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Abstract

This work is concerned with the prediction of the elasto-acoustic properties of polydisperse solid foam structures. A
highly polydisperse foam sample is first characterized using microtomography and scanning electron microscopy. Relevant
geometrical properties are then determined by image processing and utilized to model the partially closed cell system with
random Laguerre tessellations. The macroscopic visco-thermal transport properties of the solid foams are next calculated
by numerical techniques, using either finite element computations or pore-network simulations. The permeability and
sound absorption coefficient at normal incidence are also measured and a good agreement is obtained with the calculations
when the elasto-acoustic coupling is modeled from the Biot’s equations (including characterized visco-elastic parameters).
Our results demonstrate that stochastic geometry provides a robust framework to understand the structure-property
relationships of polydisperse foam.

Keywords: Polydisperse foam, Microtomography, Microstructure reconstruction, Transport parameters,
Elasto-acoustic properties.

1. Introduction

Understanding the physical mechanisms controlling the
macroscopic properties of a disordered [1, 2] and locally in-
homogeneous [3] foam is an open fundamental issue in ma-
terial sciences [4, 5, 6, 7]. The random structures of inho-
mogenerous solid foams such as polyurethane are very sim-
ilar to those of their three-dimensional polycrystal counter-
parts. The random nature of the pore size and asphericity
distributions produce heterogeneity at the local scale. In
such systems, it has been argued that an appropriate poly-
hedral description consistent with experimental data of the
microstructure can be obtained with optimal Laguerre tes-
sellations [8]. However, to describe the passage from the
local geometry of the disordered media to the macroscopic
properties of interest, solving the local partial differential
equations which govern the phenomena needs to be ex-
plicitly addressed [9, 10]. So far, this resolution has been
limited to idealization of the local geometry through reg-
ular polyhedrons [11, 12]. Another fruitful path has been
the development of analytical methods such as the self-
consistent models [13, 14], or the determination of bounds
based on the use of moments of the pore space distribu-
tion [9]. These general approaches are useful to find rapid
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approximate solutions of the problem, but cannot be con-
sidered when an accurate estimate is required for random
structure exhibiting a wide distribution of pore sizes.

When a foam is loaded with solid particles during the
foaming process, it is commonly observed that the final
foam density and cellular structure are affected [15], with
coexisting small and large cell sizes in the vicinity of the
solid particle. This microstructural modification, some-
times referred to as nucleation effects, differs from free-rise
foaming process, in which homogeneity occurs from the
competing reactions between foam expansion and cellular
structure stabilization. The change in cell size distribu-
tion is likely to be accompanied by a modification of the
other geometric characteristics, such as number of face per
cell and number of edges per face [16] or membrane con-
tent [17]. Random foams with a wide range of cell-volume
distributions are also observed when real foam materials
evolve through diffusive coarsening [18, 19, 20, 21].

The aim of the present study is to propose and validate
a pipeline integrating fine-scale experiments and compu-
tational simulations to predict the acoustics properties of
realistic, polydisperse foams. In contrast to the study pre-
sented in Ref. [11] where computational homogenization
is applied on a simplified model involving two types of
Kelvin cells (the properties of which are identified based
on microstructural data), the methodology advanced in
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this paper accounts for a more complete statistical de-
scription of the underlying microstructure—hence allowing
for the influence of polydispersity and membrane content
to be systematically quantified. Numerical homogeniza-
tion methods [22], combined with semi-phenomenological
models [23, 24], offer the ability to study how volume-
averaged properties of the flow relate to microscopic de-
tails of the geometry. A two-step methodology is followed
that involves microstructure reconstruction and solving lo-
cal partial differential equations. However, the passage
from idealization of the local geometry to a more realis-
tic disordered one has been limited due to the prohibitive
calculation time associated with the resolution of bound-
ary value problems corresponding to large spatial domains
[25]. This motivates the use of a pore-network approach
[26, 27] for the case of the viscous fluid flow. The use of
this method and finite element simulations (to solve the
potential flow and heat conduction equations) allows us
to reproduce many features of microscopically-disordered
foams and to determine the corresponding transport prop-
erties. This enables, in particular, the consideration of lo-
cally heterogeneous foams with about five hundred pores,
as well as the exploration of results sensitivity with re-
spect to the solid film or membrane content (for given pore
size and sphericity distributions). In addition, the frame-
work accounts for elasto-acoustic effects by integrating the
elastic properties of the studied foam sample. The foam
sample used for microstructure characterization contains
about two thousand pores characterized using tomography,
which is large enough to observe and describe the polydis-
persity and its effect on the transport and sound absorbing
properties. In order to be statistically representative, the
analyzed volume must contain a sufficiently large number
of heterogeneities. In practice, the characteristic size of
the domain can be assessed through a convergence analy-
sis on statistical metrics and is typically found to be about
ten times larger than the characteristic size of the hetero-
geneities [28, 29, 30, 31].

This paper is organized as follows. The geometrical
properties of the studied polyurethane foam sample are
presented in Section 2, together with the calculation method
of the macroscopic properties. Section 3 is devoted to a
comparison between multi-scale computations and exper-
imental measurements. Finally, some concluding remarks
are provided in Section 4.

2. Microstructure and Properties

In this work, we consider a polyurethane (PU) foam
obtained by adding graphite particles during processing.
Such particles are commonly introduced during the foam-
ing process to improve fire resistance [32, 33, 34, 35, 36, 37],
and were reported to modify the distribution of pore size
and to increase the heterogeneity in the PU foam [38, 39].

2.1. Characterization of Polydispersity and Membrane Con-
tent

The microstructure of the foam is characterized using
both X-ray computed tomography (X-ray CT) and Scan-
ning Electron Microscope (SEM) images. The former tech-
nique is specifically used for the characterization of pore
size, sphericity, and number of neighbors; while membrane
properties are studied based on SEM images.

2.1.1. Pore Characterization

A X-ray micro computed-tomography (µCT ) local to-
mography was performed using an UltraTom microtomo-
graph from RX-Solutions, which includes a Hamamatsu
micro-focus 230 [kV ] model L10801 X-Ray source and a
CsI scintillator Varex flat-panel imager model 4343 DX4,
which total number of active pixels is 3052× 3052. A par-
allelepipedical sample (approx. 11×11×23 [mm3]) of PU
foam was cut. Acquisition was conducted with tube volt-
age and current set to 60 [kV ] and 100 [µA], respectively.
Imager parameters were: 1 frame per second averaged on
32 images using a 2× 2 binning. Voxel size was 6 microns,
and the size of the reconstructed volume was 7.8×7.8×7.8
[mm3].

