the analyticity assumption used throughout the paper.

2 Tools from formal power series

In Section 2.1, we introduce the formal differential equation (2.1) whose solution x(t), is a formal
power series.

In Section 2.2, we recall the well-known notions of Hall sets and Hall bases, which yield bases
of L(X), with which one can express the solutions to (2.1).

In Section 2.3, we present an expansion due to Sussmann for the formal power series x(t) as
an (infinite) product of exponentials of the members of a Hall basis, multiplied by coefficients that
have simple expressions as iterated integrals, called coordinates of the second kind.

In Section 2.4, we recall a Magnus-type formula for the solution x(t), called “Magnus expan-
sion in the interaction picture”. It expresses the formal power series x(t) as the product of the

exponential of tX0 with the exponential of a formal Lie series Z∞(t,X, u) ∈ L̂(X). This formal
Lie series Z∞(t,X, u) can be expanded on any basis of the free Lie algebra L(X); the associated
coordinates are called coordinates of the pseudo first kind. We give an expression of Z∞(t,X, u) in
terms of coordinates of the second kind associated with a Hall set.
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2.1 The formal differential equation

Fundamental in this project is the use of the formal differential equation{
ẋ(t) = x(t)(X0 + u(t)X1),

x(0) = 1.
(2.1)

The goal of this section is to define its solutions. This requires the following notions.

Definition 2.1 (Graded algebra). The free associative algebra A(X) (see Definition 1.2) can be
seen as a graded algebra:

A(X) = ⊕
n∈N
An(X), (2.2)

where An(X) is the finite-dimensional R-vector space spanned by monomials of degree n over X.
In particular A0(X) = R and A1(X) = spanR(X).

Definition 2.2 (Formal series). We consider the (unital associative) algebra Â(X) of formal series

generated by A(X). An element a ∈ Â(X) is a sequence a = (an)n∈N written a =
∑
n∈N an, where

an ∈ An(X) with, in particular, a0 ∈ R being its constant term.

We also define the Lie algebra of formal Lie series L̂(X) as the Lie algebra of formal power

series a ∈ Â(X) for which an ∈ L(X) for each n ∈ N.

Within the realm of formal series, one can define the operators exp and log. For instance, for

a ∈ Â(X) with a0 = 0, exp(a) :=
∑∞
k=0

ak

k! is a well-defined formal series.

The equation (2.1) is set on Â(X), driven by X0 + uX1 where t > 0 and u ∈ L1((0, t);R) and
associated with the initial data 1 ∈ A0(X). Its solutions are defined in the following way.

Definition 2.3 (Solution to a formal ODE). Let t > 0 and u ∈ L1((0, t);R). The solution to

the formal ODE (2.1) is the formal-series valued function x : [0, t] → Â(X), whose homogeneous
components xn : R+ → An(X) are the unique continuous functions that satisfy, for every s ≥ 0,
x0(s) = 1 and, for every n ∈ N∗,

xn(s) =

∫ s

0

xn−1(s′)(X0 + u(s′)X1) ds′. (2.3)

2.2 Hall sets and bases

We recall the notion of Hall sets and Hall bases. For more details on theses bases of L(X), we
refer to [5], [17, Chapter 4] or [21, Chapter 1].

Definition 2.4 (Length, left and right factors). For b ∈ Br(X), |b| denotes the length of b. If
|b| > 1, b can be written in a unique way as b = (b1, b2), with b1, b2 ∈ Br(X). We use the notations
λ(b) = b1 and µ(b) = b2, which define maps λ, µ : Br(X) \X → Br(X).

Definition 2.5 (Hall set). A Hall set is a subset B of Br(X), totally ordered by a relation < and
such that

� X ⊂ B,

� for b = (b1, b2) ∈ Br(X), b ∈ B iff b1, b2 ∈ B, b1 < b2 and either b2 ∈ X or λ(b2) ≤ b1,

� for every b1, b2 ∈ B such that (b1, b2) ∈ B, one has b1 < (b1, b2).

The main interest of Hall sets is that their images by e yield algebraic bases of L(X), called
Hall bases, as proved in [21, Corollary 1.1, Proposition 1.1 and Theorem 1.1].
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Theorem 2.6 (Viennot). Let B ⊂ Br(X) be a Hall set. Then e(B) is a basis of L(X).

Remark 2.7. Historically, Hall sets where introduced by Marshall Hall in [8], based on ideas of
Philip Hall in [9]. In his historical narrower definition, the third condition in Definition 2.5 was
replaced by the stronger condition: for every b1, b2 ∈ B, b1 < b2 ⇒ |b1| ≤ |b2|.

Two famous families of Hall sets are the Chen-Fox-Lyndon ones (see [21, p. 15-16]) whose
order stems from the lexicographic order on words and the historical length-compatible Hall sets,
for which b1 < b2 ⇒ |b1| ≤ |b2|. Other examples, such as the Spitzer-Foata basis are studied in [2]
and [21, Chapter 1].

Definition 2.8 (Support). Let B be a Hall set of Br(X) and a ∈ L(X). For b ∈ B, we denote by
〈a, b〉B the coefficient along e(b) in the decomposition of a on the basis e(B). We define

suppB(a) := {b ∈ B; 〈a, b〉B 6= 0} . (2.4)

If A ⊂ L(X), we denote by suppB(A) := ∪a∈A suppB(a). We drop the subscripts B when there is
no possible confusion on which basis is used.

2.3 Sussmann’s infinite product

In this section, we present an expansion for the formal power series x(t) solution to (2.1) as a
product of exponentials of the members of a Hall set, multiplied by coefficients that have simple
expressions as iterated integrals, called coordinates of the second kind. This infinite product is an
extension to all Hall bases of Sussmann’s infinite product on length-compatible Hall bases [20],
suggested in [12] also proved in [1, Section 2.5].

Definition 2.9. Let B ⊂ Br(X) be a Hall set. The coordinates of the second kind associated
with B is the unique family (ξb)b∈B of functionals R+ × L1

loc(R+;R) → R defined by induction in
the following way: for every t > 0 and u ∈ L1((0, t);R)

� ξX0(t, u) := t and ξX1(t, u) :=
∫ t
0
u = u1(t),

� for b ∈ B \X, there exists a unique couple (b1, b2) of elements of B such that b1 < b2 and a
unique maximal integer m ∈ N∗ such that b = admb1(b2) and then

ξb(t, u) :=
1

m!

∫ t

0

ξmb1(s, u)ξ̇b2(s, u) ds. (2.5)

Theorem 2.10. Let B ⊂ Br(X) be a Hall set, t > 0 and u ∈ L1((0, t);R). The solution to the
formal differential equation (2.1) satisfies,

x(t) =
←−∏
b∈B

eξb(t,u)e(b). (2.6)

Remark 2.11. In (2.6), the right-hand side is an infinite oriented product, indexed by elements
of B which are increasing towards the left (see [1, Section 2.5] for more precise definitions).

2.4 Magnus formula in interaction picture

The following result is proved in [1, Section 2.4].

Theorem 2.12. For t ∈ R+ and x? ∈ Â(X), the solution x to (2.1) satisfies

x(t) = x? exp(tX0) exp (Z∞(t,X, u)) (2.7)
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where Z∞(t,X, u) ∈ L̂(X). Moreover, if B ⊂ Br(X) is a Hall set, there exists a unique family
(ηb)b∈B of functionals R+ × L1

loc(R+) → R, called coordinates of the pseudo first kind associated
with B, such that, for every t > 0 and u ∈ L1((0, t);R),

Z∞(t,X, u) =
∑
b∈B

ηb(t, u)e(b), (2.8)

with, in particular, ηX0(t, u) = 0 and ηX1(t, u) = u1(t).

Since we will work with truncated version of this expansion, we also introduce, for M ∈ N∗,
the notation ZM (t,X, u) to denote the part of Z∞(t,X,U) living within A1(X) ⊕ · · · ⊕ AM (X),
so that one has

ZM (t,X, u) =
∑

n1(b)≤M

ηb(t, u)e(b). (2.9)

One of the interest of the infinite product expansion is to provide an expression of Z∞(t,X, u)
and its coordinates of the pseudo-first kind in terms of the coordinates of the second kind.

Proposition 2.13. There exists a family of elements Fq,h(Y1, . . . , Yq) ∈ L({Y1, . . . , Yq}) for q ∈ N∗
and h ∈ (N∗)q, such that, Fq,h(Y1, . . . , Yq) is of homogeneity hi with respect to Yi for each i ∈ J1, qK
and, for every Hall set B ⊂ Br(X) with X0 as maximal element, t > 0 and u ∈ L1((0, t);R),

Z∞(t,X, u) =
∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B\{X0}

ξh1

b1
(t, u) . . . ξ

hq
bq

(t, u)Fq,h(b1, . . . , bq). (2.10)

Equivalently, for every b ∈ B, one has

ηb(t, u) = ξb(t, u) +
∑

q≥2,h∈(N∗)q
b1>···>bq∈B\{X0}

ξh1

b1
(t, u) . . . ξ

hq
bq

(t, u)〈Fq,h(b1, . . . , bq), b〉, (2.11)

where, for a ∈ L(X), 〈a, b〉 denotes the coefficient on b within the decomposition of a on B.

Proof. We deduce from Theorems 2.10 and 2.12 and the maximality of X0 that

eZ∞(t,X,u) =
←−∏

b∈B\{X0}

eξb(t,u)e(b). (2.12)

Then (2.10) and (2.11) follow from the multivariate CBHD formula [1, Proposition 2.34]. Techni-
cally, this proposition is stated for finite products. Nevertheless, one can use the graded structure
of Â(X) to reduce the proof to this finite setting.

Remark 2.14. The elements Fq,h are deeply linked with the CBHD formula and can be itera-
tively computed from its usual two-variables coefficients. At the first orders, one has for example
F1,(1)(Y1) = Y1 and F2,(1,1)(Y1, Y2) = 1

2 [Y1, Y2].

Equality (2.11) leads to the idea that, in some sense, at “leading order”, one has ηb ≈ ξb,
provided that one can estimate the appropriate cross products of the right-hand side.

Definition 2.15 (Trees). Given q ≥ 2 and b1, . . . , bq ∈ Br(X), we define F(b1, . . . , bq) as the
vector subspace of L(X) spanned by Lie brackets of b1, . . . , bq involving each of these elements
exactly once. For example

F(b1, b2) = R[b1, b2], (2.13)

F(b1, b2, b3) = R[b1, [b2, b3]] + R[[b1, b2], b3]. (2.14)
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Proposition 2.16. Let B be a Hall set with X0 maximal. Let b ∈ B. There exits C > 0 such that
the following property holds. Assume that there exists Ξ : R∗+ × L1

loc(R+) → R+ such that, for all
q ≥ 2, b1 ≥ · · · ≥ bq ∈ B such that b ∈ suppF(b1, . . . , bq), for every u ∈ L1

loc(R+) and t > 0,

|ξb1(t, u) · · · ξbq (t, u)| ≤ Ξ(t, u). (2.15)

Then, for every u ∈ L1
loc(R+) and t > 0,

|ηb(t, u)− ξb(t, u)| ≤ CΞ(t, u). (2.16)

Proof. This is a straightforward consequence of (2.11) and the fact that the sum in the right-
hand side of this equality is finite. Indeed, 〈Fq,h(b1, . . . , bq), b〉 6= 0 implies in particular that
h1|b1|+ · · ·+ hq|bq| = |b|, so there is a finite number of possibilities for q, h and the bi.

3 A new Hall basis of the free Lie algebra

In this section, we define our new basis of the free Lie algebra over two generators {X0, X1},
designed for applications to control theory, and compute some of its elements.

Section 3.1 introduces our definition of a new Hall set, which we call B? and motivates its
interest for control problems. Section 3.2 gives an exhaustive description of the elements of B?
involving X1 at most 5 times. Section 3.3 computes the associated coordinates of the second kind,
while Section 3.4 provides estimates of these coordinates.

3.1 Definition of B? and first properties

The main result of this paragraph is Theorem 3.3 which states the existence and uniqueness of our
basis B?. We start by introducing some notations and definitions which will make the presentation
more meaningful.

First, we define by induction a subset G of Br(X) be requiring that, X0, X1 ∈ G and, for every
a, b ∈ G with a 6= X0, (a, b) ∈ G. Heuristically, G is the subset of b ∈ Br(X) for which X0 is never
the left factor of any sub-bracket within b. This leads to the following result.

Definition 3.1 (Germ). For any b ∈ G \ {X0}, there exists a unique couple (b∗, νb) ∈ G×N such
that b = b∗0νb , with b∗ = X1 or b∗ = (b1, b2) with b1 6= X0 and b2 6= X0. We call b∗ the germ of b
and we say that b is a germ when b = b∗ (i.e. νb = 0). Let G∗ be the subset of G made of germs.

Definition 3.2 (Order for B?). We endow G with the following total order.

(B0) X0 is the maximal element.

(B1) for a, b ∈ G \ {X0}, a < b if and only if a∗ < b∗ or a∗ = b∗ and νa < νb.

(B2) for a∗, b∗ ∈ G∗, a∗ < b∗ if and only if

� either n1(a∗) < n1(b∗),

� or n1(a∗) = n1(b∗) and λ(a∗) < λ(b∗),

� or n1(a∗) = n1(b∗) and λ(a∗) = λ(b∗) and µ(a∗) < µ(b∗).

In other words, X1 is minimal, X0 is maximal and, on G \ X, the order is the lexicographic
order on the quadruple b 7→ (n1(b∗), λ(b∗), µ(b∗), νb).

Theorem 3.3. There exists a unique Hall set B? ⊂ G ⊂ Br(X) associated with Definition 3.2.
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Proof. By [2, Section 1.4.2], it suffices to check that < is Hall order on G, i.e. a total order such
that, for every (a, b) ∈ G \X, a ∈ G and a < (a, b).

Step 1: We prove that, for every a, b ∈ G, if neither a < b nor b < a holds, then a = b. By
contradiction, let a and b be a pair, of minimal total length |a|+ |b|, such that a 6= b, and neither
a < b nor b < a. By (B0), a 6= X0 and b 6= X0. By (B1), a∗ 6= b∗ (otherwise νa = νb so a = b). By
(B2), n1(a∗) = n1(b∗) and,

� either λ(a∗) 6= λ(b∗), and these two brackets are an incomparable pair of shorter total length,

� or λ(a∗) = λ(b∗), but then µ(a∗) 6= µ(b∗) is an incomparable pair of shorter total length.

Step 2: We prove that, for every (a, b) ∈ G \X, a ∈ G and a < (a, b). Let (a, b) ∈ G \X. Then
a ∈ G by construction of G by induction. If b = X0 then a < (a, b) by (B1). If b 6= X0, then
n1(a) < n1((a, b)) so a < (a, b) by (B2).

Remark 3.4. In B?, X0 is maximal. This is similar to the fact that X0 would be maximal in the
Chen-Fox-Lyndon basis associated with the order X1 < X0 on X. So B? shares some properties of
this basis (for example, the fact that b ∈ B? ⇒ ∀ν ∈ N, b0ν ∈ B?.

If b ∈ B? is a germ, then, by (B2), µ(b) < b, because n1(µ(b)) < n1(b). This is similar to
the situation in length-compatible Hall sets where one always has µ(b) < b because |µ(b)| < |b|. In
the Chen-Fox-Lyndon basis however, one has b < µ(b). So B? shares some properties of length-
compatible Hall sets.

By analogy with (1.4) and (1.5), for A1, A0 ⊂ N, we will also adopt the notations

B?A1
:= {b ∈ B?;n1(b) ∈ A1} and B?A1,A0

:= {b ∈ B?;n1(b) ∈ A1, n0(b) ∈ A0}. (3.1)

3.2 Elements of B? up to the fifth order

The goal of this section is to prove Proposition 1.9, i.e. to determine the germs of B?J1,5K. If b∗ is

such a germ, then, by Definition 2.5, for every ν ∈ N, b∗0ν ∈ B? and, by (B1), for every ν1 < ν2 ∈ N
then b∗0ν1 < b∗0ν2 .

Proof of Proposition 1.9. X1 is the only possible germ in B?1 , which proves (1.8). Moreover, the
sequence (Mν)ν∈N is increasing

∀ν ≤ ν′, Mν ≤Mν′ . (3.2)

By Definition 2.5, any germ of B?J2,5K is of the form (a, b) where a, b ∈ B?J1,4K, and λ(b) ≤ a < b.

By (B1), this implies that either a∗ = b∗ and then b = (a,X0) so (a, b) = ad2
a(X0), or a∗ < b∗ and

then b = b∗ and n1(a) ≤ n1(b). We proceed by increasing homogeneity in X1.

� Germs of B?2: By Definition 2.5, for every j ∈ N∗, Wj,0 belongs to B?. Indeed Wj,0 =
adM2

j−1
(X0) and Mj−1 < X0 by (B0). These are the only elements of B?2 that one may

construct by bracketing two elements of B?1 . Moreover, by (B2), Wj,0 < Wk,0 when j < k,
thus, by (B1),

∀j < k ∈ N∗,∀µ ∈ N, Wj,µ < Wk,0. (3.3)

� Germs of B?3: By Definition 2.5, for j ≤ k ∈ N∗,

Pj,k,0 = (Mk−1,Wj,0) = (Mk−1, (Mj−1,Mj)) (3.4)

belongs to B?. Indeed, Mj−1 ≤ Mk−1 < Wj,0 by (3.2) and (B2) because n1(Mk−1) <
n1(Wj,0). These are the only elements of B?3 that one may construct by bracketing an
element of B?1 with an element of B?2 .
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� Germs of B?4 in (B?1 ,B?3): By Definition 2.5, for j ≤ k ≤ l ∈ N∗,

Qj,k,l,0 = (Ml−1, Pj,k,0) = (Ml−1, (Mk−1,Wj,0)) (3.5)

belongs to B? because Wj,µ < X0 by (B0). These are the only elements of B?4 that one may
construct by bracketing an element of B?1 with an element of B?3 .

