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Learning acoustic responses from experiments

A methodology to learn acoustical responses based on limited experimental datasets is presented. From a methodological standpoint, the approach involves a multiscaleinformed encoder, used to cast the learning task in a finite-dimensional setting. A neural network model mapping parameters of interest to the latent variables is then constructed and calibrated using transfer learning and knowledge gained from the multiscale surrogate. The relevance of the approach is assessed by considering the prediction of the sound absorption coefficient for randomly-packed rigid spherical beads of equal diameter. A two-microphone method is used, in this context, to measure the absorption coefficient on a set of configurations with various monodisperse particle diameters and sample thicknesses, and a hybrid numerical approach relying on the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model is deployed as the multiscale-based predictor. It is shown that the strategy allows for the relationship between the micro-/structural parameters and the experimental acoustic response to be well approximated, even if a small physical dataset (comprised of ten samples) is used for training. The methodology therefore enables the identification and validation of acoustical models under constraints related to data limitation and parametric dependence. It also paves the way for an efficient exploration of the parameter space for acoustical materials design.

I. INTRODUCTION

The analysis of the relationship between microstructural parameters and ultimate acoustic performance is a fundamental question that has attracted much attention over the past two decades. Various frameworks and variations thereof were proposed to understand the underlying physical mechanisms and to predict acoustical properties for different types of materials, including the use of purely phenomenological, [START_REF] Zwikker | Sound absorbing materials[END_REF][START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range[END_REF][3][START_REF] Attenborough | Acoustical characteristics of porous materials[END_REF] semi-phenomenological, [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF][START_REF] Champoux | Dynamic tortuosity and bulk modulus in air-saturated porous media[END_REF][START_REF] Lafarge | Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique: Définition de paramètres géométriques, analogie electromagnétique, temps de relaxation[END_REF][START_REF] Pride | Drag forces of porous-medium acoustics[END_REF][START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF][START_REF] Horoshenkov | A three-parameter analytical model for the acoustical properties of porous media[END_REF] semi-analytical, 11-13 and multiscale models; [START_REF] Auriault | Etude du comportement macroscopique d'un milieu poreux saturé déformable (English translation: Study of the macroscopic behavior of a deformable saturated porous medium)[END_REF][START_REF] Sánchez-Palencia | Non-homogeneous media and vibration theory[END_REF][START_REF] Auriault | Dynamic behaviour of a porous medium saturated by a newtonian fluid[END_REF][START_REF] Gasser | Absorptive properties of rigid porous media: Application to face centered cubic sphere packing[END_REF] see Refs. [START_REF] Allard | Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media[END_REF]19 for a review. Most of these approaches are found to produce reasonably accurate estimations within their respective range of applicability, even if some discrepancies between model predictions and experimental responses are sometimes observed for certain classes of materials, such as nonlinear metamaterials. [START_REF] Yang | Sound absorption structures: From porous media to acoustic metamaterials[END_REF][START_REF] Laly | Characterization and development of periodic acoustic metamaterials using a transfer matrix approach[END_REF] While a large body of the literature has focused on bottom-up approaches, predicting acoustic performance based on microstructural descriptors, the relationship may also be investigated as a top-down approach, solving an inverse problem to infer microstructural parameters based on coarse-scale measurements. In this context, the Bayesian approach to parameter identification was applied in Ref. [START_REF] Cuenca | Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements[END_REF] to calibrate the geometrical, transport, and elastic properties characterizing the elasto-acoustic behavior of poro-elastic materials. More recently, so-called data-driven approaches have emerged with the aim of learning forward or inverse models based on datasets. The use of neural network models, in particular, was proposed as a means to represent potentially highly nonlinear maps in very high-dimensional settings (see Ref. [START_REF] Bianco | Machine learning in acoustics: Theory and applications[END_REF] for a review in acoustics, as well as Ref. [START_REF] Jeon | Convolutional neural networks for estimating transport parameters of fibrous materials based on micro-computerized tomography images[END_REF] for an application involving convolutional neural networks). Physics-informed formulations involving residuals from parametric partial differential equations were proposed to bridge the gap between established physical theories and approaches solely relying on data science (see the seminal work, [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF] for instance). Deep learning techniques are often meant to be operated in the big data limit, that is, for very large datasets. This assumption may be deemed inadequate in scientific machine learning where practical applications typically involve limited physical experiments.

The goal of this work is to propose a methodology that circumvents data limitation for learning experimental acoustic responses parameterized by microstructural and sample properties. Specifically, we address the calibration of a neural network model using a small dataset-typically comprised of a few experimental results-by leveraging information gained through a standard multiscale analysis. It is important to emphasize at this point that the aim of this study is not to assess the performance or to promote the use of one class of methods against the other (that is, physics-based versus data-driven models), for a specific regression problem. We rather focus on the development of a methodology that combines these two ingredients in a synergistic manner, to address a question that remains hard to tackle using any of these methods independently. Borrowing ingredients from multi-fidelity modeling [START_REF] De | On transfer learning of neural networks using bi-fidelity data for uncertainty propagation[END_REF] and operator learning [START_REF] Bhattacharya | Model reduction and neural networks for parametric pdes[END_REF] , we first introduce an appropriate simulation-based representation that encodes the experimental response in the frequency domain. Here, we consider the prediction of the sound absorption coefficient as a prototypical application. We then develop a neural network model between input parameters of interest and the reduced variables defined by the encoder. We finally use a transfer learning approach to compensate for data scarcity at the training stage. This paper is organized as follows. The overall methodology and technical ingredients are presented in Sec. II. We discuss, in particular, the encoding-decoding strategy and learning aspects. We then deploy and analyze the performance of the approach in Sec. III. We specifically consider the case of sound absorption measurements and introduce both the experimental setting and the associated computational surrogate model. We show that the framework enables the prediction of experimental results with a fairly good accuracy (quantified in the L 2 sense), even with limited data. Concluding remarks are finally provided in Sec. IV.

