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Introduction

This article is mainly inspired by the following formulas for Ramanujan-type series given by Sun in [START_REF] Sun | New series for powers of π and related congruences[END_REF] and reproduced in [START_REF] Hou | q-analogues of some series for powers of π[END_REF] (cf. [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF]):

∞ k=0 - 1 64 k 2k k 3 k(4k -1) (2k -1) 2 = - 1 π , (1) 
∞ k=0 - 1 64 k 2k k 3 4k -1 (2k -1) 3 = 2 π , (2) 
∞ k=0 1 256

k 2k k 3 12k 2 -1 (2k -1) 2 = - 2 π . (3) 
Sun's proofs for these three formulas, as in [START_REF] Sun | New series for powers of π and related congruences[END_REF], relied on specific terminating hypergeometric sum identities, together with previously known series for 1 π , as we briefly review in Section 1.2 below. We have discovered a method, using a generating functions-based approach together with what is known as the elliptic alpha function, of greatly and nontrivially generalizing the identities due to Sun highlighted in (1)- [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF], to the extent of infinite families, indexed by a real or complex parameter, of generalizations for each of the formulas in (1), [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF], and (3). The above displayed identities are, respectively, given as equations (1.1), (1.2), and (1.3) in [START_REF] Sun | New series for powers of π and related congruences[END_REF], and (1)- [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF] and are highlighted as part of Theorem 1.1 in [START_REF] Sun | New series for powers of π and related congruences[END_REF], and are described in [START_REF] Hou | q-analogues of some series for powers of π[END_REF] as having been new, as introduced by Sun in [START_REF] Sun | New series for powers of π and related congruences[END_REF]. Hou and Sun [START_REF] Hou | q-analogues of some series for powers of π[END_REF] recently introduced q-analogues for each of Sun's identities among (1), [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF], and (3), which greatly motivates the development of new and systematic methods for generalizing (1)- [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF]. This serves as a basis for much of our article, in which we also apply our main generating function method to generalize a number of Ramanujan's formulas for 1 π , and to generalize an Eisenstein series-derived Ramanujan-type formula for

The main advantage of our methods, compared to Sun's proofs of ( 1)- [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF], is due to how our methods may be applied much more broadly so as to evaluate linear combinations of series of the following forms along with the convergent series given by the positive moments of the below summands obtained by multiplication by positive powers of the index k, where the expression x, as we later explain, depends on elliptic singular values, and where z denotes a positive integer; also, we have determined a way of using the modified Abel lemma on summation by parts in order to evaluate Ramanujan-type series that are not decomposable in terms of any previously known or evaluable generating functions:

∞ k=0 2k k 3 x k , (4) 
∞ k=0 2k k 3 1 k + z x k , (5) 
∞ k=0 2k k 3 1 (k + z) 2 x k , (6) 
∞ k=0 2k k 3 1 (k + z) 3 x k , (7) 
∞ k=0 2k k 3 1 2k -(2z -1) x k , (8) 
∞ k=0 2k k 3 1 (2k -(2z -1)) 2 x k , (9) 
∞ k=0 2k k 3 1 (2k -(2z -1)) 3 x k . (10) 
Our method may also be applied, with reference to Section 4 below, using generating functions as in the following, again for natural numbers z, along with the positive moments for the below summands:

∞ k=0 2k k 2 4k 2k x k , (11) 
∞ k=0 2k k 2 4k 2k 1 k + z x k , (12) 
∞ k=0 2k k 2 4k 2k 1 (k + z) 2 x k , (13) 
∞ k=0 2k k 2 4k 2k 1 (k + z) 3 x k , (14) 
∞ k=0 2k k 2 4k 2k 1 2k -(2z -1) x k . ( 15 
)
For example, using our evaluation method involving the elliptic alpha function, we can prove, as we later consider, the fast converging, Ramanujan-type series formula

- 1440 π = ∞ k=0 - 1 82944 k 2k k 2 4k 2k 4264k 2 + 4730k + 457 (k + 1)(2k -1) , (16) 
noting the convergence rate of 1 1296 . The formula in ( 16) is a special case of an infinite family of Ramanujan-type series of convergence rate 1 1296 that we introduce, using our evaluation method described in Section 2 below. Using our main method in conjunction with a bijective result derived from the Abel summation lemma, we have proved new results as in the formula

- 2048 π = ∞ k=0 1 2 12k 2k k 3 27216k 4 -162000k 3 -281520k 2 -68460k -4489 (6k + 1)(6k + 7) , (17) 
noting that it is not possible to use generating functions directly to evaluate the series in [START_REF] Campbell | An integration technique for evaluating quadratic harmonic sums[END_REF], since expressions as in

∞ k=0 2k k 3 1 6k + 1
x k and ∞ k=0 2k k 3 1 6k + 7

x k are inevaluable, i.e., even in terms of elliptic-type expressions; this emphasizes the remarkable nature of our Ramanujan-inspired formula in [START_REF] Campbell | An integration technique for evaluating quadratic harmonic sums[END_REF]. Our methodologies also allow us to determine formulas as in the following, with reference to Theorem 17 below:

32 3π = ∞ k=0 1 2 12k 2k k 3 × 1185408k 7 + 522144k 6 -1959888k 5 -1223952k 4 + 104080k 3 -5302k 2 -449k + 256 (84k 2 -12k + 1) (84k 2 + 156k + 73) .
This is remarkable, since generating functions such as

∞ k=0 1 2 12k 2k k 3
x k (84k 2 -12k + 1) (84k 2 + 156k + 73) [START_REF] Cantarini | A note on Clebsch-Gordan integral[END_REF] are inevaluable, i.e., even in terms of elliptic-type special functions.

A remarkable aspect about the methods given in this article is given by how these methods may be applied to determine simplified proofs of and explicit identities for infinite families of generalizations of Ramanujan-type series derived using identities for Eisenstein series of the form

P (q) := 1 -24 ∞ k=1 kq k 1 -q k
by Baruah and Berndt in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF][START_REF] Baruah | Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions[END_REF]. For example, in the 2010 article [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF], Baruah and Berndt provided a Ramanujan-type series for 2 √ √ 2-1 π using their Eisenstein series-based approach, but this same series evaluation easily follows from and may be greatly generalized via our technique based on the elliptic alpha function and our "generatingfunctionology"-inspired [START_REF] Wilf | generatingfunctionology[END_REF] results.

Organization of the article

In Section 1.2, we briefly review Sun's proofs of the Ramanujan-type formulas in (1)- [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF]. In Section 1.3, we briefly review required background material concerning the elliptic alpha function. In Section 2, we introduce the main evaluation method that is applied in this article. In Section 3, we apply our method, as formulated in Section 2, in order to construct alternate proofs of Sun's formulas in (1)-(3) and to systematically generalize these series formulas, providing infinite families of Ramanujan-type series for 1 π involving free parameters. In Section 4, we further apply our main method, by generalizing many of Ramanujan's original formulas for 1 π , in much the same way as in Section 3. In Section 5, we apply our main method together with an Abel-type summation rearrangement result, so as to obtain series that Mathematica 2022 and Maple 2020 cannot evaluate in terms of elliptic-type integrals, in closed form, etc. In the final section, we also consider how Ramanujan-type series obtained in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] (cf. [START_REF] Baruah | Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions[END_REF]) from Eisenstein series identities may be proved in a simplified way and generalized using our methodologies.

Sun's proofs

Sun's proof of (1), as in [START_REF] Sun | New series for powers of π and related congruences[END_REF], relied in part on the following identity, which is easily seen to hold by induction on n:

n k=0 1 m k 2k k 3 (64 -m)k 3 -32k 2 -16k + 8 (2k -1) 2 = 8(2n + 1) m n 2n n 3 .
We set m = -64, as in [START_REF] Sun | New series for powers of π and related congruences[END_REF], and take the appropriate limit, and then use Bauer's classical formula [START_REF] Bauer | Coefficienten der Reihen von Kugelfunctionen einer Variabeln[END_REF], as given below, and as rediscovered by Ramanujan:

2 π = ∞ k=0 - 1 64 k 2k k 3 (4k + 1). ( 19 
)
By the above Bauer-Ramanujan formula for 1 π , together with the terminating hypergeometric identity given above, we have that

∞ k=0 - 1 64 k 2k k 3 k(4k -1) (2k -1) 2 = - 1 2 ∞ k=0 - 1 64 k 2k k 3 (4k + 1) = - 1 π ,
as desired, recalling (1) [START_REF] Sun | New series for powers of π and related congruences[END_REF].

Sun also provided the formula

n k=0 1 m k 2k k 3 (64 -m)k 3 -96k 2 + 48k -8 (2k -1) 3 = 8 m n 2n n 3
in [START_REF] Sun | New series for powers of π and related congruences[END_REF]. Again, we find that the above formula easily follows via induction. Again, we set m -64, and then take the appropriate limit, and by combining the resultant formula with Sun's formula in [START_REF] Almkvist | Glaisher's formulas for 1 π 2 and some generalizations[END_REF], this gives us [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF]. The formula in (3) may be proved similarly.