� Germs of B?4 in (B?2 ,B?2): By Definition 2.5, for j < k ∈ N∗ and µ ∈ N,

Q]j,µ,k,0 = (Wj,µ,Wk,0) = (Wj,ν , (Mk−1,Mk)) (3.6)

belongs to B?. Indeed, Mk−1 < Wj,µ < Wk,0 by (B2) and (3.3). These are the only elements
of B?4 that one may construct by bracketing two elements of B?2 having different germs.

For j ∈ N∗ and µ ∈ N,
Q[j,µ,0 = (Wj,µ,Wj,µ+1) = ad2

Wj,µ
(X0) (3.7)

belongs to B?. Indeed, by (B0), Wj,µ < X0. These are the only elements of B?4 that one may
construct by bracketing two elements of B?2 having the same germ.

� Germs of B?5 in (B?1 ,B?4): By Definition 2.5, for j ≤ k ≤ l ≤ m ∈ N∗,

Rj,k,l,m,0 = (Mm−1, Qj,k,l,0) = (Mm−1, (Ml−1, Pj,k,0)) (3.8)

belongs to B?. Indeed, Ml−1 ≤ Mm−1 < Qj,k,l,0 by (3.2) and (B2). These are the only
elements of B?5 that one may construct by bracketing an element of B?1 with an element
of B?4 .

� Germs of B?5 in (B?2 ,B?3): By Definition 2.5, for j, k, l ∈ N∗ such that j ≤ k and µ ∈ N,

R]j,k,l,µ,0 = (Wl,µ, Pj,k,0) = (Wl,µ, (Mk−1,Wj)) (3.9)

belongs to B?. Indeed, Mk−1 < Wl,µ < Pj,k,0 by (B2). These are the only elements of B?5
one may construct by bracketing an element of B?2 with an element of B?3 .

This concludes the proof.

3.3 Expressions of coordinates of the second kind up to the fifth order

In this paragraph, we give explicit expressions of the coordinates of the second kind, as defined in
Definition 2.9 associated with the elements of B? up to the fifth order in the control introduced in
Section 3.2. We start with the following lemma, which helps in visualizing the coordinates of the
second kind associated with the elements of B?J1,5K listed in Proposition 1.9.

Lemma 3.5. For b ∈ B? and ν ∈ N∗,

ξb0ν (t, u) =

∫ t

0

(t− s)ν

ν!
ξb(s, u) ds. (3.10)

Proof. This follows from Definition 2.9, the fact that B? satisfies (B0), and an induction argument
on ν ∈ N.
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Proposition 3.6. For every j ≤ k ≤ l ≤ m ∈ N∗, µ, ν ∈ N, we have

ξMν
(t, u) =

∫ t

0

(t− s)ν

ν!
u1(s) ds = uν+1(t), (3.11)

ξWj,ν
(t, u) =

1

2

∫ t

0

(t− s)ν

ν!
u2j (s) ds, (3.12)

ξPj,k,ν (t, u) = αj,k

∫ t

0

(t− s)ν

ν!
uk(s)u2j (s) ds, (3.13)

ξQj,k,l,ν (t, u) = βj,k,l

∫ t

0

(t− s)ν

ν!
ul(s)uk(s)u2j (s) ds, (3.14)

ξQ[j,µ,ν (t, u) =
1

8

∫ t

0

(t− s)ν

ν!

(∫ s

0

(s− s′)µ

µ!
u2j (s

′) ds′
)2

ds, (3.15)

ξQ]j,µ,k,ν
(t, u) =

1

4

∫ t

0

(t− s)ν

ν!

(∫ s

0

(s− s′)µ

µ!
u2j (s

′) ds′
)
u2k(s) ds, (3.16)

ξRj,k,l,m,ν (t, u) = γj,k,l,m

∫ t

0

(t− s)ν

ν!
um(s)ul(s)uk(s)u2j (s) ds, (3.17)

ξR]j,k,l,µ,ν
(t, u) =

αj,k
2

∫ t

0

(t− s)ν

ν!

(∫ s

0

(s− s′)µ

µ!
u2l (s

′) ds′
)
uk(s)uj(s)

2 ds, (3.18)

where j < k in (3.16) (only), and the coefficients are given by

αj,k =
1

2!
δj<k +

1

3!
δj=k, (3.19)

βj,k,l = αj,kδk<l +
1

(2!)2
δj<k=l +

1

4!
δj=k=l, (3.20)

γj,k,l,m = βj,k,lδl<m +
1

5!
δj=k=l=m +

1

(2!)2
δj<k<l=m +

1

2!3!
(δj<k=l=m + δj=k<l=m). (3.21)

Proof. All these equalities follow directly from the application of Definition 2.9 to the elements of
Proposition 1.9.

Remark 3.7. These simple explicit expressions of the coordinates of the second kind associated
with B?, together with formula (2.10), prove that we have constructed a basis of the free Lie algebra
L(X) on which Z∞(t,X, u) has, in some sense, a simple expression. This is closely related to the
first open problem of [13]: “ construct a basis for the free Lie algebra such that the corresponding
coordinates of the first kind have simple formulas”.

We observe in particular that, for every k ∈ N∗, the quadratic form ξWk
is positive: this is

a key point for Theorem 1.11. The positivity of ξQj,k,k is a key point for the quartic necessary
conditions which we intend to study in a forthcoming work. Finally, one may expect that for any
germ b ∈ B? such that ξb is a positive definite functional, a necessary condition for STLC of the
form (1.25) holds.

3.4 Estimates on the coordinates of the second kind up to the fifth order

We start with a rough estimate valid for all brackets of B? \X, which will be mainly used to prove
convergence of the considered series. This statement follows from [1, Lemma 7.13] and is thus valid
within any Hall set such that X1 < X0. For self-containedness, we give a direct proof in the case
of B? in Appendix A.1.
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Proposition 3.8. For every k ∈ N∗, there exists c = c(k) > 0 such that, for every b ∈ B? \ {X1}
with n1(b) = k, t > 0 and u ∈ L1((0, t);R),

|ξb(t, u)| ≤ (ct)|b|

|b|!
t−(1+k)‖u1‖kLk . (3.22)

To prove our obstruction results, we need more accurate estimates on the coordinates of the
second type associated with B?J1,5K, in terms of Sobolev norms of primitives of the control. This is
the goal the following statement, proved in Appendix A.2

Proposition 3.9. The following bounds hold.

1. Let p ∈ [1,∞] and j0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, t > 0 and
u ∈ L1((0, t);R), ` := |Mj | ≥ j0 + 1 and

|ξMj
(t, u)| ≤ (ct)`

`!
t−(j0+1)t1−

1
p ‖uj0‖Lp . (3.23)

2. Let p ∈ [1,∞] and j0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, ν ≥ 0, t > 0 and
u ∈ L1((0, t);R), ` := |Wj | ≥ 2j0 + 1 and

|ξWj,ν
(t, u)| ≤ (ct)`

`!
t−(2j0+1)t1−

1
p ‖uj0‖2L2p . (3.24)

3. Let p1, p2 ∈ [1,∞] such that 1
p1

+ 1
p2
≤ 1 and j0, k0 ∈ N∗. There exists c > 0 such that, for

every j ≥ j0, k ≥ k0 with j ≤ k, ν ≥ 0, t > 0 and u ∈ L1((0, t);R), ` := |Pj,k,ν | ≥ 2j0+k0+1
and

|ξPj,k,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+1)t1−

1
p1
− 1
p2 ‖uj0‖2L2p1 ‖uk0‖Lp2 . (3.25)

4. Let p1, p2, p3 ∈ [1,∞] such that 1
p1

+ 1
p2

+ 1
p3
≤ 1 and j0, k0, l0 ∈ N∗. There exists c > 0 such

that, for every j ≥ j0, k ≥ k0, l ≥ l0 with j ≤ k ≤ l, ν ≥ 0, t > 0 and u ∈ L1((0, t);R),
` := |Qj,k,l,ν | ≥ 2j0 + k0 + l0 + 1 and

|ξQj,k,l,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+l0+1)t1−

1
p1
− 1
p2
− 1
p3 ‖uj0‖2L2p1‖uk0‖Lp2 ‖ul0‖Lp3 . (3.26)

5. Let p ∈ [1,∞] and j0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, µ, ν ∈ N, t > 0
and u ∈ L1((0, t);R), ` := |Q[j,µ,ν | ≥ 4j0 + 3 and

|ξQ[j,µ,ν (t, u)| ≤ (ct)`

`!
t−(4j0+3)t3−

2
p ‖uj0‖4L2p . (3.27)

6. Let p1, p2 ∈ [1,∞] and j0, k0 ∈ N∗. There exists c > 0 such that, for every j ≥ j0, k ≥ k0,

with j < k, µ, ν ≥ 0, t > 0 and u ∈ L1((0, t);R), ` := |Q]j,µ,k,ν | ≥ 2j0 + 2k0 + 2 and

|ξQ]j,µ,k,ν (t, u)| ≤ (ct)`

`!
t−(2j0+2k0+2)t2−

1
p1
− 1
p2 ‖uj0‖2L2p1‖uk0‖2L2p2 . (3.28)

7. Let p1, p2, p3, p4 ∈ [1,∞] such that 1
p1

+ 1
p2

+ 1
p3

+ 1
p4
≤ 1 and j0, k0, l0,m0 ∈ N∗. There exists

c > 0 such that, for every j ≥ j0, k ≥ k0, l ≥ l0, m ≥ m0 with j ≤ k ≤ l ≤ m, ν ≥ 0, t > 0
and u ∈ L1((0, t);R), ` := |Rj,k,l,m,ν | ≥ 2j0 + k0 + l0 +m0 + 1 and

|ξRj,k,l,m,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+l0+m0+1)t1−

1
p1
− 1
p2
− 1
p3
− 1
p4

× ‖uj0‖2L2p1‖uk0‖Lp2 ‖ul0‖Lp3‖um0
‖Lp4 .

(3.29)
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8. Let p, p1, p2 ∈ [1,∞] such that 1
p1

+ 1
p2
≤ 1 and j0, k0, l0 ∈ N∗. There exists c > 0 such

that, for every j ≥ j0, k ≥ k0, l ≥ l0, with j ≤ k, µ, ν ≥ 0, t > 0 and u ∈ L1((0, t);R),

` := |R]j,k,l,µ,ν | ≥ 2j0 + k0 + 2l0 + 2 and

|ξR]j,k,l,µ,ν (t, u)| ≤ (ct)`

`!
t−(2j0+k0+2l0+2)t2−

1
p−

1
p1
− 1
p2 ‖uj0‖2L2p1 ‖uk0‖Lp2‖ul0‖2L2p . (3.30)

4 Toolbox for our approach to obstructions

In this section, we gather results of various nature as a toolbox for the sequel.
First, we recall elementary definitions and estimates for analytic vector fields in Section 4.1 and

introduce in Section 4.2 a notation O(·) which will be used heavily throughout the paper.
Then, we state in Section 4.3 the counterpart for system (1.1) of the formal expansion (2.7)

and give in Section 4.4 a sufficient condition to replace, in some sense, the coordinates of the
pseudo-first kind by those of the second kind in (2.8). We show nevertheless in Section 4.5 that
this simplification is not always valid.

Eventually, we recall in Section 4.6 the Gagliardo-Nirenberg interpolation inequalities, and state
straight-forward consequences of the Jacobi identity in Section 4.7.

4.1 Analytic estimates for vector fields

For a ∈ N∗ and a multi-index α = (α1, . . . , αa) ∈ Na, we use the notations |α| := α1 + · · · + αa,

∂α := ∂α
1

x1
· · · ∂αaxa and α! := α1! · · ·αa!. Then, the following estimate can be proved by iterating

2−(p+q)(p+ q)! ≤ p!q! ≤ (p+ q)! for every p, q ∈ N,

∀a ∈ N∗,∀α = (α1, . . . , αa) ∈ Na, 2−(a−1)|α||α|! ≤ α! ≤ |α|! (4.1)

Definition 4.1 (Analytic vector fields, analytic norms). Let r, δ > 0. We define Cω,r(Bδ;Rd) the
space of real-analytic vector fields, defined on an open neighborhood of the ball centered at zero of
radius δ, equipped with the norm

|||f |||r :=

b∑
i=1

∑
α∈Nd

r|α|

α!
‖∂αfi‖L∞(Bδ). (4.2)

We denote by Cω(Bδ;Rd) the union of these spaces over r > 0.

The following classical result is proved, for instance in [1, Lemma 3.16].

Lemma 4.2 (Analytic estimate). Let r, δ > 0, r′ := r/e, f0, f1 ∈ Cω,r(Bδ;Rd) and b ∈ Br(X).
Then, fb ∈ Cω,r

′
(Bδ;Rd) and

|||fb|||r′ ≤
r

9
(|b| − 1)!

(
9 |||f |||r
r

)|b|
, (4.3)

where |||f |||r := max{|||f0|||r ; |||f1|||r}.

4.2 Regime for the notation O

Given two observables A(x, u) and B(x, u) of interest, we will write that A(x, u) = O(B(x, u))
when there exists C, ρ > 0 such that, for every t ∈ (0, ρ), u ∈ L1((0, t);R) with ‖u‖W−1,∞ ≤ ρ
(recall definition (1.2)), then

|A(x(t;u), u)| ≤ CB(x(t;u), u). (4.4)
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Hence this notation refers to the regime (t, ‖u‖W−1,∞) → 0. As examples, one has t = O(1) and
‖u1‖ = O(1). A deeper result is the following estimate which states that, for scalar-input systems
of the form (1.1), the W−1,∞ norm of the control is an upper bound for the size of the sate.

Lemma 4.3. Let r, δ > 0 and f0, f1 ∈ Cω,r(Bδ;Rd) with f0(0) = 0. Then

x(t;u) = O(‖u1‖L∞). (4.5)

Proof. This follows from [1, Proposition 7.2].

4.3 A new representation formula for ODEs

We recall the following recent approximate representation formula for the solution to (1.1).

Theorem 4.4. Let M ∈ N∗, δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd) with f0(0) = 0. Then

x(t;u) = ZM (t, f, u)(0) +O
(
‖u1‖M+1

LM+1 + |x(t;u)|1+ 1
M

)
, (4.6)

where
ZM (t, f, u) =

∑
b∈B?J1,MK

ηb(t, u)fb, (4.7)

where this sum converges absolutely in Cω,r′(Bδ;Rd) for any r′ ∈ [r/e, r).

Proof. Equality (4.6) is the third item of [1, Proposition 8.2]. The absolute convergence in (4.7)
is proved in [1, Proposition 4.12] and relies on the fundamental observation that the structure
constants of Hall bases exhibit asymmetric geometric growth (see [2, Theorem 1.9]).

4.4 A black-box estimate of cross products

All our obstruction results are based on considering a component P of the state x(t;u) along fb(0)
for some “bad” bracket b, parallel to N (f)(0), where N is an appropriate subset of Br(X). By
(4.6), we would like to compute PZM (t, f, u)(0) and show that it behaves like ξb(t, u). This requires
to bound uniformly the cross products appearing in (2.10). We will rely on the following results,
proved in Appendix A.3 and Appendix A.4.

Lemma 4.5. Let M ∈ N∗. Let δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd) with f0(0) = 0. There exists
ρ > 0 such that, for every t ∈ (0, ρ) and u ∈ L1((0, t);R),

ZM (t, f, u) =
∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B?\{X0}

h1n1(b1)+···hqn1(bq)≤M

ξh1

b1
(t, u) · · · ξhqbq (t, u)fFq,h(b1,...,bq), (4.8)

where the sum converges absolutely in Cω,r′(Bδ;Rd) for every r′ ∈ [r/e, r).

Proposition 4.6. Let M,L ∈ N∗. Let b ∈ B?J1,MK and N ⊂ B?J1,MK with b /∈ N . Assume that

there exist c > 0 and Ξ : R∗+ × L1
loc(R+)→ R+ with Ξ(t, u) = O(1) such that, for every t > 0 and

u ∈ L1((0, t);R),

� for all b ∈ B?J1,MK such that b /∈ N ∪ {b}, there exists σ ≤ L such that |b| ≥ σ and

|ξb(t, u)| ≤ (ct)|b|

|b|!
t−σΞ(t, u), (4.9)
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� for all q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · · + n1(bq) ≤ M and
suppF(b1, . . . , bq) 6⊂ N , there exists σ1, . . . , σq ≤ L and α1, . . . , αq ∈ [0, 1]q with α :=
α1 + · · ·+ αq ≥ 1 such that, for each i ∈ J1, qK, |bi| ≥ σi and

|ξbi(t, u)| ≤ (ct)|bi|

|bi|!
t−σi(Ξ(t, u))αi . (4.10)

Let δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd) with f0(0) = 0. If fb(0) /∈ N (f)(0) and P is a component
along fb(0) parallel to N (f)(0),

PZM (t, f, u)(0) = ξb(t, u) +O (Ξ(t, u)) . (4.11)

4.5 Cross products are not negligible in general

The expression (2.11) of ηb as ξb plus a finite sum of cross products leads to the idea that one
could maybe replace the coordinates of the pseudo-first kind by those of the second kind in (4.6),
by absorbing the difference in the remainder terms which already appear in the right-hand side.
One could define

Zpure
M (t,X, u) :=

∑
b∈B?J1,MK

ξb(t, u)e(b) (4.12)

and ask whether, in the regime (t, ‖u‖W−1,∞)→ 0,

x(t;u) = Zpure
M (t, f, u)(0) +O

(
‖u1‖M+1

LM+1 + |x(t;u)|1+ 1
M

)
. (4.13)

Such a formula would be very nice to prove positive and negative controllability results.