II. METHODOLOGY

A. Overview of the approach

We seek a surrogate model mapping some input (material or microstructural) parameters to the sound absorption coefficient over some angular frequency range, denoted by W. Let µ → {α(ω; µ), ω ∈ W} be the forward map of interest, where µ is the vector of input parameters, α is the sound absorption coefficient, and W is assumed to be the Cartesian product of closed intervals. Our goal is to construct a methodology that allows one to learn this forward map, using results from a limited set of physical experiments.

Owing to a probabilistic interpretation of µ, which is assumed to be defined on some probability space (Θ, F, P ) (where Θ denotes the sample space, F is a σ-field, and P is a probability measure), and assuming that α ∈ L 2 (Θ, L 2 (W)) (notice that α is of second-order as it is bounded almost surely), the process {α(ω), ω ∈ W} can be represented through its Karhunen-Loève (KL) expansion [START_REF] Lord | An Introduction to Computational Stochastic PDEs[END_REF] :

α(ω) = α(ω) + +∞ i=1 λ i η i φ i (ω) , (1) 
where ω → α(ω) is the mean function of the sound absorption coefficient (that is, α(ω) = E{α(ω)} for all ω ∈ W), the pairs {(λ i , φ i )} i≥1 are the eigenvalues and eigenfunctions of the covariance operator satisfying the integral equation

ˆW C(ω, ω ′ )φ i (ω ′ ) dω ′ = λ i φ i (ω) , (2) 
where (ω, ω ′ ) → C(ω, ω ′ ) is the covariance function of {α(ω), ω ∈ W}, and the reduced variables {η i } i≥1 are defined as

η i = 1 √ λ i ⟨α -α, φ i ⟩ , (3) 
with ⟨•, •⟩ the inner product between functions:

⟨f, g⟩ = ˆW f (ω)g(ω) dω . ( 4 
)
The variables {η i } i≥1 are centered, have unit variance, and are pairwise uncorrelated. Notice that we did not adapt the notation to reflect the stochastic interpretation in the above equations, for simplicity. The truncated expansion reads as

α ν (ω) = α(ω) + ν i=1 λ i η i φ i (ω) , ( 5 
)
where the order ν is determined through a convergence analysis and α ν converges to α in the mean-square sense as ν → +∞.

One natural path to learn the mapping µ → {α(ω}; µ), ω ∈ W} then consists (i) in estimating the mean α and the set of eigenpairs {(λ i , φ i )} ν i from a given dataset, and (ii) in learning the mapping µ → η(µ) between the input parameters and the latent reduced variables, with η(µ) = (η 1 (µ), . . . , η ν (µ)) T . There are two main benefits of proceeding this way. First, the learning task is now cast in a finite dimensional space (that is, in R ν ), as proposed in Ref. [START_REF] Bhattacharya | Model reduction and neural networks for parametric pdes[END_REF] , e.g., for the learning between Hilbert spaces for instance. Second, the use of a basis in the frequency domain renders the approximation more robust to noise in the data. Since we are interested in learning from experiments, it is convenient to introduce the following truncated decomposition, related to observations:

α exp ν (ω) = α exp (ω) + ν i=1 λ exp i η exp i φ exp i (ω) . ( 6 
)
In Eq. ( 6), the superscript "exp" indicates that all quantities are computed based on the experimental results, using statistical estimators. In a standard setting where few samples are available (meaning that the physical experiments are conducted for a few choices of input parameters, typically less than 10), the covariance operator estimated from the data is, however, often found to be non-positive, hence making the above formulation ill-posed.

To circumvent that limitation and properly set up the learning task, we propose the following two-step "regularization" approach.

(i) First, a numerical multiscale-informed surrogate model for the experiments is introduced. We denote by {α sim (ω), ω ∈ W} the sound absorption coefficient thus obtained, and we consider the truncated KL expansion

α sim ν (ω) = α sim (ω) + ν i=1 λ sim i η sim i φ sim i (ω) , (7) 
with notation analogous to Eq. ( 6).

(ii) Second, the (centered) experimental data are projected onto the computational basis:

α exp ν (ω) = α exp (ω) + ν i=1 λ sim i ηexp i φ sim i (ω) , ( 8 
)
where the same truncation order is assumed, without loss of generality, and

ηexp i := 1 λ sim i ⟨α exp -α exp , φ sim i ⟩ . ( 9 
)
The hat symbol in Eq. ( 9) is used to emphasize that the reduced coordinates are different from those in Eq. ( 6) (see the remark below). The mapping µ → ηexp (µ) is subsequently approximated by using transfer learning with neural network models, using prior knowledge gained by developing a surrogate model for the mapping µ → η sim (µ).

It should be noticed that the above approach can be interpreted, to some extent, in a multi-fidelity setting where α exp represents information that is costly to collect, while the numerical approximation α sim remains cheaper to synthesize in general. A study about transfer learning in this context can be found in Ref. [START_REF] De | On transfer learning of neural networks using bi-fidelity data for uncertainty propagation[END_REF] for instance. Moreover, the use of a KL expansion rises theoretical issues pertaining to approximation capabilities for the neural networks, due to the non-compactness of the latent spaces. This fundamental aspect is beyond the scope of this work, and we refer to Ref. [START_REF] Bhattacharya | Model reduction and neural networks for parametric pdes[END_REF] for a discussion. The ingredients of the above framework are presented in the following sections.