As we shall demonstrate, Sun's approach toward determining and proving (1)-( 3) is restrictive in the sense that it relies on finite hypergeometric sums that admit closed forms, in contrast to our generating functions-based approach. Our generating function methods are in contrast to the hypergeometric approaches toward determining Ramanujan-type series involved in references as in [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF][START_REF] Chu | Ramanujan-like formulae for π and 1/π via Gould-Hsu inverse series relations[END_REF][START_REF] Chu | Accelerating Dougall's 5 F 4 -sum and infinite series involving π[END_REF][START_REF] Srivastava | Extensions of the classical theorems for very well-poised hypergeometric functions[END_REF][START_REF] Wei | Extensions of Ramanujan's two formulas for 1/π[END_REF][START_REF] Wei | Series for 1/π and π with free parameters[END_REF]. Our use of generatingfunctionology also stands in contrast with the Eisenstein series-based methods employed in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF], in which the Kand E-functions are not used.

The elliptic alpha function

The elliptic alpha function is to be used in this article in something of a similar way relative to our past work [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF] on a cubic version of the Wilf-Zeilberger method [31], although WZ-type methods are not involved in our current work. As in [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], the relation

E = π 4 √ rK + 1 - α(r) √ r K, (20) 
as given in [13, §5], is to be of key importance in our work. So, we find it appropriate to review preliminary material concerning the elliptic alpha function and the special functions denoted as E and K in [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF].

The complete elliptic integrals of the first and second kinds may be defined, respectively, as follows:

K(k) = π 2 • 2 F 1 1 2 , 1 2 1 k 2 , E(k) = π 2 • 2 F 1 1 2 , -1 2 1 k 2 .
The elliptic alpha function, as in [13, §5], may be defined by [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF], according to the notational conventions indicated below. We define the elliptic alpha function [13, §5] [14, 40] so that

α(r) = π 4 (K (k r )) 2 + √ r - E (k r ) √ r K (k r ) , (21) 
where expressions of the form k r are referred to as elliptic singular values [START_REF] Weisstein | Elliptic Integral Singular Value[END_REF]; as for the known values for α, k r , and K(k r ) that we apply in this article, we refer to [START_REF] Bagis | Conjectures on the evaluation of alternative modular bases and formulas approximating 1/π[END_REF][START_REF] Weisstein | Complete Elliptic Integral of the First Kind[END_REF][START_REF] Weisstein | Elliptic Alpha Function[END_REF][START_REF] Weisstein | Elliptic Integral Singular Value[END_REF] and [13, §5]. Being consistent with [13, §4], we write λ * (r) = k r , letting λ * denote the elliptic lambda function, and we write

λ * (r) := k r = ϑ 2 2 (0, e -π √ r ) ϑ 2 3 (0, e -π √ r ) , (22) 
letting the Jacobi theta functions [42, §21.3] be defined as per usual, writing:

ϑ 1 (z, q) = 2q 1/4 ∞ n=0
(-1) n q n(n+1) sin((2n + 1)z),

ϑ 2 (z, q) = 2q 1/4 ∞ n=0
q n(n+1) cos((2n + 1)z),

ϑ 3 (z, q) = 1 + 2 ∞ n=0 q n 2 cos(2nz), ϑ 4 (z, q) = 1 + 2 ∞ n=0 (-1) n q n 2 cos(2nz).
Following [13, p. 172], we record the following values of the elliptic alpha function:

α(1) = 1 2 , α(2) = √ 2 -1, α(3) = 1 2 ( √ 3 -1), (23) 
α(4) = 2( √ 2 -1) 2 , α(5) = 1 2 √ 5 -2 √ 5 -2 . ( 24 
)
It seems that there has not been much research based on the elliptic alpha function; see [13, §5], along with [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF][START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF][START_REF] Bagis | Conjectures on the evaluation of alternative modular bases and formulas approximating 1/π[END_REF][START_REF] Guillera | A class of conjectured series representations for 1/π[END_REF][START_REF] Yakubovich | Closed-form evaluation of two-dimensional static lattice sums[END_REF]. This motivates our current research endeavours.

Main method, and previously known and related work

Our main method, which recalls Bagis' work in [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF] as we briefly review in Section 2.1 below, may be summarized as follows.

Step 1: For a given natural number z, and given one out of the series among (4)- [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF], we compute the generating function for the sequence corresponding to the summand for this series, or for the positive moments for such a summand, in terms of the Kand E-functions, and in such a way so that such an evaluation may be proved through the application of differential operators so as to obtain a reduction to the generating function identity in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], which follows from Clausen's hypergeometric product identity [6] [13, p. 178]

2 F 1 a, b a + b + 1 2 z 2 = 3 F 2 2a, 2b, a + b a + b + 1 2 , 2a + 2b z ;
see also [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF][START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF][START_REF] Zudilin | Ramanujan-type formulae for 1/π: a second wind? In: Modular forms and string duality[END_REF] for related and relevant material:

∞ n=0 2n n 3 x n = 4K 2 √ 1- √ 1-64x √ 2 π 2 . ( 25 
)
Alternatively, again letting z ∈ N, given one of the generating functions among (11)- [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], we compute such a generating function in such a way so as to be reducible to:

∞ k=0 2k k 2 4k 2k x k = 4 √ 2K 2 1 2 - 1- √ 1-256x x 16 √ 2 π 2 4 -256x + 2 √ 1 -256x + 2 . ( 26 
)
The formula in ( 26) is an equivalent formulation of a classical result [START_REF] Weisstein | Complete Elliptic Integral of the First Kind[END_REF] dating back to the work of Watson [START_REF] Watson | A Series for the Square of the Hypergeometric Function[END_REF], and is given, in a different form, in [START_REF] Borwein | modular equations, and approximations to pi, or How to compute one billion digits of pi[END_REF] via Clausen's product.

Step 2: Setting x to be such that the argument of the elliptic expression in (27) (resp. [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF]) is of the form λ * (r) = k r or can be be expressed in terms of combinations of closed-form evaluations and K(k r ) and E(k r ), we may then use known values for both the elliptic alpha function and for K(k r ) in order to evaluate, via the α-function identity in [START_REF] Chu | Ramanujan-like formulae for π and 1/π via Gould-Hsu inverse series relations[END_REF], E(k r ), so as to obtain an appropriate symbolic form for the fixed value of the power series under consideration.

Step 3: By repeating Step 1 and Step 2, using different z-values and/or different generating functions so as to produce explicit symbolic forms, we then take linear combinations of these symbolic forms, so as to isolate an expression involving a nonzero multiple of 1 π .

Empirically, the generating function, with respect to a variable x, for the sequence for one of the summands among (4)- [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF] for a given value z ∈ N is equal to a linear combination of the following expressions, where the underlying field may be taken as

Q 1 π 2 (x)
√ 1 -64x , and similarly with respect to generating functions as in ( 11)-( 15):

K 2 1 - √ 1 -64x √ 2 , (27) 
E 2 1 - √ 1 -64x √ 2 , ( 28 
) E 1 - √ 1 -64x √ 2 K 1 - √ 1 -64x √ 2 . ( 29 
)
Through the application of differential operators, the same would hold true for the positive moments for the summands among ( 4)- [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF].

In order to successfully apply the above procedure, for the purposes of this article, we need the elliptic singular values derived below using closed forms for the elliptic alpha function.

In our recent article [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], we had employed a WZ-type telescoping method in order to evaluate, in terms of 1 π , a Ramanujan-type series involving cubed central binomial coefficients and harmonic-type numbers. Much of our proof of this evaluation, as in [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], relied on the generating function identity in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF] together with the following elliptic values, the latter of which we had obtained via the elliptic alpha function, again in accordance with [START_REF] Chu | Ramanujan-like formulae for π and 1/π via Gould-Hsu inverse series relations[END_REF]:

K i 1 √ 2 - 1 2 = Γ 1 8 Γ 3 8 2 11/4 √ π , (30) 
E i 1 √ 2 - 1 2 = 4 √ 2π 3/2 Γ 1 8 Γ 3 8 + 2 + √ 2 Γ 1 8 Γ 3 8 2 19/4 √ π . (31) 
We are to apply these elliptic values to prove and generalize Sun's formulas in (1) and [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF]. Using the known elliptic singular value

K   1 2 - √ 3 4   = 3 3/4 Γ 1 3 Γ 7 6 2 √ π , (32) 
we may apply the elliptic alpha function identity in [START_REF] Chu | Ramanujan-like formulae for π and 1/π via Gould-Hsu inverse series relations[END_REF] in the following manner. The argument of the elliptic integral function in [START_REF] Ramanujan | Modular equations and approximations to π[END_REF] is precisely the known value λ * (3) = k 3 of the elliptic lambda function. So, from the elliptic alpha function evaluation highlighted in [START_REF] Chu | Accelerating Dougall's 5 F 4 -sum and infinite series involving π[END_REF], together with α-function identity on display in [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF], we may determine the following, setting r = 3 in ( 20):

E   1 2 - √ 3 4   = π 3/2 6 4 √ 3Γ 1 3 Γ 7 6 + 3 3/4 1 - √ 3-1 2 √ 3 Γ 1 3 Γ 7
In order to prove Ramanujan-type series of convergence rate 1 64 , we are to make use of the following elliptic singular value:

K 1 4 8 -3 √ 7 = Γ 1 7 Γ 2 7 Γ 4 7 4 4 √ 7π . ( 34 
)
This is precisely the elliptic integral singular value denoted as K (k 7 ). So, in order to obtain an evaluation for the expression obtained by replacing K with E on the left-hand side of (34), we are to make use of the following value for the elliptic alpha function:

α(7) = 1 2 ( √ 7 -2)
. So, by once again making use of the elliptic alpha function identity in [START_REF] Chu | Ramanujan-like formulae for π and 1/π via Gould-Hsu inverse series relations[END_REF], we obtain the following singular value:

