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Learning acoustic responses from experiments

A methodology to learn acoustical responses based on limited experimental datasets1

is presented. From a methodological standpoint, the approach involves a multiscale-2

informed encoder, used to cast the learning task in a finite-dimensional setting. A3

neural network model mapping parameters of interest to the latent variables is then4

constructed and calibrated using transfer learning and knowledge gained from the5

multiscale surrogate. The relevance of the approach is assessed by considering the6

prediction of the sound absorption coefficient for randomly-packed rigid spherical7

beads of equal diameter. A two-microphone method is used, in this context, to mea-8

sure the absorption coefficient on a set of configurations with various monodisperse9

particle diameters and sample thicknesses, and a hybrid numerical approach relying10

on the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model is deployed as the11

multiscale-based predictor. It is shown that the strategy allows for the relationship12

between the micro-/structural parameters and the experimental acoustic response to13

be well approximated, even if a small physical dataset (comprised of ten samples) is14

used for training. The methodology therefore enables the identification and valida-15

tion of acoustical models under constraints related to data limitation and parametric16

dependence. It also paves the way for an efficient exploration of the parameter space17

for acoustical materials design.18
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2

mailto:johann.guilleminot@duke.edu
mailto:camille.perrot@univ-eiffel.fr


Learning acoustic responses from experiments

I. INTRODUCTION19

The analysis of the relationship between microstructural parameters and ultimate acous-20

tic performance is a fundamental question that has attracted much attention over the past21

two decades. Various frameworks and variations thereof were proposed to understand the22

underlying physical mechanisms and to predict acoustical properties for different types23

of materials, including the use of purely phenomenological,1–4 semi-phenomenological,5–10
24

semi-analytical,11–13 and multiscale models;14–17 see Refs.18,19 for a review. Most of these25

approaches are found to produce reasonably accurate estimations within their respective26

range of applicability, even if some discrepancies between model predictions and exper-27

imental responses are sometimes observed for certain classes of materials, such as non-28

linear metamaterials.20,21 While a large body of the literature has focused on bottom-up29

approaches, predicting acoustic performance based on microstructural descriptors, the re-30

lationship may also be investigated as a top-down approach, solving an inverse problem31

to infer microstructural parameters based on coarse-scale measurements. In this context,32

the Bayesian approach to parameter identification was applied in Ref.22 to calibrate the33

geometrical, transport, and elastic properties characterizing the elasto-acoustic behavior of34

poro-elastic materials. More recently, so-called data-driven approaches have emerged with35

the aim of learning forward or inverse models based on datasets. The use of neural network36

models, in particular, was proposed as a means to represent potentially highly nonlinear37

maps in very high-dimensional settings (see Ref.23 for a review in acoustics, as well as Ref.24
38

for an application involving convolutional neural networks). Physics-informed formulations39
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involving residuals from parametric partial differential equations were proposed to bridge the40

gap between established physical theories and approaches solely relying on data science (see41

the seminal work,25 for instance). Deep learning techniques are often meant to be operated42

in the big data limit, that is, for very large datasets. This assumption may be deemed inad-43

equate in scientific machine learning where practical applications typically involve limited44

physical experiments.45

The goal of this work is to propose a methodology that circumvents data limitation46

for learning experimental acoustic responses parameterized by microstructural and sam-47

ple properties. Specifically, we address the calibration of a neural network model using a48

small dataset—typically comprised of a few experimental results—by leveraging informa-49

tion gained through a standard multiscale analysis. It is important to emphasize at this50

point that the aim of this study is not to assess the performance or to promote the use of51

one class of methods against the other (that is, physics-based versus data-driven models),52

for a specific regression problem. We rather focus on the development of a methodology53

that combines these two ingredients in a synergistic manner, to address a question that54

remains hard to tackle using any of these methods independently. Borrowing ingredients55

from multi-fidelity modeling26 and operator learning27, we first introduce an appropriate56

simulation-based representation that encodes the experimental response in the frequency57