The use of adapted filters and a binarization are re-
quired to reconstruct the struts in foam CT images. De-
tails regarding image processing for the PU foams are pro-
vided below.

1. First, noise reduction is performed by extracting a
subdomain of 1000× 1000× 1000 voxels at the cen-
ter of the domain (containing 1300 × 1300 × 1300
voxels), to reduce lateral noise reconstruction arti-
facts. A ball-shaped dilatation filter with a radius
of 2 voxels is then applied to compensate for artifi-
cially disconnected solid skeleton (lack of resolution)
Fig. 1a.

2. Second, foam struts are obtained through a bina-
rization, by applying Otsu’s method [40] with an
adapted threshold (which is calculated for each slice),
Fig. 1b.

3. Third, a 3D distance transform map is computed and
used to proceed with image inversion; Fig. 1c.

4. Last, a segmentation by watershed transform is per-
formed to detect the borders separating one pore
from the others [41, 16], and the pores thus detected
are colored, Fig. 1d.

The general workflow for image analysis is illustrated in
Fig. 1. In this work, the solid particles were considered
in the image processing sequence as solid walls that sepa-
rate neighboring pores. No attempt was made to explic-
itly identify them and model their role. An influence of
graphite particles on the foam structure can however be
observed in panels e) and f). Specifically, small pores are
created around the graphite particles that contribute to
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Figure 1: (Color online) General workflow for image analysis: a) original CT image; b) binarized image generating the struts system of
foam; c) image obtained after distance transform and inversion; d) pores detected through a segmentation with a watershed transform; e-f)
3D visualization of the struts system and graphite particles.

the rigid skeleton. Here, a volume of 6 × 6 × 6 [mm3]
containing 2,131 pores was analyzed.

Once the images have been processed, several morpho-
logical characteristics, including the volume and surface of
pores and spatial arrangement properties (such as relative
positions and numbers of neighboring pores), can be ex-
tracted. Notice that only complete pores are accounted
for to estimate the pore size distribution (in other words,
pores intersecting image borders and solid particles are
discarded) in the present analysis. On the other hand,
pores located at the borders were preserved to estimate
the number of neighbors. All image processing and anal-
ysis steps were carried out by using the open-source FIJI
software with the MorphoLibJ plugins [42, 43].

Two parameters can be used to characterize the pore
size and shape (as compared to a sphere). The pore size
is defined by an equivalent diameter d, which represents
the diameter of a sphere with a volume equal to the pore
volume, denoted by Vp. The pore shape is measured by
the sphericity s, which is defined as the ratio of the surface
area of a sphere having the same volume as the pore over
the surface area Sp of the pore:

s =
(36π)

1/3
V

2/3
p

Sp
. (1)

Notice that the maximum s = 1 is obtained for a spherical
pore. For examples, Voronoi tessellations provide spheric-
ities exhibiting an average of 0.810 and a standard devi-
ation of 0.044 [8]. The mean values and standard devia-
tions for d and s, estimated from the data, are provided
in Tab. 1.

2.1.2. Membrane Characterization

The characterization of membranes is performed by an-
alyzing the surfaces of foam samples with SEM images.
Scanning electron microscopy is based on the detection of
secondary electrons emerging from the surface under the
impact of a very fine brush of primary electrons (sweeping
across the observed surface). It therefore requires elec-
trically conductive materials. For non-conductive materi-
als, a metallization of the samples is needed. A high per-
formance metallizer by cathode sputtering, coupled with
a magnetron source (Cressington sputter coater 208HR),
makes it possible to deposit a conductive film of a few
nanometers (controlled by a quartz probe, here a Cress-
ington MTM 20) on the surface of the samples. Fig. 2(a)
shows a large contrast between the largest and the smallest
cells. A close-up of a solid film or membrane covering most
of the windows is displayed in Fig. 2(b). In the vicinity of
a graphite particle, a large number of small windows can
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be seen, suggesting a nucleation effect (leading locally to
smaller window sizes), Fig. 2(c). We examined the foam
structure including closed and open windows, to further
characterize the foam structure, Fig. 2(d).

In this work, a polygon is superimposed over each in-
dividual window in the images thus obtained. For each
open membrane, another polygon is used to characterize
the area of the corresponding aperture size; see Fig. 2(d).
The area of the superimposed polygons is then determined.
The proportions of closed (xc) and open (xo) membranes,
defined as the ratios between the number of closed or open
membranes (denoted by Ncl and Nop, respectively) and
the total number of membranes Ntotal, are also identi-
fied. The aperture ratio of open membranes is estimated
as to =

√
Aap/Aow, where Aow is the area of the aper-

ture corresponding to a window for which the membrane
is open, and Aap is the area of the polygon associated
with the given window. Note that if a membrane has sev-
eral apertures, Aap is their total area. The average of
aperture ratio ⟨to⟩ is subsequently deduced. The num-
ber of edges per membrane Ne is also characterized. Due
to sample cutting, some membranes may be destroyed or
damaged, in which case they are discarded in the analysis.
It is noteworthy that the apertures of open membranes are
continuous and thus can be distinguished from destroyed
membranes that are characterized by a geometry which is
singular and consists of abrupt modifications at the periph-
ery of the individual apertures (see the distinction between
destroyed and open membranes in Fig. 2d).

For the PU foam under study, dozens of SEM images
associated with both the top and bottom sample surfaces
were analyzed, leading to the characterization of hundreds
of membranes. The foam presents many fully-closed mem-
branes. The mean value for the proportion of fully-closed
membranes is ⟨xc⟩ = 0.72, and the average of aperture
ratio for the open membranes is estimated to ⟨to⟩ = 0.51
(see Tab. 1).

d (µm) s (−) ⟨xo⟩ (−) ⟨to⟩ (−)

360± 290 0.77± 0.068 0.28± 0.05 0.51± 0.17

Table 1: Geometric properties of the PU foam.

The thickness of a membrane is also estimated through
SEM images (see Fig. 2b). Its average value is around 0.3
[µm], which is noticeably smaller than the values reported
elsewhere for polyurethane foams [11, 12]. One can note
that the membrane thickness is very thin when compared
to the average pore size ⟨d⟩ = 360 [µm]. This property jus-
tifies that the thickness of the membranes separating the
cells is further ignored, assuming that we wish to reduce
the size of a finite element model. Appendix A describes
the implementation and the validation of the finite-element
model used to compute the viscous characteristic length of
polydisperse solid foams in which the solid wall thickness
(membrane) is much smaller than the average pore size.