E 1 4 8 -3 √ 7 = π 2 4 √ 7Γ 1 7 Γ 2 7 Γ 4 7 + 2 + √ 7 Γ 1 7 Γ 2 7 Γ 4 7 8 7 3/4 π . (35) 
In order to generalize Ramanujan's series associated with the value λ * (5) = k 5 , we are to make use of the elliptic singular value

K 1 2 - √ 5 -2 = 1 4 4 2 + √ 5 Γ 1 20 Γ 3 20 Γ 7 20 Γ 9 20 10π . (36) 
In order to determine the corresponding E-value, we make use of the closed form for α(5), as in ( 24), together with the α-function identity in [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF], in order to give us the following:

E 1 2 - √ 5 -2 = ( 37 
)
π 3/2 2 Γ( 1 20 )Γ( 3 20 )Γ( 7 20 )Γ( 9 20 ) 4 2 + √ 5 + 4 2 + √ 5 1 - √ 5- √ 2 √ 5-2 2 √ 5 Γ( 1 20 )Γ( 3 20 )Γ( 7 20 )Γ( 9 20 ) π 4 √ 10 .
From the elliptic lambda function value

λ * (13) = k 13 = 1 2 - 3 18 + 5 √ 13 
, we are to apply the known value for K(k 13 ). This, together with the elliptic alpha function evaluation

α(13) = 1 2 √ 13 -74 √ 13 -258 ,
give us a corresponding evaluation for E(k 13 ), which we are to apply, as in Section 4.3 below.

Bagis' method

Bagis, in 2013 [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF], used a somewhat similar approach involving the elliptic alpha function, relative to our method described above, in order to obtain non-hypergeometric series for powers of 1 π . Bagis' method relies on the evaluation of derivatives of powers of expressions as in ( 27) and [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF], by using known elliptic singular values for K together with the elliptic alpha function identity in [START_REF] Chu | Ramanujan-like formulae for π and 1/π via Gould-Hsu inverse series relations[END_REF]. However, instead of using generating functions as in ( 4)-( 10) or ( 11)-( 15), Bagis, as in [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF], instead defines

ϕ p (x) = ∞ n=0 2n n 3 64 n x n p = ∞ n=0 c p (n)x n ,
so that the coefficients in this latter series are determined according to the Cauchy product, with, for example,

c 2 (n) = 1 2 6n n s=0 2s s 3 2n -2s n -s 3 .
Bagis proceeds, as in [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF], to offer non-hypergeometric series for 1 π 4 and 1 π 6 , in contrast to our results on hypergeometric series for 1 π generalizing results due to Sun [START_REF] Sun | New series for powers of π and related congruences[END_REF], Ramanujan [START_REF] Ramanujan | Modular equations and approximations to π[END_REF], and Baruah and Berndt [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF]. As stated in [START_REF] Bagis | A general method for constructing Ramanujan-type formals for powers of 1/π[END_REF], there is not much known about the elliptic alpha function (cf. [START_REF] Zudilin | Ramanujan-type formulae for 1/π: a second wind? In: Modular forms and string duality[END_REF]), further motivating our work. See also [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF] and the below discussion concerning Ramanujan-type formulas as in [START_REF] Yakubovich | Closed-form evaluation of two-dimensional static lattice sums[END_REF] due to Bagis and Glasser in [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF] involving free parameters.

On the application of Gosper's algorithm

Sun's Ramanujan-type formula in (1) was also reproduced in [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF], in which Sun's Ramanujan-type series are examined via Gosper's algorithm. However, all of the series for 1 π derived in [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF] via telescoping-type arguments, such as the series

8 π = ∞ k=0 - 1 64 k 2k k 3 (4k + 3)(2k + 1) (k + 1) 2 ,
may be easily proved and greatly generalized using our elliptic alpha-based method as formulated in Section 2 below. Also, there are no fast convergent series for 1 π considered in [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF], as all of the series for 1 π in [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF] are of the same convergence rate as the series in (1), and it is unclear as to how the methods from [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF] could be applicable to our series as in [START_REF] Campbell | An integration technique for evaluating quadratic harmonic sums[END_REF]. This illustrates the remarkable nature of our fast converging, Ramanujan-inspired series as in ( 17) and ( 16).

3 Alternate proofs of and infinite generalizations of Sun's formulas

Our systematic approach toward generalizing Sun's series is described as follows. For each out of the three of Sun's formulas shown in (1), (2), and (3), we separately apply the generating functions among (5), [START_REF] Bailey | Elliptic integral evaluations of Bessel moments and applications[END_REF], and (7) for a fixed value of z, so as to obtain an infinite family of Ramanujan-type series for 1 π involving a free real/complex parameter, and so as to give us us a total of 3 × 3 combinations. Our proofs for these identities may be greatly generalized using explicit evaluations for the generating functions among (4)-( 10) much more broadly, with z ∈ Z >0 . For each of our 3 × 3 infinite families generalizing Sun's formulas, we provide 3 concrete examples by specifying a value for the free parameters involved in our generalizations, yielding a total of 3 × 3 × 3 Ramanujan-type formulas.

Alternate proofs

Theorem 1. Sun's Ramanujan-type formula in (1) holds true.

Proof. We are to evaluate the power series

∞ k=0 x 64 k 2k k 3 k(4k -1) (2k -1) 2
for the x = -1 case. In this regard, applying partial fraction decomposition to the summand factor k(4k-1) (2k-1) 2 , we obtain the linear combination:

3 2(2k -1) + 1 2(2k -1) 2 + 1,
recalling the evaluation for the generating function for the sequence of cubed binomial coefficients, as shown in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF]. The power series identity

∞ k=0 x 64 k 2k k 3 1 2k -1 (38) = - 8E 2 1 2 - √ 1-x 2 π 2 + 8E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 π 2 - 4K 2 1 2 - √ 1-x 2 π 2
can be shown to hold by applying an appropriate differential operator to [START_REF] Wei | Series for 1/π and π with free parameters[END_REF], so as to obtain a simplification to an equivalent form of [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF]. Similarly, we may obtain the following elliptic integral identity:

∞ k=0
x 64

k 2k k 3 1 (2k -1) 2 (39) = 24E 2 1 2 - √ 1-x 2 π 2 - 8 3 + √ 1 -x E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 π 2 + 4 2 + √ 1 -x K 2 1 2 - √ 1-x 2 π 2 .
So, by setting x = -1 in the above power series expansions, this gives us a proof that Sun's series in ( 1)

is equal to 2K i 1 √ 2 -1 2 1 + √ 2 K i 1 √ 2 -1 2 -2 √ 2E i 1 √ 2 -1 2 π 2 .
So, the desired closed form then follows from the elliptic integral valuations given in [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF] and reproduced in [START_REF] Liu | Gauss summation and Ramanujan-type series for 1/π[END_REF] and (31).

Theorem 2. Sun's Ramanujan-type formula in (2) holds true.

Proof. In order to evaluate the power series ∞ k=0

x 64

k 2k k 3 4k -1 (2k -1) 3
for x = -1, we begin by applying partial fraction decomposition to 4k-1 (2k-1) 3 , with:

4k -1 (2k -1) 3 = 2 (2k -1) 2 + 1 (2k -1) 3 .
The following power series identity may be proved by applying differential operators to the following formula, so as to obtain an equivalent version of (25):

∞ k=0 x 64 k 2k k 3 1 (2k -1) 3 = - 48E 2 1 2 - √ 1-x 2 π 2 + 24 2 + √ 1 -x E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 π 2 - 4 4 + 3 √ 1 -x -x K 2 1 2 - √ 1-x 2 π 2 .
So, from the above power series identity, together with the corresponding identity for [START_REF] Weisstein | Complete Elliptic Integral of the First Kind[END_REF], this allows us to prove that Sun's series in ( 2) is equal to the following combination of elliptic integral expressions:

- 4K i 1 √ 2 -1 2 1 + √ 2 K i 1 √ 2 -1 2 -2 √ 2E i 1 √ 2 -1 2 π 2 .
So, from the elliptic values shown in [START_REF] Liu | Gauss summation and Ramanujan-type series for 1/π[END_REF] and (31) and given in [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], we obtain Sun's evaluation shown in [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF].

Theorem 3. Sun's Ramanujan-type formula in (3) holds true.

Proof. We consider the following power series:

∞ k=0 x 64 k 2k k 3 12k 2 -1 (2k -1) 2 .
It remains to prove an evaluation for the above series in the case whereby x = 1 4 . Applying partial fraction decomposition to 12k 2 -1 (2k-1) 2 , we obtain the following:

12k 2 -1 (2k -1) 2 = 6 2k -1 + 2 (2k -1) 2 + 3.
So, from our generating function evaluations for ( 25), [START_REF] Wei | Series for 1/π and π with free parameters[END_REF], and [START_REF] Weisstein | Complete Elliptic Integral of the First Kind[END_REF], this gives a proof that Sun's series in ( 3) is equal to the following:

4K 1 2 - √ 3 4 1 + √ 3 K 1 2 - √ 3 4 -2 √ 3E 1 2 - √ 3 4 π 2 .
So, from the special values for the Kand E-functions highlighted in [START_REF] Ramanujan | Modular equations and approximations to π[END_REF] and [START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF], this gives us Sun's closed-form evaluation shown in (3).