Remark: It is important to note that Eq. ( 8) does not correspond to the KL expansion of the process {α exp (ω), ω ∈ W}. In particular, the right-hand side is not optimal in the L 2 sense and the reduced variables {η i } ν i=1 , while centered, are not pairwise uncorrelated. The representation is, however, licit since {φ sim i } i≥1 constitutes an orthonormal basis of L 2 (W) (which follows from the properties of the covariance operator).

B. Neural networks as surrogate models

In this section, we recall the necessary background on (feed-forward) neural networks and transfer learning. Providing general reviews on these very active research topics is beyond the scope of this work, and we refer interested readers to Ref. [START_REF] Goodfellow | Deep learning[END_REF] and Refs. [START_REF] Pan | A survey on transfer learning[END_REF][START_REF] Weiss | A survey of transfer learning[END_REF] for discussions, for instance.

Background

A neural network surrogate aims to map some input vector-valued parameter x ∈ R I to some output (vector-valued) parameter y ∈ R O , using a composite transformation that (i) involves input and output layers, as well as so-called hidden layers that each contains a set of neurons; (ii) is learned on a training data set D = {x (i) , y (i) } N D i=1 with N D data points.

Following standard notation, we denote by N H the total number of hidden layers, and let n ℓ be the number of neurons in the ℓth layer. In this work, we consider a feed-forward neural network in which the output of the jth neuron in a given layer is produced by transmitting a weighted sum of input signals (from the preceding layer), plus a bias, to an activation (or transfer) function ϕ a :

z (ℓ) j = ϕ a   n ℓ-1 i=1 W (ℓ) ij z (ℓ-1) i + θ (ℓ) j   , 1 ≤ j ≤ n ℓ , 1 ≤ ℓ ≤ N H , ( 10 
)
with z i (0) = x i , 1 ≤ i ≤ I. The components of the output layer are defined as

y j = n N H i=1 W (0) ij z (N H ) i + θ (0) j , 1 ≤ j ≤ O . ( 11 
)
In the above equations, W (ℓ) ij denotes the weight for the connection between the ith neuron in layer (ℓ -1) and the jth neuron in layer ℓ, and θ (ℓ) j is the bias corresponding to the jth neuron in layer ℓ. The neural network is therefore parameterized by the sets {W (ℓ) } N H ℓ=0 and {θ (ℓ) } N H ℓ=0 of weight matrices and bias vectors, where W (0) and θ (0) are associated with the output layer by convention, and

W (ℓ) = [W (ℓ) ij ] ∈ M n (ℓ-1) ×n (ℓ) (R) , θ (ℓ) = [θ (ℓ) j ] ∈ M 1×n (ℓ) (R) . ( 12 
)
There exist many choices for the activation function, including the Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tangent functions for instance; see Ref. [START_REF] Goodfellow | Deep learning[END_REF] . In this paper, we use the sigmoid function ϕ a (v) = 1/[1+exp(-v)] for all hidden layers, and the architecture of the neural networks was determined through parametric analyses on validation errors.

An important step while using neural networks pertains to training, that is, to the calibration of the weight matrices {W (ℓ) } N H ℓ=0 and bias vectors {θ (ℓ) } N H ℓ=0 . This is commonly achieved by minimizing a loss function, potentially supplemented with a regularization term, and many techniques were proposed in the literature. [START_REF] Goodfellow | Deep learning[END_REF] We use a standard supervised approach based on the minimization of the mean squared error

L({W (ℓ) , θ (ℓ) } N H ℓ=0 ) = 1 N D N D i=1 ∥ ŷ(x (i) ; {W (ℓ) , θ (ℓ) } N H ℓ=0 ) -y (i) ) ∥ 2 , ( 13 
)
where ŷ(x (i) ; {W (ℓ) , θ (ℓ) } N H ℓ=0 ) denotes the prediction of the neural network parameterized by

{W (ℓ) , θ (ℓ) } N H ℓ=0 at the data point x (i) .
In this work, various algorithms for network training were tested through parametric analyses, including the Levenberg-Marquardt and stochastic gradient descent techniques.

Most algorithms were found to provide similar results, and the results provided in Sec. III C

were obtained with the Levenberg-Marquardt optimizer.

Transfer learning

In the context of inductive learning for regression problems (see Refs. [START_REF] Pan | A survey on transfer learning[END_REF][START_REF] Weiss | A survey of transfer learning[END_REF] for reviews with applications to classification and regression), transfer learning proceeds by adapting an existing neural network that has been pretrained on data generated by a similar problem.

This principle is schematically depicted in Fig. 1, using the terminology introduced in the aforementioned references.

The adaptation can be performed, for instance, by preserving the structure of the pretrained network and by updating its parameters in either all or a few layers, or by adding hidden layers to approximate the mapping η sim → ηexp (η sim ). In this work, we use the second approach given the analogy between Eq. ( 7) and Eq. ( 8), where α sim is assumed to be a reasonable proxy for α exp .

III. APPLICATION TO EXPERIMENTAL MEASUREMENTS FOR THE SOUND ABSORPTION COEFFICIENT

In this section, we deploy the methodology presented in Sec. II A. Owing to a slight abuse of notation, we consider the sound absorption coefficient to be expressed as a function of the angular frequency ω or the frequency f (with ω = 2πf ), and denote by α the aforementioned coefficient regardless of the associated variable.

