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ABSTRACT
The synthetic Genetic Regulatory Networks (GRNs) have proven to be a power-
ful tool in studying gene regulation processes in living organisms. In this article,
the global dissipativity and corresponding attractive set for the Fuzzy Genetic Reg-
ulatory Networks (FGRNs) with mixed delays are investigated. By utilizing the
Lyapunov functional method and the Linear Matrix Inequalities (LMIs) techniques,
new sufficient conditions ensuring the global dissipativity and the global exponential
dissipativity of the suggested system are given. Moreover, the global attractive set
and global exponential attractive set are obtained. The derived criteria are of the
form of LMI, and hence they can be verified easily by the numerical software. Lastly,
two numerical examples with its simulations are given to illustrate the effectiveness
of the obtained results.

KEYWORDS
Fuzzy genetic regulatory networks, global dissipativity, global exponential
dissipativity, mixed delays.

1. Introduction

Recently, the developments of biological networks have been quite significant in the
field of science and technology. Biologically based networks such as neural networks and
GRNs have enabled new applications in integrated circuits like neurochips, as well as in
biological and biomedical science Plahte, Gjuvsland,& Omholt (2013); Wang, Qian,&
Dougherty (2010). In living cells, a large amount of genes and proteins are interacting
with one another by activation and repression. The mathematical modeling of GRNs
can provide insight into the complicated biological and chemical processes linked by
gene regulation Aouiti, & Dridi (2020, 2021); He, & Cao (2008); Sakthivel, Mathiyala-
gan,Lakshmanan,& Park (2013); Wang,Liao, Mao, & Liu (2009); Zhang, Fang, & Tang
(2011).
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A genetic regulatory network is a collection of DNA segments that control the ex-
pression of genes in cells. Its genetic regulation generates the behavior of cells allows
cell specialization in multicellular organisms by ”turning on” and ”turning off” certain
parts of the genome. In life sciences, especially in biology, regulatory networks are the
basis of models in full development, allowing a better understanding of the functioning
of living organisms. Errors in interactions between DNAs, mRNAs, and proteins at the
molecular level of corresponding cell lines cause many diseases such as cancer Noor,
Serpedin,Nounou,& Nounou (2012); Plahte et al. (2013); Wang et al. (2010); Weber,
Defterli,Gk, & Kropat (2011); Zhang, Fan, & Wu (2017).
Mathematically speaking, there are two categories of genetic network models: differen-
tial equation model which is a continuous model Cao,& Ren (2008); Li,& Lam (2010),
and Boolean model which is a discrete model Ding, Li, Li, & Sun (2018); Vasic, Ra-
vanmehr,& Krishnan (2011). One can easily see that in the progression of the genome
sequence, effects of time delay exist due to the limited speed in the slow transcription,
translation and transmission process. Time delays are inevitable in modeling the gene
regulation process (see papers Hu, Liang,& Cao (2015); Zhang, Wu, & Cui (2014);
Zhang, Wu,& Zou (2015)).
In mathematical modeling of real-world problems, uncertainty or vagueness is un-
avoidable. In order to take into account fuzziness, the fuzzy logic methodology is
considered to capture these inconveniences and manipulate data that was rather fuzzy
Gao, Xiao,Liu, & Wang (2018); Raza (2019); Su, Xia, Liu, & Wu (2018); Zhao, Wang,
Yan, & Shen (2019). Their dynamical behaviors have attracted growing attention from
many scholars. For example: In article Ali, Gunasekaran, Ahn, & Shi (2016), Ali, M.
S. et al., investigated the sampled-data stabilization problem for Takagi-Sugeno (T-S)
FGRNs subject to leakage delays. In paper Poblete,Parra,Gomez,Saldias,Garrido,&
Vargas (2009), Poblete, C. M. et al., presented the fuzzy logic in GRN Models. In
article Ram, Chetty,& Dix (2006), Ram, R. et al., proposed the fuzzy model for GRN
to search microarray datasets for activator/repressor regulatory relationship. In Rat-
navelu,Kalpana,& Balasubramaniam (2018), Ratnavelu, K. et al., investigated the
existence, uniqueness, and asymptotic stability analysis of the equilibrium point of
FGRNs with mixed delays.
The concentrations of mRNAs and proteins are not always approach the equilibrium
points, or the points will not be stable. In some cases, they will reach and stay a
bounded region far from the equilibrium points. This dynamic characteristic is called
dissipativity proposed by Belgian scientist I.Prigogine in the 1970s and has found
applications in many complex systems such as chemical reactions, fluid electronic
circuits, biological system. Up to now, a huge number of results on the global dissi-
pativity of dynamical systems have been reported in the literature. For instance: In
Wang, Dong, Xie,& Cao (2020), Wang, L. et al., discussed the global dissipativity for
stochastic GRNs in the presence of time-delays. In Ma, Zhang, & Li (2017), the au-
thors studied the dissipative analysis for comprehensive GRN models with fractional
Brownian motion, diffusion-reaction processes, Markovian jump and time-varying de-
lay. In article Shen,Huo, Yan,Park, & Sreeram (2019), Shen, H. et al., dealt with the
distributed dissipative state estimation issue of Markov jump GRNs with round-robin
scheduling. In Yu, Liu, Zeng, & Wu (2019), Yu, T. et al., investigated the problem of
dissipativity-based filtering for switched GRNs in the presence of stochastic perturba-
tion and time-varying delays. In Wang, Zhang, & Han (2015), Wang, J. et al., studied
the event-triggered generalized dissipativity filtering for a class of neural network with
time-varying delay. In Zhang & Han (2015), Zhang, X. M. and Han, Q. L. dealt with
the problem of a decentralized event-triggered dissipative control for systems with the

2



entries of the system outputs having different physical properties. We are aware that
the global dissipativity problems of delayed systems have recently received an increas-
ing attention. To the authors’ knowledge, the problem of dissipativity for FGRNs have
not been researched, it remains essential and challenging. The solution of this problem
is of great significance to the study of dynamic performance and control analysis for
the system of mRNAs and proteins. The objective of this work is to alternatively study
global dissipativity problem of GRNs with fuzzy logics and mixed delays. So, in this
article we have the following two parts:

• The global dissipativity of the fuzzy genetic regulatory networks with mixed
delays is obtained via Lyapunov functionals and linear matrix inequalities.
• The global exponential dissipativity for the corresponding model is successfully

proposed by using Lyapunov functionals.

The highlights and major contributions of this article are reflected in the following key
aspects:

X The global dissipativity problem of FGRNs with time delays and distributed delays
is provided.

X New set of sufficient conditions in terms of LMIs is derived to ensure the global
dissipativity and global exponential dissipativity results.

X The estimations of the positive invariant set, globally attractive set and globally
exponential attractive set are computed.

X In this work, we proposed a new framework which can cope with the fuzzy logic
and mixed delays at the same time.

The main structures of the article includes the following aspects: In Section 2, we
will present some notations, basic definitions and helpful lemmas. In Section 3, we will
establish our main results. In Section 4, two numerical examples will be presented. In
Section 5, we will draw with conclusions.

Notations:In this paper, R denotes the set of real numbers. Rn denotes the
set of all n-dimensional real vectors (real numbers). For a symmetric matrix
M ∈ Rn×n, M > 0, M ≥ 0 means that M is positive defined and positive semi-
defined matrix respectively, M−1 and MT denotes the matrix inverse and the matrix
transpose respectively. The symbol ? means the symmetric term in a symmetric
matrix.
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2. Preliminaries

In this manuscript, we focus our attention on the study of the global dissipativity of
the following model:

ζ̇i(t) = −biζi(t) +

n∑
j=1

cijfj(ξj(t− τ(t))) +

n∧
j=1

γijfj(ξj((t− η(t)))

+

n∨
j=1

δijfj(ξj(t− η(t))) +

n∧
j=1

αij

∫ t

t−σ(t)
fj(ξj(s))ds

+

n∨
j=1

βij

∫ t

t−σ(t)
fj(ξj(s))ds+ πi(t),

ξ̇i(t) = −aiξi(t) + eiζi(t− µ(t)) +

n∧
j=1

γ̄ijζj(t− η(t))

+

n∨
j=1

δ̄ijζj(t− η(t)) +

n∧
j=1

ᾱij

∫ t

t−ρ(t)
ζj(s)ds

+

n∨
j=1

β̄ij

∫ t

t−ρ(t)
ζj(s)ds.