2.2. Polydisperse Microstructure Reconstruction

2.2.1. Methodology

Realistic foam microstructures usually exhibit a dis-
tribution of pore size. Random Laguerre tessellations are
widely used to simulate polydisperse foams; see [44, 45, 16].
In these works, a Laguerre tessellation is constructed by
using a random dense packing of hard spheres with a dis-
tribution of sphere size that coincides with the pore size
distribution (estimated from the characterized foam sam-
ples). In classical Laguerre tessellation generation meth-
ods, large differences between the spherical and pore cen-
troids may be observed; meaning that a quantitative re-
production of the pore size distribution estimated from
experiments still remains a challenging task. In this work,
we use an enhanced algorithm developed for the purpose
of a description of 3D polycrystals [8]. The algorithm
proceeds by sequentially updating the parameters of the
seeds in the tessellation model, an optimization being per-
formed through a genetic algorithm until some pore prop-
erties match with the target properties (prescribed distri-
butions).

In order to proceed with the foam microstructure re-
construction, the pore size and the quantity 1− s related
to pore sphericity are assumed to follow some suitable
probability distributions, identified from the experiments.
Note that periodic boundary conditions are used to avoid
boundary effects and to increase the convergence rate with
respect to domain size.

In the present work, we are primarily interested in
highly porous and thin membrane-based foams. Specifi-
cally, membrane thickness and Plateau’s borders are not
modeled, which reduces the computational cost associated
with subsequent finite element analyses. The membrane
effects are accounted for through (1) the proportion of
closed and open membranes (xc and xo), and (2) the av-
eraged aperture ratio ⟨to⟩ of the open membranes. More
specifically, a subset of xo membranes is randomly selected
amongst all membranes, and these membranes are opened
using a polygon exhibiting the same aperture ratio ⟨to⟩
(in practice, this defines a homothety with respect to the
centroid of the membrane).

With a view towards finite element discretization, it
is recommended to discard small faces (or membranes) in
the opening procedure. In what follows, windows are ig-
nored when the condition λ < ϵ⟨λ⟩ is met, where λ is
the window area, ⟨λ⟩ is the average area, and ϵ is a given
threshold which is typically taken as 0.01 ≤ ϵ ≤ 0.10 [46];
the applied value ϵ = 0.05 was used in this model. Fig.
3 shows a configuration of periodic geometry of 453 pores
and corresponding mesh.

2.2.2. Comparison Between Real and Reconstructed Mi-
crostructure

In Fig. 4, we show the probability density functions
of pore size and 1 − s estimated (1) from the experimen-
tal data, (2) using log-normal models, and (3) after the
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Figure 2: (Color online) Characterization of membranes on SEM images: (a) top view of foam sample; (b) membrane thickness; (c) graphite
particle; (d) open membrane aperture ratio, and distinction between open and destroyed membranes.

a) b)

Figure 3: (Color online) A configuration of periodic geometry of
453 pores (a) and corresponding mesh (b).

microstructure reconstruction. The high value of the coef-
ficient of variation for the pore size, CVd = σd/⟨d⟩ = 0.79
(σd denoting the standard deviation of the pore size d), in-
dicates a wide range of pore volumes. The lognormal fit for
the pore size distribution is found in good agreement with
the experimental results, which is consistent with other
results provided elsewhere for cellular materials [44]. Sim-
ilarly, the log-normal fit provides a fairly close approxima-
tion of the empirical function for the quantity 1− s (recall
that s is the sphericity). It is seen that the experimen-
tal distributions for the pore diameter and sphericity are
properly captured in the proposed methodology.

In order to further discuss model adequacy, results on
various quantities of interest obtained through the experi-
mental characterization and through the numerical recon-

struction (with 453 pores) are shown in Fig. 5. The num-
ber of neighboring pores in the reconstructed structure is
Nv = 12.5 ± 8.9, which is larger than the corresponding
number Nv = 9.1±8.6 in the physical foam. This discrep-
ancy could be explained by a number of factors. First, the
smallest windows were discarded for computational rea-
sons (Sec. 2.2.1). Second, simulated pores are modeled as
convex polyhedrons with straight struts, which represents
a simplified geometrical description of the real foam struc-
ture (surface area minimization was not performed in this
work). Third, the presence of graphite particles can affect
the polyhedral microstructure of PU foams [47, 36], hence
decreasing the number of neighboring pores. A small value
for the number of neighboring pores could also be induced
by the pore size distribution, as shown in [1, 16]. Indeed,
the number of small cells increases with polydispersity and
the small cells in polydisperse foams have fewer faces or
neighbors (Fig. 3 of Ref. [1]). In agreement with sim-
ulations from the literature, our results also suggest that
the number of neighboring pores and pore sizes are indeed
correlated—small pores have fewer neighbors than larger
ones, in both the experimental and simulated observations
(Fig. 5b). On the other hand, the average number of edges
per face for the simulated microstructure, 5.07 ± 1.39, is
close to the value obtained on the experimental microstruc-
ture, 5.07± 1.31 (see Fig. 5c).

These results support the relevance of the proposed
methodology to sample microstructures of strongly poly-
disperse foams. We note that graphite particles modified
the equilibrium microstructure of dry soap foams and led
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Figure 4: (Color online) Foam morphology comparison between experimental measure, fitted lognormal law and reconstruction for (a) pore
size distribution and (b) 1-sphericity.
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Figure 5: (Color online) Foam morphology comparison between experimental measure and reconstruction for (a) Number of neighbor, (b)
Correlation between number of neighbor and normalized equivalent diameter and (c) Edge number per face.

to topological properties that are different from those re-
ported in isotropic Plateau polyhedra. A promising re-
search direction to further elucidate the mechanisms lead-
ing to non-universal topological and geometric properties
of random foams including graphite particles would con-
sist in using synchrotron X-ray nano-tomography to col-

lect the positions and shapes of graphite particles, and in
performing a cross-correlation analysis involving some lo-
cal topological descriptors. The ability of synchrotron to-
mography to provide three-dimensional images with a sub-
micrometric spatial resolution could also be used to char-
acterize the membranes. X-ray laboratory tomography
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could also provide sub-micrometric images but it would
require a much higher acquisition time per scan for images
corresponding to a lower signal to noise ratio, i.e., ∼ 1
night vs 10 min.

2.3. Calculation of Transport and Elasto-Acoustic Proper-
ties

In the following subsections, we review the technical
background pertaining to pore-scale computations on the
generated microstructural samples, including the predic-
tion of both the transport parameters and the elasto-acoustic
properties (in Sec. 2.3.1 and Sec. 2.3.2, respectively).