domain. Here, we consider the prediction of the sound absorption coefficient as a proto-58

typical application. We then develop a neural network model between input parameters of59

interest and the reduced variables defined by the encoder. We finally use a transfer learning60

approach to compensate for data scarcity at the training stage.61
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This paper is organized as follows. The overall methodology and technical ingredients are62

presented in Sec. II. We discuss, in particular, the encoding-decoding strategy and learning63

aspects. We then deploy and analyze the performance of the approach in Sec. III. We64

specifically consider the case of sound absorption measurements and introduce both the65

experimental setting and the associated computational surrogate model. We show that66

the framework enables the prediction of experimental results with a fairly good accuracy67

(quantified in the L2 sense), even with limited data. Concluding remarks are finally provided68

in Sec. IV.69

II. METHODOLOGY70

A. Overview of the approach71

We seek a surrogate model mapping some input (material or microstructural) parameters72

to the sound absorption coefficient over some angular frequency range, denoted by W. Let73

µ 7→ {α(ω;µ), ω ∈ W} be the forward map of interest, where µ is the vector of input74

parameters, α is the sound absorption coefficient, and W is assumed to be the Cartesian75

product of closed intervals. Our goal is to construct a methodology that allows one to learn76

this forward map, using results from a limited set of physical experiments.77

Owing to a probabilistic interpretation of µ, which is assumed to be defined on some78

probability space (Θ, F , P ) (where Θ denotes the sample space, F is a σ-field, and P is a79

probability measure), and assuming that α ∈ L2(Θ, L2(W)) (notice that α is of second-order80

as it is bounded almost surely), the process {α(ω), ω ∈ W} can be represented through its81
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Karhunen-Loève (KL) expansion28:82

α(ω) = α(ω) +
+∞∑
i=1

√
λiηiφi(ω) , (1)

where ω 7→ α(ω) is the mean function of the sound absorption coefficient (that is, α(ω) =83

E{α(ω)} for all ω ∈ W), the pairs {(λi, φi)}i≥1 are the eigenvalues and eigenfunctions of the84

covariance operator satisfying the integral equation85

ˆ
W

C(ω, ω′)φi(ω′) dω′ = λiφi(ω) , (2)

where (ω, ω′) 7→ C(ω, ω′) is the covariance function of {α(ω), ω ∈ W}, and the reduced86

variables {ηi}i≥1 are defined as87

ηi = 1√
λi

⟨α − α, φi⟩ , (3)

with ⟨·, ·⟩ the inner product between functions:88

⟨f, g⟩ =
ˆ
W

f(ω)g(ω) dω . (4)

The variables {ηi}i≥1 are centered, have unit variance, and are pairwise uncorrelated. Notice89

that we did not adapt the notation to reflect the stochastic interpretation in the above90

equations, for simplicity. The truncated expansion reads as91

αν(ω) = α(ω) +
ν∑

i=1

√
λiηiφi(ω) , (5)

where the order ν is determined through a convergence analysis and αν converges to α in92

the mean-square sense as ν → +∞.93

One natural path to learn the mapping µ 7→ {α(ω};µ), ω ∈ W} then consists (i) in94

estimating the mean α and the set of eigenpairs {(λi, φi)}ν
i from a given dataset, and (ii)95
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in learning the mapping µ 7→ η(µ) between the input parameters and the latent reduced96

variables, with η(µ) = (η1(µ), . . . , ην(µ))T . There are two main benefits of proceeding this97

way. First, the learning task is now cast in a finite dimensional space (that is, in Rν), as98

proposed in Ref.27, e.g., for the learning between Hilbert spaces for instance. Second, the99

use of a basis in the frequency domain renders the approximation more robust to noise in100

the data. Since we are interested in learning from experiments, it is convenient to introduce101

the following truncated decomposition, related to observations:102

αexp
ν (ω) = αexp(ω) +

ν∑
i=1

√
λexp

i ηexp
i φexp

i (ω) . (6)