(1)

The description of model 1 is as follows:

∗ ζi(·), ξi(·) are the concentrations of mRNA and protein of the ith node.
∗ B = diag{b1, · · · , bn} > 0, A = diag{a1, · · · , an} > 0 are the decay rates of mRNA

and protein, respectively.
∗ The function f(·) is generally a non-linear function with a form of monotony, denotes

the feedback regulation for the proteins during the transcription, which is usually
chosen as the Hill form

fj(ζj) =

( ζj
χj

)Hj(
1 + ( ζjχj

)Hj

)
where Hj stands for the Hill coefficients and χj is a positive constant.

∗ τ(·), η(·), µ(·) and σ(·), ρ(·) are the time-varying delays and distributed time-
varying delays respectively.

∗ E = diag{e1, · · · , en} represents the translation rate.
∗ π = diag{π1, · · · , πn} is the base transcriptional rate of the repressor of gene i with

|π(t)| ≤ π̃.
∗ γ = (γij)n×n, α = (αij)n×n, γ̄ = (γ̄ij)n×n, ᾱ = (ᾱij)n×n and δ = (δij)n×n, β =

(βij)n×n, δ̄ = (δ̄ij)n×n, β̄ = (β̄ij)n×n denotes elements of the fuzzy feedback
MIN template and MAX template, respectively.

∗
∧

and
∨

denote the fuzzy AND operation and OR operation, respectively.

∗ C = (cij)n×n is defined as follows:

cij =

 c̄ij if transcription factor j is an activator of gene i,
0 if there is no link from node j to i,
−c̄ij , if transcription factor j is a repressor of gene i.
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Now, we will adapt the following notations:
τ∗ = sup

t∈R
{τ(t)}, η∗ = sup

t∈R
{η(t)}, σ∗ = sup

t∈R
{σ(t)}, µ∗ = sup

t∈R
{µ(t)}, ρ∗ = sup

t∈R
{ρ(t)}, and

ν = max{τ∗, η∗, σ∗, µ∗, ρ∗}.
The initial values of model (1) are{

ζi(t) = ϕi(t), t ∈ [−ν, 0],
ξi(t) = ψi(t), t ∈ [−ν, 0], i = 1, 2, · · · , n, (2)

where ϕi(·), ψi(·) ∈ C([−ν, 0],Rn) which C([−ν, 0],Rn) represents the Banach space
of all continuous functions mapping from [−ν, 0] into Rn.

Throughout this work, the following assumptions are used:
Assumption 1 There exist constants l−j , l

+
j ≥ 0, such that for all s1, s2 ∈ R, s1 6=

s2, fj(·) satisfy:

l−j ≤
fj(s1)− fj(s2)

s1 − s2
≤ l+j , j = 1, 2, · · · , n.

with l−j = min
s≥0

ḟj(s) = 0 and l+j = max
s≥0

ḟj(s) =
(Hj − 1)(Hj−1)/Hj (Hj + 1)(Hj+1)/Hj

4χjHj
.

In the following, we denote

F+ = diag{l+1 , l
+
2 , · · · , l

+
n }.

Assumption 2 The time-varying delays and distributed time-varying delays τ(·), η(·),
σ(·), µ(·) and ρ(·) are differentiable and satisfy:
0 < τ̇(t) < τ̃ < 1, 0 < η̇(t) < η̃ < 1, 0 < σ̇(t) < σ̃ < 1, 0 < µ̇(t) < µ̃ < 1 and
0 < ρ̇(t) < ρ̃ < 1.

Definition 2.1. Aouiti,Sakthivel, & Touati (2020) The FGRNs (1) is said to be a
globally dissipative system, if there exists a compact set Υ1 ⊂ R2n such that for any
initial value (ϕT (s), ψT (s))T ∈ R2n\Υ1, s ∈ [−ν, 0], there exists T > 0 when t ≥ T ,
(ζT (t, ϕ), ξT (t, ψ))T ⊆ Υ1, where (ζT (t, ϕ), ξT (t, ψ))T denotes the solution of
system (1) from initial state (ϕT (s), ψT (s))T . In this case, Υ1 is called a globally
attractive set. A set Υ1 is called positive invariant, if for all (ϕT (s), ψT (s))T ∈ Υ1

implies (ζT (t, ϕ), ξT (t, ψ))T ⊆ Υ1 for all t ≥ 0.

Definition 2.2. Aouiti et al. (2020) Let Υ2 be a globally attractive set of the FGRNs
(1). The FGRNs (1) is said to be a globally exponentially dissipative system, if there
exists a compact set Υ2ε ⊃ Υ2 in R2n, such that for any initial value (ϕT (s), ψT (s))T ∈
R2n \Υ2, s ∈ [−ν, 0] there exists N($) > 0 and λ > 0 such that:

inf
(ζT (t),ξT (t))T∈R2n\Υ2ε

{∥∥∥∥( ζ(t, ϕ)
ξ(t, ψ)

)
−
(
ζ̃

ξ̃

)∥∥∥∥ ∣∣∣∣ ( ζ̃

ξ̃

)
∈ Υ2ε

}
≤ N($) exp(−λt),

where $ = (ϕT (s), ψT (s))T . The set Υ2ε is called as a globally exponentially
attractive set, where (ζT (t), ξT (t))T ∈ R2n\Υ2ε means (ζT (t), ξT (t))T ∈ R2n but
(ζT (t), ξT (t))T /∈ Υ2ε.
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Lemma 2.3. Ratnaveluet al. (2018)Let uj , vj , γij , δij ∈ R, rj : R→ R be continuous
functions, and i, j = 1, 2, · · · , n, then the following inequalities hold:

∣∣ n∧
j=1

γijrj(uj)−
n∧
j=1

γijrj(vj)
∣∣ ≤ n∑

j=1

|γij ||rj(uj)− rj(vj)|,

∣∣ n∨
j=1

δijrj(uj)−
n∨
j=1

δijrj(vj)
∣∣ ≤ n∑

j=1

|δij ||rj(uj)− rj(vj)|.

Lemma 2.4. Aouiti et al. (2020) Let x, y ∈ Rn, M be a appropriate dimensions
positive definite matrix, then we have:

2xT y ≤ xTM−1x+ yTMy.

3. Main results

In this section, we will introduce some criteria to guarantee the global dissipativity
and global exponential dissipativity for our FGRNs model.

Theorem 3.1. Suppose that Assumptions 1-2 hold. If there exists positive definite
matrices R1 = (r1ij)n×n, R2 = (r2ij)n×n, W = (wij)n×n, M1 = (m1

ij)n×n,

M2 = (m2
ij)n×n, M3 = (m3

ij)n×n and positive diagonal matrices J1 =

diag{J1
1 , · · · , J1

n}, J2 = diag{J2
1 , · · · , J2

n}, P = diag{p1, · · · , pn}, Q =
diag{q1, · · · , qn},
χ = diag{χ1, · · · , χn} such that the following LMIs holds:

Λ =



Ξ1,1 0 0 PC Ξ1,5 0 0 Ξ1,8 0
? Ξ2,2 0 0 0 QE Ξ2,7 0 Ξ2,9

? ? Ξ3,3 0 0 0 0 0 0
? ? ? Ξ4,4 0 0 0 0 0
? ? ? ? Ξ5,5 0 0 0 0
? ? ? ? ? Ξ6,6 0 0 0
? ? ? ? ? ? Ξ7,7 0 0
? ? ? ? ? ? ? −W 0
? ? ? ? ? ? ? ? −M1