Generalizations

As a way of generalizing Sun's formula in (1), we consider the application of generating functions as in ( 4)- [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF]. We find that Sun's formula in (1) is a special case of the below Theorem, in the case whereby the free parameter c equals 1. As we shall later see, the below formula is related to an infinite family of Ramanujan-type series for 1 π that is due to Levrie [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF] and proved in via Fourier-Legendre theory in [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF].

Theorem 4. The identity ∞ k=0 - 1 64 k 2k k 3 16ck 3 + 4ck 2 -2ck + c + 8k 2 -2k -1 (k + 1)(2k -1) 2 = - 4 π
holds true for a free parameter c.

Proof. Letting a 1 , a 2 , a 3 , and a 4 be scalar variables, consider the linear combination in the following summand:

∞ k=0 - 1 64 k 2k k 3 a 1 + a 2 2k -1 + a 3 (2k -1) 2 + a 4 k + 1 . ( 40 
)
Sun's series in (1) is a special case of [START_REF] Weisstein | Elliptic Alpha Function[END_REF], with (a 1 , a 2 , a 3 , a 4 ) = 1, 3 2 , 1 2 , 0 . We are to make use of the following generating function identity, which is easily seen to hold through the application of an appropriate differential operator to the following series:

∞ k=0 x 64 k 2k k 3 1 k + 1 = (41) - 16E 2 1 2 - √ 1-x 2 π 2 x + 16 1 + √ 1 -x E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 π 2 x - 8 1 + √ 1 -x -x K 2 1 2 - √ 1-x 2 π 2 x .
So, according to the elliptic function evaluations for the power series shown in ( 25), ( 38), [START_REF] Weisstein | Complete Elliptic Integral of the First Kind[END_REF], and ( 41), together with the elliptic integral special values indicated in [START_REF] Liu | Gauss summation and Ramanujan-type series for 1/π[END_REF] and ( 31) [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], we obtain that the linear combination suggested in (40) may be expressed as

-a 2 + a 3 -2a 4 π + √ 2(-a 2 + 3a 3 + 2a 4 )Γ 2 5 8 Γ 2 7 8 π 3 + √ 2(4a 1 -3a 2 + a 3 + 6a 4 )Γ 2 3 8 Γ 2 9 8 π 3 .
To generalize Sun's formula in (1), we set the a-variables to satisfy the system of linear equations indicated below:

  0 -1 1 -2 0 -1 3 2 4 -3 1 6       a 1 a 2 a 3 a 4     =   -1 0 0   .
Setting the tuple (a 1 , a 2 , a 3 , a 4 ) as

a 1 , a 1 + 1 2 , a 1 2 , 1 4 - a 1 4 ,
this gives us an equivalent formulation of the proposed result.

Setting c = 0 in Theorem 4, this agrees with a special case of Levrie's generalization [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF] ∞ n=0

(-1) n 1 2 3 n (n!) 3 4n + 1 (2n -(2k -1)) • • • (2n -1)(n + 1) • • • (n + k) (42) = (-1) k 1 2 k-1 1 2 2 k 1 π (43) 
of the Bauer-Ramanujan formula on display in [START_REF] Chen | Interesting Ramanujan-like series associated with powers of central binomial coefficients[END_REF]. Something of an advantage of our methods, as applied in this article, compared to known Fourier-Legendre-based results on infinite families of Ramanujantype or Glaisher-like series for 1 π or 1 π 2 [START_REF] Almkvist | Glaisher's formulas for 1 π 2 and some generalizations[END_REF][START_REF] Chen | Interesting Ramanujan-like series associated with powers of central binomial coefficients[END_REF][START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF], is due to how our methoods allow us to obtain infinite families of Ramanujan-type series for 1 π involving a real or complex parameter, as in Theorem 4, whereas Levrie's family of series indicated in ( 42) is indexed by the set of natural numbers.

A remarkable aspect about our infinite families of Ramanujan-type series for 1 π is due to the presence of a free or continuous variable in such results, as in Theorem 4. In contrast, for example, in the work of Bagis and Glasser in [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF] on the elliptic singular modulus function k r , identities such as

∞ n=0 1 2 3 n (n!) 3 4 n (k r k ′ r ) 2n n + α(r) - √ rk 2 r √ r(1 -2k 2 r ) = 1 π √ r(1 -2k 2 r ) , are given, writing k ′ r = 1 -k 2
r , but such identities depend on known closed forms for k r . Following [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF], the rationality of the index r implies k r being algebraic, but it is not clear, in general, how to obtain such algebraic expressions. For example, and again with reference to [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF], the value k r should be equal to value corresponding to the Mathematica input

InverseEllipticNomeQ[Exp[-Pi Sqrt[r]]]^{1/2}
but Mathematica does not seem to be able to evaluate such expressions for a given rational value r. Similarly, identities such as

∞ n=0 1 2 3 n (n!) 3 (40 √ 2 -56) n (an + b) = 4a 7π + 5a 7 √ 2π + 4(-4a + √ 2a + 14b) Γ 2 9 8 7πΓ 2 5 8 (44) 
are given by Bagis and Glasser in [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF] for free parameters a and b, in contrast to our infinite families of series specifically for rational multiples of 1 π derived using generating function identities as in ( 4)- [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF], not to mention our applications of the modified Abel lemma on summation by parts, as in Section 5 below.

For all of the 3×3×3 Examples provided in this article, based on our systematized scheme, as descibred above, for generalizing Sun's formulas in ( 1)-( 3), are such that the current version of Mathematica in 2022 as well as Maple 2020 cannot provide any explicit closed form for any of these Examples, even with the use of Wolfram commands as in FunctionExpand and FullSimplify. For example, the remarkable nature about the closed-form formula shown in Example 1 is reflected in how Maple 2020 is only able to express the series in [START_REF] Zudilin | Ramanujan-type formulae for 1/π: a second wind? In: Modular forms and string duality[END_REF] as the following trivially equivalent expression given in terms of the Meijer G-function: This reflects the elegance about the closed-form evaluation -8 π shown in [START_REF] Zudilin | Ramanujan-type formulae for 1/π: a second wind? In: Modular forms and string duality[END_REF]. Example 1. Setting c = 5 2 in Theorem 4, we obtain the Ramanujan-type formula

-20 G 3,4 6,6 1 3/4,1,-
- 8 π = ∞ k=0 - 1 64 k 2k k 3 (4k + 3) 20k 2 -6k + 1 (k + 1)(2k -1) 2 . ( 45 
)
Example 2. Setting c = -2 in Theorem 4, we obtain the Ramanujan-type formula

4 π = ∞ k=0 - 1 64 k 2k k 3 (2k + 1) 16k 2 -8k + 3 (k + 1)(2k -1) 2 .
Example 3. Setting c = 4 3 in Theorem 4, we obtain the Ramanujan-type formula

- 12 π = ∞ k=0 - 1 64 k 2k k 3 (8k -1) 8k 2 + 6k -1 (k + 1)(2k -1) 2 .
We may obtain many similar results, relative to Theorem 4, using generating functions of the form shown in [START_REF] Bagis | Conjectures on the evaluation of alternative modular bases and formulas approximating 1/π[END_REF], for z ∈ Z >0 . Now, in view of our proof of Theorem 4, let us consider using generating functions as in [START_REF] Bailey | Elliptic integral evaluations of Bessel moments and applications[END_REF] in place of [START_REF] Bagis | Conjectures on the evaluation of alternative modular bases and formulas approximating 1/π[END_REF].

By setting the free parameter c in the following Theorem as c = 1, we obtain a copy of Sun's formula in [START_REF] Almkvist | Glaisher's formulas for 1 π 2 and some generalizations[END_REF].

Theorem 5. The identity

- 8 π = ∞ k=0 - 1 64 k 2k k 3 32ck 4 + 56ck 3 + 16ck 2 + 4ck + 3c -12k -3 (k + 1) 2 (2k -1) 2
holds true for a free parameter c.

Proof. We are to apply the following power series expansion, which is easily seen to hold using the generating function for cubed central binomial coefficients:

∞ k=0
x 64

k 2k k 3 1 (k + 1) 2 = (46) - 96E 2 1 2 - √ 1-x 2 π 2 x + 32 3 + 2 √ 1 -x E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 π 2 x - 16 2 + 2 √ 1 -x -x K 2 1 2 - √ 1-x 2 π 2 x .
Using this elliptic integral identity in conjunction with the previous identities for the power series indicated in ( 25), [START_REF] Wei | Series for 1/π and π with free parameters[END_REF], and (39), we obtain that

∞ k=0 - 1 64 k 2k k 3 a 1 + a 2 2k -1 + a 3 (2k -1) 2 + a 4 (k + 1) 2 = -a 2 + a 3 -4a 4 π + √ 2(-a 2 + 3(a 3 + 4a 4 ))Γ 2 5 8 Γ 2 7 8 π 3 + √ 2(4a 1 -3a 2 + a 3 + 4a 4 )Γ 2 3 8 Γ 2 9 8 π 3 .
Setting a 2 = 3a1 2 , a 3 = a 1 -1 2 , and a 4 = 1 8 -a1 8 , we obtain an equivalent formulation of the desired result.

Setting c = 0 in the above Theorem, this gives us a special case of Guillera's identity

∞ n=0 (-1) n 1 2 -k 2 n 1 2 n (1 + k) 2 n (1) n (4n + 1) = 2 π 1 4 k (1) 2 k 1 4 k 3 4 k , (47) 
as proved via the WZ method [31] by Guillera in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF]. In contrast, it is unclear as to how it may be possible to use WZ-type telescoping methods to prove our generating function-derived results relying the elliptic integral singular values indicated in ( 31) and [START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF], which relied on our use of the elliptic alpha function.