Estimate (4.13) is satisfied on particular systems for which the cross products are o(|x(t;u)|).
For instance, for the system 

ẋ1 = u,

ẋ2 = x1,

ẋ3 = 1
2x

2
1,

(4.14)

we have x(t;u) = Zpure
2 (t, f, u)(0) = u1(t)e1+u2(t)e2+

∫ t
0
u2
1

2 e3 thus the estimate (4.13) is valid with
M = 2. Indeed, the difference (Z2−Zpure

2 )(t, f, u)(0) is proportional to u1(t)u2(t)e3 = o(|x(t;u)|).

Unfortunately, estimate (4.13) is not valid in general. For instance, let us consider the system
ẋ1 = u,

ẋ2 = x1 + 1
2x

2
1,

ẋ3 = x1x2.

(4.15)

One has

x(t;u) = u1(t)e1 +

(
u2(t) +

∫ t

0

u21
2

)
e2 +

(
1

2
u2(t)2 + u2(t)

∫ t

0

u21
2
−
∫ t

0

u2
u21
2

)
e3 (4.16)

and for every M ≥ 3,

ZM (t, f, u)(0) = ηX1
(t, u)e1 + η(X1,X0)(t, u)e2 + ηW1

(t, u)e2 − ηP1,2
(t, u)e3

= u1(t)e1 +

(
u2(t) +

∫ t

0

u21
2
− 1

2
u1(t)u2(t)

)
e2

−
(∫ t

0

u2
u21
2
− 1

2
u2(t)

∫ t

0

u21
2

)
e3.

(4.17)
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Thus we observe that

x(t;u)−ZM (t, f, u)(0) = −1

2
x1(t)u2(t)e1 +

1

2
u2(t)x2(t)e3, (4.18)

which is indeed o(|x(t;u)|) in the regime (t, ‖u‖W−1,∞)→ 0. However,

x(t;u)−Zpure
M (t, f, u)(0) =

(
1

2
u2(t)2 + u2(t)

∫ t

0

u21

)
e3. (4.19)

Thus, for any u ∈ L1((0, t);R) such that x2(t;u) = 0,

x(t;u)−Zpure
M (t, f, u)(0) = −1

2

(∫ t

0

u21

)2

e3. (4.20)

This relation falsifies (4.13) for M ≥ 4. It also falsifies the validity of the estimate

x(t;u) = Zpure
M (t, f, u)(0) + o(|x(t;u)|) (4.21)

for nilpotent vector fields such that SJM+1,∞J(f)(0) = {0}.

4.6 Interpolation inequalities

We recall below the Gagliardo-Nirenberg interpolation inequalities (see [7, 16]) used in this article.

Proposition 4.7. Let p, q, r, s ∈ [1,+∞], j, l ∈ N∗ and α ∈ (0, 1) such that

j

l
≤ α and

1

p
= j +

(
1

r
− l
)
α+

1− α
q

. (4.22)

There exists C > 0 such that, for every t > 0 and φ ∈ C∞([0, t];R),

‖Djφ‖Lp ≤ C‖Dlφ‖αLr‖φ‖1−αLq + Ct
1
p−j−

1
s ‖φ‖Ls . (4.23)

Remark 4.8. For functions on bounded intervals, adding the lower-order term in the right-hand
side of (4.23) is mandatory (see [16, item 5, p. 126]). To obtain the dependency of the constant
on t > 0, one uses scaling arguments to work within a fixed domain, say [0, 1].

4.7 A consequence of the Jacobi identity

The following straightforward consequences of the Jacobi identity will be useful to compute the
decomposition of brackets of two elements within B?.

Lemma 4.9. The following decompositions hold.

1. For any ν ∈ N and any a, b ∈ L(X),

[a, b0ν ] =

ν∑
ν′=0

(
ν

ν′

)
(−1)ν

′
[a0ν

′
, b]0ν−ν

′
. (4.24)

2. For any ν ∈ N∗, there exist coefficients ανj ∈ Z for 1 ≤ 2j + 1 ≤ ν, such that, for any
b ∈ L(X),

[b, b0ν ] =
∑

1≤2j+1≤ν

ανj [b0j , b0j+1]0ν−2j−1. (4.25)

Proof. The validity of (4.24) for any a, b can be proved by induction on ν ∈ N, the heredity relies
on the Jacobi identity and the binomial relation

(
ν−1
ν′

)
+
(
ν−1
ν′−1

)
=
(
ν
ν′

)
for ν′ = 1, . . . , ν − 1. The

validity of (4.25) for any b can be proved by induction on ν ∈ N∗; the Jacobi relation leads to
ανj = αν−1j − αν−2j−1 .
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5 Sussmann’s and Stefani’s obstructions

The goal of this section is to give a new proof of Theorem 1.10, within the framework of the unified
approach proposed in this paper, as a consequence of the following more precise statement.

Theorem 5.1. Assume that (1.18) does not hold. Let k ∈ N∗ such that

ad2k
f1 (f0)(0) /∈ SJ1,2k−1K(f)(0). (5.1)

Then system (1.1) has a drift along ad2k
f1 (f0)(0), parallel to SJ1,2k−1K(f)(0), of amplitude ξad2k

X1
(X0),

in the regime (t, ‖u‖W−1,∞)→ 0.

5.1 Dominant part of the logarithm

Lemma 5.2. Let k ∈ N∗ such that (5.1) holds. Let P be a component along ad2k
f1 (f0)(0), parallel

to SJ1,2k−1K(f)(0). Then

PZ2k(t, f, u)(0) = ξad2k
X1

(X0)(t, u) +O
(
|u1(t)|2k + t

1
2k−1 ‖u1‖2kL2k

)
. (5.2)

Proof. We intend to apply Proposition 4.6 with M ← 2k, L ← 2k + 2, b ← ad2k
X1

(X0) and
N ← B?J1,2k−1K, so that (5.2) will follow from (4.11), for the appropriate choice of Ξ(t, u). Let us
check that the required estimates are satisfied.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,2kK such that b /∈ N ∪ {b}.
Since N = B?J1,2k−1K, one has n1(b) = 2k and n0(b) ≥ 2. Hence |b| ≥ 2k + 2. By (3.22) of

Proposition 3.8, estimate (4.9) holds with σ = 2k + 2 and

Ξ(t, u) := t‖u1‖2kL2k . (5.3)

Step 2: Estimates of cross products. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · ·+
n1(bq) ≤ 2k and suppF(b1, . . . , bq) 6⊂ N .

For each i ∈ J1, qK,

� if bi = X1, then
|ξbi(t, u)| = |u1(t)|, (5.4)

so (4.10) holds with σi = 1 and αi = 1/(2k) = n1(bi)/2k.

� otherwise, |bi| ≥ 1 + n1(bi) and, by (3.22) of Proposition 3.8 and Hölder’s inequality,

|ξbi(t, u)| ≤ (ct)|bi|

|bi|!
t−1−n1(bi)‖u1‖n1(bi)

Ln1(bi)
≤ (ct)|bi|

|bi|!
t−σi

(
t

1
αi
−1‖u1‖2kL2k

)αi
(5.5)

with σi = 1 +n1(bi) and αi = n1(bi)/(2k). Since q ≥ 2, n1(bi) ≤ 2k− 1. Thus 1
αi
− 1 ≥ 1

2k−1
and, assuming t ≤ 1,

t
1
αi
−1‖u1‖2kL2k ≤ t

1
2k−1 ‖u1‖2kL2k . (5.6)

Since N = B?J1,2k−1K, one has n1(b1) + · · ·+ n1(bq) = 2k. Hence α = α1 + · · ·+ αq = 1.

5.2 Vectorial relation

Lemma 5.3. Let k ∈ N∗ such that (5.1) holds. Then, f1(0) 6= 0.

Proof. By contradiction, if f1(0) = 0, since f0(0) = 0, all iterated Lie brackets of f0 and f1 vanish
so ad2k

f1 (f0)(0) = 0 ∈ SJ1,2k−1K(f)(0) = {0}.
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5.3 Closed-loop estimate

Lemma 5.4. Assume that f1(0) 6= 0. Then,

|u1(t)| = O (|x(t;u)|+ ‖u1‖L1) . (5.7)

Proof. This estimate is proved in [1, Proposition 8.3]. For the sake of self-containedness, and as
an illustration of the approach used in the following sections, let us give another proof.

Let P be a component along f1(0), parallel to the null vector space {0}. By Proposition 4.6
with M ← 1, L← 2, b← X1 and N ← ∅, (4.11) entails that

PZ1(t, f, u)(0) = u1(t) +O(‖u1‖L1). (5.8)

Indeed, on the one hand, for every b ∈ B?1 \ {X1}, by (3.23) with (p, j0) ← (1, 1), one has |b| ≥ 2
and

|ξb(t, u)| ≤ (ct)|b|

|b|!
t−2‖u1‖L1 , (5.9)

so (4.9) holds with σ = 2 and Ξ(t, u) = ‖u1‖L1 . On the other hand, we don’t need to estimate any
cross products because, when q ≥ 2 and b1, . . . , bq ∈ B? \ {X0}, n1(b1) + · · ·+ n1(bq) > 1.

By Theorem 4.4 with M ← 1,

x(t;u) = Z1(t, f, u)(0) +O
(
‖u1‖2L2 + |x(t;u)|2

)
. (5.10)

Then (5.7) follows from (5.8), (5.10) and the small-state estimate of Lemma 4.3.

5.4 Interpolation inequality

Lemma 5.5. For t > 0 and u ∈ L1((0, t);R),

‖u1‖2k+1
L2k+1 ≤ ‖u1‖L∞‖u1‖2kL2k . (5.11)

5.5 Proof of the drift

Proof of Theorem 5.1. Let P be a component along ad2k
f1 (f0)(0) parallel to SJ1,2k−1K(f)(0). By

Theorem 4.4,

x(t;u) = Z2k(t, f, u)(0) +O
(
‖u1‖2k+1

L2k+1 + |x(t;u)|1+ 1
2k

)
(5.12)

and, by (5.2) and (2.5),

PZ2k(t, f, u)(0) =
1

(2k)!

∫ t

0

u2k1 +O
(
|u1(t)|2k + t

1
2k−1 ‖u1‖2kL2k

)
. (5.13)

Moreover, by the closed-loop estimate (5.7) and Hölder’s inequality,

|u1(t)|2k = O
(
|x(t;u)|2k + t2k−1‖u1‖2kL2k

)
. (5.14)

Gathering these equalities and (5.11) yields

Px(t;u) =

∫ t

0

u2k1
(2k)!

+O

((
t

1
2k−1 + ‖u1‖L∞

)∫ t

0

u2k1 + |x(t;u)|1+ 1
2k

)
. (5.15)

This matches Definition 1.15 of a drift along ad2k
f1 (f0)(0), parallel to SJ1,2k−1K(f)(0), of amplitude

ξad2k
X1

(X0), in the regime (t, ‖u‖W−1,∞)→ 0.
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6 Loose quadratic obstructions

We prove Theorem 1.11, as a consequence of the following more precise statement.

Theorem 6.1. Let m ∈ N and k ∈ N∗. We assume k is the smallest integer for which

fWk
(0) /∈ SJ1,π(k,m)K\{2}(f)(0), (6.1)

where π(k,m) is defined in (1.20). Then system (1.1) has a drift along fWk
(0), parallel to

SJ1,π(k,m)K\{2}(f)(0), in the regime t→ 0 and ‖u‖Wm,∞ → 0.

When m = 0, the drift actually holds in the (weaker) regime (t, ‖u‖L∞)→ 0 (see Remarks 1.16
and 6.6), where the smallness assumption on ‖u‖L∞ does not depend on t.

6.1 A previous result on a prototype example

In [14, System (32)], Kawski considers the system

ẋ1 = u

ẋ2 = x1

. . .

ẋk = xk−1

ẋk+1 = x2k − λx
p
1

(6.2)

where λ > 0. Written in the form (1.1), this system satisfies

fMj−1
(0) = ej for j ∈ J1, kK, fWk

(0) = 2ek+1, fadpX1
(X0)(0) = −λp!ek+1 (6.3)

and fb(0) = 0 for any other b ∈ B?. In [14, Proposition 5.1], Kawski proves that, if p ≥ 2k+1 then
the system (6.2) is not L∞-STLC. This result can be recovered by applying Theorem 6.1 to system
(6.2) with m← 0. Indeed, p ≥ 2k+1 > 2k − 1 = π(k, 0).

With respect to this previous result, Theorem 6.1 can be viewed as an improvement in the
following directions:

� any perturbation in B?Jp,∞J is allowed (not only adpX1
(X0)),

� as correctly conjectured in [10, section 2.4, p. 63], the critical threshold for L∞-STLC is
proved to be 2k − 1 (instead of 2k+1 − 1 obtained in [14, Proposition 5.1]),

� other regularity scales Wm,∞ for m > 0 are included.

6.2 Dominant part of the logarithm

Lemma 6.2. Let k ∈ N∗. Assume that k is the minimal value for which (6.1) holds. Let P be a
component along fWk

(0), parallel to SJ1,π(k,m)K\{2}(f)(0). Then

PZπ(k,m)(t, f, u)(0) = ξWk
(t, u) +O

(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (6.4)

Proof. By minimality of k, for every j ∈ J1, k − 1K,

fWj
(0) ∈ SJ1,π(j,m)K\{2}(f)(0) ⊂ SJ1,π(k,m)K\{2}(f)(0), (6.5)

since π(·,m) is non-decreasing. Since SJ1,π(k,m)K\{2} is stable by right bracketing with X0, one also
has

fWj,ν
(0) ∈ SJ1,π(k,m)K\{2}(f)(0), (6.6)
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for every j ∈ J1, k − 1K and ν ≥ 0. Hence SJ1,π(k,m)K\{2}(f)(0) = N (f)(0) where

N := B?J1,π(k,m)K\{2} ∪ {Wj,ν ; j ∈ J1, k − 1K, ν ∈ N} . (6.7)

We intend to apply Proposition 4.6 with M ← π(k,m), L ← 2k + 2, b ← Wk and N as in (6.7),
so that (6.4) will follow from (4.11), for the appropriate choice of Ξ(t, u). Let us check that the
required estimates are satisfied.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,π(k,m)K such that b /∈ N ∪{b}.
By definition (6.7), one necessarily has n1(b) = 2 and b = Wj,ν with either j > k or (j = k and

ν ≥ 1). By estimate (3.24) with (p, j0)← (1, k), (4.9) holds with σ = 2k + 2 and

Ξ(t, u) := t‖uk‖2L2 . (6.8)

Step 2: Estimates of other cross products. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that n1(b1) + · · ·+
n1(bq) ≤ π(k,m) and suppF(b1, . . . , bq) 6⊂ N .

We start with preliminary estimates.

� If bi = Mj for some j ∈ J0, k − 1K, by (3.11),

|ξbi(t, u)| = |uj+1(t)| = t|bi|

|bi|!
t−(j+1)(j + 1)!|uj+1(t)| (6.9)

so (4.10) holds with σi = j + 1, αi = 1/2 and Ξ(t, u) = |(u1, . . . , uk)(t)|2.

� If bi = Mj for j ≥ k, by (3.23) (with (p, j0)← (2, k)), (4.10) holds with σi = k+ 1, αi = 1/2
and Ξ(t, u) = t‖uk‖2L2 .

Since suppF(b1, . . . , bq) 6⊂ N , one has q = 2 and b1, b2 ∈ B?1 . So the previous estimates apply and
α1 = α2 = 1/2 so α1 + α2 = 1.

6.3 Vectorial relations

Lemma 6.3. Let k ∈ N∗, π : N∗ → N∗ be a non-decreasing map and ϑ : N∗ → N∗ be defined by

ϑ(k) = max{1; bπ(k)2 c}. We assume that k is the minimal value for which (6.1) holds. Then,

1. the vectors fM0
(0), . . . , fMk−1

(0) are linearly independent,

2. if ϑ(k) ≥ 2, then span{fM0(0), . . . , fMk−1
(0)} ∩ SJ2,ϑ(k)K(f)(0) = {0}.