< 0, (3)

where
Ξ1,1 = −2PB + P + J1, Ξ1,5 = P |γ|+ P |δ|, Ξ1,8 = P |α|+ P |β|,
Ξ2,2 = −2QA+ ρ∗M1 +M2 +M3 + F+χF+ + J2, Ξ2,7 = Q|γ̄|+Q|δ̄|,
Ξ2,9 = Q|ᾱ|+Q|β̄|, , Ξ3,3 = R1 +R2 + σ∗W − χ, Ξ4,4 = −(1− τ̃)R1,
Ξ5,5 = −(1− η̃)R2, Ξ6,6 = −(1− µ̃)M2, Ξ7,7 = −(1− η̃)M3.
Then system (1) is globally dissipative, and

Υ1 =
{

(ζ, ξ) ∈ R2n|ζT (t)J1ζ(t) ≤ θ1π̃TPπ̃, ξT (t)J2ξ(t) ≤ θ2π̃TPπ̃
}

is a positive invariant and globally attractive set of (1).
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Proof. Consider the following Lyapunov functional:

V (t) =

4∑
i=1

Vi(t), (4)

where

V1(t) =

n∑
i=1

ζi(t)piζi(t) +

n∑
i=1

ξi(t)qiξi(t),

V2(t) =

n∑
i=1

n∑
j=1

r1ij

∫ t

t−τ(t)
f2j
(
ξj(s)

)
ds+

n∑
i=1

n∑
j=1

r2ij

∫ t

t−η(t)
f2j
(
ξj(s)

)
ds,

V3(t) =

n∑
i=1

n∑
j=1

∫ t

t−σ(t)

∫ t

s
fj
(
ξj(s1)

)
wijfj

(
ξj(s1)

)
ds1ds

+

n∑
i=1

n∑
j=1

m1
ij

∫ t

t−ρ(t)

∫ t

s
ζ2j (s1)ds1ds,

V4(t) =

n∑
i=1

n∑
j=1

m2
ij

∫ t

t−µ(t)
ζ2i (s)ds+

n∑
i=1

n∑
j=1

m3
ij

∫ t

t−η(t)
ζ2j (s)ds.

The time-derivative of V1(·) along the solutions of system (1) is given by

V̇1(t) = 2

n∑
i=1

ζi(t)pi
[
− biζi(t) +

n∑
j=1

cijfj(ξj(t− τ(t))) +

n∧
j=1

γijfj(ξj(t− η(t)))

+

n∨
j=1

δijfj(ξj(t− η(t))) +

n∧
j=1

αij

∫ t

t−σ(t)
fj(ξj(s))ds

+

n∨
j=1

βij

∫ t

t−σ(t)
fj(ξj(s))ds+ πi(t)

]
+ 2

n∑
i=1

ξi(t)qi
[
− aiξi(t) + eiζi(t− µ(t)) +

n∧
j=1

γ̄ijζj(t− η(t))

+

n∨
j=1

δ̄ijζi(t− η(t)) +

n∧
j=1

ᾱij

∫ t

t−ρ(t)
ζj(s)ds+

n∨
j=1

β̄ij

∫ t

t−ρ(t)
ζj(s)ds]
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and by using Lemma 2.3 it yields

V̇1(t) ≤ −2

n∑
i=1

ζi(t)pibiζi(t) + 2

n∑
i=1

n∑
j=1

ζi(t)picijfj(ξj(t− τ(t)))

+ 2

n∑
i=1

n∑
j=1

ζi(t)pi|γij ||fj(ξj(t− η(t)))|+ 2

n∑
i=1

n∑
j=1

ζi(t)pi|δij ||fj(ξj(t− η(t)))|

+ 2

n∑
i=1

n∑
j=1

ζi(t)pi|αij |
∫ t

t−σ(t)
|fj(ξj(s))|ds

+ 2

n∑
i=1

n∑
j=1

ζi(t)pi|βij |
∫ t

t−σ(t)
|fj(ξj(s))|ds+ 2

n∑
i=1

ζi(t)piπi(t)

− 2

n∑
i=1

ξi(t)qiaiξi(t) + 2

n∑
i=1

ξi(t)qieiζi(t− µ(t))

+ 2

n∑
i=1

n∑
j=1

ξi(t)qi|γ̄ij ||ζj(t− η(t))|+ 2

n∑
i=1

n∑
j=1

ξi(t)qi|δ̄ij ||ζj(t− η(t))|

+ 2

n∑
i=1

n∑
j=1

ξi(t)qi|ᾱij |
∫ t

t−ρ(t)
|ζj(s)|ds+ 2

n∑
i=1

n∑
j=1

ξi(t)qi|β̄ij |
∫ t

t−ρ(t)
|ζj(s)|ds.

Then, we obtain

V̇1(t) ≤ −2ζT (t)PBζ(t) + 2ζT (t)PCf(ξ(t− τ(t))) + 2ζT (t)P |γ||f(ξ(t− η(t)))|

+ 2ζT (t)P |δ||f(ξ(t− η(t)))|+ 2ζT (t)P |α|
∫ t

t−σ(t)
|f(ξ(s))|ds

+ 2ζT (t)P |β|
∫ t

t−σ(t)
|f(ξ(s))|ds+ 2ζT (t)Pπ(t)− 2ξT (t)QAξ(t)

+ 2ξT (t)QEζ(t− µ(t)) + 2ξT (t)Q|γ̄||ζ(t− η(t))|

+ 2ξT (t)Q|δ̄||ζ(t− η(t))|+ 2ξT (t)Q|ᾱ|
∫ t

t−ρ(t)
|ζ(s)|ds

+ 2ξT (t)Q|β̄|
∫ t

t−ρ(t)
|ζ(s)|ds.

The time-derivative of V2(·) along the solutions of system (1) is given by

V̇2(t) =

n∑
i=1

n∑
j=1

r1ijf
2
j

(
ξj(t)

)
−

n∑
i=1

n∑
j=1

(1− τ̇(t))r1ijf
2
j

(
ξj(t− τ(t))

)
+

n∑
i=1

n∑
j=1

r2ijf
2
j

(
ξj(t)

)
−

n∑
i=1

n∑
j=1

(1− η̇(t))r2ijf
2
j

(
ξj(t− η(t))

)
,
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and then we obtain

V̇2(t) ≤
n∑
i=1

n∑
j=1

r1ijf
2
j

(
ξj(t)

)
−

n∑
i=1

n∑
j=1

(1− τ̃)r1ijf
2
j

(
ξj(t− τ(t))

)
+

n∑
i=1

n∑
j=1

r2ijf
2
j

(
ξj(t)

)
−

n∑
i=1

n∑
j=1

(1− η̃)r2ijf
2
j

(
ξj(t− η(t))

)
= fT

(
ξ(t)

)
R1f

(
ξ(t)

)
− (1− τ̃)fT

(
ξ(t− τ(t))

)
R1f

(
ξ(t− τ(t))

)
+ fT

(
ξ(t)

)
R2f

(
ξ(t)

)
− (1− η̃)fT

(
ξ(t− η(t))

)
R2f

(
ξ(t− η(t))

)
.

The time-derivative of V3(·) along the solutions of system (1) is given by

V̇3(t) =

n∑
i=1

n∑
j=1

σ(t)fj
(
ξj(t)

)
wijfj

(
ξj(t)

)
−

n∑
i=1

n∑
j=1

∫ t

t−σ(t)
fj
(
ξj(s)

)
wijfj

(
ξj(s)

)
ds

+

n∑
i=1

n∑
j=1

m1
ijρ(t)ζ2j (t)−

n∑
i=1

n∑
j=1

m1
ij

∫ t

t−ρ(t)
ζ2j (s)ds,

and then we obtain

V̇3(t) ≤ σ∗fT
(
ξ(t)

)
Wf

(
ξ(t)

)
−
(∫ t

t−σ(t)
f
(
ξ(s)

)
ds

)T
W

(∫ t

t−σ(t)
f
(
ξ(s)

)
ds

)
+ ρ∗ζT (t)M1ζ(t)−

(∫ t

t−ρ(t)
ζ(s)ds

)T
M1

(∫ t

t−ρ(t)
ζ(s)ds

)
.