The remarkable nature about Examples 4-6 below may be illustrated in the following manner: Maple 2020, for example, is only able to evaluate the series in Example 6 as: 64 G 3,5 7,7 1 

- 24 π = ∞ k=0 - 1 64 k 2k k 3 (4k + 3) 32k 3 + 32k 2 -8k + 1 (k + 1) 2 (2k -1) 2 .
Example 5. Setting c = -2 5 in Theorem 5, we obtain the Ramanujan-type formula

40 π = ∞ k=0 - 1 64 k 2k k 3 (4k + 7) 16k 3 + 8k + 3 (k + 1) 2 (2k -1) 2 .
Example 6. Setting c = 8 7 in Theorem 5, we obtain the Ramanujan-type formula

- 56 π = ∞ k=0 - 1 64 k 2k k 3 16k 2 + 12k -1 16k 2 + 16k -3 (k + 1) 2 (2k -1) 2 .
The factorizations of the polynomial numerators shown in Examples 4-6 motivate a number-theoretic approach toward our results as in Theorems 4 and 5 given by by classifying the rational values for the parameters involved in these Theorems that are such that the polynomial numerators in Theorems 4 and 5 are reducible over Q. We leave this for a separate project. Our below results further motivate this number-theoretic subject.

Setting the parameter c in the below Theorem so that c = 1, we obtain an equivalent version of Sun's Ramanujan-type formulain (1). Theorem 6. The identity whereby

∞ k=0 - 1 64 k 2k k 3 64ck 5 + 176ck 4 + 160ck 3 + 60ck 2 + 36ck + 15c -16k 3 -44k 2 -52k -15 (k + 1) 3 (2k -1) 2
reduces to -16 π + 8c -8 holds true. Proof. We begin with the following power series identity, which is easily seen to hold from (25):

∞ k=0 x 64 k 2k k 3 1 (k + 1) 3 (48) 8 x - 384E 2 1 2 - √ 1-x 2 π 2 x + 192 2 + √ 1 -x E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 π 2 x + 32 -4 -3 √ 1 -x + x K 2 1 2 - √ 1-x 2 π 2 x .
From the above power series evaluation, together with previous power series evaluations we have given, we obtain the following:

∞ k=0 - 1 64 k 2k k 3 a 1 + a 2 2k -1 + a 3 (2k -1) 2 + a 4 (k + 1) 3 = a 3 -a 2 π -8a 4 + √ 2Γ 2 5 8 Γ 2 7 8 (-a 2 + 3a 3 + 48a 4 ) π 3 + √ 2Γ 2 3 8 Γ 2 9 8 (4a 1 -3a 2 + a 3 + 16a 4 ) π 3 .
Solving for the above variables so that the coefficient of 1 π is -1 and the coefficients of the terms involving the Γ-function vanish, we obtain an equivalent version of the desired result.

The remarkable nature about the following evaluations is reflected, for example, in the fact that Maple 2020 is only able to evaluate the series in Example 8 as follows:

-32

G 4,5 8,8 1 1,1,1,1,1,3,3,3 2,3/2,1/2,1/2,2,2,2,2 π 3/2 + 88 G 4,4 7,7 1 1,1,1,1,3,3,3 2,3/2,1/2,1/2,2,2,2 π 3/2 - 84 G 4,3 6,6 1 1,1,1,3,3,3 2,3/2,1/2,1/2,2,2 π 3/2 + 41 G 4,2 5,5 1 1,1,3,3,3 2,3/2,1/2,1/2,2 π 3/2 - 31 G 4,1 4,4 1 1,3,3,3 2,3/2,1/2,1/2 π 3/2 + 45 4 π 3/2 G 4,1 4,4 1 1,2,2,2 1, 1 2 ,-1 2 ,-1 2 . 8 -8 1 + √ 1 -x + x -3 √ 1 -xx + 9x 2 K 1 2 - √ 1-x 2 2 27π 2 x 2 ,
which is easily seen to hold from [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], along with the generating function evaluation ∞ k=0

x 64

k 2k k 3 1 (k + 2) 2 32(-20 -x)E 1 2 - √ 1-x 2 2 27π 2 x 2 + 32 20 + 12 √ 1 -x + x + 2 √ 1 -xx E 1 2 - √ 1-x 2 K 1 2 - √ 1-x 2 27π 2 x 2 - 16 12 1 + √ 1 -x + 2 -1 + √ 1 -x x -3x 2 K 1 2 - √ 1-x 2 2 27π 2 x 2 ,
which also can be shown to hold using [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF].

Example 16. Setting c = 318 55 in Theorem 9, we obtain the Ramanujan-type formula

- 110 3π = ∞ k=0 - 1 64 k 2k k 3 k 4608k 3 -1076k 2 -6275k + 3868 (k + 2) 2 (2k -1) 3 .
Example 17. Setting c = 1126 511 in Theorem 9, we obtain the Ramanujan-type formula 

- 1022 π = ∞ k=0 - 1 64 k 2k k 3 6912k 4 -3548k 3 -16665k 2 + 1934 (k + 2) 2 (2k - 

Ramanujan-type series of convergence rate 1/4

Now, we proceed to generalize, following our main method from Section 2, Sun's Ramanujan-type formula in (3), noting the fast convergence rate of 1 4 . We will require the special values of K and E shown in [START_REF] Ramanujan | Modular equations and approximations to π[END_REF] and [START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF], recalling our derivation of (33) via the elliptic alpha function. By setting c = 3 in the following Theorem, we obtain a copy of Sun's Ramanujan-type formula in (3).

Theorem 10. The identity

- 12 π = ∞ k=0 1 256 k 2k k 3 24ck 3 + 36ck 2 + 2ck -c -36k 2 -12k -3 (k + 1)(2k -1) 2
holds true for a free parameter c.

Proof. This follows in a direct way according to our main method from Section 2, by applying the elliptic singular values in [START_REF] Ramanujan | Modular equations and approximations to π[END_REF] and [START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF] together with generating functions we have previously evaluated.

The remarkable nature about Theorem 10 may be illustrated in the following manner. Maple 2020, for example, is only able to evaluate the series in Example 19 as the 5 F 4 1 4 -series shown below. It seems that there is now much known about 5 F 4 1 4 -series, motivating further applications of Theorem 10.

5 F 4 -1 2 , -1 2 , 1 2 , 7 6 -i 6 √ 2, 7 6 + i 6 √ 2 1, 2, 1 6 -i 6 √ 2, 1 6 + i 6 √ 2 1 4
Example 19. Setting c = 0 in Theorem 10, we obtain the Ramanujan-type formula

4 π = ∞ k=0 1 256 k 2k k 3 12k 2 + 4k + 1 (k + 1)(2k -1) 2 .
Example 20. Setting c = 6 in Theorem 10, we obtain the Ramanujan-type formula

- 4 3π = ∞ k=0 1 256 k 2k k 3 (4k + 1) 4k 2 + 4k -1 (k + 1)(2k -1) 2 .
Example 21. Setting c = -3 in Theorem 10, we obtain the Ramanujan-type formula

2 3π = ∞ k=0 1 256 k 2k k 3 k 4k 2 + 8k + 1 (k + 1)(2k -1) 2 .
We proceed to apply the z = 1 case of the generating function in ( 6), together with the elliptic singular values in [START_REF] Ramanujan | Modular equations and approximations to π[END_REF] and [START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF]. If we set c = 3 in the following Theorem, then we again obtain a copy of Sun's evaluation for the series of convergence rate 1 4 shown in (3). Theorem 11. The identity

- 8 π = ∞ k=0 1 256 k 2k k 3 16ck 4 + 48ck 3 + 48ck 2 + 12ck -c -48k 3 -100k 2 -44k -1 (k + 1) 2 (2k -1) 2
holds for a free parameter c.

Proof. Again, this follows in a direct way according to our main method in Section 2, utilizing the elliptic singular values in ( 32) and ( 33), along with generating functions that we had previously evaluated.

The remarkable nature about Theorem 11 is reflected in the fact that Maple 2020 is only able to evaluate, for example, the series in Example 23 as the following expression: 

-7 7 F 6 -1 2 , -1 2 , 1 2 , 1 - √ 7 2 , 1 + √ 7 2 , 11 8 - √ 5 
k 2k k 3 k 4k 3 + 24k 2 + 37k + 14 (k + 1) 2 (2k -1) 2 .
Example 23. Setting c = 4 3 in Theorem 11, we obtain the Ramanujan-type formula

- 24 π = ∞ k=0 1 256 k 2k k 3 4k 2 -7 16k 2 + 12k + 1 (k + 1) 2 (2k -1) 2 .
Example 24. Setting c = 0 in Theorem 11, we obtain the Ramanujan-type formula

8 π = ∞ k=0 1 256 k 2k k 3 48k 3 + 100k 2 + 44k + 1 (k + 1) 2 (2k -1) 2 .
Finally, we are to generalize Sun's formula in (3) using the generating function in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] for z = 1. By setting c = 3 in the below Theorem, we obtain a copy of (3).

Theorem 12. The identity

- 48 π + 32c -96 = ∞ k=0 1 256 k 2k k 3 p(c, k) (k + 1) 3 (2k -1) 2
holds for a free parameter c, where p(c, k) = 96ck 5 + 384ck 4 + 600ck 3 + 460ck 2 + 164ck + 25c -288k 4 -960k 3 -1164k 2 -564k -99.