Proof. Let H0 := f ′0(0). Since f0(0) = 0, for any b ∈ Br(X), f(b,X0)(0) = H0fb(0). Thus, for each
A ⊂ N, the space SA(f)(0) is stable by left multiplication by H0. In particular, by minimality of k,
for each l ∈ J1, k − 1K and ν ∈ N,

fWl,ν
(0) = Hν

0 fWl,0
(0) ∈ SJ1,π(l)K\{2}(f)(0) ⊂ SJ1,π(k)K\{2}(f)(0), (6.10)

where the last inclusion results from the monotony of π. Thus,

S2,J1,2k−2K(f)(0) ⊂ SJ1,π(k)K\{2}(f)(0). (6.11)

Proof of statement 1. By contradiction, assume that there exists (β0, . . . , βk−1) ∈ Rk \ {0} such
that β0fM0(0)+ · · ·+βk−1fMk−1

(0) = 0, i.e. fB1(0) = 0 where B1 := βk−1Mk−1 + · · ·+β0M0. One

may assume that βk−1 6= 0; otherwise replace B1 by adk−1−KX0
(B1) where K = max{j;βj 6= 0}. By

linearity, one may assume βk−1 = 1. Then fB2
(0) = 0 where

B2 := ad2
B1

(X0) = [Mk−1 + · · ·+ β0M0,Mk + · · ·+ β0M1] = Wk −B3, (6.12)
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where B3 ∈ S2,J1,2k−2K(X). Finally, by (6.11), fWk
(0) = fB3

(0) ∈ SJ1,π(k)K\{2}(f)(0), which
contradicts (6.1).

Proof of statement 2. By contradiction, assume that ϑ(k) ≥ 2 and that there exists b ∈ SJ2,ϑ(k)K(X)

and (γ0, . . . , γk−1) ∈ Rk \ {0} such that fB4(0) = 0 where B4 := γk−1Mk−1 + · · ·+ γ0M0 + b. One
may assume γk−1 = 1; otherwise, replace B4 by adk−1−KX0

(B4) where K = max{j; γj 6= 0} and
renormalize. Then fB5

(0) = 0 where

B5 := ad2
B4

(X0) = [Mk−1 + · · ·+ γ0M0 + b,Mk + · · ·+ γ0M1 + [b,X0]]

∈Wk + S2,J1,2k−2K(X) + SJ3,2ϑ(k)K(X).
(6.13)

This fact and (6.11) contradict (6.1) because 2ϑ(k) ≤ π(k).

6.4 Closed-loop estimate

Lemma 6.4. Let k ∈ N∗, π : N∗ → N∗ be a non-decreasing map and ϑ : N∗ → N∗ be defined by

ϑ(k) = max{1; bπ(k)2 c}. We assume that k is the minimal value for which (6.1) holds. Then,

|(u1, . . . , uk)(t)| = O
(
|x(t;u)|+ ‖u1‖ϑ(k)+1

Lϑ(k)+1 + t
1
2 ‖uk‖L2

)
. (6.14)

Proof. By Theorem 4.4 with M ← ϑ(k),

x(t;u) = Zϑ(k)(t, f, u)(0) +O
(
‖u1‖ϑ(k)+1

Lϑ(k)+1 + |x(t;u)|1+
1

ϑ(k)

)
. (6.15)

Let i ∈ J0, k − 1K. By Lemma 6.3, we can consider P, a component along fMi
(0), parallel to

N (f)(0) where N := ({M0, . . . ,Mk−1} \Mi) ∪ B?J2,ϑ(k)K. We intend to apply Proposition 4.6 with

M ← ϑ(k), L ← k + 1, b ← Mi and N as above, so that (4.11), for the appropriate choice of
Ξ(t, u), will yield

PZϑ(k)(t, f, u)(0) = ui+1(t) +O
(
t
1
2 ‖uk‖L2

)
. (6.16)

Then, combining (6.15) and (6.16) concludes the proof of (6.14). Let us check that the required
estimates are satisfied.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,ϑ(k)K such that b /∈ N ∪ {b}.
By choice of N , one has necessarily n1(b) = 1. Then b = Mj for j ≥ k. Thus, by (3.23) (with

(p, j0)← (2, k)), |b| ≥ k + 1 and (4.9) holds with σ = k + 1 and Ξ(t, u) := t
1
2 ‖uk‖L2 .

Step 2: Estimates of cross products. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · ·+
n1(bq) ≤ ϑ(k) and suppF(b1, . . . , bq) 6⊂ N .

By construction of N , there is no such cross product term.

6.5 Interpolation inequality

Lemma 6.5. There exists C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u1‖π(k,m)+1

Lπ(k,m)+1 ≤ C
(
‖u1‖π(k,m)+1−p

L∞ ‖u‖pWm,∞ + tπ(k,m)+1−2k‖u‖π(k,m)−1
L∞

)
‖uk‖2L2 , (6.17)

where p := (2m+ 2k)/(m+ 1) satisfies p ≤ π(k,m) + 1.

Proof. By Proposition 4.7 with φ ← uk, (p, q, r, s) ← (p, 2,∞, 2), (j, l) ← (k − 1,m + k), α ←
(p− 2)/p, we obtain

‖u1‖pLp ≤ C‖u
(m)‖p−2L∞ ‖uk‖

2
L2 + Ct1−pk+

p
2 ‖uk‖pL2 . (6.18)
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By Hölder’s inequality,

‖uk‖p−2L2 ≤ t(
1
2+k)(p−2)‖u‖p−2L∞ . (6.19)

Moreover, by (1.20),

π(k,m) + 1 ≥ 2k +m− 1

m+ 1
+ 1 =

2k + 2m

m+ 1
= p, (6.20)

and this concludes the proof of (6.17), writing

‖u1‖π(k,m)+1

Lπ(k,m)+1 ≤ ‖u1‖π(k,m)+1−p
∞ ‖u1‖pLp (6.21)

and ‖u1‖L∞ ≤ t‖u‖L∞ .

6.6 Proof of the drift for m ≥ 0

Proof of Theorem 6.1. Let P be a component along fWk
(0) parallel to SJ1,π(k,m)K\{2}(f)(0). Let

M := π(k,m). Let ϑ := max{1; bπ(k,m)
2 c}. By Theorem 4.4,

x(t;u) = ZM (t, f, u)(0) +O
(
‖u1‖M+1

LM+1 + |x(t;u)|1+ 1
M

)
, (6.22)

where, by (6.4) and (3.12),

PZM (t, f, u)(0) =
1

2

∫ t

0

u2k +O
(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (6.23)

Moreover, by the closed-loop estimate (6.14),

|(u1, . . . , uk)(t)|2 = O
(
|x(t;u)|2 + ‖u1‖2ϑ+2

Lϑ+1 + t‖uk‖2L2

)
. (6.24)

By definition of ϑ, one has 2(ϑ+ 1) ≥ π(k,m) + 1. Hence, in particular,

‖u1‖2ϑ+2
Lϑ+1 = O

(
‖u1‖M+1

LM+1

)
. (6.25)

Gathering these equalities and the interpolation estimate (6.17) yields

Px(t;u) =
1

2

∫ t

0

u2k +O
((
t+ (1 + tπ(k,m)+1−2k)‖u‖π(k,m)−1

Wm,∞

)
‖uk‖2L2 + |x(t;u)|1+ 1

M

)
. (6.26)

This implies, in the sense of Definition 1.15, a drift along fWk
(0), parallel to SJ1,π(k,m)K\{2}(f)(0),

of amplitude ξWk
, in the regime t→ 0 and ‖u‖Wm,∞ → 0 (the smallness assumption on the control

depends on the final time; see Remark 1.16).

Remark 6.6. In the previous proof, when m = 0, one has π(k,m) + 1 − 2k = 0. Thus, in this
case, the smallness assumption on the control does not depend on the final time. The drift along
fWk

(0) then holds in the regime (t, ‖u‖L∞)→ 0 (see Remark 1.16)).
When m > 0, the dependence on time of the smallness assumption on the control stems from

the second term in the right-hand side of the Gagliardo-Nirenberg inequality of Proposition 4.7.
For appropriate classes of functions, for instance φ ∈ Wm,∞

0 , the Gagliardo-Nirenberg inequality
holds without this second term. Thus, for controls u ∈ Wm,∞

0 , the argument above proves a drift
in the regime (t, ‖u‖Wm,∞

0
)→ 0.
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6.7 Optimality of the functional framework

With m = 0, the result of Theorem 6.1 does not hold for a different small-time local controllability
notion involving large enough controls in L∞ (instead of arbitrarily small controls in L∞). In this
sense, our result is optimal. To prove this claim, let us consider the following system (introduced
in [14, Example 5.1]): 

ẋ1 = u

ẋ2 = x1

ẋ3 = x22 − x41.
(6.27)

Written in the form (1.1), this system satisfies

fM0
= e1, fM1

(0) = e2, fW2
(0) = 2e3, fQ1,1,1

(0) = −24e3 (6.28)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,W2, Q1,1,1}. Thus fW1(0) ∈ S1(f)(0) and fW2(0) /∈
S{1,3}(f)(0). By Theorem 1.11, this system is not L∞-STLC, i.e. locally controllable in small time
with -small controls. By Theorem 6.1, solutions associated to controls small in L∞ cannot reach
in small time targets of the form −βe3 with β > 0.

In [14, p. 452], Kawski claims that this system is STLC with controls large enough in L∞.
Let us indeed construct explicit controls (large in L∞) achieving a motion along −e3. Let ϕ ∈
C∞c ((0, 1);R) \ {0} and A > 0 large enough such that

C := −
∫ 1

0

ϕ2 +A2

∫ 1

0

(ϕ′)4 > 0. (6.29)

Let t > 0 and u ∈ L1((0, t);R) be defined by u(s) := Aϕ′′ (s/t). Then u1(s) = Atϕ′(s/t) and
u2(s) = At2ϕ(s/t). Thus

x3(t) =

∫ t

0

u22 − u41 =

∫ t

0

((
At2ϕ′

(s
t

))2
−
(
Atϕ′

(s
t

))4)
ds = −t5A2C. (6.30)

Therefore x(t;u) = −t5A2Ce3, so we have indeed achieved a motion along −e3. Standard argu-
ments using either tangent vectors or power series expansions then allow to prove that (6.27) is
indeed L∞-STLC (see e.g. [14, Appendix] or [6, Section 8.1]).

6.8 An extension to the case m = −1

As mentioned in Section 1.5, it would be natural to expect that Theorem 1.11 holds in the case
m = −1 with π(k,−1) := +∞. This would correspond to the heuristic that, for k ∈ N∗, the bracket
Wk is “bad” even for W−1,∞-STLC, i.e. that it has to be neutralized by some other bracket (here,
such a statement would entail that it should be neutralized by a bracket outside of B?2).

Up to our knowledge, this is an open problem. We give here a partial result in this direction,
under an extra nilpotency assumption. Indeed, we prove that, if f1 is semi-nilpotent with respect
to f0 (see below) and system (1.1) is W−1,∞-STLC then

∀k ∈ N∗, fWk
(0) ∈ SJ1,∞J\{2}(f)(0). (6.31)

Definition 6.7 (Semi-nilpotent family of vector fields). Let Ω be an open subset of Rd, f0, f1 ∈
C∞(Ω;Rd) and M ∈ N∗. We say that the vector field f1 is semi-nilpotent of index M with respect
to f0 when

∀b ∈ Br(X), n1(b) = M ⇒ fb = 0 on Ω (6.32)

(every bracket of f0 and f1 involving M occurrences of f1 vanishes identically on Ω) and M is the
smallest positive integer for which this property holds.
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Theorem 6.8. Assume that f1 is semi-nilpotent with respect to f0. If system (1.1) is W−1,∞-
STLC, then, for every k ∈ N∗,

fWk
(0) ∈ SJ1,∞J\{2}(f)(0). (6.33)

The proof follows the same steps as the proof of Theorem 6.1. A key point is that the truncated
formula (4.6) is replaced with the following one.

Proposition 6.9. Let M ∈ N∗, δ, r > 0 and f0, f1 ∈ Cω,r(Bδ;Rd) with f0(0) = 0. Assume that f1
is semi-nilpotent of index M with respect to f0. Then

x(t;u) = ZM (t, f, u)(0) +O (‖u1‖L∞ |x(t;u)|) . (6.34)

Proof. This follows from the third item of [1, Corollary 8.4].

Lemma 6.10. Let k ∈ N∗ be the minimal value for which (6.33) fails. Then,

1. the vectors fM0
(0), . . . , fMk−1

(0) are linearly independent,

2. span{fM0(0), . . . , fMk−1
(0)} ∩ SJ2,∞J(f)(0) = {0}.

Proof. The proof is exactly the same as in Lemma 6.3, with π(k) = ϑ(k) = +∞.

Lemma 6.11. Let k ∈ N∗. Assume that f1 is semi-nilpotent with respect to f0 and that k is the
minimal value for which (6.33) fails. Then,

|(u1, . . . , uk)(t)| = O
(
|x(t;u)|+ t

1
2 ‖uk‖L2

)
. (6.35)

Proof. The proof is performed along the same lines as in Lemma 6.4. Instead of M = ϑ(k), one
uses M such that f1 is semi-nilpotent of index (M + 1) with respect to f0. One replaces (6.15) by
(6.34) and concludes as previously.

Proof of Theorem 6.8. Let P be a component along fWk
(0) parallel to SJ1,∞J\{2}(f)(0). Let M ∈

N∗ be such that f1 is semi-nilpotent of index (M + 1) with respect to f0 (see Definition 6.7). By
Proposition 6.9,

x(t;u) = ZM (t, f, u)(0) +O (‖u1‖L∞ |x(t;u)|) , (6.36)

where, by (6.4) and (3.12),

PZM (t, f, u)(0) =
1

2

∫ t

0

u2k +O
(
|(u1, . . . , uk)(t)|2 + t‖uk‖2L2

)
. (6.37)

Moreover, by the closed-loop estimate (6.35),

|(u1, . . . , uk)(t)|2 = O
(
|x(t;u)|2 + t‖uk‖2L2

)
. (6.38)

Gathering these equalities yields

Px(t;u) =
1

2

∫ t

0

u2k +O
(
t‖uk‖2L2 + ‖u1‖L∞ |x(t;u)|

)
, (6.39)

which prevents from reaching target states of the form x? = −δfWk
(0) for δ > 0 small enough.

7 Refined W2 obstruction

The goal of this section is to prove the case j = 2 in Theorem 1.12, as a consequence of the following
more precise statement.

Theorem 7.1. Assume that fW1
(0) ∈ N1(f)(0) and fW2

(0) /∈ N2(f)(0). Then, system (1.1) has
a drift along fW2

(0), parallel to N2(f)(0), in the regime (t, ‖u‖L∞)→ 0.
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7.1 Limiting examples

A negative example. In Section 6.7, we recalled that system (6.27) is small-time locally controllable
with large enough controls in L∞, but not L∞-STLC in the sense of Definition 1.1. For this system,
one has 6fW2(0) = −fQ1,1,1(0) (and Q1,1,1 is the only bracket “compensating” W2). But Q1,1,1

does not belong to the set N2 defined in (1.22) of brackets which can compensate W2 for L∞-STLC.
Hence, the fact that (6.27) is not L∞-STLC can be seen as an application of the case j = 2 of
Theorem 1.12.

A positive example. The following system, due to Jakubczyk, is known to be L∞-STLC since
[19, p. 711-712] (Sussmann’s proof involves controls with ‖u‖L∞ ≤ 1, but extends easily to any
bound on u; see also [3, Section 2.4.1] for another proof):

ẋ1 = u,

ẋ2 = x1,

ẋ3 = x22 + x31.

(7.1)

Written in the form (1.1), this system satisfies

fM0
(0) = e1, fM1

(0) = e2, fW2
(0) = 2e3, fP1,1

(0) = 6e3 (7.2)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,W2, P1,1}. Hence 3fW2
(0) = fP1,1

(0). Therefore, the fact
that this system is L∞-STLC implies that one must include P1,1 in the set N2 defined in (1.22) of
brackets which can compensate W2.

7.2 Dominant part of the logarithm

Lemma 7.2. Assume that fW1(0) ∈ N1(f)(0) and fW2(0) /∈ N2(f)(0). Let P be a component
along fW2

(0), parallel to N2(f)(0). Then

PZ3(t, f, u)(0) = ξW2
(t, u) +O

(
|(u1, u2)(t)|2 + t‖u2‖2L2 + ‖u1‖2L4‖u2‖L2 + ‖u1‖4L4

)
. (7.3)

Proof. By assumption, fW1(0) ∈ N1(f)(0). Since N1 is stable by right bracketing with X0,
fW1,ν

(0) ∈ N1(f)(0) for every ν ≥ 0. Thus, since N1 ⊂ N2, N2(f)(0) = N (f)(0), where N is
defined as

N := N2 ∪ {W1,ν ; ν ∈ N}, (7.4)

where N2 is defined in (1.22). By assumption, fW2(0) /∈ N2(f)(0) = N (f)(0).
We intend to apply Proposition 4.6 with M ← 3, L ← 6, b ← W2 and N as in (7.4), so that

(7.3) will follow from (4.11), for the appropriate choice of Ξ(t, u). Let us check that the required
estimates are satisfied.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,3K such that b /∈ N ∪ {b}.
We investigate the different possibilities depending on n1(b).

� One cannot have n1(b) = 1 since B?1 ⊂ N2.

� If n1(b) = 2, by (1.9) and (7.4), one has b = Wj,ν with either (j ≥ 3) or (j = 2 and ν ≥ 1).
Thus |b| ≥ 6. By estimate (3.24) with (p, j0)← (1, 2), (4.9) holds with σ = 6 and

Ξ(t, u) := t‖u2‖2L2 . (7.5)

� If n1(b) = 3, by (1.10) and (1.22), b = Pj,k,ν with k ≥ 2. Thus |b| ≥ 5. By estimate (3.25)
with (p1, p2, j0, k0)← (2, 2, 1, 2), (4.9) holds with σ = 5 and

Ξ(t, u) := ‖u1‖2L4‖u2‖L2 . (7.6)

28



Step 2: Estimates of cross products. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · ·+
n1(bq) ≤ 3 and suppF(b1, . . . , bq) 6⊂ N .