The time-derivative of V4(·) along the solutions of system (1) is given by

V̇4(t) =

n∑
i=1

n∑
j=1

m2
ijζ

2
i (t)−

n∑
i=1

n∑
j=1

(1− µ̇(t))m2
ijζ

2
i (t− µ(t)) +

n∑
i=1

n∑
j=1

m3
ijζ

2
j (t)

−
n∑
i=1

n∑
j=1

m3
ij(1− η̇(t))ζ2j (t− η(t)),

and then we obtain

V̇4(t) ≤
n∑
i=1

n∑
j=1

m2
ijζ

2
i (t)−

n∑
i=1

n∑
j=1

(1− µ̃)m2
ijζ

2
i (t− µ(t)) +

n∑
i=1

n∑
j=1

m3
ijζ

2
j (t)

−
n∑
i=1

n∑
j=1

m3
ij(1− η̃)ζ2j (t− η(t))

= ζT (t)M2ζ(t)− (1− µ̃)ζT (t− µ(t))M2ζ(t− µ(t)) + ζT (t)M3ζ(t)

− (1− η̃)ζT (t− η(t))M3ζ(t− η(t)).

By employing the Lemma (2.4), we get

2ζT (t)Pπ(t) ≤ ζT (t)Pζ(t) + πT (t)Pπ(t).
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Under the Assumption 1. the following inequality holds

−fT (ξ(t))χf(ξ(t)) + ξT (t)F+χF+ξ(t) ≥ 0,

for any positive diagonal matrix χ = diag{χ1, χ2, · · · , χn}. It implies that

V̇ (t) ≤ ζT (t)[−2PB + P + J1]ζ(t) + 2ζT (t)PCf(ξ(t− τ(t)))

+ 2ζT (t)[P |γ|+ P |δ|]|f(ξ(t− η(t)))|+ 2ζT (t)[P |α|+ P |β|]
∫ t

t−σ(t)
|f(ξ(s))|ds

+ ξT (t)[−2QA+ ρ∗M1 +M2 +M3 + F+χF+ + J2]ξ(t)

+ 2ξT (t)QEζ(t− µ(t)) + 2ξT (t)[Q|γ̄|+Q|δ̄|]|ζ(t− η(t))|

+ 2ξT (t)[Q|ᾱ|+Q|β̄|]
∫ t

t−ρ(t)
|ζ(s)|ds+ fT

(
ξ(t)

)
[R1 +R2 + σ∗W − χ]f

(
ξ(t)

)
− (1− τ̃)fT

(
ξ(t− τ(t))

)
R1f

(
ξ(t− τ(t))

)
− (1− η̃)fT

(
ξ(t− η(t))

)
R2f

(
ξ(t− η(t))

)
−

(∫ t

t−σ(t)
f
(
ξ(s)

)
ds

)T
W

(∫ t

t−σ(t)
f
(
ξ(s)

)
ds

)
−

(∫ t

t−ρ(t)
ζ(s)ds

)T
M1

(∫ t

t−ρ(t)
ζ(s)ds

)
− (1− µ̃)ζT (t− µ(t))M2ζ(t− µ(t))− (1− η̃)ζT (t− η(t))M3ζ(t− η(t))

+ πT (t)Pπ(t)− ζT (t)J1ζ(t)− ξT (t)J2ξ(t),

and finally we obtain

V̇ (t) ≤ 4T (t)Λ4(t)− ζT (t)J1ζ(t)− ξT (t)J2ξ(t) + π̃TPπ̃,

where

4T (t) =

[
ζT (t), ξT (t), fT

(
ξ(t)

)
, fT

(
ξ(t− τ(t))

)
, |f

(
ξ(t− η(t))

)
|T ,

ζT (t− µ(t)), |ζ(t− η(t))|T ,
(∫ t

t−σ(t)
|f
(
ξ(s)

)
|ds
)T

,

(∫ t

t−ρ(t)
|ζ(s)|ds

)T]T
.

We choose given positive constants θ1, θ2 such that θ1 +θ2 = 1, θ1 6= 0, θ2 6= 0. Then,
by Λ < 0, one obtains:

V̇ (t) ≤ −ζT (t)J1ζ(t)− ξT (t)J2ξ(t) + (θ1 + θ2)π̃
TPπ̃, (5)

when, (ζT (t), ξT (t))T ∈ R2n�Υ1, i.e. (ζT (t), ξT (t))T /∈ Υ1. Accordingly, if
(ϕT (s), φT (s))T ∈ Υ1, then (ζT (t), ξT (t))T ⊆ Υ1, t ≥ 0, which results Υ1 is a posi-
tive invariant set of (1). If (ϕT (s), φT (s))T /∈ Υ1, there exist some T > 0 such that
(ζT (t), ξT (t))T ⊆ Υ1, t ≥ T , which results the system (1) is globally dissipative and
Υ1 is a positive invariant and globally attractive set of (1).

Remark 1. In Theorem 3.1, we construct the best Lyapunov functional and estimat-
ing their derivative by improved inequality technique is the main challenges in the
field of delayed systems. The method used in Theorem 3.1 attempts to do some ef-
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forts to estimate the fuzzy terms, and the distributed delays to obtain a linear matrix
inequality can be easily checked.

Remark 2. The conditions of Theorem 3.1 are expressed in terms of solution of several
LMIs. Therefore, the global dissipativity of the FGRNs (1) can be easily verified by
using the numerically effect Matlab LMI toolbox.

Theorem 3.2. Suppose that Assumptions 1-2 hold. If there exists constants θ1, θ2 ∈
(0, 1) and λ > 0 such that:

λ− (1− θ1)bi +
|ei|eλµ

∗

1− µ̃
+

n∑
j=1

(|δ̄ij |+ |γ̄ij |)eλη
∗

1− η̃
+

n∑
j=1

(|ᾱij |+ |β̄ij |)ρ∗eλρ
∗

1− ρ̃
< 0, (6)

λ− (1− θ2)ai +

n∑
j=1

|cij |l+j
1− τ̃

eλτ
∗

+

n∑
j=1

(|δij |+ |γij |)l+j
1− η̃

eλη
∗

+

n∑
j=1

(|αij |+ |βij |)σ∗eλσ
∗
l+j

1− σ̃
< 0, i = 1, 2, · · · , n. (7)

Then system (1) is globally exponentially dissipative, and

Υ2 =

{
(ζT , ξT )T ∈ R2n|

n∑
i=1

|ζi| ≤
ϑ1π̃

θ1bi
,

n∑
i=1

|ξi| ≤
ϑ2π̃

θ2ai
, i = 1, 2, · · · , n

}
is a positive invariant and globally exponentially attractive set of (1).

Proof. Consider the following Lyapunov functional:

V (t) =

5∑
i=1

Vi(t), (8)
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where

V1(t) = eλt
n∑
i=1

|ζi(t)|+ eλt
n∑
i=1

|ξi(t)|,

V2(t) =

n∑
i=1

n∑
j=1

|cij |
1− τ̃

∫ t

t−τ(t)
|fj(ξj(s))|eλ(s+τ

∗)ds

+

n∑
i=1

n∑
j=1

(|δij |+ |γij |)
1− η̃

∫ t

t−η(t)
|fj(ξj(s))|eλ(s+η

∗)ds,

V3(t) =

n∑
i=1

n∑
j=1

(|αij |+ |βij |)
1− σ̃

∫ 0

−σ(t)

∫ t

t+v
eλ(s+σ

∗)|fj(ξj(s))|dsdv,

V4(t) =

n∑
i=1

|ei|
1− µ̃

∫ t

t−µ(t)
eλ(s+µ

∗)|ζi(s)|ds

+

n∑
i=1

n∑
j=1

(|δ̄ij |+ |γ̄ij |)
1− η̃

∫ t

t−η(t)
eλ(s+η

∗)|ζj(s))|ds,

V5(t) =

n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)
1− ρ̃

∫ 0

−ρ(t)

∫ t

t+v
eλ(s+ρ

∗)|ζj(s)|dsdv.