A. Description of the physical experiments

In order to illustrate the approach, we consider the characterization of the sound absorption coefficient for randomly-packed rigid spherical beads. To that end, ten samples with various combinations of monodisperse bead diameter and sample thickness were processed; see Tab. I and Fig. 2(a). Bead diameters were provided by the manufacturer and are sufficiently accurate for long wavelength acoustical purposes. A two-microphone method was used to estimate the sound absorption coefficient of the porous media at normal incidence, by measuring the pressure transfer function

H 12 = p 1 /p 2 ,
Learning acoustic responses from experiments in which p 1 and p 2 are the pressures determined at the two microphones; see Fig. 2(b-c).

A steel net is used to control the sample thickness, see Fig. 2c. It is worth noticing that manual measurements of the sample packing fraction can be expected to be less precise for large bead diameters. The sound absorption coefficient is then experimentally estimated as

α exp = 1 - exp(jk a d 12 ) -H 12 H 12 -exp(-jk a d 12 ) exp(2jk a L) 2 , ( 14 
)
in which k a represents the wavenumber in the ambient fluid, L is the sample thickness, and d 12 is the distance between microphones 1 and 2. Note that a third microphone at the back of the sample could be used for accessing the intrinsic material properties such as the wavenumber and the characteristic impedance by measuring a second pressure transfer function H 23 = p 2 /p 3 , in which p 3 is the pressure measured at the third microphone [START_REF] Iwase | A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material[END_REF][START_REF] Doutres | Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube[END_REF] (see Eqs. ( 1)-( 4) in Ref. [START_REF] Doutres | Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube[END_REF] ). Measurements were conducted with an impedance tube of length 1

[m] and inner diameter 40 [mm] (see Fig. 2b), in the frequency range [100, 4500] [Hz] with a sampling step of 4 [Hz]. The experimental results are reported in Fig. 3.

The normal incidence sound absorbing behavior of monodisperse spherical particles has been discussed elsewhere; see Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] , Sec. VIII (and Refs. 35,[START_REF] Kim | Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio[END_REF] ) for instance. Indeed, it was shown that accurate predictions of the first sound absorption peak can be obtained in terms of frequency and magnitude from the geometrical properties of the material (d, L).

The first normal incidence sound absorption peak corresponds to the quarter wavelength resonant absorption of the material and is governed by its intrinsic damped wavelength λ eq (and not directly by the wavelength in the air). The successive maxima appear at the quarter wavelength, where L/Re(λ eq ) = n/4, with n being successive odd integers. The thickness-to-particle-diameter ratio L/d controls the magnitude of the first sound absorption peak, and the optimal value of the thickness-to-particle-diameter ratio N opt allowing 100% absorption at a given particle diameter was found to be a linear function of the particle diameter (see Fig. 12 and Eq. (35) of Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] ). Our experimental results are consistent with the systematic analysis proposed in Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] , in which the optimal particle diameter is given, for a given thickness L, as d 1 (L) = L/δ 1 (with δ 1 = 12494 [m -1 ]; see Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] ). Note that symbols d 1 and δ 1 are used hereinafter for consistency with Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] . For the two considered layer thicknesses, optimal particle diameters are estimated as 

B. Multiscale surrogate

We now introduce the computational surrogate for the experiments described in Sec.

III A. Additional results pertaining to code verification and model accuracy are reported in Appendix A.

Microstructural sampling

The first step consists in sampling a random close packing of mono-sized rigid spheres (for a given value of µ). To that aim, we rely on the algorithm proposed in Refs. [START_REF] Jodrey | Computer simulation of isotropic, homogeneous, dense random packing of equal spheres[END_REF][START_REF] Jodrey | Computer simulation of close random packing of equal spheres[END_REF] where spheres are randomly distributed within the domain at initialization and moved, in an iterative manner, to avoid overlaps and reach a target packing fraction. In order to enforce a periodic structure at the boundaries of the simulation domain, each sphere intersecting with p faces at the boundary (1 ≤ p ≤ 3) is duplicated p times, and the center of each replicate is translated towards the face opposing the intersecting boundary by a factor equal to the size of the domain. [START_REF] Ghossein | A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites[END_REF] Four sphere ensembles with a target solid volume fraction of 

Determination of the transport properties

The second step involves the calculation of transport properties using the periodic solid skeleton defined in Sec. III B 1.

Let Ω be the reconstructed Representative Volume Element (RVE) under consideration with boundary ∂Ω, and let its solid phase, fluid, and fluid-solid interface be denoted by Ω s , Ω f , and ∂Ω f , respectively. The porosity (or fluid volume fraction) ϕ and the thermal characteristic length (or generalized hydraulic radius) Λ ′ are directly obtained as

ϕ = ´Ωf dV ´Ω dV , Λ ′ = 2 ´Ωf dV ´∂Ω f dS . ( 15 
)
The macroscopic transport properties can be computed from the numerical solutions of a series of canonical boundary value problems, namely: (i) a viscous flow problem, for the static viscous permeability k 0 and static viscous tortuosity α 0 ; 5,7,8,40 (ii) an inertial flow problem, for the viscous characteristic length Λ and the high frequency tortuosity α ∞ ; [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF][START_REF] Avellaneda | Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media[END_REF][START_REF] Achdou | Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements[END_REF] and (iii) a steady-state heat conduction problem, enabling for the static thermal permeability k ′ 0 and the static thermal tortuosity α ′ 0 to be computed. [START_REF] Lafarge | Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique: Définition de paramètres géométriques, analogie electromagnétique, temps de relaxation[END_REF][START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF]43 These boundary value problems are recalled below for the sake of self-containedness; interested readers are referred to 19,[START_REF] Auriault | Homogenization of coupled phenomena in heterogenous media[END_REF][START_REF] Boutin | Estimates and bounds of dynamic permeability of granular media[END_REF][START_REF] Boutin | Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range[END_REF] for the first-principles calculations of these transport properties.