2.3.1. Elementary Transport Processes

In this section, we focus on the determination of macro-
scopic transport properties, solving local equations sup-
plemented with adequate boundary conditions. More de-
tailed presentations are given by Adler (1992) [10] and by
Auriault, Boutin, and Geindreau (2009) [31]. The media
considered in this work are considered to be macroscop-
ically homogeneous, and are described as infinite media
filled with replicated periodic unit cells. The elementary
volume is a cube of size Li ×Li ×Li containing Np pores.
The equations to be solved are classically derived from
an asymptotic analysis, as described by Bensousan et al
(1978) [48], Sanchez-Palencia (1980) [49], and in the re-
cent studies by Malinouskaya et al (2008) [50] and Boutin
and Geindreau (2010) [14].

Note first that any geometric macroscopic property
such as the porosity ϕ and the thermal characteristic length
Λ′ can be directly obtained from the microstructure:

ϕ =

∫
Ωf

dV/

∫
Ω

dV , Λ′ = 2

∫
Ωf

dV/

∫
∂Ω

dS , (2)

where solid border Ω is the volume element (VE), Ωf de-
notes the fluid volume, and ∂Ω is its solid border.

The remaining transport parameters are numerically
computed using spatial averaging on the solution fields
associated with the problems described below.

1. Thermal permeability
Under the excitation of an external, harmonic source,
the excess temperature field originates from a spa-
tially uniform, harmonic heating in the air domain,
with perfect absorbing conditions on the solid bound-
aries. The static thermal permeability satisfies the
following equation:

k′0 = ϕ⟨u⟩ , (3)

where the symbol ⟨•⟩ indicates fluid-phase averaging,
that is

⟨•⟩ = 1

Ωf

∫
Ωf

• dV ,

and the scaled, Ω-periodic temperature field u is the
solution to the Poisson equation

∆u = −1 in Ωf , (4)

supplemented with the thermostat boundary condi-
tion

u = 0 on ∂Ω . (5)

Here u is assumed to be periodic with a period Li

along the three directions of space. The quantity k′0
is a positive definite scalar parameter, which only
depends on the geometry of the medium. In this
work, the diffusion-controlled reaction problem [51]
is solved via the finite element method, using Comsol
Multiphysics [52].

2. Viscous characteristic length and tortuosity
Note first that the electric conduction terminology is
used below, but the following elements remain valid
for a potential flow and therefore for a fluid flow of
non-viscous particles (high-frequency regime). The
electric conduction problem of a conducting fluid
subjected to a macroscopic electric field e is gov-
erned by the following equations:

∇ ·E = 0 in Ωf , (6a)

E = −∇φ+ e in Ωf , (6b)

E.n = 0 on ∂Ω , (6c)

φ is Ω periodic , (6d)

where E denotes the solution exhibiting −∇φ as a
fluctuating part and n is the outward-pointing unit
normal to the boundary of the pore region. The
potential flow field is, again, determined by the finite
element method, and the tortuosity α∞ and viscous
characteristic length Λ (Appendix A) are obtained
as

Λ =
2
∫
Ωf

E2dV∫
∂Ω

E2dS
, α∞ =

⟨E2⟩
⟨E⟩2

. (7)

More general tensorial expressions of the tortuosity
and viscous characteristic length are given by Auri-
ault et al. (1985) [22], Boutin, Geindreau and Auri-
ault (2009) [31] [Eq. (9.15), Chap. 9], and Boulvert
et al. (2019) [53] [Appendix A, Eqs. (A8) and (A9)].
Because the electric field e provides a preferred di-
rection, the tortuosity α∞ and the viscous character-
istic length Λ of a medium are generally direction-
dependent for a locally inhomogeneous polydisperse
foam: their projections over each space direction
may differ, as discussed in Zielinski et al. (2020);
see Appendix 3 of Ref. [54].

3. Viscous permeability
The low Reynolds flow of an incompressible Newto-
nian fluid is governed by the usual Stokes equations

µ∆v −∇p = −∇pm

with ∇.v = 0 in Ωf ,
(8)

where v, p, and µ are the velocity, pressure, and
viscosity of the fluid, respectively. The term ∇pm is
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a macroscopic pressure gradient acting as a forcing
term. In general, v satisfies the non-slip conditions
at the walls,

v = 0 on ∂Ω . (9)

It can be shown that

v and p are Ω-periodic , (10)

with a period Li along the three directions of space.
In addition, it is assumed that the macroscopic pres-
sure gradient ∇pm is specified in the form

∇pm = |∇pm| e . (11)

Since the system Eqs. (8-10) is linear, it can be shown
that

ϕ⟨v⟩ = −K
µ

· ∇pm , (12)

where K is a positive-definite symmetric tensor. This
tensor only depends on the geometry of the system
and thus can be simplified when the porous medium
possesses geometrical symmetries (Kelvin cell). The
static permeability k0 along the direction specified
by the unit vector is calculated as:

k0 = (K · e) · e = − µϕ

|∇pm|
⟨v⟩ · e . (13)

Here, pore-network simulations are deployed, follow-
ing the seminal work by Koplik (1981) [26] (see also
references therein) and subsequent developments for
monodisperse (Langlois et al., 2018) [27] and poly-
disperse (Langlois et al., 2021) [55] foam structures.

Since the spatial organization of the polydisperse foam
structure introduces stochasticity and direction-dependent
estimations, an overall effective transport parameter must
be introduced. In this work, this parameter is defined as
the average of the values of the macroscopic transport pa-
rameter obtained along the three directions of space, for
five different pore numbers, and three sets of randomly
selected open membranes—hence introducing 45 configu-
rations to be analyzed, for each size Li of the periodic unit
cell.

2.3.2. Elasto-Acoustic Macroscopic Behavior

The phenomenological study of the elasto-acoustic prop-
erties of porous media was thoroughly presented by Biot
[56, 57]. Important semi-phenomenological models with
visco-thermal dissipation mechanisms were later developed
by Johnson et al. [23] and Lafarge et al. [24]. In these
contributions, the assumption of rigid solid skeleton was
made a priori. Johnson et al. and Lafarge et al. suggested
that two general expressions for the frequency-dependence
of the visco-inertial and thermal exchanges between the
frame and the saturating fluid can be defined with the two
sets of parameters (Λ, k0, α∞, ϕ) and (Λ′, k′0, ϕ). The
model correctly matches the frequency dependence of the

first two leading terms of the exact result for high frequen-
cies, but only one term for low frequencies. Numerical
simulations and experiments have shown that the model
by Johnson et al. and Lafarge et al. is very robust (JCAL
model). It should be noticed that the results provided by
Biot and Johnson-Lafarge can be recovered by using the
homogenization theory. In this section, we present a brief
summary of this theory, with the aim of predicting the
sound absorption of polydisperse foams.