Proof. This follows in much the same way as in with the preceding Theorems. 

k 2k k 3 k 396k 4 + 1284k 3 + 1475k 2 + 685k + 89 (k + 1) 3 (2k -1) 2 .
Example 27. Setting c = 141 41 in Theorem 12, we obtain the Ramanujan-type formula

- 328 π + 96 = ∞ k=0 1 256 k 2k k 3 2256k 5 + 7056k 4 + 7540k 3 + 2856k 2 -89 (k + 1) 3 (2k -1) 2 .

Generalizations of Ramanujan's formulas

We may apply our method in Section 2 to prove and generalize the Bauer-Ramanujan formula in [START_REF] Chen | Interesting Ramanujan-like series associated with powers of central binomial coefficients[END_REF] along with Ramanujan's formula

4 π = ∞ n=0 1 2 8n 2n n 3 (6n + 1),
in much the same way as above. In the former case, such generalizations would require the elliptic integral values from [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF] reproduced in ( 30) and (31); in the latter case, generalizations would require the elliptic singular values in [START_REF] Ramanujan | Modular equations and approximations to π[END_REF] and [START_REF] Rogers | New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π[END_REF]. So, in a manner indicated in the preceding sentence, Sun's Ramanujantype formulas in ( 1) and ( 2) correspond to the Bauer-Ramanujan formula, and Sun's Ramanujan-type formula in (3) corresponds to Ramanujan's formula for the above series of convergence rate 1 4 . So, this leads us to consider how Ramanujan's other series for 1 π may be generalized or extended, by analogy with Sun's series in (1)-(3).

Series of convergence rate 1 64

We proceed to consider the following remarkable formula due to Ramanujan, noting the very fast convergence rate of 1 64 , with reference to the famous 1914 article by Ramanujan [START_REF] Ramanujan | Modular equations and approximations to π[END_REF], and Berndt's classic text [12, pp. 352-354]:

16 π = ∞ n=0 1 2 12n 2n n 3 (42n + 5). (49) 
By setting the argument of the Clausen's product-derived generating function in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF] to agree with (49), by using the elliptic integral singular values in [START_REF] Srivastava | Extensions of the classical theorems for very well-poised hypergeometric functions[END_REF] and [START_REF] Sun | New series for powers of π and related congruences[END_REF], this gives us an explicit symbolic evaluation for the latter series obtained upon expanding the summand of Ramanujan's series in (49). Then, by differentiating both sides of the generating function identity we have provided for the sequence of cubed central binomial coefficients, and then again using the Kand E-values in ( 34) and [START_REF] Sun | New series for powers of π and related congruences[END_REF], this allows us to prove Ramanujan's formula in (49). So, this leads us toward a way of generalizing (49), by analogy with our results in Section 3. Our way of proving (49) using the values of K and E shown in [START_REF] Srivastava | Extensions of the classical theorems for very well-poised hypergeometric functions[END_REF] and [START_REF] Sun | New series for powers of π and related congruences[END_REF] is in contrast to the modular approach toward proving (49) given in [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF]. Our generating functions-based strategy has the advantage of generalizing our proof of (49) using elliptic integral evaluations for (4)- [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF].

By setting c = 5 in the following Theorem, we obtain a copy of Ramanujan's formula in (49). The following result is remarkable, since it provides an infinite family of Ramanujan-type series for 1 π of convergence rate 1 64 , with a free real/complex parameter involved in the summand. We have chosen to use generating functions involving reciprocals of powers odd consecutive odd numbers to generalize Ramanujan's formula in (49), in view of the Ramanujan-type series due to Sun in (1)-( 3) that have inspired our article.

Theorem 13. The identity

2032 π = ∞ k=0 1 2 12k 2k k 3 504ck 3 + 4ck 2 + 2ck -c + 18816k 3 -18816k 2 + 2784k + 640 (2k -1) 2
holds for a free parameter c.

Proof. By applying partial fraction decomposition to the rational expression

504ck 3 + 4ck 2 + 2ck -c + 18816k 3 -18816k 2 + 2784k + 640 (2k -1) 2
in the summand, we obtain a linear combination of special values of the following generating functions:

The z = 1 case of ( 8), the z = 1 case of ( 9), the Clausen's product-derived generating function in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], and the derivative of [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF]. According to the evaluations of the generating functions in terms of K and E, by plugging in the special values in [START_REF] Srivastava | Extensions of the classical theorems for very well-poised hypergeometric functions[END_REF] and [START_REF] Sun | New series for powers of π and related congruences[END_REF], this is easily seen to give us the desired result.

Example 28. By setting c = 0 in Theorem 13, we obtain the following Ramanujan-type series for 1 π of convergence rate 1 64 :

127 2π = ∞ k=0 1 2 12k 2k k 3 588k 3 -588k 2 + 87k + 20 (2k -1) 2 .
Example 29. By setting c = 640 in Theorem 13, we obtain the following Ramanujan-type series for

1 π of convergence rate 1 64 : 1 2π = ∞ k=0 1 2 12k 2k k 3 k 84k 2 -4k + 1 (2k -1) 2 . 
Example 30. By setting c = -112 3 in Theorem 13, we obtain the following Ramanujan-type series for 1 π of convergence rate 1 64 :

- 3 π = ∞ k=0 1 2 12k 2k k 3 28k 2 -4k -1 (2k -1) 2 .
We may obtain many similar results according to our method from Section 2, using different combinations of the generating functions among (4)- [START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF].

On the value α(5)

To generalize Ramanujan's formula

8 π = ∞ k=0 - 1 1024 k 2k k 2 4k 2k (3 + 20k), (50) 
we make use of the value of the elliptic alpha function α(5) given in [START_REF] Guillera | A class of conjectured series representations for 1/π[END_REF], in the following sense: We are to apply our method in Section 2 in such a way so that we require the special value for E shown in [START_REF] Wei | Extensions of Ramanujan's two formulas for 1/π[END_REF], and our proof of the symbolic form for this E-value depends on α(5), according to the relation [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF], together with the singular value in [START_REF] Watson | A Series for the Square of the Hypergeometric Function[END_REF].

Manipulating the generating function identity in [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF] proves to be more difficult when dealing summand factors such as 1 (2k-1) 2 or 1 (2k-1) 3 , and hence the denominator in the rational function factor appearing below.

Setting c = 3 in the below Theorem, this gives us a copy of Ramanujan's formula in (50).

Theorem 14. The identity

256 π = ∞ k=0 - 1 1024 k 2k k 2 4k 2k 160ck 3 + 144ck 2 -10ck -3c + 800k 3 + 400k 2 -514k -87 (k + 1)(2k -1)
holds true for a free parameter c.

Proof. The following generating function identity can be shown to follow in a direct way from [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF]:

∞ k=0 2k k 2 4k 2k 1 2k -1 x k = - 4 4 √ 2 1 + √ 1 -256x E 2 1 2 -1 32 2-2 √ 1-256x x π 2 4 1 + √ 1 -256x -128x + 4 4 √ 2 1 + √ 1 -256x + 8 2-2 √ 1-256x x x π 2 4 1 + √ 1 -256x -128x E    1 2 - 1 32 
2 -2 √ 1 -256x x    K    1 2 - 1 32 
2 -2 √ 1 -256x x    - 4 4 √ 2 1 + 4 2-2 √ 1-256x x x K 2 1 2 -1 32 2-2 √ 1-256x x π 2 4 1 + √ 1 -256x -128x
.

Similarly, we can show that

∞ k=0 2k k 2 4k 2k 1 k + 1 x k = - 1 + √ 1 -256x E 2   16-2-2 √ 1-256x x 4 √ 2   12 2 3/4 π 2 4 1 + √ 1 -256x -128xx + 1 + √ 1 -256x 16 + 2-2 √ 1-256x x -128 2-2 √ 1-256x x x 192 2 3/4 π 2 4 1 + √ 1 -256x -128xx E     16 -2-2 √ 1-256x x 4 √ 2     K     16 -2-2 √ 1-256x x 4 √ 2     - 1 + √ 1 -256x 16 + 2-2 √ 1-256x x -128 32 + 2-2 √ 1-256x x x 384 2 3/4 π 2 4 1 + √ 1 -256x -128xx K 2     16 -2-2 √ 1-256x x 4 √ 2     .
So, from the above generating function identities, together with [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF] and the relation we obtain by differentiating [START_REF] Hou | Gosper summability of rational multiples of hypergeometric terms[END_REF], this allows us to evaluate, in terms of combinations of Kand E-expressions, the series obtain by applying partial fraction decomposition to the series in the Theorem under consideration. By using the elliptic integral special values in [START_REF] Watson | A Series for the Square of the Hypergeometric Function[END_REF] and [START_REF] Wei | Extensions of Ramanujan's two formulas for 1/π[END_REF], this gives us, after much simplification, the desired result. For the sake of brevity and consistency, we restrict our attention to rational hypergeometric series for 1 π . This leads us to the following.

Series of convergence rate 1 1296

We are to generalize the following formula due to Ramanujan, noting the convergence rate of 1 1296 :

72 π = ∞ k=0 - 1 82944 k 2k k 2 4k 2k (23 + 260k). ( 51 
)
By setting c = 23 in the following Theorem, we obtain a copy of Ramanujan's formula shown in (51).