a. Viscous flow. This problem corresponds to the low frequency limit (that is, when ω → 0) where viscous effects dominate, hence creating a steady-state flow in the porous media. The flow, associated with an incompressible Newtonian fluid at very low Reynolds numbers, is described by the scaled Stokes problem: 40

-∇ 2 k ⋆ 0 + ∇π ⋆ 0 = e , ∇ • k ⋆ 0 = 0 ( 16 
)
in Ω f , with k ⋆ 0 = 0 on ∂Ω f and where the scaled velocity k ⋆ 0 and pressure π ⋆ 0 of the fluid are Ω-periodic. Here, e is a unitary vector corresponding to the imposed macroscopic pressure gradient that drives the flow in a preferential direction. The symbol ∇ denotes the nabla differential operator, while " • " denotes the classical inner product in R 3 . The separation of scales (and thereby, macroscopic isotropy) is assumed for the considered microstructure. ?

The static viscous permeability k 0 and the static viscous tortuosity α 0 are then calculated as [START_REF] Boutin | Estimates and bounds of dynamic permeability of granular media[END_REF][START_REF] Boutin | Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range[END_REF] 

k 0 = ϕ ⟨k ⋆ 0 • e⟩ , α 0 = ⟨k ⋆ 0 • k ⋆ 0 ⟩ ⟨k ⋆ 0 ⟩ • ⟨k ⋆ 0 ⟩ , ( 17 
)
where ⟨•⟩ indicates spatial averaging over the fluid domain. Notice that the aforementioned scalar transport parameters are sufficient to describe the (isotropic) static viscous permeability and tortuosity tensors.

b. Inertial flow. This problem is associated with the high-frequency regime, ω → +∞.

In this case, inertial forces dominate over viscous ones and consequently, the saturating fluid tends to behave as a nearly perfect fluid (without viscosity except in the vicinity of the boundary layer). The inertial flow of the perfect incompressible fluid then formally behaves according to an electric conduction phenomenon (where the porous material is composed of a non-conducting solid matrix and a conducting fluid). [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF][START_REF] Avellaneda | Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media[END_REF][START_REF] Achdou | Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements[END_REF] Quantities of interest in the inertial flow problem can be thus obtained by solving the following set of potential equations:

E = -∇φ + e , ∇ • E = 0 ( 18 
)
in Ω f , subjected to E • n = 0 on ∂Ω f and φ is Ω-periodic. In the above equations, e is a given macroscopic electric field, E is the local solution to the boundary value problem having -∇φ as a fluctuating part, and n is the unit normal to ∂Ω f . The viscous characteristic length Λ and the through-thickness high-frequency tortuosity α ∞ are given by 5,46

Λ = 2 ´Ωf E • E dV ´∂Ω f E • E dS , α ∞ = ⟨E • E⟩ ⟨E⟩ • ⟨E⟩ . ( 19 
)
Similarly to the static viscous permeability and tortuosity parameters introduced in the previous section, these scalar quantities are sufficient to parameterize the homogenized response of the material (owing to macroscopic isotropy).

c. Thermal effects. In the low frequency limit (that is, in the static case), heat diffusion in porous media is governed by the Poisson equation 43

∇ 2 τ = -1 (20) 
in Ω f , with τ = 0 on ∂Ω f and τ is ∂Ω-periodic. The static thermal permeability k ′ 0 and static thermal tortuosity α ∞ are finally estimated as 41

k ′ 0 = ⟨τ ⟩ , α ′ 0 = ⟨τ 2 ⟩ ⟨τ ⟩ 2 . ( 21 
)
As an illustration, Figure 6 shows the solution fields obtained by the finite element method (with a P 2 -P 1 formulation) for a cubic domain of edge length 2.5d.

Determination of the sound absorption coefficient

Within the framework of the equivalent-fluid theory, [START_REF] Lafarge | The equivalent fluid model (Chapter 6, Part II) in Materials and Acoustics Handbook[END_REF] the air in a porous medium is replaced by an equivalent fluid that exhibits (i) the same bulk modulus as the saturating air, and (ii) a dynamic density that takes into account the viscous and the inertial interactions with the frame. The determination of these two dynamic parameters subsequently enables the estimation of the the wavenumber and characteristic impedance, which in turn can be used to define some relevant properties of the air-filled porous media. In the JCAPL model, [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF][START_REF] Champoux | Dynamic tortuosity and bulk modulus in air-saturated porous media[END_REF][START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF] developed following this macroscopic perspective, the effective density and the effective bulk modulus are respectively defined as

ρ(ω) = ρ 0 α(ω) ϕ , K(ω) = γP 0 ϕ 1 β(ω) , ( 22 
)
where ρ 0 is the density of the saturating fluid (here, the air), γ = C p /C v where C p is the pressure volume-specific heat and C v is the constant pressure-specific heat, P 0 is the atmospheric pressure, and ϕ is the open porosity. The dynamic tortuosity and dynamic compressibility, denoted by α(ω) and β(ω) respectively, are then evaluated as

α(ω) = 1 + 1 jϖ ′ F (ω) , β(ω) = γ -(γ -1) 1 + 1 jϖ ′ F ′ (ω) -1 , ( 23 
)
where j is the imaginary unit, F (ω) and F ′ (ω) are the dimensionless viscous and thermal shape functions depending on the dimensionless viscous and thermal angular frequencies (denoted by ϖ and ϖ ′ , respectively), defined as

F (ω) = 1 -P + P 1 + M 2P 2 jϖ , F ′ (ω) = 1 -P ′ + P ′ 1 + M ′ 2P ′2 jϖ ′ , ( 24 
)
with