For porous materials having a rigid and motionless
skeleton, the equivalent dynamic mass density ρ̃eq and the

equivalent dynamic bulk modulus K̃eq of the material are
computed as [58]

ρ̃eq (ω) =

α∞ρ0
ϕ

[
1 +

σϕ

jωρ0α∞

√
1 + j

4α2
∞µρ0ω

σ2Λ2ϕ2

]
,

(14)

and

K̃eq (ω) =

γP0/ϕ

γ − (γ − 1)

[
1− j ϕκ

k′
0Cpρ0ω

√
1 + j

4k′2
0 Cpρ0ω
κΛ′2ϕ2

]−1 . (15)

In these equations, σ = µ/k0 is the airflow resistivity, ρ0
is the density of air, P0 the atmospheric pressure, γ =
Cp/Cv the ratio of heat capacities at constant pressure
and volume, j the imaginary unit and ω = 2πf the angular
frequency. The wave number k̃eq (ω) and the characteristic

impedance Z̃eq (ω) are then given by:

k̃eq (ω) = ω

√
ρ̃eq (ω) /K̃eq (ω),

Z̃eq (ω) =

√
ρ̃eq (ω) K̃eq (ω).

(16)

For rigidly backed porous material of thickness Ls, the
sound absorption coefficient at normal incidence is given
by:

SACNI = 1−

∣∣∣∣∣ Z̃s − Z0

Z̃s + Z0

∣∣∣∣∣
2

, (17)

where c0 is the sound speed in air, Z0 = ρ0c0 is the the
impedance of the air and Z̃s is the normal incidence surface
impedance:

Z̃s = −jZ̃eq cot
(
k̃eqLs

)
. (18)

The elasto-acoustic coupling effects due to the defor-
mation and/or vibration of solid phase (solid skeleton and
solid walls or membranes) on the absorption coefficient
may be taken into account using the Biot-JCAL model [59,
60]. By assuming that the dissipation in the fluid phase
is independent of the dissipation occurring in the material
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skeleton (the deformation of the pore skeleton does not
significantly affect the fluid properties), Biot [56, 57] has
considered the existence of two compressional waves and
one shear wave in a fluid-saturated porous medium. In a
normal acoustic field, the shear wave is not excited and
only the compression waves can propagate. The surface
impedance at normal incidence in that case is predicted
by[58]:

Z̃s = −j

(
Z̃s
1Z̃

f
2µ2 − Z̃s

2Z̃
f
1µ1

)
D

, (19)

Here, Z̃s
i and Z̃f

i (with i = 1, 2) are the characteristic
impedances in the solid (superscript s) and fluid phase
(superscript f) for the first (index 1) and second (index 2)

Biot compressional waves. The expressions of Z̃s
i , Z̃

f
i , D,

µ1, and µ2 are provided in Appendix B.
Finally, the sound absorption coefficient at normal inci-

dence including elastic effects can also be calculated by us-
ing Eq. 17 and by relying on Eq. 19 and subsequent equa-
tions to compute the corresponding surface impedance.

3. Comparison Between Multi-Scale Computations
and Experimental Measurements

3.1. Direct Characterization of Macroscopic Properties

In order to evaluate our methodology, experimental
data measured at macro-scale were used. The porosity
ϕ and the permeability k0 were measured on six cylindri-
cal samples of diameter 40 [mm] and length 21 [mm]. The
global porosity was measured by comparison of four dif-
ferent masses at four static pressures from which the open
porosity and the true mass density ρ1 are deduced using
the ideal gas law [61]. Permeability was measured with air
in the six samples from the determination of the static and
flow resistivity σ = µ/k0, in a laminar regime, following
the specification of ISO 9053-1:2018. The corresponding
experimental data are reported in Tab. 2.

Finally, an experimental determination of the visco-
elastic parameters, namely the Young’s modulus E, the
Poisson ratio ν and the loss factor η are obtained through
a quasi-static mechanical characterization method as orig-
inally proposed by Mariez et al. [62] and extended by
Langlois et al. [63].

The Young’s modulus data are also displayed in Fig. 6
for different compression rates, and they are seen to lower
as the compression rates are reduced. The measured Young’s
modulus differs by a factor of 3 in the studied range of com-
pression rates which varied from 0.5 to 3 percent. It is im-
portant to note that the extrapolated value at a compres-
sion rate equal to zero is very sensitive to the experimental
data in the range [0.5% − 1.5%]. Chevillote et al. (2020)
[64] also observed that this sensitivity of the Young’s mod-
ulus to the compression rate may result in scattered exper-
imental data. Here, a power law for the extrapolation is
chosen, yielding E ≈ 140 [kPa] at zero compression rate.
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Figure 6: (Color online) Young’s modulus as a function of the
compression rate. The mean and corresponding standard deviation
measured at 1% of compression rate are in black. The mean and
corresponding standard deviation extrapolated at 0% of compression
rate are provided in magenta.

Of course, the value of the Young’s modulus results gen-
erally from the mounting condition of the sample which
are prescribed for a specific application. The influence of
the Young’s modulus variation on the sound absorption
coefficient will be specifically discussed ion Sec. 3.3.

3.2. Prediction of Macroscopic Transport Parameters

The evolution of the mean and standard deviation for
dimensionless transport properties as a function of the
number of pores Np is shown in Fig. 7. It is observed that
average values for the computed geometrical and trans-
port parameters remain fairly constant for Np ≥ 50, while
a reduction in the order of 10% of the average value for
the dispersion parameter requires a significant increase of
the number of reconstructed pores. Notice that Np = 453
corresponds to L/⟨d⟩ ≈ 10.

Computed and measured macroscopic parameters can
be found in Tab. 3, where computational results are ob-
tained for Np = 453. The relatively large dispersion of
the results mainly observed for k0 and α∞ is attributed to
the pore size and shape local inhomogeneity, rather than
a possible anisotropy; see Tab. 4. Recall that the aver-
age is taken over all principal directions and over several
statistically identical geometric configurations (see the av-
eraging procedure described in Sec. 2.3.1), the predicted
values of viscous permeability k0 are shown to be in close
agreement with measurements. It is noteworthy that the
unusually high value of the thermal over viscous character-
istic lengths ratio Λ′/Λ = 4.56 is another interesting effect
of membranes at macro-scale. We also see a drastic effect
of both: (i) disorder (Fig. 3) expressed through a strongly
inhomogeneous pore structure and (ii) a significant pro-
portion of fully closed membranes together with a small
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ρ1 [kg/m3] ϕ [−] σ [Ns/m4] E [kPa] ν [−] η [−]

13.37± 0.19 0.92± 0.01 67500± 9900 140± 25 0.46± 0.02 0.157± 0.005

Table 2: Experimental data of the polydisperse foam measured at macro-scale.
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Figure 7: (Color online) Dimensionless transport properties versus pore number Np, the error bars represents the standard deviations.

opening of the remaining apertures (Tab. 1) on tortuosity,
which yields α∞ = 3.77± 0.35.