In Eq. (6), the superscript “exp” indicates that all quantities are computed based on the103

experimental results, using statistical estimators. In a standard setting where few samples104

are available (meaning that the physical experiments are conducted for a few choices of105

input parameters, typically less than 10), the covariance operator estimated from the data106

is, however, often found to be non-positive, hence making the above formulation ill-posed.107

To circumvent that limitation and properly set up the learning task, we propose the following108

two-step “regularization” approach.109

(i) First, a numerical multiscale-informed surrogate model for the experiments is intro-110

duced. We denote by {αsim(ω), ω ∈ W} the sound absorption coefficient thus obtained,111

and we consider the truncated KL expansion112

αsim
ν (ω) = αsim(ω) +

ν∑
i=1

√
λsim

i ηsim
i φsim

i (ω) , (7)

with notation analogous to Eq. (6).113
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(ii) Second, the (centered) experimental data are projected onto the computational basis:114

115

αexp
ν (ω) = αexp(ω) +

ν∑
i=1

√
λsim

i η̂exp
i φsim

i (ω) , (8)

where the same truncation order is assumed, without loss of generality, and116

η̂exp
i := 1√

λsim
i

⟨αexp − αexp, φsim
i ⟩ . (9)

The hat symbol in Eq. (9) is used to emphasize that the reduced coordinates are117

different from those in Eq. (6) (see the remark below). The mapping µ 7→ η̂exp(µ)118

is subsequently approximated by using transfer learning with neural network models,119

using prior knowledge gained by developing a surrogate model for the mapping µ 7→120

ηsim(µ).121

It should be noticed that the above approach can be interpreted, to some extent, in a122

multi-fidelity setting where αexp represents information that is costly to collect, while the123

numerical approximation αsim remains cheaper to synthesize in general. A study about124

transfer learning in this context can be found in Ref.26 for instance. Moreover, the use125

of a KL expansion rises theoretical issues pertaining to approximation capabilities for the126

neural networks, due to the non-compactness of the latent spaces. This fundamental aspect127

is beyond the scope of this work, and we refer to Ref.27 for a discussion. The ingredients of128

the above framework are presented in the following sections.129

Remark: It is important to note that Eq. (8) does not correspond to the KL expansion130

of the process {αexp(ω), ω ∈ W}. In particular, the right-hand side is not optimal in the L2
131

sense and the reduced variables {η̂i}ν
i=1, while centered, are not pairwise uncorrelated. The132
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representation is, however, licit since {φsim
i }i≥1 constitutes an orthonormal basis of L2(W)133

(which follows from the properties of the covariance operator).134

B. Neural networks as surrogate models135

In this section, we recall the necessary background on (feed-forward) neural networks and136

transfer learning. Providing general reviews on these very active research topics is beyond137

the scope of this work, and we refer interested readers to Ref.29 and Refs.30,31 for discussions,138

for instance.139

1. Background140

A neural network surrogate aims to map some input vector-valued parameter x ∈ RI to141

some output (vector-valued) parameter y ∈ RO, using a composite transformation that (i)142

involves input and output layers, as well as so-called hidden layers that each contains a set143

of neurons; (ii) is learned on a training data set D = {x(i),y(i)}ND
i=1 with ND data points.144

Following standard notation, we denote by NH the total number of hidden layers, and let nℓ145

be the number of neurons in the ℓth layer. In this work, we consider a feed-forward neural146

network in which the output of the jth neuron in a given layer is produced by transmitting147

a weighted sum of input signals (from the preceding layer), plus a bias, to an activation (or148

transfer) function ϕa:149

z
(ℓ)
j = ϕa

 nℓ−1∑
i=1

W
(ℓ)
ij z

(ℓ−1)
i + θ

(ℓ)
j

 , 1 ≤ j ≤ nℓ , 1 ≤ ℓ ≤ NH , (10)
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with zi
(0) = xi, 1 ≤ i ≤ I. The components of the output layer are defined as150

yj =
nNH∑
i=1

W
(0)
ij z

(NH)
i + θ

(0)
j , 1 ≤ j ≤ O . (11)