ϖ = ω ρ 0 k 0 α ∞ ϕη , ϖ ′ = ω k ′ 0 ρ 0 C p ϕγP 0 . ( 25 
)
The four non-dimensional shape factors M , M ′ , P , and P ′ only depend on the material transport parameters introduced in Sec. III B 2:

M = 8α ∞ k 0 Λ 2 ϕ , P = M 4(α 0 /α ∞ -1) , M ′ = 8k ′ 0 Λ ′2 ϕ , P ′ = M ′ 4(α ′ 0 -1) . ( 26 
)
It should be noticed that the so-called Johnson-Champoux-Allard (JCA) and Johnson-Champoux-Allard-Lafarge (JCAL) models are recovered by letting M ′ = P = P ′ = 1 and P = P ′ = 1, respectively.

For a homogeneous acoustic layer, the wavenumber k(ω) and the characteristic impedance Zc (ω) can be calculated by

k(ω) = ω ρ(ω) K(ω) , Zc (ω) = ρ(ω) K(ω) . ( 27 
)
In the third and final step, the sound absorption coefficient at normal incidence of the absorbing porous layer backed by a rigid wall is defined as

α sim (ω) = 1 - Zs (ω) -Z 0 Zs (ω) + Z 0 2 , ( 28 
)
where Z 0 is the characteristic impedance of ambient air and Zs (ω) = -j Zc (ω)cot[ k(ω)L] is the surface impedance on the free face of the sample having thickness L.

Numerical results

The entire set of transport parameters for the sphere-packing microstructure is reported in Tab. II for the specific case d = 5 [mm]. These parameters provide information relevant to the propagation and dissipation phenomena in the equivalent homogeneous material, in accordance with the multiscale setting, and allows one to estimate the sound absorption coefficient α(ω) (following the derivations in the previous sections).

ϕ [-] Λ ′ [mm] Λ [mm] k 0 [×10 -8 m 2 ] k ′ 0 [×10 -8 m 2 ] α ∞ [-] α 0 [-] α ′ 0 [-] 0.
In order to build the mapping µ → {α sim (ω; µ), ω ∈ W}, samples of µ are drawn from the product of uniform probability measures on the intervals [1, 10] [mm] (for the diameter d) and [5, 100] [mm] (for the sample thickness L). Note that these intervals are relevant to a broad range of absorber configurations, as discussed in Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] . Results obtained for the ten configurations defined in Tab. III are displayed in Fig. 7.

C. Deploying the methodology

For numerical purposes, we consider discretized expansions associated with a frequency step of 4 [Hz]. Notice that the results reported in this section are displayed in terms of frequency f . 

Statistical reduction for the computational surrogate

The first step of the methodology consists in analyzing the reduction of the process convergence is achieved for N sim = 200, which is the number considered in subsequent calculations.

{α sim (ω), ω ∈ W},
We next determine the truncation order ν in the statistical reduction (see Eq. ( 5)) by analyzing the convergence of the function m → Err(m) defined as

Err(m) = 1 - m i=1 λ sim i tr([ C]) . ( 29 
)
The graph of the error function is shown in Fig. 9. It is found that the error is less than 1 × 10 -2 (respectively 1 × 10 -4 and 1 × 10 -6 ) for m = 10 (respectively m = 21 and m = 33).

The graphs of the first five eigenfunctions {ω → φ sim i (ω)} 5 i=1 are displayed in Fig. 10. In what follows, we consider a truncation at order ν = 21, and a quantitative comparison between the 

Neural network surrogate for the computational reduced coordinates

Following the second step in the approach outlined in Sec. II A, samples for the reduced coordinates associated with the multicale computational model are obtained as

η sim i (m) = 1 λ sim i ⟨α sim (• ; m) -α sim , φ sim i ⟩ , ( 30 
)
where m denotes a realization of µ, and the mapping µ → η sim (µ) is approximated by using a neural network (with I = 2 and O = 21, following the notation introduced in Sec. II B 1).

determined through a parametric analysis in terms of N H (number of hidden layers) and the set {n ℓ } N H ℓ=1 (number of neurons per layer, for all layers). While no attempt was made to fully optimize the architecture for the problem at hand, a structure with 5 hidden layers and ν, 3ν, ν, ν, and ν neurons per layer, respectively, was found to provide reasonably accurate results

(recall that ν = 21). The convergence of the mean squared error for the training, validation, and testing stages can be seen in Fig. 14. Here, the training, validation, and testing sets were composed of 144, 18, and 18 samples, respectively. The prediction obtained by using sample under consideration. In particular, the location and magnitude of the peaks are well estimated. It should, however, be pointed out that larger (but still contained) discrepancies can be observed on some other samples. The observed errors stem from the combination of the error raised by the truncation in the KL expansion, which can be reduced by increasing ν, and the error generated by the NN surrogate, which may be decreased by refining the architecture and training strategy.

Neural network surrogate for the experimental reduced coordinates and experimental sound absorption prediction

In the final step of the methodology, transfer learning is applied to approximate the mapping µ → ηexp (µ) with the limited dataset (composed of only 10 samples). To this end, a shallow network is added to the neural network constructed and calibrated in Sec. III C 2, with the aim of representing the mapping η sim → ηexp . The additional layer contains ν neurons, and is also optimized with the Levenberg-Marquardt algorithm. Results from the training, validation, and testing stages are reported in Fig. 14. A small number of epochs is necessary to obtain good approximation results in the transfer learning approach, which suggests that the computational surrogate is fairly accurate. The increase of the mean squared error for the validation test suggests overfitting, which may be alleviated through various strategies including model simplification, regularization (with early stopping, for instance), and noise addition to list a few. As stated earlier, no attempt was made to optimize the machine learning part of the framework, given the scope of this study, and refinements along those lines are left for future work.