We next studied the influence of membrane descriptors
introduced above (Sec. 2.1.2) and the variation of them
around the experimentally determined values on the pre-
dicted transport parameters. The membrane descriptors
used are the proportion of non fully-closed membranes xo

and the aperture ratio of the open membranes to. The
sensitivity of predictions to variations in either to (blue)
or xo (red) is illustrated in Fig. 8. Note that the mean
values of the transport parameters for each microstruc-
tural configuration (xo, to) are calculated from 45 values
(corresponding to 5 structures, 3 sets of randomly selected
membranes, and 3 principal directions). In this figure, re-
sults are displayed in a dimensionless form by using the
average pore size ⟨d⟩ as a reference dimension of the pore
size. The range of experimental dispersion of these pa-
rameters xo and to is also reported on Fig. 8 and provides
a graphical analysis of the numerical sensitivity with re-
spect to perturbation in the characterized inputs. It is
clear that xo or to reduces membrane content, which leads
to an increase of the porous structure viscous permeability
k0 and a reduction of the tortuosity α∞, as expected. It

is also worth to point out that the pore-volume-to-surface
ratio increases by decreasing the membrane content, and
so do Λ′ and Λ, which are strongly correlated. We also
notice that the static thermal permeability k′0 is relatively
independent to the membrane content when compared to
the static viscous one k0, since k′0 is not directly related
to the connectivity of pore space [65]. Contrary to the re-
sults of the static viscous permeability, the results of the
static thermal permeability are independent of a specified
direction (scalar quantity). It is remarkable that the in-
dependent variation of xo or to gives similar qualitative
trends, although an accurate quantitative prediction of all
the transport parameters requires a detailed knowledge of
each membrane descriptor.

From Fig. 8c, it can be seen that, around the charac-
terized mean values of the membrane content ⟨xo⟩ = 0.28,
⟨to⟩ = 0.51, the effect of closing supplementary membranes
is larger than the effect of reducing the aperture ratio of
open membranes on tortuosity (larger slope). We get as a
consequence that the ratio of open membranes xo should
be characterized with great care, and that a significant
increase of the tortuosity α∞ could be obtained by low-
ering the amount of available open pores (at the expense
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ϕ (−) k0
(
10−10m2

)
α∞ (−) Λ (µm) Λ′ (µm) k′0

(
10−10m2

)
Measurements 0.92± 0.01 2.73± 0.34
Computations 2.83± 0.57 3.77± 0.35 59± 3 270± 1 324± 8

Table 3: Macroscopic transport parameters: measurements and computational results

k0
(
10−10m2

)
k′0

(
10−10m2

)
Λ (µm) Λ′ (µm) α∞ (−)

x y z x y z x y z

Structure 1 3.09 2.86 2.67 331 60.6 60.6 55.6 269.1 3.58 3.65 3.93
Structure 2 2.92 2.78 2.67 327 59.2 57.0 61.8 269.5 3.65 3.98 3.62
Structure 3 2.66 2.80 3.16 330 58.5 62.7 60.0 271.2 3.88 3.40 3.69
Structure 4 2.71 2.62 2.81 314 57.7 55.7 57.4 269.5 3.72 3.91 3.98
Structure 5 3.02 2.83 3.57 320 60.5 58.3 55.5 268.8 3.52 3.80 4.22

Table 4: Macroscopic transport parameters: computational results for different structures. Here, the term ”structure” refers to a foam sample
containing 453 pores and reconstructed using the methodology described in Sec. 2.2.1. Recall that each transport parameter reported in the
table corresponds to an average over three sets of randomly selected open membranes (as described at the end of Sec. 2.3.1).
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Figure 8: (Color online) The membrane content (xo and to) dependence of the transport parameters. The red symbols correspond to the
case of to = 0.51, the blue symbols correspond to the case of xo = 0.28. The intersection points correspond to the mean measured values
(xo = 0.28 and to = 0.51). The error bars correspond to standard deviations.

of largest standard deviations of α∞ induced by greater
anisotropy). On the other hand, increasing the opening
ratio to has a larger effect on the viscous characteristic
length Λ increase than increasing the proportion of open
membranes xo (Fig. 8b), since the weighting procedure
implied by Eq. 7 substantially favors smaller apertures.

3.3. Determination of the Sound Absorption Coefficient

The sound absorption coefficient at normal incidence
SACNI of the polydisperse foam sample backed with a rigid
wall was studied using a three-microphone impedance tube
setup [66, 67]. The same series of six cylindrical foam sam-
ples with a thickness of 21mm were used to characterize
the porosity ϕ, the resistivity σ (Sec. 3.1) and the sound
absorption coefficient at normal incidence SACNI. A thin
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layer of Teflon was used around the cylindrical samples to
avoid air leakage between the tube wall and the foam sam-
ples; this implies that a slight compression of the samples
was applied in the radial direction during impedance tube
measurements.

The prediction of the SACNI derived from the Johnson-
Champoux-Allard-Lafarge model (JCAL) assuming rigid
skeleton (Eqs. 14-18) using computed transport parame-
ters as input data to the model (Tab. 3) is compared to
experimental data including a dispersion envelope, Fig. 9.
A satisfactory agreement requires the knowledge of visco-
elastic parameters (E, ν, η) from Tab. 2 as additional in-
puts through a Biot-JCAL model (Eq. 18 replaced by Eq. 19),
suggesting a strong elasto-acoustic coupling in which the
quality of the agreement depends strongly upon the value
of the Young’s modulus E. The elastic effects dramatically
shift the second sound absorption peak towards lower fre-
quencies, which originates from the modification of the
intrinsic damped complex wavelength. A frame acoustical
excitability criterion (FAE), which states that when the
FAE is superior to a critical value of 2 [MW/Kg] (FAE =
σEt2/ρ21R

2, t and R are the thickness and radius of a disk-
shaped porous sample), the influence of the circumferential
edge constraint on the elasto-acoustic behavior of the foam
sample becomes important and the solid phase vibrates, is
well verified (here, FAE ≈ 57 [MW/Kg]); cf. Pilon et al.,
2003 [68].
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Figure 9: (Color online) Sound acoustical coefficient. Sample thick-
ness: 21 [mm].