Theorem 15. The identity

186624 π = ∞ k=0 - 1 82944 k 2k k 2 4k 2k × 10400ck 3 + 10384ck 2 -10ck -3c + 1108640k 3 + 554320k 2 -614074k -59547 (k + 1)(2k -1)
holds true for a free parameter c.

Proof. By applying partial fraction decomposition and using the generating functions involved in our proof of Theorem 14, we obtain the desired result upon simplifying, after plugging in the values for K(k 13 ) and E(k 13 ). -1) .

- 216 π = ∞ k=0 - 1 82944 k 2k k 2 4k 2k k 237640k 2 + 237914k + 481 (k + 1)(2k
Example 36. Setting c = -533 5 in Theorem 15, we obtain the formula in [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF] given in the Introduction. We may continue, quite broadly, in the manner indicated above, i.e., by taking higher and higher α-values, and by using elliptic singular values together with generating functions as above. Since we have applied our method to generalize, via infinite families of Ramanujan-type series for 1 π , all of Sun's Ramanujan-type like series in (1)-( 3) and all of Ramanujan's formulas for 1 π shown among (49), (50), and (51), we consider this to be an effective demonstration of the usefulness and versatility of our method. However, we have discovered further applications of this method via the combinatorial summation identity known as the modified Abel lemma on summation by parts; see [START_REF] Campbell | An integration technique for evaluating quadratic harmonic sums[END_REF][START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF][START_REF] Chu | The modified Abel lemma on summation by parts and terminating hypergeometric series identities[END_REF][START_REF] Chu | Accelerating Dougall's 5 F 4 -sum and infinite series involving π[END_REF] for relevant material/references.

a 2 = 1 42 39a 1 -2i √ 3a 1 , (56) 
a 2 = 1 42 39a 1 + 2i √ 3a 1 . (57) 
So, by setting a 1 = 1 and a 2 = 7 6 in (54), the modified Abel lemma gives us that

-36 ∞ k=0 1 2 12k 2k k 3 1 (6k + 1)(6k + 7) (58) 
may be written as

-6 + ∞ k=0 1 2 12k 2k k 3 63 64(k + 1) - 9 64(k + 1) 2 + 3 256(k + 1) 3 .
So, using the generating function evaluations for ( 41), (46), and (48), together with the elliptic singular value for K (k 7 ) along with the value for E (k 7 ) we had determined from the closed form for α [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF], this allows us to determine an explicit symbolic form for (58), which we apply, as below, using our method from Section 2.

With regard to the value 16 π in Ramanujan's formula in (49), the following result is "modeled" after this formula.

Theorem 16. The identity

- 1024 π = ∞ k=0 1 2 12k 2k k 3 p(c, k) (6k + 1)(6k + 7)
holds true for a free parameter c, where p(c, k) = 1161216ck 5 

+ 1520640ck 4 + 175104ck 3 -26112ck 2 - 5760ck -448c -5651856k 5 -7387632k 4 -933264k 3 -13668k 2 -6195k -64.
Proof. Following through with our evaluation technique as applied to (58), this gives us that the series

∞ k=0 1 2 12k 2k k 3 1 (6k + 1)(6k + 7)
admits the following symbolic form:

- 9 14π + 12π 2 √ 7Γ 2 1 7 Γ 2 2 7 Γ 2 4 7 + 17Γ 2 1 7 Γ 2 2 7 Γ 2 4 7 224 √ 7π 4 .
So, by applying partial fraction decomposition in the series in the Theorem under consideration, the desired result is easily seen to hold, by repeatedly differentiating the Clausen's product-derived generating function identity in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], and by using the symbolic forms for K (k 7 ) and E (k 7 ).

For the series given in the following Examples, Mathematica 2022 and Maple 2020 are not able to provide any evaluation whatsoever, i.e., even in terms of elliptic-type expressions, and even with the use of Wolfram commands such as FunctionExpand. 

With regard to

Step 3 in the formulation of our main method, as in Section 2, we had selected the value 16 π as the rational multiple of 1 π indicated in Step 3, in order to mimic Ramanujan's formula in (49); this is in reference to how we had determined the identity in Theorem 16. We may determine many similar identities, by selecting different Q-multiples of 1 π . We may similarly generalize the remarkable formula

∞ n=0 - 1 64 n 2n n 3 (4n + 1) 2 (4n -1)(4n + 3) = - 32 2 + √ 2 Γ 2 1 4 Γ 4 1 8 ,
recently introduced by Cantarini in [START_REF] Cantarini | A note on Clebsch-Gordan integral[END_REF] via Fourier-Legendre theory, and in the context of the application of the Clebsch-Gordan integral. Now, let us consider applying the solutions for a 2 indicated in (56) and (57). In this regard, we set

A k = 1 k + 1 42 39 -2i √ 3 
in the modified Abel lemma, and we let B k be as before. So, the modified Abel lemma gives us the equality of

∞ k=1 B k (A k -A k-1 )
and

- 21 256 39 -2i √ 3 + ∞ k=1 B k 1 512(a 2 -a 1 )(k + 1) 3 + -6a 2 + 5a 1 512(a 2 -a 1 ) 2 (k + 1) 2 + 12a 2 2 -18a 2 a 1 + 7a 2 1 512(a 2 -a 1 ) 3 (k + 1) ,
recalling that we had specifically selected A k in order for the coefficient of the term 1 a1k+a2 to vanish in the manner indicated above. So, by again applying the generating function evaluations for ( 41), (46), and (48), this allows us to determine a symbolic form for the left-hand side of the above equality. Taking the real and imaginary parts, this gives us, respectively, that Using the above formulas, we may obtain many analogues of Theorem 16, as below.

∞ k=0 1 2 12k 2k k 3 588k 2 + 504k -43 (84k 2 -12k + 1) (84k 2 + 156k + 73) = - 57 28π - 333Γ 2 -6 7 Γ 2 2 7 Γ 2 4 7 5488 √ 7π 4 + 108π 2 49 √ 7Γ 2 
Theorem 17. The identity

- 32 π = ∞ k=0 1 2 12k 2k k 3 p(c, k) (84k 2 -12k + 1) (84k 2 + 156k + 73)
holds for a free parameter c, where p(c, k) = 113799168ck 7 +192374784ck 6 +64060416ck 5 -15828480ck 4 

+ 232704ck 3 -28800ck 2 + 9024ck -2336c -3556224k 7 -1566432k 6 + 5879664k 5 + 3671856k 4 -312240k 3 + 15906k 2 + 1347k -768.
Proof. This follows in much the same way as in with our proof of Theorem 16, using the imaginary part identity indicated above.

By assigning the parameter c to be a given rational value, we may obtain remarkable evaluations from the above Theorem 17. Ramanujan-inspired formulas as in the below Examples are remarkable for many reasons, noting that generating functions for sequences such as 2k k 6 Generalizing Eisenstein series-derived formulas for 1 π With regard to the generalizations introduced in this article, we may similarly generalize the other Ramanujan series for 1 π , apart from the Ramanujan series considered in this article, and similarly for previous known results on Ramanujan-type series. For example, in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] (cf. [START_REF] Baruah | Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions[END_REF]), Baruah and Berndt provided the formula

2 √ 2 -1 π = ∞ k=0 - 1 64 k 2k k 3 (4 √ 2 -2)k + √ 2 -1 √ 2 -1 2 3k ( 59 
)
and described this as new, but it is easily seen how the above formula follows in a direct way using the methodologies involved in our article, and may be generalized in much the same way as in Sections 2 and 4. To briefly show this, according to the Clausen's product-derive generating function identity in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], along with what we obtain by differentiating [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], it remains to prove evaluations for

K   i 1 2 1 2 2 1 + 5 √ 2 -4   (60) 
and for the corresponding expression obtained by replacing K with E. In this regard, we may make use of the classic elliptic integral identity

K (ik/k ′ ) = k ′ K(k), (61) 
in much the same way as in [START_REF] Campbell | A WZ proof for a Ramanujan-like series involving cubed binomial coefficients[END_REF], where but the argument of the above K, as above, is precisely λ * (8) = k 8 , i.e., so that we may use the previuosly known value for K(k r ), which, in turn, gives us a symbolic evaluation for r E(k r ), according to the elliptic alpha function identity in [START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF]. So, in other words, we have shown, using [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], that Baruah and Berndt's series in (59) is equal to a finite combination of explicit symbolic forms together with (60) and the E-expression corresponding to (60), but these Kand E-expressions also admit explicit symbolic forms, as we have shown, so this gives us a way, according to the methodologies in this article, of show how the series in (59) reduces to 2 √ √ 2-1 π . In contrast, Baruah and Berndt's proof of (59) [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] identities for Eisenstein series of the form P (q) := 1 -24

k ′ = √ 1 -k 2 .
∞ k=1 kq k 1 -q k .
With regard to our alternate and simplified proof of Baruah and Berndt's formula in (59), many of the other Ramanujan-type series claimed to be new in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] may be proved in much the same way, as above. We provide an infinite family of generalizations of Baruah and Berndt's formula in (59). Many of the other results in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] may be similarly generalized. By setting c = 0 in the following Theorem, we obtain a copy of the Baruah-Berndt formula in (59). Proof. From the known elliptic singular value 

K(k 8 ) = 1 
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 2543233131226 Setting c = 0 in Theorem 12, we obtain the Ramanujan-Example Setting c = 99 25 in Theorem 12, we obtain the Ramanujan-type formula -

Example 31 . 3 Example 32 .Example 33 .
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 34335 Setting c = 0 in Theorem 15, we obtain the following Ramanujan-type formula of con-554320k 2 -614074k -59547 (k + 1)(2k -1). Setting c = -19849 in Theorem 15, we obtain the following Ramanujan-type formula of convergence rate 1 1296 :

Example 37 . 3 k

 373 Setting c = 623 128 in Theorem 16, we obtain the new formula highlighted in (17). Example 38. Setting c = -1 7 in Theorem 16, we obtain the new 13574736k 4 + 17744688k 3 + 2235984k 2 + 23188k + 12535 (6k + 1)(6k + 7) .