We start with preliminary estimates.

� If bi = Mj for some j ∈ J0, 1K, by (3.11),

|ξbi(t, u)| = |uj+1(t)| = t|bi|

|bi|!
t−(j+1)(j + 1)!|uj+1(t)| (7.7)

so (4.10) holds with σi = j + 1, αi = 1/2 and Ξ(t, u) = |(u1, u2)(t)|2.

� If bi = Mj for j ≥ 2, by (3.23) (with (p, j0)← (2, 2)), (4.10) holds with σi = 3, αi = 1/2 and
Ξ(t, u) = t‖u2‖2L2 .

� By (3.22), for each bi ∈ B?2 , (4.10) holds with σi = 3, αi = 1/2 and Ξ(t, u) = t‖u1‖4L4 .

Since n1(b1) + · · ·n1(bq) ≤ 3 and q ≥ 2, all the bi belong to B?J1,2K. Thanks to the preliminary

estimates, α = q/2 ≥ 1.

7.3 Vectorial relation

Lemma 7.3. Assume that fW1(0) ∈ N1(f)(0) and fW2(0) /∈ N2(f)(0). Then, the vectors fM0(0)
and fM1(0) are linearly independent.

Proof. This statement is implied by the case k = 2 in Lemma 6.3.

7.4 Closed-loop estimate

Lemma 7.4. Assume that fM0(0) and fM1(0) are linearly independent. Then,

|(u1, u2)(t)| = O
(
|x(t;u)|+ ‖u1‖2L2 + t

1
2 ‖u2‖L2

)
. (7.8)

Proof. This statement is implied by the case k = 2 and π(k) = 2 in Lemma 6.4.

7.5 Interpolation inequality

Lemma 7.5. There exists C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u1‖4L4 ≤ C‖u‖2L∞‖u2‖2L2 . (7.9)

Proof. First, by Hölders’ inequality ‖u2‖L2 ≤ t
5
2 ‖u‖L∞ . Thus, (7.9) follows from Proposition 4.7

with φ← u2, (p, q, r, s)← (4, 2,∞, 2), (j, l)← (1, 2), α← 1/2.

7.6 Proof of the drift

Proof of Theorem 7.1. Let P be a component along fW2(0) parallel to N2(f)(0). By Theorem 4.4
with M ← 3,

x(t;u) = Z3(t, f, u)(0) +O
(
‖u1‖4L4 + |x(t;u)|1+ 1

3

)
, (7.10)

where, by (7.3) and (3.12),

PZ3(t, f, u)(0) =
1

2

∫ t

0

u22 +O
(
|(u1, u2)(t)|2 + t‖u2‖2L2 + ‖u1‖2L4‖u2‖L2 + ‖u1‖4L4

)
. (7.11)
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Moreover, by the closed-loop estimate (7.8),

|(u1, u2)(t)|2 = O
(
|x(t;u)|2 + ‖u1‖4L4 + t‖u2‖2L2

)
. (7.12)

Gathering these equalities and the interpolation estimate (7.9) yields

Px(t;u) =
1

2

∫ t

0

u22 +O

((
t+ ‖u‖L∞ + ‖u‖2L∞

) ∫ t

0

u22 + |x(t;u)|1+ 1
3

)
. (7.13)

This implies, in the sense of Definition 1.15, a drift along fW2(0), parallel to N2(f)(0), of amplitude
ξW2 , in the regime (t, ‖u‖L∞)→ 0.

8 Refined W3 obstruction

The goal of this section is to prove the case j = 3 of Theorem 1.12, as a consequence of the following
more precise statement.

Theorem 8.1. Assume that fW1(0) ∈ N1(f)(0), fW2(0) ∈ N2(f)(0) and fW3(0) /∈ N3(f)(0). Then
system (1.1) has a drift along fW3(0), parallel to N3(f)(0), in the regime (t, ‖u‖L∞)→ 0.

8.1 Limiting example

As an introduction, we give an example partially highlighting the optimality of the condition
fW3

(0) ∈ N3(f)(0). Indeed, in [14, Example 5.2], Kawski considers the system
ẋ1 = u

ẋ2 = x1

ẋ3 = x2

ẋ4 = x23 − x41.

(8.1)

Written in the form (1.1), this system satisfies

fM0
(0) = e1, fM1

(0) = e2, fM2
(0) = e3, fW3

(0) = 2e4, fQ1,1,1
(0) = −24e4 (8.2)

and fb(0) = 0 for any b ∈ B? \ {M0,M1,M2,W3, Q1,1,1}. Kawski proves that system (8.1) is L∞-
STLC. This implies that one must indeed include Q1,1,1 in the set N3 defined in (1.23) of brackets
which can compensate W3.

We expect that, for each bracket b ∈ N3, an example similar to (8.1) can be constructed where
W3 is compensated by b and yields L∞-STLC.

8.2 Dominant part of the logarithm

Lemma 8.2. Under the assumptions of Theorem 8.1, let P be a component along fW3(0), parallel
to N3(f)(0). Then

PZ5(t, f, u)(0) = ξW3
(t, u) +O

(
|(u1, u2, u3)(t)|2 + t‖u3‖2L2 + ‖u2‖3L3

+ ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6

)
.

(8.3)

Proof. By assumption, fWi
(0) ∈ Ni(f)(0) for i = 1, 2. Since Ni is stable by right bracketing with

X0, fWi,ν
(0) ∈ Ni(f)(0) for every ν ≥ 0 and i = 1, 2. Thus, since N1 ⊂ N2 ⊂ N3, N3(f)(0) =

N (f)(0), where
N ← N3 ∪ {W1,ν ,W2,ν ; ν ∈ N}, (8.4)
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and N3 is defined in (1.23). By assumption, fW3
(0) /∈ N3(f)(0) = N (f)(0).

We intend to apply Proposition 4.6 with M ← 5, L ← 11, b ← W3 and N as in (8.4) so that
(8.3) will follow from (4.11), for the appropriate choice of Ξ(t, u) (corresponding to the quantities
within the O(·) in (8.3)). Let us check that the required estimates are satisfied.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,5K such that b /∈ N ∪ {b}.
We investigate the different possibilities depending on n1(b).

� One cannot have n1(b) = 1 since B?1 ⊂ N3.

� If n1(b) = 2, by (1.9) and (8.4), one has b = Wj,ν with either (j ≥ 4) or (j = 3 and ν ≥ 1).
Thus |b| ≥ 8. By estimate (3.24) with (p, j0)← (1, 3), (4.9) holds with σ = 8 and

Ξ(t, u) := t‖u3‖2L2 . (8.5)

� If n1(b) = 3, by (1.10) and (1.23), b = Pj,l,ν with 2 ≤ j ≤ l. Thus |b| ≥ 7. By estimate (3.25)
with (p1, p2, j0, k0)← (3/2, 3, 2, 2), (4.9) holds with σ = 7 and

Ξ(t, u) := ‖u2‖3L3 . (8.6)

� If n1(b) = 4, by (1.11) and (1.23), either

– b = Qj,k,l,ν with j = k = 1, l ≥ 3, thus |b| ≥ 7 and, by estimate (3.26) with
(p1, p2, p3, j0, k0, l0)← (3, 6, 2, 1, 1, 3), (4.9) holds with σ = 7 and

Ξ(t, u) := ‖u1‖3L6‖u3‖L2 . (8.7)

– b = Qj,k,l,ν with 2 ≤ k ≤ l, thus |b| ≥ 7 and, by estimate (3.26) with (p1, p2, p3, j0, k0, l0)
← (3, 3, 3, 1, 2, 2), (4.9) holds with σ = 7 and

Ξ(t, u) := ‖u1‖2L6‖u2‖2L3 . (8.8)

– b = Q]j,µ,k,ν , thus |b| ≥ 8 and, by estimate (3.28) with (p1, p2, j0, k0) ← (3, 3/2, 1, 2),
(4.9) holds with σ = 8 and

Ξ(t, u) := t‖u1‖2L6‖u2‖2L3 . (8.9)

– b = Q[j,µ,ν with j ≥ 2, thus |b| ≥ 11 and, by estimate (3.28) with (p, j0) ← (3/2, 2),
(4.9) holds with σ = 11 and

Ξ(t, u) := t
5
3 ‖u2‖4L3 . (8.10)

� If n1(b) = 5, by (1.12) and (1.23), either

– b = Rj,k,l,m,ν with m ≥ 2, thus |b| ≥ 7 and, by estimate (3.29) with
(p1, p2, p3, p4, j0, k0, l0,m0)← (3, 6, 6, 3, 1, 1, 1, 2), (4.9) holds with σ = 7 and

Ξ(t, u) := ‖u1‖4L6‖u2‖L3 . (8.11)

– b = R]j,k,l,µ,ν with l ≥ 2, thus |b| ≥ 9 and, by estimate (3.30) with (p, p1, p2, j0, k0, l0)←
(3/2, 3, 6, 1, 1, 2), (4.9) holds with σ = 9 and

Ξ(t, u) := t
5
6 ‖u1‖3L6‖u2‖2L3 . (8.12)

Step 2: Estimates of cross products. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · ·+
n1(bq) ≤ 5 and suppF(b1, . . . , bq) 6⊂ N .

We start with preliminary estimates.
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� By (3.22), for each bi ∈ B? with n1(bi) ≤ 5, (4.10) holds with σi = n1(bi) + 1, αi = n1(bi)/6
and Ξ(t, u) = t6/n1(bi)−1‖u1‖6L6 .

� If bi = Mj for some j ∈ J0, 2K, by (3.11),

|ξbi(t, u)| = |uj+1(t)| = t|bi|

|bi|!
t−(j+1)(j + 1)!|uj+1(t)| (8.13)

so (4.10) holds with σi = j + 1, αi = 1/2 and Ξ(t, u) = |(u1, u2, u3)(t)|2.

� If bi = Mj for j ≥ 3, by (3.23) (with (p, j0)← (2, 3)), (4.10) holds with σi = 4, αi = 1/2 and
Ξ(t, u) = t‖u3‖2L2 .

We now consider the different possibilities, based on the condition n1(b1) + · · ·+ n1(bq) ≤ 5.

� Case: at least two bi ∈ B?1 . Then, by the preliminary steps, α ≥ 1/2 + 1/2 = 1.

� Case: q = 3, b1, b2 ∈ B?2, b3 ∈ B?1 . Then, by the preliminary steps, α = 1/3 + 1/3 + 1/2 > 1.

� Case: q = 2, b1 ∈ B?J3,4K, b2 ∈ B?1 . Then, by the preliminary steps, α = n1(b1)/6 + 1/2 ≥ 1.

� Case: q = 2, b1 ∈ B?2, b2 ∈ B?1 . Say b1 = Wj,ν and b2 = Mk−1. If j = 1, by (4.24),
supp[b1, b2] ⊂ {P1,k′,ν′ , k

′ ≥ 1, ν′ ≥ 0} ⊂ N . So we can assume that j ≥ 2. Then, by (3.24)
with (p, j0) ← (3/2, 2), (4.10) holds for b1 with σ1 = 5, α1 = 2/3 and Ξ(t, u) = t1/2‖u2‖3L3 .
By the preliminary steps, α1 + α2 = 2/3 + 1/2 > 1.

� Case: q = 2, b1, b2 ∈ B?2 . Say b1 = Wj,ν and b2 = Wj′,ν′ . If j = j′ = 1, by (4.25),
supp[b1, b2] ⊂ {Q[1,µ,µ′ ;µ, µ′ ≥ 0} ⊂ N . So we can assume that j ≥ 2. Then, by (3.24) with

(p, j0) ← (3/2, 2), (4.10) holds for b1 with σ1 = 5, α1 = 2/3 and Ξ(t, u) = t1/2‖u2‖3L3 . By
the preliminary steps, α1 + α2 = 2/3 + 1/3 = 1.

� Case: q = 2, b1 ∈ B?3, b2 ∈ B?2 . Say b1 = Pj,k,ν and b2 = Wl,µ. If j = k = l = 1, by (4.25),

supp[b1, b2] ⊂ {R]1,1,1,µ′,ν′} ⊂ N . So we can assume that l ≥ 2 (in which case α2 = 2/3) or
k ≥ 2. In the latter case, using (3.25) with (p1, p2, j0, k0) ← (3, 3, 1, 2), (4.10) holds for b1
with σ1 = 5, α1 = 2/3 and Ξ(t, u) = t1/2‖u1‖3L6‖u2‖3/2L3 . In both cases α1 + α2 ≥ 1.

8.3 Vectorial relations

Lemma 8.3. Under the assumptions of Theorem 8.1,

1. the vectors fM0
(0), fM1

(0), fM2
(0) are linearly independent,

2. span{fM0
(0), fM1

(0), fM2
(0)} ∩ span{fW1,ν

(0); ν ∈ N} = {0}.

Proof. For j ∈ {1, 2}, Nj is stable by right-bracketing with X0. Thus Nj(f)(0) is stable by left
multiplication by H0 := Df0(0) and the assumptions imply that

∀j ∈ {1, 2}, ν ∈ N, fWj,ν
(0) = Hν

0 fWj
(0) ∈ Nj(f)(0) ⊂ N3(f)(0). (8.14)

In particular, since S2,J1,4K(X) = span{Wj,ν ; j ∈ {1, 2}, ν ∈ N, 2j + ν − 1 ≤ 4},

S2,J1,4K(f)(0) ⊂ N3(f)(0). (8.15)

Proof of statement 1. We assume there exists (β0, β1, β2) ∈ R3 \ {0} such that fB1
(0) = 0 where

B1 = β2M2 + β1M1 + β0M0. One may assume that β2 = 1; otherwise consider [B1, X0] or
[[B1, X0], X0] and renormalize. Then fB2(0) = 0 where

B2 = ad2
B1

(X0) = [M2 + β1M1 + β0M0,M3 + β1M2 + β0M1] ∈W3 + S2,J1,4K(X) (8.16)
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and (8.15) leads to a contradiction with the assumption fW3
(0) /∈ N3(f)(0).

Proof of statement 2. We assume there exists (γ0, γ1, γ2) ∈ R3 \ {0} and W ∈ span{W1,ν ; ν ≥ 0}
such that fB4

(0) = 0 where B4 = γ2M2 + γ1M1 + γ0M0 + W . As previously, one may assume
γ2 = 1. Then fB5

(0) = 0 where

B5 = ad2
B4

(X0) = [M2 + γ1M1 + γ0M0 +W,M3 + γ1M2 + γ0M1 + [W,X0]]

∈W3 +B6 +B7 + S2,J1,4K(X)
(8.17)

where B6 ∈ span{[Ml,W1,ν ]; l ∈ N, ν ∈ N} and B7 ∈ span{[W1,ν ,W1,µ]; ν, µ ∈ N}. By (4.24),
suppB6 ⊂ {P1,l,ν ; l ∈ N∗, ν ∈ N} ⊂ N3. By (4.25), suppB7 ⊂ {Q[1,µ,ν ;µ, ν ∈ N} ⊂ N3. Together
with (8.15), this leads to a contradiction.

8.4 Closed-loop estimate

Lemma 8.4. Under the assumptions of Theorem 8.1,

|(u1, u2, u3)(t)| = O
(
|x(t;u)|+ ‖u1‖3L3 + ‖u2‖2L2 + t

1
2 ‖u3‖L2

)
. (8.18)

Proof. By Theorem 4.4 with M ← 2,

x(t;u) = Z2(t, f, u)(0) +O
(
‖u1‖3L3 + |x(t;u)|1+ 1

2

)
. (8.19)

Let i ∈ J0, 2K. By Lemma 8.3, we can consider P, a component along fMi
(0), parallel to N (f)(0)

where N := ({M0,M1,M2}\Mi)∪{W1,ν ; ν ∈ N}. We intend to apply Proposition 4.6 with M ← 2,
L← 5, b←Mi and N as above, so that (4.11), for the appropriate choice of Ξ(t, u), will yield

PZ2(t, f, u)(0) = ui+1(t) +O
(
|(u1, u2, u3)(t)|2 + t

1
2 ‖u3‖L2

)
. (8.20)

Then, combining (8.19) and (8.20) concludes the proof of (8.18). Let us check that the required
estimates are satisfied.

Step 1: Estimates of other coordinates of the second kind. Let b ∈ B?J1,2K such that b /∈ N ∪ {b}.
We investigate the different possibilities depending on n1(b).

� If n1(b) = 1, then b = Mj for j ≥ 3. Thus, by (3.23) (with (p, j0)← (2, 3)), |b| ≥ 4 and (4.9)

holds with σ = 4 and Ξ(t, u) := t
1
2 ‖u3‖L2 .

� If n1(b) = 2, by (1.9) and definition of N , one has b = Wj,ν with j ≥ 2. Thus |b| ≥ 5. By
estimate (3.24) with (p, j0)← (1, 2), (4.9) holds with σ = 5 and Ξ(t, u) := ‖u2‖2L2 .

Step 2: Estimates of cross products. Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? \ {X0} such that n1(b1) + · · ·+
n1(bq) ≤ 2 and suppF(b1, . . . , bq) 6⊂ N .