We note that measurements with impedance tube may
lead to a small pre-compression of the foam sample, which
is consistent with a compression rate around 0.5% cor-
responding to the characterized Young’s modulus (Fig. 6
and 9). The complexity of the predictive models could be
further increased by using for example, a high order ax-
isymmetric finite elements [69] based on the mixed (u-p)
Biot poroelastic formulation [70], with a bonded condition
applied on the circumference of the sample to better de-

scribe the circumferential edge constraint effect. Although
we could expect to see further improvements in the qual-
ity of the agreement, the axisymmetric finite elements Biot
poroelastic formulation would require adjusting the value
of the Young’s modulus to account for the circumferential
edge constraint, while our aim is still to avoid model fit-
ting. Finally, a complete quantitative experimental char-
acterization of the transport parameters of a porous mate-
rial in a three-microphone impedance tube via two trans-
fer functions is in principle possible [66, 67] (see, e.g., the
statistical inversion methods described in [71]). However,
the latter analytic inversion method requires a rigid frame
assumption (as assumed in the JCAL model). The elasto-
acoustic behavior illustrated through Fig. 9 (Biot-JCAL
with E = 140 [kPa]), clearly shows why the indirect in-
version method [66, 67] typically fails for such poroelastic
structures.

In order to evaluate the contribution of viscous and
thermal dissipation on the SAC curve, based on the (elasto-
visco-thermal) Biot-JCAL model with characterized Young’s
modulus (E = 140 [kPa]), it is possible to define the Biot-J
model which does not take into account the thermal effects
by modifying the effective bulk modulus in Eq. 15:

Keq (ω) =
γP0

ϕ
. (20)

In the same way, an elasto-thermal model (Biot-CAL) is
defined by discarding the viscous effects while keeping the
effective bulk modulus in Eq. 15 but modifying the effec-
tive density in Eq. 14:

ρeq (ω) =
α∞ρ0
ϕ

. (21)

Fig. 10 compares the computed sound absorption coef-
ficient curves with Biot-JCAL, Biot-J and Biot-CAL to-
gether with the measured one. It can be shown that the
Biot-CAL which does not take into account the viscous
effect is not convincing. In addition, small deviations be-
tween Biot-JCAL and Biot-J show the importance of vis-
cous and elastic effect. We therefore conclude that for
foams having a large amount of membranes, the absorp-
tion is mainly controlled by the viscous flow and the elastic
skeleton effects; whereas the thermal losses do not play a
significant role on the sound absorption for this kind of
foams.

We next explore the influence of the membrane de-
scriptors xo and to on the sound absorption coefficient at
normal incidence for all samples and a (poroelastic) layer
thickness of 21 [mm]; see Fig. 11. Here, similarly to the
analysis illustrated in Fig. 8, one parameter (that is, xo or
to) is allowed to vary, while the other is set to its mean
value. These results show that a small increase of the
fraction of open membranes, xo, could be slightly benefi-
cial in the frequency range [1200Hz − 2500Hz] (xo = 0.3),
without observing a reduced sound absorption in the re-
maining frequency range. The parametric modification of
the fraction of open membranes xo at constant aperture
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Figure 10: (Color online) Characterized and computed sound acous-
tical coefficient (E = 140 [kPa]). Sample thickness: 21 [mm].

ratio of open membranes to indicates that a reduction of
xo increases the SACNI before 700 [Hz], but there is a
drop of the SACNI particularly in the frequency range
[700Hz − 2000Hz] (xo = 0.2). An increase of xo ba-
sically increases the value of the first sound absorption
peak, but also shift its frequency towards higher frequen-
cies (xo = 0.4− 0.6).

Again, to gain some understanding on the sensitivity of
the model to the aperture ratio of open membranes to, we
performed for the case of the fraction of open membranes
xo = 0.28 a series of simulations with respect to pertur-
bation of to. Modifying in the model the aperture ratio
with a step of 0.1 induces some strong modifications of the
sound absorption between 1000Hz and 2500Hz (Fig. 11a).
Increasing to also results in an increase of the maximum
value of the first sound absorption peak and shift this peak
towards higher frequencies.

4. Conclusion

We have developed a multi-scale approach to estab-
lish a link between the microstructure of a polydisperse
foam and its fluid-flow properties. The analyzed experi-
mental microstructure includes more than two thousand
pores with a wide distribution of pore sizes and shapes,
and the membranes separating two pores are either closed
or open with a specific aperture ratio. To characterize the
pore space geometry, we used computed microtomography
with a spatial resolution of a few micrometers per voxel
and image processing techniques. Lognormal distributions
of pore size and sphericity were used to reconstruct geo-
metrical models having statistically representative proper-
ties, including morphological indicators, as well as the pro-
portion of fully closed membranes xc and the average of
aperture ratio to for the randomly-distributed open mem-
branes. We found that the transport properties become

relatively independent of the size of the model when the
number of pores in the reconstructed domain contains at
least ten average pore diameter per representative volume
element side. This suggests that sufficiently large polydis-
perse foam structures are needed to fully capture the local
heterogeneity content of the foam morphology. Deploying
finite element and pore-network simulations, we then ob-
tained transport parameters and fed them as inputs in
order to predict sound absorption at normal incidence.
In this setting, visco-elastic parameters were not numer-
ically determined and were directly measured at macro-
scale. We found that combining visco-elastic and trans-
port parameters through a Biot-JCAL model provides a
good prediction of the measured sound absorption at nor-
mal incidence. This shows that the greater morphologi-
cal information content contained in a highly polydisperse
foam sample with a membrane content could be used for
designing elasto-acoustic properties of locally inhomogen-
erous poro-elastic materials. Moreover, our work demon-
strates that advanced stochastic geometry combined with
computational methods can be very useful in establishing
structure-property relationships of polydisperse foams.
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Appendix A. Numerical Method for Viscous Length

We consider the singular response of a specific class of
wedge-shaped geometries in the high-frequency limit de-
fined in Sec. 2.3.1. Specifically, we seek a numerical esti-
mation of Λ for polydisperse solid foams in which the solid
wall thickness (membrane) is much smaller than the aver-
age pore size (that is, the apex angle of the wedge tends
to zero); see Fig. A.12.