3 1 84k 2 -k 3 1 84k 2 6 + 7881552k 5 + 3177216k 4 -

 3232654 12k + 1 : k ∈ N 0 and 2k + 156k + 73 are inevaluable. Again, Mathematica 2022 and Maple 2020 are not able to provide any evaluations for the below series, i.e., not even in terms of elliptic-type functions, and not even with the use of commands as in FunctionExpand.Example 39. Setting c =1 32 in Theorem 17, we obtain that -304968k 3 + 15006k 2 + 1629k -841 (84k 2 -12k + 1) (84k 2 + 156k + 73) .

√ 2 - 1 3k

 21 holds true for a free parameter c.

  Explicitly, this gives us that (60) equals

	-112 -80	√	2 + 40 1 + 5	√	2 + 28 2 1 + 5	√	2 ×
	K 5 + 4	√	2 -2 2 7 + 5	√	2	,

  [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF] this gives us an explicit evaluation for (60), again according to the classical identity in (61) for complex arguments of the K-function. So, we can use the classical identityE(ik/k ′ ) = 1 k ′ E(k)(62)together with the elliptic alpha function to evaluate the expression obtained by replacing K with E in (60). Explicitly, using the elliptic alpha function value

							4 1 2	1 +	√	2	2 √	2 + 1 + 5 π	√	2	Γ	1 8	Γ	3 8	,
							α(8) = 2(10 + 7 √	2) 1 -	√	8 -2	2	,
	we obtain that												
	E 5 + 4	√	2 -2 2 7 + 5	√	2
	= 4 1 2 1 + 4 1 +	2 3/4 π 3/2 2 + 1 + 5 √ √ 2 2 2 2 √ √ 2 + 1 + 5 √ √ 2Γ 1 8 Γ 3 8 2 1 -(10+7 + √	2) 1-√ 2 √	2 √	2-2	2	Γ 1 8 Γ 3 8
														16	√	π	,
	which, in turn, according to the classical identity in (62), gives us the following:
	E	  i	1 2		1 2		2 1 + 5	√	2 -4	 	(63)
	√ 4 1 2 2 1 + 4 1 +	π 3/2 √ 2Γ 1 8 Γ 3 8 √ 2 2 √ 2 + 1 + 5 +	√	2 1 -	(10+7 √	2) 1-√ 2 √	2 √	2-2	2	Γ 1 8 Γ 3 8
														.
			16	-112 -80	√	2 + 40 1 + 5	√	2 + 28 2 1 + 5	√	2 π

2 √ π .(33)

(k + 1) 3 (2k -1) .

Now, we proceed to consider generalizations of Sun's Ramanujan-type formula shown in [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF]. The following infinite family of Ramanujan-type series generalizes Sun's formula in [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF], since if we set c = 2 in the following identity, we obtain a copy of (2).

Theorem 7. The identity

holds true for a free parameter c.

Proof. This follows in a direct way by applying our main method from Section 2 together with power series evaluations that we had previously provided.

By setting c = 1, we again obtain a special case of Guillera's WZ-derived identity in (47). The versatility of our main method, as formulated in Section 2, is evidenced by how we have successfully applied this method to obtain two nontrivially different infinite families of Ramanujan-type series generalizing this same special case of Guillera's formula in (47). Our method may be similarly applied to obtain infinite families of generalizations of each of the other instances of (47) for integers k.

The remarkable nature about the following Ramanujan-type formulas is evidenced, for example, by how Maple 2020 is only able to evaluate the series in Example 11 as:

Example 10. Setting c = 1 2 in Therem 7, we obtain the Ramanujan-type formula

Example 11. Setting c = -2 in Therem 7, we obtain the Ramanujan-type formula

Example 12. Setting c = 5 3 in Therem 7, we obtain the Ramanujan-type formula

Now, we are to generalize Sun's formula in (2) using symbolic forms for both ( 5) and [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF]. Setting c = 1 in the following Theorem, we obtain a copy of the formula shown in [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF]. Theorem 8. The identity

holds for a parameter c.

Proof. This follows in a direct way using our main method and symbolic forms for power series that we had previously provided.

The remarkable nature about our Ramanujan-type formulas derived from Theorem 8 is reflected in how Maple 2020 is only able to evaluate the series in Example 14 as 

Example 14. Setting c = 15 7 in Theorem 8, we obtain the Ramanujan-type formula

Example 15. Setting c = -5 in Theorem 8, we obtain the Ramanujan-type formula

We may generalize Theorem 8 by using both ( 6) and ( 7) for z = 1, so as to obtain an infinite family of series for 1 π involving two free parameters. So, we consider obtaining new results using different z-values among (4)- [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF]. Setting the parameter c to be equal to 2 in the below theorem, we obtain a copy of Sun's formula in [START_REF] Bagis | Formulas for the approximation of the complete elliptic integrals[END_REF].

Theorem 9. The identity whereby

holds true for a parameter c, where p(c, k) = 3456ck 4 

Proof. This follows in a direct way from previous generating function identities we had given, together with the identity ∞ k=0

x 64

Applications of an Abel-type lemma

In our forthcoming article [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], we introduced a series evaluation method that may be regarded as being something of a combination of the modified Abel lemma on summation by parts and a method of undetermined coefficients. We had applied this technique in [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF] to prove the remarkable formula

An especially remarkable aspect about the formula in ( 52) is due to how generating functions for sequences such as 2n n : n ∈ N 0 are inevaluable, so our method involving the elliptic alpha function cannot be applied directly. This inspires us to use out method from Section 2 in conjunction with that from [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF].

Without going over the full formulation of the technique from [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], we instead use the Abel-type lemma required in this technique in [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], in accordance with this same technique. Following [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], the modified Abel lemma referred to above is such that

if the above limit exists and one of the above series is finite. The operators ∇ and • ∆ satisfy the following, for a given sequence τ :

Following the derivation of (52) in [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], We set

in the modified Abel lemma. So, following the evaluation technique from [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], we rewrite the summand of the latter series in (53) as

Again, following the main technique from [START_REF] Campbell | A series evaluation technique based on a modified Abel lemma[END_REF], we apply partial fraction decomposition to the rational function 1

and then solve for the scalars a 1 and a 2 in such a way so that the coefficient of

by applying partial fraction decomposition to the above expression, we find that the resulting coefficient of

Setting the above expression equal to 0, and then solving for a 1 and a 2 , we obtain the following solutions:

From the evaluation in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF] for the generating function for the sequence of cubed central binomial coefficients, we obtain that:

So, by differentiating the Clausen's product-derived identity in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF], and then setting the argument in the resultant identity as

, by plugging in the symbolic forms for (63) and (60) appropriately. So, by applying partial fraction decomposition to the summand of the series in the Theorem under consideration, we can use the generating function identity in [START_REF] Guillera | On WZ-pairs which prove Ramanujan series[END_REF] along with its derivative, and together with the generting function evaluations for ( 38) and ( 41), to simplify the series in Theorem 18, again with the symbolic forms for the Eand K-values indicated in (63) and (60).

Example 40. Setting c = 1 in Theorem 18, we obtain the Ramanujan-type formula

, extending the Baruah-Berndt formula in (59) according to Theorem 18.

Since the Baruah-Berndt formula in (59) is described as new in the 2010 article [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF], and since relevant research concerning [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF] such as [START_REF] Bagis | Ramanujan type 1/π approximation formulas[END_REF][START_REF] Bagis | Conjectures on the evaluation of alternative modular bases and formulas approximating 1/π[END_REF][START_REF] Baruah | Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions[END_REF][START_REF] Baruah | Ramanujan's series for 1/π: a survey[END_REF][START_REF] Baruah | Ramanujan's Eisenstein series and new hypergeometric-like series for 1/π 2[END_REF][START_REF] Chu | Dougall's bilateral 2 H 2 -series and Ramanujan-like π-formulae[END_REF][START_REF] Liu | A summation formula and Ramanujan type series[END_REF][START_REF] Liu | Gauss summation and Ramanujan-type series for 1/π[END_REF][START_REF] Wei | Extensions of Ramanujan's two formulas for 1/π[END_REF][START_REF] Wei | Series for 1/π and π with free parameters[END_REF] does not involve any material that is meaningfully similar relative to our elliptic alpha-based and generatingfunctionology-based methods, this reflects the original and innovative nature of our applications of the evaluation algorithm presented in Section 2.

Many of the Ramanujan-type series given in (59) involve summand factors of the form

Such series also may be applied using our methods, in much the same way as in Section 4. In contrast to the heavy reliance on theta functions and modular equations in [START_REF] Baruah | Eisenstein series and Ramanujan-type series for 1/π[END_REF], our elliptic alpha-based methods may be broadly applied, as we have demonstrated, using generating functions as in ( 4)-( 10) and ( 11)-( 15), and through the use of elliptic integral singular values, as in our alternate proof of the Baruah-Berndt formula in (59).
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