Thus q = 2 and b1 = Mj1 , b2 = Mj2 for some j1, j2 ∈ N. By the preliminary estimates of Step 2
of the proof of Lemma 8.2, b1 and b2 satisfy (4.10) with Ξ(t, u) = |(u1, u2, u3)(t)|2 + t‖u3‖2L2 and
α1 = α2 = 1/2.

8.5 Interpolation inequalities

Lemma 8.5. There exists C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u2‖3L3 ≤ C‖u‖L∞‖u3‖2L2 , (8.21)

‖u1‖6L6 ≤ C‖u‖4L∞‖u3‖2L2 . (8.22)

Proof. First, by Hölders’ inequality ‖u3‖L2 ≤ t 7
2 ‖u‖L∞ . Thus, (8.21) follows from Proposition 4.7

with φ ← u3, (p, q, r, s) ← (3, 2,∞, 2), (j, l) ← (1, 3), α ← 1/3. Similarly, (8.22) follows from
Proposition 4.7 with φ← u3, (p, q, r, s)← (6, 2,∞, 2), (j, l)← (2, 3), α← 2/3.
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8.6 Proof of the drift

Proof of Theorem 8.1. Let P be a component along fW3
(0) parallel to N3(f)(0). By Theorem 4.4

with M ← 5,

x(t;u) = Z5(t, f, u)(0) +O
(
‖u1‖6L6 + |x(t;u)|1+ 1

5

)
, (8.23)

where, by (8.3) and (3.12),

PZ5(t, f, u)(0) =
1

2

∫ t

0

u23 +O
(
|(u1, u2, u3)(t)|2 + t‖u3‖2L2 + ‖u2‖3L3

+ ‖u1‖3L6‖u3‖L2 + ‖u1‖6L6

)
.

(8.24)

Moreover, by the closed-loop estimate (8.18) and Hölder’s inequality,

|(u1, u2, u3)(t)|2 = O
(
|x(t;u)|2 + t‖u1‖6L6 + t

2
3 ‖u2‖4L3 + t‖u3‖2L2

)
. (8.25)

Gathering these equalities and the interpolation estimates (8.21) and (8.22) yields

Px(t;u) =
1

2

∫ t

0

u23 +O

((
t+ ‖u‖L∞ + ‖u‖4L∞

) ∫ t

0

u23 + |x(t;u)|1+ 1
5

)
. (8.26)

This implies, in the sense of Definition 1.15, a drift along fW3
(0), parallel to N3(f)(0), of amplitude

ξW3
, in the regime (t, ‖u‖L∞)→ 0.

9 An obstruction of the sixth order

The goal of this section is to prove Theorem 1.13, as a consequence of the following more precise
statement. In this section, we use the short-hand notation D for the following bracket of B?6 :

D := ad2
P1,1

(X0) (9.1)

and we introduce
ND := B?J1,7K \ {D}. (9.2)

Theorem 9.1. Assume that fD(0) /∈ ND(f)(0). Then system (1.1) has a drift along fD(0),
parallel to ND(f)(0), in the regime (t, ‖u‖L∞)→ 0.

9.1 Limiting examples

Let us give an example motivating the threshold 7 for this loose necessary condition. In [14,
Example 6.1], Kawski considers the systems

ẋ1 = u,

ẋ2 = x1,

ẋ3 = x31,

ẋ4 = x23 − x
p
2

(9.3)

for p ∈ {7, 8}. Written in the form (1.1), these systems satisfy

fM0
(0) = e1, fM1

(0) = e2, fP1,1
(0) = 6e3, fD(0) = 72e4, fadpM1

(X0)(0) = −p!e4 (9.4)

and fb(0) = 0 for all b ∈ B? \ {M0,M1, P1,1, D, adpM1
(X0)}. Thus, they feature a competition

between D and adpM1
(X0).

Kawski proves that this system is L∞-STLC for p = 7 (see [14, Claim 6.1]) but not L∞-STLC
for p = 8 (see [14, Claim 6.3]). This both motivates and is consistent with Theorem 1.13, which
can be seen as a generalization of Kawski’s negative claim.
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Remark 9.2. Theorem 1.13 is a “loose” condition, in the sense that we have not attempted to
separate, within B?6 and B?7, which brackets can or cannot compensate for the drift. We expect that
our method can be adapted to perform such a distinction.

An interesting example is studied by Kawski in [14, Example 5.3];
ẋ1 = u,

ẋ2 = x1,

ẋ3 = x31,

ẋ4 = x23 − x22x41,

(9.5)

which exhibits in B? a competition between D and ad2
M1

ad4
X1

(X0). Kawski proves that this systems
is L∞-STLC.

Conversely, the system 
ẋ1 = u,

ẋ2 = x1,

ẋ3 = x31,

ẋ4 = x23 + x3x
4
1

(9.6)

exhibits in B? a competition between D and adP1,1
ad4
X1

(X0) because fadP1,1
ad4
X1

(X0)(0) = 144e4.

Using the estimates of the next paragraphs, one can prove that this system is not L∞-STLC. This
hints towards the fact that it is not necessary to include the bracket adP1,1

ad4
X1

(X0) (of B?7) in the
list of brackets which can compensate D.

9.2 Algebraic preliminaries

To lighten the proof of the following paragraph, we start with algebraic preliminaries concerning
the decompositions on B? of some brackets of order 6, linked with cross products along D. We
use the trailing zero notation of Definition 1.6 and compute the decompositions of the considered
brackets on B? using Jacobi’s identity as many times as necessary (see [2, Section 2.1] for an
exposition and a more theoretical point of view on the classical recursive decomposition algorithm
on Hall bases).

For B ∈ L(X), we use the notation 〈B,D〉 to denote the coefficient of B along D in its
decomposition on B?.

9.2.1 Brackets of two elements

Lemma 9.3. Let a < b ∈ B?3 such that 〈[a, b], D〉 6= 0. Then a = P1,1 and b = P1,10.

Proof. First n0(a) + n0(b) = n0(D) = 3. Thus a = P1,1 and b ∈ {P1,10, P1,2}. Since (P1,1, P1,2) ∈
B? \ {D}, the conclusion follows.

Lemma 9.4. Let a ∈ B?2 and b ∈ B?4. Then 〈[a, b], D〉 = 0.

Proof. First n0(a) + n0(b) = n0(D) = 3. Since n0(b) ≥ 1, n0(a) ∈ J0, 2K so a ∈ {W1,W10}.

� Case a = W10. Then b = ad4
X1

(X0) and [a, b] = [W1, ad4
X1

(X0)], which is in B? \ {D}.

� Case a = W1. Then either,

– b = ad4
X1

(X0)0 and

[a, b] = [W1, ad4
X1

(X0)]0− [W10, ad4
X1

(X0)], (9.7)

both terms being in B? \ {D}.
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– b = (M1, ad3
X1

(X0)) and [a, b] = [W1, [M1, ad3
X1

(X0)]], which is in B? \ {D}.

Hence, in all cases 〈[a, b], D〉 = 0.

Lemma 9.5. Let a ∈ B?1 and b ∈ B?5, such that 〈[a, b], D〉 6= 0. Then a = X1 and b = R]1,1,1,1.

Proof. First n0(a) + n0(b) = n0(D) = 3. Since n0(b) ≥ 1, n0(a) ∈ J0, 2K so a ∈ {X1,M1,M2}.
� Case a = M2. Then b = ad5

X1
(X0) and [a, b] = [M2, ad5

X1
(X0)], which is in B? \ {D}.

� Case a = M1. Then either,

– b = ad5
X1

(X0)0 and

[a, b] = [M1, ad5
X1

(X0)]0− [M2, ad5
X1

(X0)], (9.8)

both terms being in B? \ {D}.
– b = (M1, ad4

X1
(X0)) and [a, b] = ad2

M1
ad4
X1

(X0), which is in B? \ {D}.
– b = (W1, ad3

X1
(X0)) and

[a, b] = [W1, [M1, P1,1]]− [P1,1, P1,2], (9.9)

both terms being in B? \ {D}.

� Case a = X1. Then either,

– b = ad5
X1

(X0)02 and

[a, b] = ad6
X1

(X0)02 − 2[M1, ad5
X1

(X0)] + [M2, ad5
X1

(X0)], (9.10)

all terms being in B? \ {D}.
– b = (M1, ad4

X1
(X0))0 and

[a, b] = [W1, ad4
X1

(X0)]0 + [M1, ad5
X1

(X0)]0− ad2
M1

ad4
X1

(X0), (9.11)

all terms being in B? \ {D}.
– b = ad2

M1
ad3
X1

(X0) and

[a, b] = 2[W1, [M1, P1,1]] + ad2
M1

ad4
X1

(X0)− [P1,1, P1,2], (9.12)

all terms being in B? \ {D}.
– b = (M2, ad4

X1
(X0)) and

[a, b] = [W10, ad4
X1

(X0)] + [M2, ad5
X1

(X0)], (9.13)

both terms being in B? \ {D}.
– b = (W1, ad3

X1
(X0))0 and

[a, b] = [W1, ad4
X1

(X0)]0− [W1, [M1, P1,1]] + [P1,1, P1,2] (9.14)

all terms being in B? \ {D}.
– b = (W10, ad3

X1
(X0)) and

[a, b] = −D + [P1,1, P1,2] + [W10, ad4
X1

(X0)], (9.15)

so 〈[a, b], D〉 = −1.

– b = (W1, (M1,W1)) and

[a, b] = [P1,1, P1,2] + [W1, [M1, ad3
X1

(X0)] (9.16)

both terms being in B? \ {D}.

Hence, the only case where 〈[a, b], D〉 = −1 6= 0 is a = X1 and b = (W10, ad3
X1

(X0)) = R]1,1,1,1.

36



9.2.2 Brackets of three elements

Lemma 9.6. For every a, b, c ∈ B?2, 〈[a, [b, c]], D〉 = 0.

Proof. By contradiction, assume that 〈[a, [b, c]], D〉 6= 0. Then n0(a) + n0(b) + n0(c) = 3. Thus
a = b = c = W1, so [a, [b, c]] = 0.

Lemma 9.7. Let a ∈ B?1, b ∈ B?2, c ∈ B?3 such that 〈[a, [b, c]], D〉 6= 0 or 〈[[a, b], c], D〉 6= 0. Then
a = X1 and, either (b = W10 and c = P1,1) or (b = W1 and c = P1,10).

Proof. First n0(a) + n0(b) + n0(c) = 3.

First form: [a, [b, c]].

� Case a = M1. Then b = W1, c = P1,1 and

[a, [b, c]] = −[P1,1, P1,2] + [W1, [M1, P1,1]], (9.17)

both terms being in B? \ {D}.

� Case a = X1.

– Case b = W10. Then c = P1,1 and 〈[a, [b, c]], D〉 = −1.

– Case b = W1. Then either,

* c = P1,10 and 〈[a, [b, c]], D〉 = +1.

* c = P1,2 and [a, [b, c]] = [W1, [M1, P1,1]] + [P1,1, P1,2] both terms being in B? \ {D}.

Second form: [[a, b], c].

� Case a = M1. Then b = W1 and c = P1,1 and [[a, b], c] = −[P1,1, P1,2] which is in B? \ {D}.

� Case a = X1.

– Case b = W10. Then c = P1,1 and 〈[[a, b], c], D〉 = −1.

– Case b = W1. Then either

* c = P1,10 and 〈[[a, b], c], D〉 = 1.

* c = P1,2 and [[a, b], c] = [P1,1, P1,2], which is in B? \ {D}.

This concludes the case disjunction.

Lemma 9.8. Let a, b ∈ B?1 and c ∈ B?4 such that 〈[a, [b, c]], D〉 6= 0, or 〈[[a, b], c]〉 6= 0. Then
a = b = X1.

Proof. First n0(a) + n0(b) + n0(c) = 3.

First form: [a, [b, c]] with a ≤ b.

� Case a = b = M1. Then c = ad4
X1

(X0) and [a, [b, c]] = ad2
M1

ad4
X1

(X0), which is in B? \ {D}.

� Case a = X1, b = M2. Then c = ad4
X1

(X0) and

[a, [b, c]] = [W10, ad4
X1

(X0)] + [M2, ad5
X1

(X0)], (9.18)

both terms being in B? \ {D}.

� Case a = X1, b = M1. Then either,
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– c = ad4
X1

(X0)0 and

[a, [b, c]] = [W1, ad4
X1

(X0)]0− [W10, ad4
X1

(X0)]− [M2, ad5
X1

(X0)]

− ad2
M1

ad4
X1

(X0) + [M1, ad5
X1

(X0)]0,
(9.19)

all terms being in B? \ {D}.
– c = (M1, ad3

X1
(X0)) and

[a, [b, c]] = −[P1,1, P1,2] + 2[W1, [M1, ad3
X1

(X0)]] + ad2
M1

ad4
X1

(X0), (9.20)

all terms being in B? \ {D}.

� Case a = b = X1. One may have 〈[a, [b, c]], D〉 6= 0. Since the conclusion of the lemma does
not concern c, we do not need to study all possible cases.

Thus, the only case leading to a (possibly) nonzero value of 〈[a, [b, c]], D〉 is a = b = X1.

Second form: [[a, b], c] with a < b. Since n0(a) + n0(b) ≤ 2, a = X1 and b = M1. Thus [a, b] = W1.
By Lemma 9.4, 〈[W1, c], D〉 = 0.

Third form: [a, [b, c]] with a > b. Then [a, [b, c]] = [[a, b], c] + [b, [a, c]] so the conclusions of the
previous forms apply.

9.3 Dominant part of the logarithm

Lemma 9.9. Assume that fD(0) /∈ ND(f)(0). Let P be a component along fD(0) parallel to
ND(f)(0). Then

PZ7(t, f, u)(0) = ξD(t, u) +O
(
|u1(t)|4 + |ξP1,1(t, u)|2 + |ξP1,10(t, u)|2

+ |u1(t)ξR]1,1,1,1
(t, u)|+ ‖u1‖8L8

)
.

(9.21)

Proof. We start with a preliminary estimate. By (3.22) and Hölder’s inequality, there exists c > 0
such that, for every t ≤ 1, u ∈ L1((0, t);R) and b ∈ B?J1,6K \ {X1},

|ξb(t, u)| ≤ c‖u1‖n1(b)
L8 . (9.22)

By (4.7) and definition of P,
PZ7(t, f, u)(0) = ηD(t, u). (9.23)

To apply Proposition 2.16, let us prove that, for every q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that
D ∈ suppF(b1, . . . , bq), for every t > 0 and u ∈ L1((0, t);R), the estimate (2.15) holds, for an
appropriate choice of Ξ. We split cases depending on q.

Case q = 2.

� Case n1(b1) = 5 and n1(b2) = 1. By Lemma 9.5, b1 = R]1,1,1,1 and b2 = X1 so (2.15) holds
with Ξ(t, u) := |u1(t)ξR]1,1,1,1

(t, u)|.

� Case n1(b1) = 4 and n1(b2) = 2. By Lemma 9.4, D /∈ suppF(b1, b2) in this case.

� Case n1(b1) = 3 and n1(b2) = 3. By Lemma 9.3, b1 = P1,10 and b2 = P1,1 so (2.15) holds
with Ξ(t, u) := |ξP1,1

(t, u)ξP1,10(t, u)|.

Case q = 3.
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� Case n1(b1) = 4, n1(b2) = 1, n1(b3) = 1. By Lemma 9.8, b2 = b3 = X1. Hence, using (9.22),
(2.15) holds with Ξ(t, u) := c|u1(t)|2‖u1‖4L8 .

� Case n1(b1) = 3, n1(b2) = 2, n1(b3) = 1. By Lemma 9.7, b3 = X1 and b1 ∈ {P1,1, P1,10}.
Hence, using (9.22), (2.15) holds with Ξ(t, u) := c|u1(t)|‖u1‖2L8(|ξP1,1(t, u)|+ |ξP1,10(t, u)|).

� Case n1(b1) = 2, n1(b2) = 2, n1(b3) = 2. By Lemma 9.6, D /∈ suppF(b1, b2, b3) in this case.

Case q = 4.

� Case n1(b1) = 3, n1(b2) = 1, n1(b3) = 1, n1(b4) = 1. Counting the occurrences of X0 and
using (9.22) implies that either,

– b3 = b4 = X1, and (2.15) holds with Ξ(t, u) := c‖u1‖4L8 |u1(t)|2.

– b1 = P1,1, b2 = b3 = M1 and b4 = X1, and thus (2.15) holds with Ξ(t, u) :=
|ξP1,1(t, u)|‖u1‖2L8 |u1(t)|.

� Case n1(b1) = 2, n1(b2) = 2, n1(b3) = 1, n1(b4) = 1. Counting the occurrences of X0 and
using (9.22) implies that either,

– b1 = b2 = W1, b3 = M1 and b4 = X1 and D /∈ suppF(b1, b2, b3, b4). Indeed, a non-zero
bracket of W1, W1, M1 and X1 is either a bracket over (M1, W1 and (X1,W1)) or over
(X1, W1 and (M1,W1)). But such brackets have a vanishing coefficient along D by
Lemma 9.7.

– b1 = W10, b2 = W1, b3 = b4 = X1 and (2.15) holds with Ξ(t, u) := ‖u1‖4L8 |u1(t)|2.

Case q ∈ {5, 6}. Counting the occurrences of X0 implies that bq−1 = bq = X1. Using (9.22) implies
that (2.15) holds with Ξ(t, u) := (1 + c)4|u1(t)|k‖u1‖6−kL8 for some k ∈ J2, 5K.

Conclusion. Gathering the previous estimates and using Young’s inequality proves (9.21).