Calculating the upper-right Dini derivative of V (·) along the solution of system (1) we
have:

D+V1(t) ≤ eλt
n∑
i=1

[
(λ− bi)|ζi(t)|+

n∑
j=1

|cij ||fj(ξj(t− τ(t)))|

+

n∑
j=1

|γij ||fjξj((t− η(t)))|+
n∑
j=1

|δij ||fj(ξj(t− η(t)))|

+

n∑
j=1

|αij |
∫ t

t−σ(t)
|fj(ξj(s))|ds+

n∑
j=1

|βij |
∫ t

t−σ(t)
|fj(ξj(s))|ds+ |πi(t)|

]
+ eλt

n∑
i=1

[
(λ− ai)|ξi(t)|+ |ei||ζi(t− µ(t))|+

n∑
j=1

|(γ̄ij |+ |δ̄ij |)|ζj(t− η(t))|

+

n∑
j=1

|(ᾱij |+ |β̄ij |)
∫ t

t−ρ(t)
|ζj(s)|ds

]
,
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D+V2(t) ≤
n∑
i=1

n∑
j=1

|cij |
1− τ̃

|fj(ξj(t))|eλ(t+τ
∗)

−
n∑
i=1

n∑
j=1

|cij |(1− τ̇(t))

1− τ̃
|fj(ξj(t− τ(t)))|eλ(t−τ(t)+τ∗)

+

n∑
i=1

n∑
j=1

(|δij |+ |γij |)
1− η̃

|fj(ξj(t))|eλ(t+η
∗)

−
n∑
i=1

n∑
j=1

(|δij |+ |γij |)(1− η̇(t))

1− η̃
|fj(ξj(t− η(t)))|eλ(t−η(t)+η∗)

≤
n∑
i=1

n∑
j=1

|cij |eλτ
∗
l+j

1− τ̃
|ξj(t)|eλt −

n∑
i=1

n∑
j=1

|cij ||fj(ξj(t− τ(t)))|eλt

+

n∑
i=1

n∑
j=1

(|δij |+ |γij |)eλη
∗
l+j

1− η̃
|ξj(t)|eλt

−
n∑
i=1

n∑
j=1

(|δij |+ |γij |)|fj(ξj(t− η(t)))|eλt,

D+V3(t) =

n∑
i=1

n∑
j=1

(|αij |+ |βij |)σ̇(t)

1− σ̃

∫ t

t−σ(t)
eλ(s+σ

∗)|fj(ξj(s))|ds

+

n∑
i=1

n∑
j=1

(|αij |+ |βij |)σ(t)

1− σ̃
eλ(t+σ

∗)|fj(ξj(t))|

−
n∑
i=1

n∑
j=1

(|αij |+ |βij |)
1− σ̃

∫ 0

−σ(t)
eλ(t+σ

∗+v)|fj(ξj(t+ v))|dv

=

n∑
i=1

n∑
j=1

(|αij |+ |βij |)σ(t)

1− σ̃
eλ(t+σ

∗)|fj(ξj(t))|

−
n∑
i=1

n∑
j=1

(|αij |+ |βij |)(1− σ̇(t))

1− σ̃

∫ t

t−σ(t)
eλ(s+σ

∗)|fj(ξj(s))|ds

≤
n∑
i=1

n∑
j=1

(|αij |+ |βij |)σ∗

1− σ̃
eλ(t+σ

∗)|fj(ξj(t))|

−
n∑
i=1

n∑
j=1

(|αij |+ |βij |)
∫ t

t−σ(t)
eλ(s+σ

∗)|fj(ξj(s))|ds

≤
n∑
i=1

n∑
j=1

(|αij |+ |βij |)σ∗eλσ
∗
l+j

1− σ̃
eλt|ξj(t)|

−
n∑
i=1

n∑
j=1

(|αij |+ |βij |)eλt
∫ t

t−σ(t)
|fj(ξj(s))|ds,
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D+V4(t) =

n∑
i=1

|ei|
1− µ̃

eλ(t+µ
∗)|ζi(t)|

−
n∑
i=1

|ei|(1− µ̇(t))

1− µ̃
eλ(t−µ(t)+µ

∗)|ζi(t− µ(t))|

+

n∑
i=1

n∑
j=1

(|δ̄ij |+ |γ̄ij |)
1− η̃

eλ(t+η
∗)|ζj(t))|

−
n∑
i=1

n∑
j=1

(|δ̄ij |+ |γ̄ij |)(1− η̇(t))

1− η̃
eλ(t−η(t)+η

∗)|ζj(t− η(t))|

≤
n∑
i=1

|ei|eλµ
∗

1− µ̃
eλt|ζi(t)| −

n∑
i=1

|ei|eλt|ζi(t− µ(t))|

+

n∑
i=1

n∑
j=1

(|δ̄ij |+ |γ̄ij |)eλη
∗

1− η̃
eλt|ζj(t))| −

n∑
i=1

n∑
j=1

(|δ̄ij |+ |γ̄ij |)eλt|ζj(t− η(t))|,

D+V5(t) =

n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)ρ̇(t)

1− ρ̃

∫ t

t−ρ(t)
eλ(s+ρ

∗)|ζj(s)|ds

+

n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)ρj(t)
1− ρ̃

eλ(t+ρ
∗)|ζj(t)|

−
n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)
1− ρ̃

∫ 0

−σ(t)
eλ(t+ρ

∗+v)|ζj(t+ v)|dv

=

n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)ρ(t)

1− ρ̃
eλ(t+ρ

∗)|ζj(t)|

−
n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)(1− ρ̇(t))

1− ρ̃

∫ t

t−ρ(t)
eλ(s+ρ

∗)|ζj(s)|ds

≤
n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)ρ∗

1− ρ̃
eλ(t+ρ

∗)|ζj(t)|

−
n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)
∫ t

t−ρ(t)
eλ(s+ρ

∗)|ζj(s)|ds

≤
n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)ρ∗eλρ
∗

1− ρ̃
eλt|ζj(t)|

−
n∑
i=1

n∑
j=1

(|ᾱij |+ |β̄ij |)eλt
∫ t

t−ρ(t)
|ζj(s)|ds,
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then, we can write

D+V (t) ≤ eλt
n∑
i=1

[
λ− (1− θ1)bi +

|ei|eλµ
∗

1− µ̃
+

n∑
j=1

(|δ̄ij |+ |γ̄ij |)eλη
∗

1− η̃

+

n∑
j=1

(|ᾱij |+ |β̄ij |)ρ∗eλρ
∗

1− ρ̃

]
|ζi(t)|

+ eλt
n∑
i=1

[
λ− (1− θ2)ai +

n∑
j=1

|cij |l+j
1− τ̃

eλτ
∗

+

n∑
j=1

(|δij |+ |γij |)l+j
1− η̃

eλη
∗

+

n∑
j=1

(|αij |+ |βij |)σ∗eλσ
∗
F+

1− σ̃

]
|ξi(t)|

− eλt
n∑
i=1

(
θ1bi|ζi(t)|+ θ2ai|ξi(t)| − π̃

)
. (9)

Combining (6),(7) with (9) and we choose given positive constants ϑ1, ϑ2 such that
ϑ1 + ϑ2 = 1, ϑ1 6= 0, ϑ2 6= 0. Then, the following inequality can be reached:

D+V (t) ≤ −eλt
n∑
i=1

[(
θ1bi|ζi(t)| − ϑ1π̃

)
+
(
θ2ai|ξi(t)| − ϑ2π̃

)]
, (10)

when (ζT (t), ξT (t)) ∈ R2n\Υ2, i.e. (ζT (t), ξT (t)) /∈ Υ2. Based on the proof of Theorem
3.1, we can say that the FGRNs system (1) is globally dissipative and Υ2 is a positive
invariant and globally attractive set of (1). Now, we have to manifest that system
(1) is globally exponentially dissipative, and Υ2 is globally exponentially attractive
set of (1). Immediately thereafter, integrating (10) between 0 to t (t > 0), we obtain
V (t) ≤ V (0), which yields

eλt
n∑
i=1

|ζi(t)|+ eλt
n∑
i=1

|ξi(t)| ≤ V (t) ≤ V (0),

and

n∑
i=1

|ζi(t)|+
n∑
i=1

|ξi(t)| ≤ sup
−ν≤s≤0

V (s)e−λt.