In the above equations, W
(ℓ)
ij denotes the weight for the connection between the ith neuron151

in layer (ℓ − 1) and the jth neuron in layer ℓ, and θ
(ℓ)
j is the bias corresponding to the jth152

neuron in layer ℓ. The neural network is therefore parameterized by the sets {W (ℓ)}NH
ℓ=0 and153

{θ(ℓ)}NH
ℓ=0 of weight matrices and bias vectors, where W (0) and θ(0) are associated with the154

output layer by convention, and155

W (ℓ) = [W (ℓ)
ij ] ∈ Mn(ℓ−1)×n(ℓ)(R) , θ(ℓ) = [θ(ℓ)

j ] ∈ M1×n(ℓ)(R) . (12)

There exist many choices for the activation function, including the Rectified Linear Unit156

(ReLU), sigmoid, and hyperbolic tangent functions for instance; see Ref.29. In this paper,157

we use the sigmoid function ϕa(v) = 1/[1+exp(−v)] for all hidden layers, and the architecture158

of the neural networks was determined through parametric analyses on validation errors.159

An important step while using neural networks pertains to training, that is, to the calibra-160

tion of the weight matrices {W (ℓ)}NH
ℓ=0 and bias vectors {θ(ℓ)}NH

ℓ=0. This is commonly achieved161

by minimizing a loss function, potentially supplemented with a regularization term, and162

many techniques were proposed in the literature.29 We use a standard supervised approach163

based on the minimization of the mean squared error164

L({W (ℓ),θ(ℓ)}NH
ℓ=0) = 1

ND

ND∑
i=1

∥ ŷ(x(i); {W (ℓ),θ(ℓ)}NH
ℓ=0) − y(i)) ∥2 , (13)

where ŷ(x(i); {W (ℓ),θ(ℓ)}NH
ℓ=0) denotes the prediction of the neural network parameterized by165

{W (ℓ),θ(ℓ)}NH
ℓ=0 at the data point x(i).166
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In this work, various algorithms for network training were tested through parametric167

analyses, including the Levenberg-Marquardt and stochastic gradient descent techniques.168

Most algorithms were found to provide similar results, and the results provided in Sec. III C169

were obtained with the Levenberg-Marquardt optimizer.170

2. Transfer learning171

In the context of inductive learning for regression problems (see Refs.30,31 for reviews172

with applications to classification and regression), transfer learning proceeds by adapting an173

existing neural network that has been pretrained on data generated by a similar problem.174

This principle is schematically depicted in Fig. 1, using the terminology introduced in the175

aforementioned references.176177

The adaptation can be performed, for instance, by preserving the structure of the pre-178

trained network and by updating its parameters in either all or a few layers, or by adding179

hidden layers to approximate the mapping ηsim 7→ η̂exp(ηsim). In this work, we use the180

second approach given the analogy between Eq. (7) and Eq. (8), where αsim is assumed to181

be a reasonable proxy for αexp.182

III. APPLICATION TO EXPERIMENTAL MEASUREMENTS FOR THE SOUND183

ABSORPTION COEFFICIENT184

In this section, we deploy the methodology presented in Sec. II A. The experimental185

analysis is first presented in Sec. III A. The multiscale surrogate used for computing the186
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FIG. 1. Principles of transfer learning for regression problems. A neural network is first pretrained

using data from a similar problem, associated with a source model (top row). Knowledge gained

through this training is subsequently transferred to train an adapted neural network surrogate for

the target model (bottom row). Here, this adaptation corresponds to an extension of the pretrained

model through the addition of hidden layers.

projection basis and transfer learning is then discussed in Sec. III B. The learning strategy187

is finally exemplified in Sec. III C.188

Owing to a slight abuse of notation, we consider the sound absorption coefficient to be189

expressed as a function of the angular frequency ω or the frequency f (with ω = 2πf), and190

denote by α the aforementioned coefficient regardless of the associated variable.191