9.4 Vectorial relations

Lemma 9.10. Assume that fD(0) /∈ ND(f)(0). Then

1. fX1
(0) /∈ span{fb(0); b ∈ B?1 \ {X1}},

2. fP1,1
(0) /∈ span{fb(0); b ∈ B?J1,3K \ {P1,1}}.

Proof. We proceed by contradiction.

First statement. Assume that fX1
(0) =

∑
j≥1 αjfMj

(0) where αj ∈ R and the sum is finite.

Hence fB1
(0) = 0 where B1 := X1 −

∑
j≥1 αjMj ∈ S1(X). Let B2 := ad2

ad3
B1

(X0)
(X0). Then

fB2
(0) = 0. Moreover, by definition of B1 and B2, one checks that B2 = D + B3 where B3 ∈

span{b ∈ B?6 ;n0(b) ≥ 4}. The equality fD(0) = −fB3
(0) contradicts the assumption on fD(0).

Second statement. Assume that there exists B0 ∈ span{b ∈ B?J1,3K;n1(b) < 3 or n0(b) > 1} such

that fP1,1(0) = fB0(0). Let B1 := P1,1 − B0 so that fB1(0) = 0. Then fB2(0) = 0 where

B2 := ad2
B1

(X0). Thus fD(0) = fB3
(0) where B3 ∈ span{b ∈ B?J1,6K;n1(b) ≤ 5 or n0(b) ≥ 4}, which

contradicts the assumption on fD(0).
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9.5 Closed-loop estimates

Lemma 9.11. Assume that fD(0) /∈ ND(f)(0). Then

|u1(t)| = O
(
|x(t;u)|+ ‖u1‖2L2

)
, (9.24)∣∣ξP1,1

(t, u)
∣∣ = O

(
|x(t;u)|+ ‖u1‖4L4

)
. (9.25)

Proof. We rely on Lemma 9.10.

First estimate. By Theorem 4.4 with M ← 1,

x(t;u) = Z1(t, f, u)(0) +O
(
‖u1‖2L2 + |x(t;u)|1+1

)
. (9.26)

By Lemma 9.10, we can consider P, a component along f1(0), parallel to N (f)(0) where N :=
B?1 \ {X1}. Hence PZ1(t, f, u)(0) = u1(t). Thus (9.26) yields (9.24).

Second estimate. By Theorem 4.4 with M ← 3,

x(t;u) = Z3(t, f, u)(0) +O
(
‖u1‖4L4 + |x(t;u)|1+ 1

3

)
. (9.27)

By Lemma 9.10, we can consider P, a component along fP1,1
(0), parallel to N (f)(0) where N :=

B?J1,3K \ {P1,1}. By (4.7),

PZ3(t, f, u)(0) = ηP1,1(t, u). (9.28)

We apply Proposition 2.16 (see below) to obtain

ηP1,1
(t, u) = ξP1,1

(t, u) +O
(
|u1(t)|‖u1‖2L2 + |u1(t)|2‖u1‖L1

)
. (9.29)

Then (9.27), (9.28) and (9.29), combined with the previous estimate (9.24), yield (9.25).
Let us check the required conditions to obtain (9.29). Let q ≥ 2, b1 ≥ · · · ≥ bq ∈ B? such that

P1,1 ∈ suppF(b1, . . . , bq). Since n1(P1,1) = 3 and n0(P1,1) = 1, the only possibilities are

� q = 2, b1 = W1, b2 = X1, in which case

|ξb1(t, u)ξb2(t, u)| = |u1(t)|
∫ t

0

u21
2
≤ |u1(t)|‖u1‖2L2 . (9.30)

� q = 3, b1 = M1, b2 = b3 = X1, in which case

|ξb1(t, u)ξb2(t, u)ξb3(t, u)| = |u1(t)|2|u2(t)| ≤ |u1(t)|2‖u1‖L1 . (9.31)

This concludes the proof of (9.29) by Proposition 2.16.

9.6 Interpolation inequalities

Lemma 9.12. There exits C > 0 such that, for every t > 0 and u ∈ L1((0, t);R),

‖u1‖8L8 ≤ Ct|u1(t)|8 + C‖u‖2L∞ξD(t, u), (9.32)

|ξP1,10(t, u)|2 ≤ 2tξD(t, u), (9.33)

|ξR]1,1,1,1(t, u)| ≤ Ct‖u1‖2L2 |ξP1,1
(t, u)|+ Ct

1
2 ‖u1‖2L2ξD(t, u)

1
2 . (9.34)

Proof. First estimate. By integration by parts,∫ t

0

u81 = u51(t)

∫ t

0

u31 − 5

∫ t

0

u(s)u41(s)

(∫ s

0

u31

)
ds. (9.35)

40



By Cauchy-Scwharz and Hölder inequalities and (2.5), we obtain

‖u1‖8L8 ≤ t
5
8 |u1(t)|5‖u1‖3L8 + 30

√
2‖u‖L∞‖u1‖4L8ξD(t, u)

1
2 , (9.36)

which proves (9.32) using Young’s inequality.

Second estimate. By (2.5), ξP1,10 =
∫
ξP1,1 and ξD = 1

2

∫
ξ2P1,1

so (9.33) follows directly from the
Cauchy-Schwarz inequality.

Third estimate. By (2.5) and since R]1,1,1,1 = (W10, P1,1), integration by parts yields

ξR]1,1,1,1
(t, u) =

∫ t

0

ξW10ξ̇P1,1
= ξW10(t)ξP1,1

(t)−
∫ t

0

ξW1
ξP1,1

. (9.37)

Then (9.34) follows by the Cauchy-Schwarz inequality and the estimates ξW1
(0)(t) ≤ t‖u1‖2L2 and

ξW1
(t) ≤ ‖u1‖2L2 .

9.7 Proof of the drift

Proof of Theorem 9.1. Let P be a component along fD(0) parallel to ND(f)(0). By Theorem 4.4
with M ← 7,

x(t;u) = Z7(t, f, u)(0) +O
(
‖u1‖8L8 + |x(t;u)|1+ 1

7

)
, (9.38)

where PZ7(t, f, u)(0) satisfies (9.21). Combining the closed-loop estimate (9.24) and the interpo-
lation estimate (9.32), one obtains

‖u1‖8L8 = O
(
|x(t;u)|8 + ‖u‖2L∞ξD(t, u)

)
. (9.39)

Substituting in the closed-loop estimate (9.24) yields

|u1(t)|4 = O
(
|x(t;u)|4 + ‖u‖2L∞ξD(t, u)

)
(9.40)

and in the closed-loop estimate (9.25) yields

|ξP1,1(t, u)|2 = O
(
|x(t;u)|2 + ‖u‖2L∞ξD(t, u)

)
. (9.41)

Eventually, using (9.34) and Young’s inequality,

|u1(t)ξR]1,1,1,1
(t, u)| = O

(
|ξP1,1

(t, u)|2 + ‖u1‖8L2 + |u1(t)|4 + tξD(t, u)
)

= O
(
|x(t;u)|2 + (t+ ‖u‖2L∞)ξD(t, u)

)
.

(9.42)

Gathering all these equalities in (9.21) and the interpolation estimate (9.33) yields

Px(t;u) = ξD(t, u) +O
((
t+ ‖u‖2L∞

)
ξD(t, u) + |x(t;u)|1+ 1

7

)
. (9.43)

This implies, in the sense of Definition 1.15, a drift along fD(0), parallel to ND(f)(0), of amplitude
ξD, in the regime (t, ‖u‖L∞)→ 0.

10 Obstructions without analyticity

Except for this section, all our paper is written with an analyticity assumption on the vector fields f0
and f1. This allows to work with convergent series. However, as announced in the introduction, the
obstruction mechanisms on which our necessary conditions for controllability rely are sufficiently
robust to absorb an approximation scheme for non-analytic vector fields.
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Let δ > 0. For smooth vector fields f0 and f1 in C∞(Bδ;Rd), one can still define all Lie brackets
fb ∈ C∞(Bδ;Rd) for b ∈ Br(X). The arguments of the next paragraphs will prove that all the
statements of Section 1.5 remain true without any change under this (weaker) regularity setting.

Furthermore, even in a finite regularity setting, one can give a sense to some Lie brackets, once
evaluated at zero. This stems from the equilibrium assumption f0(0) = 0. More precisely, the
value of fb(0) only depends on the coefficients of the Taylor expansion at 0 of f0 up to order n1(b)
and of f1 up to order n1(b)− 1 (see Lemma 10.6 below). This leads to the following definition.

Definition 10.1. Let M ∈ N∗, δ > 0, f0 ∈ CM (Bδ;Rd) with f0(0) = 0 and f1 ∈ CM−1(Bδ;Rd).
Let f̂0 := TMf0 (respectively f̂1 := TM−1f1) be the truncated Taylor series at 0 of f0 (resp. f1) of

order M (resp. M − 1). For b ∈ Br(X) with n1(b) ∈ J1,MK, we define fb(0) := f̂b(0).

With this notation, we will prove that the following corollaries of the main theorems of Sec-
tion 1.5 hold. As a rule of thumb, the theorems continue to hold as soon as the vector fields have
enough regularity for the involved Lie brackets to be defined as above. More rigorously, we assume
one extra derivative to be able to estimate the truncation error properly (see Lemma 10.7).

We make the blanket hypothesis that f0(0) = 0.

Corollary 10.2. Let M ∈ N∗. Assume that f0 ∈ CM+1, f1 ∈ CM . If system (1.1) is W−1,∞-
STLC, then, for every k ∈ N∗ such that 2k ≤M ,

ad2kf1 (f0)(0) ∈ SJ1,2k−1K(f)(0). (10.1)

Corollary 10.3. Let M ∈ N∗. Assume that f0 ∈ CM+1, f1 ∈ CM . Let m ∈ N∗. If system (1.1) is
Wm,∞-STLC, then, for every k ∈ N∗ such that π(k,m) ≤M ,

fWk
(0) ∈ SJ1,π(k,m)K\2(f)(0), (10.2)

where π(k,m) is defined in (1.20).

Corollary 10.4. Assume that system (1.1) is L∞-STLC. If f0 ∈ C4 and f1 ∈ C3, then fW2
(0) ∈

N2(f)(0) (see (1.22)). If f0 ∈ C6 and f2 ∈ C5, then fW3(0) ∈ N3(f)(0) (see (1.23)).

Corollary 10.5. Assume that f0 ∈ C8 and f1 ∈ C7. Then Theorem 1.13 holds.

All these corollaries follow form the main theorems and the approximation result Lemma 10.7.
One write x ≈ x̂, where x̂ is the solution to a system driven by the truncated Taylor expansions
of f0 and f1. For the x̂ system, one can apply the drift results of the previous sections. Since
the truncation error is of the same size (or smaller than) as the error terms which were already
absorbed by the drift, the drift conclusion remains true on the state x.

10.1 Brackets at zero only depend on low-order Taylor coefficients

Lemma 10.6. Let M ∈ N∗, δ > 0, f0 ∈ C∞(Bδ;Rd) with f0(0) = 0 and f1 ∈ C∞(Bδ;Rd). Let

f̂0 := TMf0 (respectively f̂1 := TM−1f1) be the truncated Taylor series at 0 of f0 (resp. f1) of

order M (resp. M − 1). For all b ∈ Br(X) with n1(b) ≤M , fb(0) = f̂b(0).

Proof. Step 1: Notations and preliminary remarks. As in [3, Section 3.1], for two vector fields
g, h ∈ C∞(Bδ;Rd) and k ∈ N∗, we write g =[k] h when the Taylor expansions of g and h at 0

are equal up to order k − 1. When k ≥ 2, g =[k] ĝ and h =[k] ĥ, straightforward computations

prove that [g, h] =[k−1] [ĝ, ĥ]. When k ≥ 1, g(0) = 0, g =[k+1] ĝ and h =[k] ĥ, straightforward

computations prove that [g, h] =[k] [ĝ, ĥ], so that there is “no loss of derivative” in this weak sense.

Step 2: Computation of brackets. We now proceed by induction on n1(b) ∈ J1,MK, proving that,

for every b ∈ Br(X) with 1 ≤ n1(b) ≤M , fb =[M+1−n1(b)] f̂b.
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When n1(b) = 1, by symmetry, we can assume that b = X10ν for some ν ∈ N. Since f1 =[M ] f̂1,

iterating the previous remarks yields fX10ν =[M ] f̂X10ν , which gives the initialization.
Now let b ∈ Br(X). By symmetry, we can assume that b = (b1, b2)0ν for some ν ∈ N, with

b1, b2 6= X0. By the induction hypothesis fb1 =[M+1−n1(b1)] f̂b1 and fb2 =[M+1−n1(b2)] f̂b2 . Hence,

by the preliminary remark, f(b1,b2) =[M+1−n] f̂(b1,b2) with n := 1 + maxn1(b1), n1(b2) ≤ n1(b).
And by the preliminary remark, bracketing with f0 preserves this approximation level, so we have
proved that fb =[M+1−n1(b)] f̂b.

Step 3: Evaluation at zero. When b = X0, f0(0) = f̂0(0). When b ∈ Br(X) with 1 ≤ n1(b) ≤ M ,

we have proved that fb =[M+1−n1(b)] f̂b so fb =[1] f̂b and thus fb(0) = f̂b(0).

10.2 Estimate of the approximation error

Lemma 10.7. Let M ∈ N∗, δ > 0, f0 ∈ CM+1(Bδ;Rd) with f0(0) = 0 and f1 ∈ CM (Bδ;Rd). Let

f̂0 := TMf0 (respectively f̂1 := TM−1f1) be the truncated Taylor series at 0 of f0 (resp. f1) of
order M (resp. M − 1). Then

x(t;u)− x̂(t;u) = O
(
‖u1‖M+1

LM+1 + |u1(t)|M+1
)
, (10.3)

where x̂(t;u) denotes the solution with initial data 0 to

˙̂x = f̂0(x̂) + u(t)f̂1(x̂). (10.4)

Proof. Such an estimate is straightforward to prove when the right-hand side of (10.3) is replaced
by ‖u‖M+1

L1 . To obtain an estimate involving only u1, we need to consider an appropriate “auxiliary
system” as in [1, Section 7] or [3, Section 6.3].

Step 1: Computations on the auxiliary system. Let Φ1 denote the flow of f1, which is well-defined
locally. We then introduce

y(t;u) := Φ1(−u1(t), x(t;u)). (10.5)

This new unknown satisfies y(0;u) = 0 and

ẏ = (Φ1(−u1(t))∗f0) (ŷ), (10.6)

where Φ1(−u1(t))∗f0 is the push-forward of the vector field f0 by the diffeomorphism Φ1(−u1(t), ·).
In particular, for v ∈ R and p ∈ Rd small enough, (see e.g. [1, equation (3.54)], albeit with swapped
indexes),

(Φ1(−v)∗f0)(p) =

M−1∑
k=0

vk

k!
adkf1(f0)(p) +

∫ v

0

(v − v′)M−1

(M − 1)!

(
Φ1(−v′)∗ adMf1 (f0)

)
(p) dv′. (10.7)

By Lemma 10.8 (with k ←M) and Lemma 10.9 (with g ← adMf1 (f0) and ν ← 0),

adMf1 (f0)(p) = adMf1 (f0)(0) + O
|p|→0

(|p|). (10.8)

Moreover, since f1 ∈ C1,
Φ1(v, p) = 0 + O

v→0,|p|→0
(|v|+ |p|) (10.9)

and
(∂pΦ1(v, p))

−1
= Id + O

v→0,|p|→0
(|v|+ |p|). (10.10)

Thus, combining the last three estimates proves that, for |v′| ≤ |v|(
Φ1(−v′)∗ adMf1 (f0)

)
(p) = adMf1 (f0)(0) + O

v→0,|p|→0
(|v|+ |p|). (10.11)
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Substituting in (10.7) and using Young’s inequality proves that

(Φ1(−v)∗f0) (p) =

M−1∑
k=0

vk

k!
adkf1(f0)(p) +

vM

M !
adMf1 (f0)(0) + O

v→0,|p|→0
(|v|M+1 + |p|M+1). (10.12)

Step 2: Grönwall estimate for the auxiliary systems. We introduce similarly ŷ(t;u) using Φ̂1 (the

flow of f̂1) and f̂0. Then the counterpart for (10.12) holds, mutatis mutandis, since f̂0 and f̂1 are
smooth. Using these estimates, one obtains

ẏ − ˙̂y =

M−1∑
k=0

uk1(t)

k!

(
adkf1(f0)(y)− adk

f̂1
(f̂0)(ŷ)

)
+
uM1 (t)

M !

(
adMf1 (f0)(0)− adM

f̂1
(f̂0)(0)

)
+O

(
|u1(t)|M+1 + |y|M+1 + |ŷ|M+1

)
.