Let N = sup
−ν≤s≤0

V (s), we can write

inf
(ζT (t),ξT (t))T∈R2n\Υ2ε

{∥∥∥∥( ζ(t)
ξ(t)

)
−
(
ζ̃

ξ̃

)∥∥∥∥ ∣∣∣∣ ( ζ̃

ξ̃

)
∈ Υ2ε

}
≤

∥∥∥∥( ζ(t)− 0
ξ(t)− 0

)∥∥∥∥
≤ Ne−λt,

where Υ2ε ⊃ Υ2 ∈ R2n is a compact set.
Depending on definition 2.2, we can conclude that system (1) is globally exponentially
dissipative and Υ2 is globally exponentially attractive set.
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Remark 3. In article Aouiti, & Dridi (2020), the authors discussed the existence,
uniqueness and global exponential stability of the weighted pseudo almost automor-
phic solution for a class of delayed fuzzy genetic regulatory networks with Stepanov-like
weighted pseudo almost automorphic coefficients by using Banach fixed point theo-
rem and novel analysis techniques. In article Xue,Zhang, & Zhang (2020), Xue, Y. et
al., investigated the reachable set estimation problem for genetic regulatory networks
with time-varying delays and bounded disturbances and based on spectral properties
of Metzler matrices they established the global exponential stability criteria. In Liu,
Wang,& Xue (2020), the authors studied the problem of exponential stability analy-
sis of discrete-time genetic regulatory networks with time-varying discrete delays and
unbounded distributed delays without any auxiliary function or Lyapunov Krasovskii
functional. In Duan, Di,& Wang (2020), Duan, L. et al., derived the existence and
global exponential stability of almost positive periodic solutions for a class of genetic
regulatory networks with time varying delays by using the theory of dichotomy and
contraction mapping principle. However, our approach is based on Lyapunov func-
tional which is simple and easy to calculate their derivative and the linear matrix
inequality which is easily to check by MATLAB LMI toolbox. Therefore, the advan-
tages of the proposed method can be found better dissipativity performance it is faster
than classical ones and more precisely. Therefore, it can be obtained less conservative
results.

Remark 4. In this article, we propose the fuzzy logic model to predict changes in
expression values and infer causal relationship between genes. Our manuscript offers
a theoretical basis for the design of the fuzzy genetic regulatory networks with mixed
delays more effective in the resolution of many problem thanks to the template input
and/or output besides the sum of product operation. Hence, the obtained results can
enrich the study on dynamical characteristics of FGRNs and generalized many previous
works such as Liu et al. (2020); Manivannan,Cao,& Chong (2020); Qiao, Yan, Duan,
& Miao (2020); Zhang,Zhang,Xue, & Zhang (2020).

Remark 5. In Aouiti,Sakthivel, & Touati (2021), the authors investigated the global
dissipativity of fuzzy bidirectional associative memory neural networks with propor-
tional delays. In Chen, Lin, & Lan (2020), Chen, X. et al., studied the global dissi-
pativity of delayed discrete-time inertial neural networks. In Duan, Jian,& Wang, B
(2020), Duan, L. et al., discussed the problem of the global exponential dissipativ-
ity of neutral-type BAM inertial neural networks with mixed time-varying delays. In
Liu,& Jian (2019), Liu, J. and Jian, J. analyzed the global dissipativity of a class of
quaternion-valued BAM neural networks with time delay. In Zhang (2021), Zhou, L.
dealt with the problem of the global exponential dissipativity of impulsive recurrent
neural networks with multi-proportional delays. However, in this article we studied the
global dissipativity of FGRNs for two different concentrations variables of mRNA and
proteins which is different from model of neural networks. To the best of our knowl-
edge no results from the global dissipativity of fuzzy genetic regulatory networks with
mixed delays have appear in the literature. So, we attempted this goal successfully
and we obtained a sufficient condition to find a solution of this problem.

Remark 6. The method used in this article is based on the framework of Lyapunov-
Krasovskii functional (LKF) and linear matrix inequality (LMI). The LKF-based
method can be used to handle all time delays mentioned before and it is available
for not only global dissipativity but also many other problems, like stability, state
estimation, passivity analysis, and so on Chen, Zhou, &Zhang (2014); Sakthivel et al.
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(2013); Yu, Liu, Zeng, Zhang, Zeng, & Wu (2017). Meanwhile, the LMI-based crite-
ria can be easily checked through MATLAB/LMI toolbox for determining the global
dissipativity of the adressed system. .

4. Numerical Examples

In this section, numerical examples are presented to show the effectiveness of the
obtained theoretical analysis. Example 4.1 is provided to illustrate theorem 3.1, and
example 4.2 aims to verify theorem 3.2.

Example 4.1. For i = 1, 2 considering the following FGRNs:

ζ̇i(t) = −biζi(t) +

2∑
j=1

cijfj(ξj(t− τ(t))) +

2∧
j=1

γijfjξj((t− η(t)))

+

2∨
j=1

δijfj(ξj(t− η(t))) +

2∧
j=1

αij

∫ t

t−σ(t)
fj(ξj(s))ds

+

2∨
j=1

βij

∫ t

t−σ(t)
fj(ξj(s))ds+ πi(t),

ξ̇i(t) = −aiξi(t) + eiζi(t− µ(t)) +

2∧
j=1

γ̄ijζj(t− η(t))

+

2∨
j=1

δ̄ijζj(t− η(t)) +

2∧
j=1

ᾱij

∫ t

t−ρ(t)
ζj(s)ds

+

2∨
j=1

β̄ij

∫ t

t−ρ(t)
ζj(s)ds.

(11)

The regulatory function is taken as

fj(ξj) =
ξ2j

1 + ξ2j
, j = 1, 2,

i.e., the Hill coefficient is 2, so, it can be easily seen that: F+ = diag{0.65, 0.65}.
Let

B =

(
5 0
0 5

)
, C =

(
−1.1 1.3
−1.4 1.5

)
, γ =

(
−0.7 1.2
1.3 −0.5

)
,

δ =

(
1 0.1

0.4 0.6

)
, α =

(
0.4 0.3
0.6 0.4

)
, β =

(
0.1 −0.2
−0.4 0.15

)
,

A =

(
4 0
0 4

)
, E =

(
0.9 0
0 0.6

)
, γ̄ =

(
1 0.5

0.5 1

)
,

δ̄ =

(
0.01 0.02
0.01 0.02

)
, ᾱ =

(
0.01 −0.01
−0.02 0.02

)
, β̄ =

(
−0.04 0.06
0.03 −0.05

)
,

τ(t) = 1 + 0.5 sin(t), η(t) = 0.5(1 + cos(t)), σ(t) = 0.2 + 0.1 sin(t), µ(t) = 0.3 +
0.1 cos(t), ρ(t) = 0.1(1 + sin(t)), for i = 1, 2, u1(t) = 2 cos(t), u2(t) = 2.5 sin(t), and
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we choose θ1 = 0.6, θ2 = 0.4.
By solving (3) in Theorem 3.1, using Matlab LMI toolbox, we can obtain the feasible
solutions:

P =

(
64.2344 0

0 55.2398

)
, Q =

(
264.2962 0

0 258.9128

)
,

R1 =

(
264.9188 −47.3078
−47.3078 292.2987

)
, R2 =

(
261.4040 34.5731
34.5731 254.1741

)
,

W =

(
252.1110 8.3404
8.3404 257.4912

)
, M1 =

(
260.5774 −45.8304
−45.8304 271.3998

)
,

M2 =

(
354.3491 −93.7484
−93.7484 313.7145

)
, M3 =

(
542.3147 28.4778
28.4778 581.5108

)
,

J1 =

(
201.6960 0

0 156.7445

)
, J2 =

(
105.2631 0

0 126.2111

)
,

χ =

(
729.6485 0

0 761.8957

)
.