A. Description of the physical experiments192

In order to illustrate the approach, we consider the characterization of the sound ab-193

sorption coefficient for randomly-packed rigid spherical beads. To that end, ten samples194
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with various combinations of monodisperse bead diameter and sample thickness were pro-195

cessed; see Tab. I and Fig. 2(a). Bead diameters were provided by the manufacturer and196

are sufficiently accurate for long wavelength acoustical purposes.197

TABLE I. Definition of the experimental samples.

Parameter
Sample #

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Diameter, d [mm] 3 4 5 6 7 3 4 5 6 7

Thickness, L [mm] 23.5 23.5 23.5 23.5 23.5 47 47 47 47 47

198

199

(b)(a)

(d,L)

FIG. 2. (a) Samples of randomly-packed rigid spherical beads. The top row corresponds to sphere

layers with a thickness of 47 [mm], while the bottom row shows 23.5 [mm]-thick layers. (b,c)

Acoustical measurement setup and impedance tube configuration. Note that the specimen is backed

by a rigid wall.

A two-microphone method was used to estimate the sound absorption coefficient of the200

porous media at normal incidence, by measuring the pressure transfer function H12 = p1/p2,201

13
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in which p1 and p2 are the pressures determined at the two microphones; see Fig. 2(b-c).202

A steel net is used to control the sample thickness, see Fig. 2c. It is worth noticing that203

manual measurements of the sample packing fraction can be expected to be less precise for204

large bead diameters. The sound absorption coefficient is then experimentally estimated as205

αexp = 1 −
∣∣∣∣ exp(jkad12) − H12

H12 − exp(−jkad12)
exp(2jkaL)

∣∣∣∣2 , (14)

in which ka represents the wavenumber in the ambient fluid, L is the sample thickness,206

and d12 is the distance between microphones 1 and 2. Note that a third microphone at207

the back of the sample could be used for accessing the intrinsic material properties such as208

the wavenumber and the characteristic impedance by measuring a second pressure transfer209

function H23 = p2/p3, in which p3 is the pressure measured at the third microphone32,33 (see210

Eqs. (1)–(4) in Ref.33). Measurements were conducted with an impedance tube of length 1211

[m] and inner diameter 40 [mm] (see Fig. 2b), in the frequency range [100, 4500] [Hz] with212

a sampling step of 4 [Hz]. The experimental results are reported in Fig. 3.213

The normal incidence sound absorbing behavior of monodisperse spherical particles has214

been discussed elsewhere; see Ref.34, Sec. VIII (and Refs.35,36) for instance. Indeed, it215

was shown that accurate predictions of the first sound absorption peak can be obtained in216

terms of frequency and magnitude from the geometrical properties of the material (d, L).217

The first normal incidence sound absorption peak corresponds to the quarter wavelength218

resonant absorption of the material and is governed by its intrinsic damped wavelength219

λeq (and not directly by the wavelength in the air). The successive maxima appear at220

the quarter wavelength, where L/Re(λeq) = n/4, with n being successive odd integers. The221

thickness-to-particle-diameter ratio L/d controls the magnitude of the first sound absorption222
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FIG. 3. Experimentally-measured sound absorption coefficients estimated for the samples described

in Tab I.

peak, and the optimal value of the thickness-to-particle-diameter ratio Nopt allowing 100%223

absorption at a given particle diameter was found to be a linear function of the particle224

diameter (see Fig. 12 and Eq. (35) of Ref.34). Our experimental results are consistent with225

the systematic analysis proposed in Ref.34, in which the optimal particle diameter is given,226

for a given thickness L, as d1(L) =
√

L/δ1 (with δ1 = 12494 [m−1]; see Ref.34). Note that227

symbols d1 and δ1 are used hereinafter for consistency with Ref.34. For the two considered228

layer thicknesses, optimal particle diameters are estimated as d1(L = 23.5 [mm]) = 1.4 [mm]229

and d1(L = 47 [mm]) = 1.9 [mm]. This explains why the sound absorption magnitude of230

sample R6 reaches a maximum value above 0.9, whereas the first peak magnitude of sample231