(10.13)

For k = 0, since f0 ∈ CM+1 and f̂0 = TMf0,

f0(y)− f̂0(ŷ) = f0(y)− f̂0(y) + f̂0(y)− f̂0(ŷ) = O
(
|y|M+1 + |y − ŷ|

)
. (10.14)

For k ∈ J1,M − 1K, one has

adkf1(f0)(y)− adk
f̂1

(f̂0)(ŷ) = adkf1(f0)(y)− adk
f̂1

(f̂0)(y) + adk
f̂1

(f̂0)(y)− adk
f̂1

(f̂0)(ŷ)

= O
(
|y|M+1−k + |y − ŷ|

)
,

(10.15)

where we used the estimate

adkf1(f0)(p) = (TM−k adkf1(f0))(p) +O(|p|M+1−k), (10.16)

which follows from Lemma 10.8 and Lemma 10.9 (with g ← adkf1(f0) and ν ←M −k). Eventually,
we obtain

ẏ − ˙̂y = O
(
|y − ŷ|+ |u1(t)|M+1 + |y|M+1 + |ŷ|M+1

)
. (10.17)

Moreover, from classical estimates |y| = O(‖u1‖L1) and |ŷ| = O(‖u1‖L1) (see e.g. [3, Lemma 9]).
Thanks to Grönwall’s lemma, we conclude

y(t;u)− ŷ(t;u) = O
(
‖u1‖M+1

LM+1

)
. (10.18)

Step 3: Conclusion. First, using similar estimates as above, one proves that

Φ1(v, p)− Φ̂1(v, p) = O
v→0,|p|→0

(
|p|M+1 + |v|M+1

)
. (10.19)

(For example, one can bound the difference between the trajectories to ż = f1(z), z(0) = p

and ˙̂z = f̂1(ẑ), ẑ(0) = p, at time v, using a Grönwall estimate, then apply Young’s inequality).
Therefore, we obtain

x− x̂ = Φ1(u1(t), y)− Φ1(u1(t), ŷ) + Φ1(u1(t), ŷ)− Φ̂1(u1(t), ŷ)

= O
(
|y − ŷ|+ |ŷ|M+1 + |u1(t)|M+1

)
,

(10.20)

where we can use again the estimate ŷ = O(‖u1‖L1), which concludes the proof of (10.3).

Lemma 10.8. Let M ∈ N∗ and δ > 0. Let f0 ∈ CM+1(Bδ;Rd) and f1 ∈ CM (Bδ;Rd). For each
k ∈ J1,MK, there exists hk ∈ CM+1−k(Bδ;Rd) such that

adkf1(f0) = −Dkf1 · (f0, f1, . . . , f1) + hk. (10.21)
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Proof. For k = 1, this holds with h1 := Df0 · f1 ∈ CM . Then the general formula follows by
induction on k.

Lemma 10.9. Let ν ∈ N and δ > 0. Assume that g ∈ Cν(Bδ;Rd) is of the form g = Af0 + h
where A ∈ Cν(Bδ;Md(R)) and h ∈ Cν+1(Bδ;Rd). Then, if f0(0) = 0 and f0 ∈ Cν+1(Bδ;Rd),

g(p) = (Tνg)(p) + O
p→0

(|p|ν+1), (10.22)

where Tνg denotes the truncated Taylor series at 0 of g.

Proof. The claimed estimate is straightforward when g ∈ Cν+1. In particular, by linearity, one can
assume that h = 0. When ν = 0, A ∈ C0 so is locally bounded, and, since f0 ∈ C1 with f0(0) = 0,
f0(p) = O

p→0
(|p|) and g(p) = A(p)f0(p) = O

p→0
(|p|). Then, one proceeds by induction. Assuming

Lemma 10.9 holds for some ν ∈ N, let us prove it at step ν + 1. Using Taylor’s formula

g(p) = g(0) +

∫ 1

0

(Dg(sp))p ds. (10.23)

Moreover, Dg = (DA)f0 + A(Df0), where DA ∈ Cν , f0 ∈ Cν+2, ADf0 ∈ Cν+1. In particular, the
induction assumption applies and

Dg(sp) = (Tν(Dg))(sp) + O
p→0

(|sp|ν+1). (10.24)

Combining both equalities yields

g(p) = g(0) +

∫ 1

0

(Tν(Dg))(sp)p ds+ O
p→0

(|p|ν+2) = (Tν+1g)(p) + O
p→0

(|p|ν+2), (10.25)

which concludes the proof.

A Proofs of technical results and estimates

A.1 Universal rough estimate for coordinates of the second kind

Proof of Proposition 3.8. The proof is by induction on k ∈ N∗.

Case k = 1. Then b = X10ν for some ν ≥ 1 and |b| = ν + 1. Thus, for every t > 0 and
u ∈ L1((0, t);R),

|ξb(t, u)| =
∣∣∣∣∫ t

0

(t− s)ν−1

(ν − 1)!
u1(s) ds

∣∣∣∣ ≤ tν−1

(ν − 1)!
‖u1‖L1 ≤ 2

(2t)ν+1

(ν + 1)!
t−2‖u1‖L1 , (A.1)

which gives the conclusion with c(1) := 4.

Case k ≥ 2. To simplify notations, we write c instead of c(k−1) and, without loss of generality, we
assume that 1 ≤ c(1) ≤ · · · ≤ c(k − 1) = c. Let b ∈ B? \ {X1} with n1(b) = k. Then b = b∗0ν for
some ν ≥ 0 and there exists j ∈ N∗, m1, . . . ,mj ∈ N∗, m ∈ N and b1 > · · · > bj > X1 ∈ B?J1,k−1K

such that b∗ = adm1

b1
. . . ad

mj
bj

admX1
(X0). In particular, k = n1(b) = n1(b∗) = m1n1(b1) + · · · +

mjn1(bj) +m and |b| = m1|b1|+ · · ·+mj |bj |+m+ ν + 1.
First, for each i ∈ J1, jK, using the induction assumption and Hölder’s inequality,

|ξbi(t, u)| ≤ (ct)|bi|

|bi|!
t−n1(bi)(1+ 1

k )‖u1‖n1(bi)

Lk
. (A.2)
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Thus, by (2.5),

|ξb∗(t, u)| =

∣∣∣∣∣
∫ t

0

ξm1

b1
(s, u)

m1!
. . .

ξ
mj
bj

(s, u)

mj !

um1 (s)

m!
ds

∣∣∣∣∣
≤ (ct)1+m+

∑
mi|bi|

m!|b1|!m1 · · · |bj |!mj
t−(m+

∑
min1(bi))(1+ 1

k )‖u1‖m+
∑
min1(bi)

Lk

≤
(
2k+1ct

)|b|
|b|!

t−(1+k)‖u1‖kLk ,

(A.3)

where we used ‖u1‖mLm ≤ t1+mt
−m(1+ 1

k )‖u1‖mLk and

|b|! =

(
1 +m+

j∑
i=1

mi|bi|

)
! ≤ 2(

∑
mi+2)−11!m!

j∏
i=1

|bi|!mi (A.4)

which follows from (4.1) and the estimate m1 + · · ·+mj ≤ k.
Finally, if ν ≥ 1, using Lemma 3.5 and (4.1),

|ξb(t, u)| =
∣∣∣∣∫ t

0

(t− s)ν−1

(ν − 1)!
ξb∗(s, u) ds

∣∣∣∣
≤ tν

ν!

(2k+1ct)|b
∗|

|b∗|!
t−(1+k)‖u1‖kLk

≤ (2k+2ct)|b|

|b|!
t−(1+k)‖u1‖kLk ,

(A.5)

which gives the conclusion with c(k) := 2k+2c.

A.2 Precise estimates of coordinates up to the fifth order

We start with an elementary estimate.

Lemma A.1. For every p ∈ [1,∞], j0 ≤ j ∈ N∗, t > 0 and u ∈ L1((0, t);R),

‖uj‖Lp ≤
tj−j0

(j − j0)!
‖uj0‖Lp . (A.6)

Proof. One can assume j > j0 By definition, uj is the (j − j0)-th primitive of uj0 vanishing
iteratively at zero, i.e.

uj(s) =

∫ s

0

(s− s′)j−j0−1

(j − j0 − 1)!
uj0(s′) ds′. (A.7)

Thus uj = gj−j0−1∗ūj0 , where ūj0 is the extension of uj0 from (0, t) to R by zero and gν(s) := sν/ν!
for s ∈ (0, t) and 0 elsewhere, so that ‖gν‖L1 = tν+1/(ν + 1)!. Hence, (A.6) follows from Young’s
convolution inequality.

This leads to the following estimates.

Proof of Proposition 3.9. We prove the bounds one by one.

1. By (3.11), Hölder’s inequality, (A.6) and (4.1),

|ξMj
(t, u)| ≤ ‖uj‖L1 ≤ t1−

1
p ‖uj‖Lp

≤ tj−j0

(j − j0)!
t1−

1
p ‖uj0‖Lp

≤ (j0 + 1)!
(2t)j+1

(j + 1)!
t−(j0+1)t1−

1
p ‖uj0‖Lp ,

(A.8)
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which proves (3.23) with c := 2(j0 + 1)! since |Mj | = j + 1.

2. By (3.12), Hölder’s inequality, (A.6) and (4.1),

|ξWj,ν
(t, u)| ≤ tν

ν!
t1−

1
p ‖uj‖2L2p ≤

tν

ν!

t2(j−j0)

(j − j0)!2
t1−

1
p ‖uj0‖2L2p

≤ (2j0 + 1)!
(23t)2j+ν+1

(2j + ν + 1)!
t−(2j0+1)t1−

1
p ‖uj0‖2L2p ,

(A.9)

which proves (3.24) with c := 22(2j0 + 1)! since |Wj,ν | = 2j + ν + 1.

3. For (3.25), we proceed as in the second item, starting from (3.13).

4. For (3.26), we proceed as in the second item, starting from (3.14).

5. By (3.15) and (3.24), there exists c2 > 0 such that

|ξQ[j,µ,ν (t, u)| = 1

2

∣∣∣∣∫ t

0

(t− s)ν

ν!
ξ2Wj,µ

(s, u) ds

∣∣∣∣
≤ tν+1

(ν + 1)!

(
(c2t)

|Wj,µ|

|Wj,µ|!
t−(2j0+1)t1−

1
p ‖uj0‖2L2p

)2

≤ (22c2t)
2|Wj,µ|+ν+1

(2|Wj,µ|+ ν + 1)!
t−(4j0+3)t3−

2
p ‖uj0‖4L2p

(A.10)

using (4.1), which proves (3.27) with c := 22c2 since |Q[j,µ,ν | = 2|Wj,µ|+ ν + 1.

6. By (3.16), (A.6) and (3.24), there exists c2 > 0 such that

|ξQ]j,µ,k,ν (t, u)| = 1

2

∣∣∣∣∫ t

0

(t− s)ν

ν!
ξWj,µ(s, u)u2k(s) ds

∣∣∣∣
≤ tν

ν!

(
(c2t)

|Wj,µ|

|Wj,µ|!
t−(2j0+1)t1−

1
p1 ‖uj0‖2L2p1

)
t1−

1
p2

(
tk−k0

(k − k0)!
‖uk0‖L2p2

)2

≤ (2k0 + 1)!
(24c2t)

|Wj,µ|+2k+ν+1

(|Wj,µ|+ 2k + ν + 1)!

× t−(2j0+2k0+2)t2−
1
p1
− 1
p2 ‖uj0‖2L2p1 ‖uk0‖2L2p2

(A.11)

using (4.1), which proves (3.27) with c := 24c2(2k0+1)! since |Q]j,µ,k,ν | = 2|Wj,µ|+2k+ν+1.

7. For (3.29), we proceed as in the second item, starting from (3.17).

8. By (3.18), Hölder’s inequality, (A.6), and (3.24), there exists c2 > 0 such that

|ξR]j,k,l,µ,ν (t, u)| = αj,k

∣∣∣∣∫ t

0

(t− s)ν

ν!
ξWl,µ

(s, u)uk(s)u2j (s) ds

∣∣∣∣
≤ tν

ν!

(
(c2t)

|Wl,µ|

|Wl,µ|!
t−(2l0+1)t1−

1
p ‖ul0‖2L2p

)
t1−

1
p1
− 1
p2

×
(

tj−j0

(j − j0)!
‖uj0‖L2p1

)2
tk−k0

(k − k0)!
‖uk0‖Lp2

≤ (2j0 + k0 + 1)!
(24c2)t|Wl,µ|+2j+k+ν+1

(|Wl,µ|+ 2j + k + ν + 1)!
t−(2l0+2j0+k0+2)

× t2−
1
p−

1
p1
− 1
p2 ‖ul0‖2L2p‖uj0‖2L2p1‖uk0‖Lp2

(A.12)
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using (4.1), which proves (3.30) with c := 24c2(2j0 + k0 + 1)! since |R]j,k,l,µ,ν | = |Wl,µ|+ 2j+
kν + 1.

A.3 Expression of the logarithm from coordinates of the second kind

Proof of Lemma 4.5. For M, ` ∈ N∗, t > 0 and u ∈ L1((0, t);R), let

Z`M (t,X, u) :=
∑
b∈B?

n1(b)≤M,|b|≤`

ηb(t, u)e(b). (A.13)

In particular, the sum in the right-hand side is finite since |{b ∈ B?; |b| ≤ `}| ≤ 2`. By identification
in (2.10), one has

Z`M (t,X, u) =
∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B?\{X0}

h1n1(b1)+···hqn1(bq)≤M
h1|b1|+···+hq|bq|≤`

ξh1

b1
(t, u) · · · ξhqbq (t, u)Fq,h(b1, . . . , bq). (A.14)

The sum in the right-hand side is finite since the constraints imply that q ≤ M , h1, . . . , hq ≤ M
and |b1|, . . . , |bq| ≤ `. Applying the homomorphism of Lie algebras which sends X0 to f0 and X1

to f1, we therefore obtain that∑
b∈B?

n1(b)≤M,|b|≤`

ηb(t, u)fb =
∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B?\{X0}

h1n1(b1)+···hqn1(bq)≤M
h1|b1|+···+hq|bq|≤`

ξh1

b1
(t, u) · · · ξhqbq (t, u)fFq,h(b1,...,bq). (A.15)

Moreover, by Theorem 4.4, the sum (4.7) converges absolutely in Cω,r′ for every r′ ∈ [r/e, r). In
particular, Z`M (t, f, u)→ ZM (t, f, u) in Cω,r′ as `→ +∞. Hence, to obtain (4.8), it is sufficient to

prove that it’s right-hand side converges absolutely in Cω,r′ .
For each q ∈ N∗ and h ∈ (N∗)q, there exists a finite subset A ⊂ Br({Y1, . . . , Yq}) and coefficients

(αa)a∈A such that Fq,h(Y1, . . . , Yq) =
∑
αae(a). Let ‖Fq,h‖ :=

∑
|αa|. Since the set of considered

q and h is finite, ‖Fq,h‖ ≤ CF for some uniform bound CF > 0.
Then, by Lemma 4.2, ∣∣∣∣∣∣fFq,h(b1,...,bq)∣∣∣∣∣∣r′ ≤ CF r9(`− 1)!

(
9 |||f |||r
r

)`
(A.16)

where ` := h1|b1|+ · · ·+hq|bq|. Moreover, by Proposition 3.8, there exists c = c(M) > 0 such that,
for every b ∈ B? \ {X0},

|ξb(t, u)| ≤ 1

|b|!
(ct)n0(b)(c‖u1‖L∞)n1(b). (A.17)

Thus, by (4.1),

|ξh1

b1
(t, u) · · · ξhqbq (t, u)| ≤ (2M )`

`!
(ct)N0(c‖u1‖L∞)N1 (A.18)

where ` := h1|b1|+ · · ·+ hq|bq| and Ni := h1ni(b1) + · · ·+ hqni(bq).
Hence, ∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B?\{X0}

h1n1(b1)+···hqn1(bq)≤M

∣∣∣∣∣∣∣∣∣ξh1

b1
(t, u) · · · ξhqbq (t, u)fFq,h(b1,...,bq)

∣∣∣∣∣∣∣∣∣
r′

≤
∑

q∈N∗,h∈(N∗)q
b1>···>bq∈B?\{X0}

h1n1(b1)+···hqn1(bq)≤M

rCF
9

(2M )`(ct)N0(c‖u1‖L∞)N1

(
9 |||f |||r
r

)` (A.19)
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Since there are at most M choices for q, MM choices for h and (2`)M choices for the bi, the sum
is bounded by

M∑
N1=1

+∞∑
`=N1

MMM (2M )`
rCF

9
(2M )`(ct)`−N1(c‖u1‖L∞)N1

(
9 |||f |||r
r

)`
(A.20)

and this sum is finite as soon as 4M9ct |||f |||r < r.

A.4 Black-box result for the dominant part of the logarithm

Proof of Proposition 4.6. The proof relies on the formula (4.8) of Lemma 4.5. Through the com-
ponent P along fb(0) parallel to N (f)(0), all the terms on which we have not made any assumption
vanish. It thus suffices to check that the estimates for the remaining ones can indeed be summed.
First, for q = 1, using (4.9) and (4.3),

∑
b∈B?J1,MK\N

b 6=b

|ξb(t, u)Pfb(0)| ≤
L∑
σ=1

+∞∑
`=σ

∑
b∈B?J1,MK\N
b 6=b,|b|=`

(ct)`

`!
t−σΞ(t, u)

r

9
(`− 1)!

(
9 |||f |||r
r

)`

≤ r

9
Ξ(t, u)

L∑
σ=1

+∞∑
`=σ

(
18ct |||f |||r

r

)`
t−σ

(A.21)

which converges provided that 18ct |||f |||r < r, and is then bounded by CΞ(t, u) for an appropriate
constant depending on r, c and |||f |||r.

For q ≥ 2, we process similarly, using (A.16) and (4.10).
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[19] Héctor Sussmann. Lie brackets and local controllability: a sufficient condition for scalar-input
systems. SIAM J. Control Optim., 21(5):686–713, 1983.
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