All the conditions in Theorem 3.1 are satisfied. Therefore, system (11) is globally
dissipative, and

Υ1 =

{(
ζ
ξ

)
∈ R4

∣∣ ζ21 + ζ22 ≤ 2.0859, ξ21 + ξ22 ≤ 2.0706

}
is a positive invariant and globally attractive set of (11). Using MATLAB/Simulink,
the figures 1, 2, 3 and 4 represent the trajectories of concentrations of mRNA ζ(t), the
trajectories of protein concentrations ξ(t), the transients responses of mRNA concen-
trations ζ(t) and the transients responses of protein concentrations ξ(t), respectively
in the FGRNs equation (11). Through the simulation, the protein concentrations and
mRNA enter and stay inside the set Υ1.

Example 4.2. For i = 1, 2, considering the following FGRNs:

ζ̇i(t) = −biζi(t) +

2∑
j=1

cijfj(ξj(t− τ(t))) +

2∧
j=1

γijfjξj((t− η(t)))

+

2∨
j=1

δijfj(ξj(t− η(t))) +

2∧
j=1

αij

∫ t

t−σ(t)
fj(ξj(s))ds

+

2∨
j=1

βij

∫ t

t−σ(t)
fj(ξj(s))ds+ πi(t),

ξ̇i(t) = −aiξi(t) + eiζi(t− µ(t)) +

2∧
j=1

γ̄ijζj(t− η(t))

+

2∨
j=1

δ̄ijζj(t− η(t)) +

2∧
j=1

ᾱij

∫ t

t−ρ(t)
ζj(s)ds

+

2∨
j=1

β̄ij

∫ t

t−ρ(t)
ζj(s)ds.

(12)
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Figure 1. The trajectories of concentrations of mRNA ζ(t) in system (11)

The regulatory function is taken as

fj(ξj) =
ξ2j

1 + ξ2j
, j = 1, 2,

i.e., the Hill coefficient is 2, so, it can be easily seen that: F+ = diag{0.65, 0.65}.
Let

B =

(
7 0
0 5

)
, C =

(
−0.7 0.5
−0.9 0.4

)
, γ =

(
−0.4 0.9
0.8 −0.3

)
,

δ =

(
0.7 0.3
0.2 0.3

)
, α =

(
0.2 0.1
0.3 0.2

)
, β =

(
0.3 −0.1
−0.5 0.3

)
,

A =

(
8 0
0 8

)
, E =

(
0.5 0
0 0.3

)
, γ̄ =

(
0.7 0.3
0.3 0.6

)
,

δ̄ =

(
0.04 0.05
0.03 0.06

)
, ᾱ =

(
0.05 −0.04
−0.05 0.07

)
, β̄ =

(
−0.09 0.08
0.06 −0.03

)
.

τ(t) = η(t) = 0.1 + 0.1 sin(t), σ(t) = µ(t) = 0.2 + 0.1 cos(t), ρ(t) = 0.2(1 + sin(t)), for
i = 1, 2, u1(t) = 1.5e−0.1t cos(t), u2(t) = 1.3e−0.1t sin(t), and we choose θ1 = 0.1, θ2 =
0.15, λ = 1.2, ϑ1 = 0.3, ϑ2 = 0.7.
All the conditions in Theorem 3.2 are satisfied. Therefore, system (12) is globally
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Figure 2. The trajectories of protein concentrations ξ(t) in system (11)

exponentially dissipative, and

Υ2 =

{(
ζ
ξ

)
∈ R4

∣∣∣∣ |ζ1|+ |ζ2| ≤ 1.6333, |ξ1|+ |ξ2| ≤ 1.4229

}
is a positive invariant and globally exponentially attractive set of (12). Using MAT-
LAB/Simulink, the figures 5, 6 and 7 represent the trajectories of concentrations of
mRNA and protein, the transients responses of mRNA concentrations ζ(t) and protein
concentrations ξ(t), respectively in the FGRNs equation (12). Through the simulation,
the protein concentrations and mRNA enter and stay inside the set Υ2.

5. Conclusions

Fuzzy genetic regulatory networks is a hot research topic in biology and biomedicine.
In this manuscript, we studied the global dissipativity problem for a class of FGRNs
with mixed delays. By using the Lyapunov functionals and the LMIs approach, we
obtained new sufficient conditions to guarantee the global dissipativity and global
exponential dissipativity of our proposed network model. At last, two numerical
examples with their simulations are presented to prove the applicability of our
theoretical results. To the best of our knowledge, there have been no results on
the global dissipativity of delayed fuzzy genetic regulatory networks until now.
Hence, the obtained results are essentially new and can enrich the corresponding
ones known in the literature. Our future work will focus on the investigation of
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Figure 3. Transient response of mRNA concentrations ζ(t) in system (11)

the global dissipativity of fuzzy inertial genetic regulatory networks with mixed delays.
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References

Ali, M. S., Gunasekaran, N., Ahn, C. K., & Shi, P. (2016). Sampled-data stabilization for fuzzy
genetic regulatory networks with leakage delays. IEEE/ACM Transactions on computational
biology and bioinformatics, 15 (1), 271–285.

Aouiti, C., & Dridi, F. (2020). Delayed Fuzzy Genetic Regulatory Net-
works: Novel Results. International Journal of Biomathematics,14(08),
2150028..https://doi.org/10.1142/S1793524521500285

Aouiti, C., & Dridi, F. (2021). Study of genetic regulatory networks with Stepanov-like pseudo-
weighted almost automorphic coefficients. Neural Computing and Applications, 33 (16),
10175–10187.

Aouiti, C., Sakthivel, R., & Touati, F. (2020). Global dissipativity of high-order Hopfield
bidirectional associative memory neural networks with mixed delays. Neural Computing
and Applications, 32 (14), 10183–10197.

Aouiti, C., Sakthivel, R., & Touati, F. (2021). Global dissipativity of fuzzy bidirectional asso-
ciative memory neural networks with proportional delays. Iranian Journal of Fuzzy Systems,
18 (2), 65–80.

Cao, J., & Ren, F. (2008). Exponential stability of discrete-time genetic regulatory networks
with delays. IEEE Transactions on Neural Networks, 19 (3), 520–523.

Chen, L., Zhou, Y., & Zhang, X. (2014). Guaranteed cost control for uncertain genetic regu-
latory networks with interval time-varying delays. Neurocomputing, 131, 105–112.

Chen, X., Lin, D., & Lan, W. (2020). Global dissipativity of delayed discrete-time inertial
neural networks. Neurocomputing, 390, 131–138.

Ding, X., Li, H., Li, X., & Sun, W. (2018). Stability analysis of Boolean networks with stochas-
tic function perturbations. IEEE Access, 7, 1323–1329.

Duan, L., Di, F., & Wang, Z. (2020). Existence and global exponential stability of almost

23



−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ζ
1
(t)

ζ 2
(t

)

Figure 6. Transient response of mRNA concentrations ζ(t) in system (12)

periodic solutions of genetic regulatory networks with time-varying delays. Journal of Ex-
perimental & Theoretical Artificial Intelligence, 32 (3), 453–463.

Duan, L., Jian, J., & Wang, B. (2020). Global exponential dissipativity of neutral-type BAM
inertial neural networks with mixed time-varying delays. Neurocomputing, 378, 399–412.

Gao, Y., Xiao, F., Liu, J., & Wang, R. (2018). Distributed soft fault detection for interval type-
2 fuzzy-model-based stochastic systems with wireless sensor networks. IEEE Transactions
on Industrial Informatics, 15 (1), 334–347.

He, W., & Cao, J. (2008). Robust stability of genetic regulatory networks with distributed
delay. Cognitive Neurodynamics, 2 (4), 355–361.

Hu, J., Liang, J., & Cao, J. (2015). Stabilization of genetic regulatory networks with mixed
time-delays: an adaptive control approach. IMA Journal of Mathematical Control and In-
formation, 32 (2), 343–358.