R1 is much lower than this critical value—even if the two samples involve the same particle232

diameter, d = 2 [mm]. The information described above constitutes the dataset for the233

experimental response µ 7→ {αexp(ω;µ), ω ∈ W}, with µ = (d, L)T .234
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B. Multiscale surrogate235

We now introduce the computational surrogate for the experiments described in Sec.236

III A. Additional results pertaining to code verification and model accuracy are reported in237

Appendix A.238

1. Microstructural sampling239

The first step consists in sampling a random close packing of mono-sized rigid spheres240

(for a given value of µ). To that aim, we rely on the algorithm proposed in Refs.37,38 where241

spheres are randomly distributed within the domain at initialization and moved, in an242

iterative manner, to avoid overlaps and reach a target packing fraction. In order to enforce243

a periodic structure at the boundaries of the simulation domain, each sphere intersecting244

with p faces at the boundary (1 ≤ p ≤ 3) is duplicated p times, and the center of each245

replicate is translated towards the face opposing the intersecting boundary by a factor equal246

to the size of the domain.39 Four sphere ensembles with a target solid volume fraction of247

0.6 are shown in Fig. 4, for the sake of illustration. The radial distribution function g for248249

several packing configurations is shown in Fig. 5. The generation of a microstructure with250251

N = 128, 512, and 1024 spheres took about 35, 255, and 1523 [sec], respectively, on a laptop252

equipped with an Intel(R) Core(TM) i7-4500U cadenced at 2.40 GHz.253
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(a) (b) (c) (d)

FIG. 4. Realizations of the random close packing obtained for N = 128, N = 256, 512, and

N = 1024 (from left to right), for a solid volume fraction set to 0.6.
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FIG. 5. Graph of the function g(r) → r∗(= 2r/d) for: (a) various numbers N with a value of solid

volume fraction ηp = 0.60, and (b) several packing fractions ηp with N = 1024.

2. Determination of the transport properties254

The second step involves the calculation of transport properties using the periodic solid255

skeleton defined in Sec. III B 1.256

Let Ω be the reconstructed Representative Volume Element (RVE) under consideration257

with boundary ∂Ω, and let its solid phase, fluid, and fluid-solid interface be denoted by258

Ωs, Ωf , and ∂Ωf , respectively. The porosity (or fluid volume fraction) ϕ and the thermal259

17
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characteristic length (or generalized hydraulic radius) Λ′ are directly obtained as260

ϕ =
´

Ωf
dV´

Ω dV
, Λ′ = 2

´
Ωf

dV´
∂Ωf

dS
. (15)

The macroscopic transport properties can be computed from the numerical solutions of a261

series of canonical boundary value problems, namely: (i) a viscous flow problem, for the static262

viscous permeability k0 and static viscous tortuosity α0;5,7,8,40 (ii) an inertial flow problem,263

for the viscous characteristic length Λ and the high frequency tortuosity α∞;5,41,42 and (iii)264

a steady-state heat conduction problem, enabling for the static thermal permeability k′
0 and265

the static thermal tortuosity α′
0 to be computed.7,9,43 These boundary value problems are266

recalled below for the sake of self-containedness; interested readers are referred to19,40,44,45
267

for the first-principles calculations of these transport properties.268

a. Viscous flow. This problem corresponds to the low frequency limit (that is, when269