We present a numerical solution to the closure problem
(Eqs. 6a-6d) for a 3D Kelvin-cell structure of size Dp when
generated with a pore wall thickness equal to zero and a
pore opening of radius ro; this configuration is referred to
as K0 below (see Fig. A.13; the mesh corresponding to the
pore domain and a magnified view of the aperture region
are shown in panel b)). As presented in Sec. 2.3.1, the
viscous characteristic length Λ can be computed as

Λ =
2IV
IS

, (A.1)

where IV =
∫
Ωf

E2dV and IS =
∫
∂Ω

E2dS denote volume

and surface integrals of the electric field E, respectively.
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Figure 11: (Color online) Sound absorption coefficients of the foams: (a) with different opened membrane fraction (at constant aperture
ratio, to = 0.51); (b) with different membrane aperture ratios (at constant open membrane fraction, xo = 0.28). Sample thickness: 21 [mm].
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Figure A.12: (Color online) Illustration of the singularity of the
solid boundary in a structure without membrane thickness.

The above representation in terms of volume and surface
integrals allows for the prediction of Λ on very thin mem-
branes with smooth-shaped geometries to be conveniently
studied from a computational standpoint. Because the
electric field E is a function of the gradient of the scaled
electric potential φ and since the latter may not be smooth
in the vicinity of the singularity of ∂Ω if Ωf has a sharp
edge, E may be very singular [72]. This implies that a
specific numerical treatment must be followed in the com-
putation of E2 and its integral. This behavior is quantita-
tively illustrated in Fig. A.14, where the parameters α∞,
IV , IS , and Λ are computed for different characteristic ele-
ment sizes. It is seen that the predictions of α∞ and IV are
relatively insensitive to mesh refinement, while substantial
variations of IS and Λ are observed as he/Dp → 0. To ad-
dress this problem and obtain a robust estimation of Λ,
we seek a relation between a solid foam structure where
the membrane has a given thickness em, and an equiva-
lent solid foam structure where the membrane thickness
is set to zero but mesh size he is close to em. Two dif-
ferent geometrical configurations are proposed. In model
1, the membrane thickness is set to em and a fillet of ra-
dius em/2 is introduced to avoid the sharp edge effect (see
Fig. A.15). To ensure that the solution is accurately cal-
culated, a mesh size smaller than em/10 is used. In model
2, the membrane thickness is set to zero and the element
size is chosen as em in the vicinity of the aperture (see

Fig. A.13b).
In Fig. A.16, the surface integral IS , normalized by D2

p,
is plotted as a function of (i) the membrane thickness em,
normalized by Dp [model 1] or (ii) the mesh size he nor-
malized byDp [model 2]. Three different Kelvin-structures
are generated using different solid membrane contents: for
K0, all solid membranes are opened; for K1, only solid
membranes with square faces are opened; for K2, only
solid membranes with hexagonal faces are opened. From
Fig. A.16, it is seen that the normalized surface integral
IS/D

2
p behaves as a logarithmic form A log10 (x/Dp) +B,

with adjusted coefficients A and B; and that the numer-
ical results provided by model 1 and model 2 agree very
well, particularly when x/Dp ≤ 10−3 (x is em or he; A
and B depend on the geometry). It is worth mentioning
that these conclusions remain valid for various ratios of
ro/Dp (these results are not reported below, for the sake
of conciseness).

In conclusion, the viscous characteristic length Λ can
be accurately calculated by setting the membrane thick-
ness em to zero and by imposing a mesh size he = em in the
vicinity of the aperture. The logarithmic behavior of the
normalized surface integral, IS/D

2
p = A log10 (he/Dp)+B,

also provides a way to determine Λ for thin membranes by
determining the constants A and B with two raw mesh
sizes.

Appendix B. Surface impedance in a normal acous-
tic field for a layer of elastic porous
material

For porous materials having an elastic frame, the Biot
theory is used to predict their behavior in a normal acous-
tic field [58]. The surface impedance at normal incidence
backed by an impervious rigid wall of a layer of elastic
porous material was provided by Eq. 19 in Section 2.3. In
this equation, the characteristic impedances in the solid
(superscript s) and fluid phase (superscript f) for the first
(index 1) and second (index 2) Biot compressional waves,
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Figure A.13: (Color online) a) Configuration K0 of Kelvin-cell structure. b) Finite element mesh around the aperture.
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Figure A.14: (Color online) Evolution of various normalized trans-
port parameters (T P) as a function of the ratio he/Dp. Here,
ro/Dp = 0.1, Dp = 1 [mm].

Z̃s
i and Z̃f

i can be written as:

Z̃s
i = (P +Qµi)

δi
ω

, Z̃f
i =

(
R+

Q

µi

)
δi
ϕω

. (B.1)

In addition, δ1 and δ2 are the complex wave numbers of
the two compressional waves, defined as

δ2i =

ω2

2 (PR−Q2)

[
P ρ̃22 +Rρ̃11 − 2Qρ̃12 ∓

√
∆
]
,

i = 1(−), 2(+) ,

(B.2)
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Figure A.15: (Color online) Sketch of a solid membrane of thickness
em with a fillet of radius em/2.

with

∆ =

[P ρ̃22 +Rρ̃11 − 2Qρ̃12]
2

− 4
(
PR−Q2

) (
ρ̃11ρ̃22 − ρ̃212

)
.

(B.3)

The parameters D, µ1 and µ2 are given by:

D =

(1− ϕ+ ϕµ2)
[
Z̃s
1 − (1− ϕ) Z̃f

1 µ1

]
tan (δ2Ls)

+ (1− ϕ+ ϕµ1)
[
(1− ϕ) Z̃f

2 µ2 − Z̃s
2

]
tan (δ1Ls) ,

µi =
Pδ2i − ω2ρ̃11
ω2ρ̃12 −Qδ2i

, i = 1, 2.

(B.4)
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Figure A.16: (Color online) Normalized surface integral IS/D
2
p as

a function of em/Dp (non-zero thickness, square marker) or he/Dp

(thickness set to zero, circular marker) for different Kelvin-cell con-
figurations. ro/Dp = 0.1, Dp = 1mm. The dashed lines correspond
to adjusted curves of the form A log10 (x/Dp) + B, with x is em or
he.

Additional parameters P , Q, and R denote the following
elasticity coefficients:

P =
4

3
N +Kb +

(1− ϕ)
2

ϕ
Kf ,

Q = Kf (1− ϕ) ,

R = ϕKf ,

(B.5)

where Kf = ϕKeq is the bulk modulus of the effective fluid
and the modulus of solid frame Kb is evaluated as

Kb =
2Nb (ν + 1)

3 (1− 2ν)
. (B.6)

The shear modulus of the frame Nb is obtained from the
visco-elastic parameters of the porous material (E, ν, η) as

Nb =
E (1 + jη)

2 (1 + ν)
. (B.7)

Biot’s modified mass densities are expressed as [59, 60]:

ρ̃22 = ϕ2ρ̃eq ,

ρ̃12 = ϕρ0 − ρ̃22 ,

ρ̃11 = ρ1 − ρ̃12 .

(B.8)
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