Li, P., & Lam, J. (2010). Disturbance analysis of nonlinear differential equation models of
genetic SUM regulatory networks. IEEE/ACM transactions on computational biology and
bioinformatics, 8 (1), 253–259.

Liu, C., Wang, X., & Xue, Y. (2020). Global exponential stability analysis of discrete-time
genetic regulatory networks with time-varying discrete delays and unbounded distributed
delays. Neurocomputing, 372, 100–108.

Liu, J., & Jian, J. (2019). Global dissipativity of a class of quaternion-valued BAM neural
networks with time delay. Neurocomputing, 349, 123–132.

Ma, Y., Zhang, Q., & Li, X. (2020). Dissipative control of Markovian jumping genetic regula-

24



0 0.05 0.1 0.15 0.2
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

ξ
1
(t)

ξ 2
(t

)

Figure 7. Transient response of protein concentrations ξ(t) in system (12)

tory networks with time-varying delays and reactiondiffusion driven by fractional Brownian
motion. Differential Equations and Dynamical Systems, 28 (4), 841-864.

Manivannan, R., Cao, J., & Chong, K. T. (2020). Generalized dissipativity state estimation
for genetic regulatory networks with interval time-delay signals and leakage delays. Com-
munications in Nonlinear Science and Numerical Simulation, 89, 105326..

Noor, A., Serpedin, E., Nounou, M., & Nounou, H. (2012). Inferring gene regulatory net-
works via nonlinear state-space models and exploiting sparsity. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 9 (4), 1203–1211.

Plahte, E., Gjuvsland, A. B., & Omholt, S. W. (2013). Propagation of genetic variation in
gene regulatory networks. Physica D: Nonlinear Phenomena, 256, 7–20.

Poblete, C. M., Parra, F. V., Gomez, J. B., Saldias, M. C., Garrido, S. S., & Vargas, H. M.
(2009). Fuzzy logic in genetic regulatory network models. International Journal of Comput-
ers Communications & Control, 4 (4), 363–373.

Qiao, Y., Yan, H., Duan, L., & Miao, J. (2020). Finite-time synchronization of
fractional-order gene regulatory networks with time delay. Neural Networks, 126, 1–
10.https://doi.org/10.1016/j.neunet.2020.02.004

Ram, R., Chetty, M., & Dix, T. I. (2006, July). Fuzzy model for gene regulatory network. In
2006 IEEE International Conference on Evolutionary Computation (pp. 1450–1455). IEEE.

Raza, K. (2019). Fuzzy logic based approaches for gene regulatory network inference. Artificial
intelligence in medicine, 97, 189–203.

Ratnavelu, K., Kalpana, M., & Balasubramaniam, P. (2018). Stability analysis of fuzzy ge-

25



netic regulatory networks with various time delays. Bulletin of the Malaysian Mathematical
Sciences Society, 41 (1), 491–505.

Sakthivel, R., Mathiyalagan, K., Lakshmanan, S., & Park, J. H. (2013). Robust state estima-
tion for discrete-time genetic regulatory networks with randomly occurring uncertainties.
Nonlinear dynamics, 74 (4), 1297–1315.

Shen, H., Huo, S., Yan, H., Park, J. H., & Sreeram, V. (2019). Distributed dissipative state
estimation for Markov jump genetic regulatory networks subject to round-robin scheduling.
IEEE transactions on neural networks and learning systems, 31 (3), 762–771.

Su, X., Xia, F., Liu, J., & Wu, L. (2018). Event-triggered fuzzy control of nonlinear systems
with its application to inverted pendulum systems. Automatica, 94, 236–248.

Vasic, B., Ravanmehr, V., & Krishnan, A. R. (2011). An information theoretic approach to
constructing robust Boolean gene regulatory networks. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 9 (1), 52–65.

Wang, H., Qian, L., & Dougherty, E. (2010). Inference of gene regulatory networks using
S-system: a unified approach. IET systems biology, 4 (2), 145–156.

Wang, J., Zhang, X. M., & Han, Q. L. (2015). Event-triggered generalized dissipativity filtering
for neural networks with time-varying delays. IEEE Transactions on Neural Networks and
Learning Systems, 27 (1), 77–88.

Wang, L., Dong, Y., Xie, D., & Cao, J. (2020). Global Dissipativity for Stochastic Genetic
Regulatory Networks With Time-Delays. IEEE Access, 8, 34880–34887.

Wang, Z., Liao, X., Mao, J., & Liu, G. (2009). Robust stability of stochastic genetic regulatory
networks with discrete and distributed delays. Soft Computing, 13 (12), 1199–1208.

Weber, G. W., Defterli, O., Gk, S. Z. A., & Kropat, E. (2011). Modeling, inference and opti-
mization of regulatory networks based on time series data. European Journal of Operational
Research, 211 (1), 1–14.https://doi.org/10.1016/j.ejor.2010.06.038

Xue, Y., Zhang, L., & Zhang, X. (2020). Reachable set estimation for genetic regulatory
networks with time-varying delays and bounded disturbances. Neurocomputing, 403, 203–
210.

Yu, T., Liu, J., Zeng, Q., & Wu, L. (2019). Dissipativity-based filtering for switched genetic reg-
ulatory networks with stochastic disturbances and time-varying delays. IEEE/ACM trans-
actions on computational biology and bioinformatics.DOI: 10.1109/TCBB.2019.2936351 Yu,
T., Liu, J., Zeng, Q., & Wu, L. (2019). Dissipativity-based filtering for switched genetic reg-
ulatory networks with stochastic disturbances and time-varying delays. IEEE/ACM trans-
actions on computational biology and bioinformatics, 18 (3), 1082–1092.

Yu, T., Liu, J., Zeng, Y., Zhang, X., Zeng, Q., & Wu, L. (2017). Stability analysis of ge-
netic regulatory networks with switching parameters and time delays. IEEE transactions
on neural networks and learning systems, 29 (7), 3047–3058.

Zhang, D., & Yu, L. (2011). Passivity analysis for stochastic Markovian switching genetic
regulatory networks with time-varying delays. Communications in Nonlinear Science and
Numerical Simulation, 16 (8), 2985–2992.

Zhang, L., Zhang, X., Xue, Y., & Zhang, X. (2020). New Method to Global Exponential
Stability Analysis for Switched Genetic Regulatory Networks With Mixed Delays. IEEE
Transactions on NanoBioscience, 19 (2), 308–314.

Zhang, W., Fang, J. A., & Tang, Y. (2011). New robust stability analysis for genetic regulatory
networks with random discrete delays and distributed delays. Neurocomputing, 74 (14-15),
2344–2360.

Zhang, X., Fan, X., & Wu, L. (2017). Reduced-and full-order observers for delayed genetic
regulatory networks. IEEE transactions on cybernetics, 48 (7), 1989–2000.

Zhang, X. M., & Han, Q. L. (2015). A decentralized event-triggered dissipative control scheme
for systems with multiple sensors to sample the system outputs. IEEE Transactions on
Cybernetics, 46 (12), 2745–2757.

Zhang, X., Wu, L., & Cui, S. (2014). An improved integral inequality to stability analysis of
genetic regulatory networks with interval time-varying delays. IEEE/ACM transactions on
computational biology and bioinformatics, 12 (2), 398–409.

26



Zhang, X., Wu, L., & Zou, J. (2015). Globally asymptotic stability analysis for genetic regu-
latory networks with mixed delays: an M-matrix-based approach. IEEE/ACM transactions
on computational biology and bioinformatics, 13 (1), 135–147.

Zhao, Y., Wang, J., Yan, F., & Shen, Y. (2019). Adaptive sliding mode fault-tolerant control
for type-2 fuzzy systems with distributed delays. Information Sciences, 473, 227–238.

Zhou, L. (2021). Global Exponential Dissipativity of Impulsive Recurrent Neural Networks
with Multi-proportional Delays. Neural Processing Letters, 53 (2), 1435–1452.

27