ω → 0) where viscous effects dominate, hence creating a steady-state flow in the porous270

media. The flow, associated with an incompressible Newtonian fluid at very low Reynolds271

numbers, is described by the scaled Stokes problem:40
272

−∇2k⋆
0 + ∇π⋆

0 = e , ∇ · k⋆
0 = 0 (16)

in Ωf , with k⋆
0 = 0 on ∂Ωf and where the scaled velocity k⋆

0 and pressure π⋆
0 of the fluid are273

Ω-periodic. Here, e is a unitary vector corresponding to the imposed macroscopic pressure274

gradient that drives the flow in a preferential direction. The symbol ∇ denotes the nabla275

differential operator, while “ · ” denotes the classical inner product in R3. The separation of276

scales (and thereby, macroscopic isotropy) is assumed for the considered microstructure.?277

The static viscous permeability k0 and the static viscous tortuosity α0 are then calculated278
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as44,45
279

k0 = ϕ ⟨k⋆
0 · e⟩ , α0 = ⟨k⋆

0 · k⋆
0⟩

⟨k⋆
0⟩ · ⟨k⋆

0⟩
, (17)

where ⟨•⟩ indicates spatial averaging over the fluid domain. Notice that the aforementioned280

scalar transport parameters are sufficient to describe the (isotropic) static viscous perme-281

ability and tortuosity tensors.282

b. Inertial flow. This problem is associated with the high-frequency regime, ω → +∞.283

In this case, inertial forces dominate over viscous ones and consequently, the saturating284

fluid tends to behave as a nearly perfect fluid (without viscosity except in the vicinity of the285

boundary layer). The inertial flow of the perfect incompressible fluid then formally behaves286

according to an electric conduction phenomenon (where the porous material is composed287

of a non-conducting solid matrix and a conducting fluid).5,41,42 Quantities of interest in the288

inertial flow problem can be thus obtained by solving the following set of potential equations:289

290

E = −∇φ + e , ∇ · E = 0 (18)

in Ωf , subjected to E · n = 0 on ∂Ωf and φ is Ω-periodic. In the above equations, e is a291

given macroscopic electric field, E is the local solution to the boundary value problem having292

−∇φ as a fluctuating part, and n is the unit normal to ∂Ωf . The viscous characteristic293

length Λ and the through-thickness high-frequency tortuosity α∞ are given by5,46
294

Λ = 2
´

Ωf
E · E dV´

∂Ωf
E · E dS

, α∞ = ⟨E · E⟩
⟨E⟩ · ⟨E⟩

. (19)
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Similarly to the static viscous permeability and tortuosity parameters introduced in the pre-295

vious section, these scalar quantities are sufficient to parameterize the homogenized response296

of the material (owing to macroscopic isotropy).297

c. Thermal effects. In the low frequency limit (that is, in the static case), heat diffusion298

in porous media is governed by the Poisson equation43
299

∇2τ = −1 (20)

in Ωf , with τ = 0 on ∂Ωf and τ is ∂Ω-periodic. The static thermal permeability k′
0 and300

static thermal tortuosity α∞ are finally estimated as41
301

k′
0 = ⟨τ⟩ , α′

0 = ⟨τ 2⟩
⟨τ⟩2 . (21)

As an illustration, Figure 6 shows the solution fields obtained by the finite element method302

(with a P2 − P1 formulation) for a cubic domain of edge length 2.5d.303304

3. Determination of the sound absorption coefficient305

Within the framework of the equivalent-fluid theory,46 the air in a porous medium is306

replaced by an equivalent fluid that exhibits (i) the same bulk modulus as the saturating air,307

and (ii) a dynamic density that takes into account the viscous and the inertial interactions308

with the frame. The determination of these two dynamic parameters subsequently enables309

the estimation of the the wavenumber and characteristic impedance, which in turn can310

be used to define some relevant properties of the air-filled porous media. In the JCAPL311

model,5,6,9 developed following this macroscopic perspective, the effective density and the312
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FIG. 6. Asymptotic solution fields: (a) mesh containing 58 400 Lagrangian tetrahedral elements;

(b) low-frequency scaled velocity field k⋆
0 [×10−8 m2]; (c) low-frequency scaled temperature field τ