Finally, the experimental sound absorption coefficient is predicted as

α exp,NN ν (ω) = α exp (ω) + ν i=1 λ sim i ηexp,NN i φ sim i (ω) , ( 31 
)
where ηexp,NN denotes the neural network surrogate calibrated through transfer learning.

The graphs of the experimentally-measured sound absorption coefficient α exp and the pre- the neural network calibrated through transfer learning predicts the experimental responses very well, even if only 8 experimentally-characterized samples were used as the dataset.

While the responses for R3 and R7 remain quite different from one another, the surrogate can properly estimate the locations of small and large peaks, as well as the corresponding magnitudes in both cases. In practice, a normalized L 2 error, defined as

ε ν = ∥α exp -α exp,NN ν ∥ ∥α exp ∥ , ( 32 
)
can be used to assess the accuracy of the prediction. This error is equal to 5.4% and 5.7%

for samples R3 and R7, respectively. Other analyses (which are not reported below for the sake of conciseness) were performed by using other pairs of discarded responses (in lieu of R3 and R7), and similar results were obtained regarding the quality of the approximations.

It should be noticed that the asymptotic result lim ν→∞ ε ν = 0 holds in the big data limit (which is not the setting considered in this paper), owing to the universal approximation theorem [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF] . The rate of convergence depends on several factors, among which the accurary of the computational model, the architecture of the neural network, and the amount of experimental data available for transfer learning. It is also noteworthy that the sound absorbing spectrum obtained from the recorded time series (Fig. 3) showed significant dips (400 [Hz]) and peaks (700 [Hz]) of small amplitudes; similar features can also be seen in the frequency range [3000 -4000] [Hz]. Figures 15 and16 suggest that these inaccuracies originating presumably from the experimental setup and associated characterization method are also captured and reproduced by the neural network; meaning that the transfer learning approach produces datasets consistent with experimental observations and quantified experimental uncertainties.

IV. CONCLUSION

A novel methodology to learn acoustical responses based on limited experimental datasets was presented. From a methodological standpoint, the approach combines a multiscaleinformed encoder, used to cast the learning task in a finite-dimensional setting, with a neural network model acting between the set of microstructural descriptors (comprised of the monodisperse particle diameter and the sample thickness in the presented application)

and the reduced (latent) variables. The neural network is trained through transfer learning, using synthesized multiscale data to compensate for experimental data scarsity. The relevance of the approach was investigated by considering the prediction of the sound absorption coefficient. It was shown that the proposed strategy allows for the map between the limited data.

From an application standpoint, this work demonstrates how the experiments and models typically obtained and developed into several significant contributions to acoustics can be combined to enrich datasets in a context that many researchers in the field of acoustical materials encounter-namely, the identification and validation of models parameterized by micro-/structural features, based on a few experimental samples. The methodology allows one to explore these important aspects with the ability to account for microscopic effects, as well as correlation effects between local properties of the medium. It also paves the way for cost reduction through the efficient exploration of the parameter space for acoustical materials design.

Avenues for future research include refinements on the learning components such as network architecture and learning strategy, as well as the assessment of the methodology for other acoustical responses (e.g., intrinsic frequency-dependent properties of polydisperse granular structures). the sphere radius is equal to 1 [mm] for all patterns. Computational results are compared with those from Refs. [START_REF] Lee | Acoustic absorption calculation in irreducible porous media: A unified computational approach[END_REF]51 and are found to be in good agreement, see Tab. V. The evolution of the sound absorption coefficient (at normal incidence) obtained from either the semi- phenomenological models (fed with transport parameters) or the direct numerical approach presented in Ref. [START_REF] Gasser | Etude des proprietes acoustiques et mecaniques d'un materiau metallique poreux modele a base de spheres creuses de nickel[END_REF] is shown in Fig. 18. The agreement between the different predictions shows that the hybrid approach allows the sound absorbing behavior to be well described.
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The absorbers are based on FCC packings (Fig. 17d) having two different thicknesses, L ∈ {50, 100} [mm]. The considered frequencies range between 1 to 10 000 [Hz]. In the direct approach, the SAC value is estimated from the effective factors ρ(ω) and β(ω) taken from incidence sound absorption coefficient of sphere-packed porous absorbers exhibits quarterwavelength resonances (see also Sec. IIIA), and oscillates around the high-frequency sound absorption limit, α h = 1 -[(ẑ -1)/(ẑ + 1)] 2 with ẑ = ϕ/ √ α ∞ . 52

Comparison of multiscale-informed sound absorption predictions

The predictions of the normal incidence SAC obtained from different approaches are compared below. The experimentally-measured sound absorbing behavior of the ten real samples introduced in Tab. I is compared with both simulations (combining the JCAPL model with the finite element results on dense random packing of equal spheres) and analytical estimates (combining the JCAPL model with the self-consistent estimates described in Sec. A1) [START_REF] Boutin | Estimates and bounds of dynamic permeability of granular media[END_REF][START_REF] Boutin | Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range[END_REF] . In general, the hybrid multi-scale numerical approach is shown to provide a fairly good estimate of the experimental behavior, as seen in Fig. 19. However, as the particle diameter to sample thickness ratio increases (samples R4 and R5), border effects become significant in the experimental response and a RVE model is less appropriate to simulate such configurations (Fig. 19d ande). 
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  FIG. 3. Experimentally-measured sound absorption coefficients estimated for the samples described

  d 1 (L = 23.5 [mm]) = 1.4 [mm] and d 1 (L = 47 [mm]) = 1.9 [mm]. This explains why the sound absorption magnitude of sample R6 reaches a maximum value above 0.9, whereas the first peak magnitude of sample R1 is much lower than this critical value-even if the two samples involve the same particle diameter, d = 2 [mm]. The information described above constitutes the dataset for the experimental response µ → {α exp (ω; µ), ω ∈ W}, with µ = (d, L) T .
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 6 are shown in Fig. 4, for the sake of illustration. The radial distribution function g for several packing configurations is shown in Fig. 5. The generation of a microstructure with N = 128, 512, and 1024 spheres took about 35, 255, and 1523 [sec], respectively, on a laptop equipped with an Intel(R) Core(TM) i7-4500U cadenced at 2.40 GHz.
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 17 FIG. 17. Periodic unit cells of [SC (a), BCC (b), and FCC (c)] at ϕ = 0.42, and FCC (d) at
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 118 FIG. 18. Comparison of the normal incidence sound absorbing behavior obtained with the direct
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 19 FIG. 19. Normal incidence SAC of samples R1 to R5 (left panels a-e) and R6 to R10 (right panels

TABLE I .

 I Definition of the experimental samples.

					Sample #				
	Parameter										
		R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
	Diameter, d [mm]	3	4	5	6	7	3	4	5	6	7
	Thickness, L [mm]	23.5	23.5	23.5	23.5	23.5	47	47	47	47	47
	(a)				(b)						

(d,L) 

TABLE II .

 II Transport properties computed for d = 5 [mm].

TABLE III .

 III List of parameters for the virtual sphere-packing samples analyzed in Fig.7.

						Sample name				
	Parameter										
		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
	Diameter, d [mm]	5.24	3.07	8.60	2.75	3.03	2.54	3.05	4.92	3.79	9.31
	Thickness, L [mm] 93.24 74.38 51.42 59.96 27.54 48.59 96.49 56.95 54.51 27.00
	0.8										
	0.6										
	0.4										
	0.2										
	0										
		500 1000 1500 2000 2500 3000 3500 4000 4500			

1 FIG.

7

. Predicted sound absorption coefficients for the ten virtual samples described in Tab. III.

TABLE IV .

 IV Analytical estimates derived by combining periodic homogenization and the selfconsistent scheme. The determination of the characteristic lengths and permeabilities of spherical packings is based on a bicomposite spherical pattern. Here, R = d/2β with β = 3 √ 1 -ϕ.[START_REF] Boutin | Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range[END_REF] 

		Method	
	Factor		
	P-estimate	C-estimate	V-estimate

TABLE V .

 V Numerical transport properties for classical lattices of spheres.

					Transport parameters			
	Lattice Reference	ϕ	Λ ′	Λ	k 0	k ′ 0	α ∞	α 0	α ′ 0
		[-]	[mm] [mm] ×10 -10 [m 2 ] ×10 -10 [m 2 ]	[-]	[-]	[-]
	Ref. 50		0.624 0.369	102	246	1.40 2.02 1.43
		0.48							
	Present		0.621 0.338	103	251	1.38 2.16 1.44
	SC								
	Ref. 51		1.56	0.99	535	1457	1.53 2.31 1.45
		0.42							
	Present		1.56	0.99	546	1459	1.53 2.31 1.44
	Ref. 50		0.325 0.234	19.7	38.1	1.48 2.15 1.35
		0.32							
	Present		0.319 0.189	21.1	37.9	1.47 2.22 1.39
	BCC								
	Ref. 51		1.43	1.11	435	800	1.32 1.95 1.32
		0.42							
	Present		1.43	1.11	452	803	1.32 1.93 1.31
	Ref. 50		0.247 0.159	6.70	27	1.65 2.49 1.85
		0.26							
	Present		0.247 0.157	6.76	26.3	1.66 2.65 1.91
	FCC								
	Ref. 51		1.43	1.12	365	817	1.32 1.86 1.55
		0.42							
	Present		1.42	1.12	393	834	1.32 1.84 1.52
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APPENDIX A: VALIDATION OF MULTISCALE-INFORMED PREDICTIONS

In this appendix, we report results pertaining to code verification and model validation. Alternative analytical models for transport parameters are first presented in Sec. A1.

Comparisons of multiscale-inferred estimations for the transport properties and the sound absorption coefficient are then proposed in Secs. A2. and A3

Analytical models for transport properties

Several analytical models can be used for estimating the transport properties fed as inputs for the JCAPL semi-phenomenological model. Here, we specifically consider three models proposed in Refs. [START_REF] Boutin | Estimates and bounds of dynamic permeability of granular media[END_REF][START_REF] Boutin | Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range[END_REF] , whose parameters are estimated as follows. The characteristic lengths and permeabilities are defined by the equations listed in Tab. IV. Three cases are considered, namely (i) the P-estimate (for which the shear stress vanishes at the boundary);

(ii) the V-estimate (for which tangential velocities are equal at the boundary); and (iii) the C-estimate (with vanishing velocity at the boundary). The high-frequency tortuosity factor is defined as α ∞ = (3 -ϕ)/2 for all three cases. The static viscous tortuosities are estimated for ϕ = 0.37 as α 0V = 1.52, α 0C = 1.58, and α 0P = 1.60. The static thermal tortuosity α ′ 0 is finally equal to 1.94, in agreement with Ref. [START_REF] Dung | Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach[END_REF] .

Validation of the multiscale framework

Three classical cubic lattices are chosen for the sake of verification, namely simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices; see Fig.