[×10−8 m2]; (d) high-frequency scaled velocity field E [–] for an external unit field e;

effective bulk modulus are respectively defined as313

ρ̃(ω) = ρ0α̃(ω)
ϕ

, K̃(ω) = γP0

ϕ

1
β̃(ω)

, (22)

where ρ0 is the density of the saturating fluid (here, the air), γ = Cp/Cv where Cp is314

the pressure volume-specific heat and Cv is the constant pressure-specific heat, P0 is the315

atmospheric pressure, and ϕ is the open porosity. The dynamic tortuosity and dynamic316

compressibility, denoted by α̃(ω) and β̃(ω) respectively, are then evaluated as317

α̃(ω) =
[
1 + 1

jϖ′ F̃ (ω)
]

, β̃(ω) = γ − (γ − 1)
[
1 + 1

jϖ′ F̃
′(ω)

]−1

, (23)
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where j is the imaginary unit, F̃ (ω) and F̃ ′(ω) are the dimensionless viscous and thermal318

shape functions depending on the dimensionless viscous and thermal angular frequencies319

(denoted by ϖ and ϖ′, respectively), defined as320

F̃ (ω) = 1 − P + P

√
1 + M

2P 2 jϖ , F̃ ′(ω) = 1 − P ′ + P ′

√
1 + M ′

2P ′2 jϖ′ , (24)

with321

ϖ = ω
ρ0k0α∞

ϕη
, ϖ′ = ω

k′
0ρ0Cp

ϕγP0
. (25)

The four non-dimensional shape factors M , M ′, P , and P ′ only depend on the material322

transport parameters introduced in Sec. III B 2:323

M = 8α∞

k0Λ2ϕ
, P = M

4(α0/α∞ − 1) , M ′ = 8k′
0

Λ′2ϕ
, P ′ = M ′

4(α′
0 − 1) . (26)

It should be noticed that the so-called Johnson-Champoux-Allard (JCA) and Johnson-324

Champoux-Allard-Lafarge (JCAL) models are recovered by letting M ′ = P = P ′ = 1325

and P = P ′ = 1, respectively.326

For a homogeneous acoustic layer, the wavenumber k̃(ω) and the characteristic impedance327

Z̃c(ω) can be calculated by328

k̃(ω) = ω

√√√√ ρ̃(ω)
K̃(ω)

, Z̃c(ω) =
√

ρ̃(ω)K̃(ω) . (27)

In the third and final step, the sound absorption coefficient at normal incidence of the329

absorbing porous layer backed by a rigid wall is defined as330

αsim(ω) = 1 −
∣∣∣∣Z̃s(ω) − Z0

Z̃s(ω) + Z0

∣∣∣∣2, (28)

where Z0 is the characteristic impedance of ambient air and Z̃s(ω) = −jZ̃c(ω)cot[k̃(ω)L] is331

the surface impedance on the free face of the sample having thickness L.332
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4. Numerical results333

The entire set of transport parameters for the sphere-packing microstructure is reported334

in Tab. II for the specific case d = 5 [mm]. These parameters provide information relevant335

TABLE II. Transport properties computed for d = 5 [mm].

ϕ [-] Λ′ [mm] Λ [mm] k0 [×10−8 m2] k′
0 [×10−8 m2] α∞ [-] α0 [-] α′

0 [-]

0.37 0.97 0.70 1.75 2.56 1.46 2.29 1.67

336

337

to the propagation and dissipation phenomena in the equivalent homogeneous material, in338

accordance with the multiscale setting, and allows one to estimate the sound absorption339

coefficient α(ω) (following the derivations in the previous sections).340

In order to build the mapping µ 7→ {αsim(ω;µ), ω ∈ W}, samples of µ are drawn from341

the product of uniform probability measures on the intervals [1, 10] [mm] (for the diameter342

d) and [5, 100] [mm] (for the sample thickness L). Note that these intervals are relevant to343

a broad range of absorber configurations, as discussed in Ref.34. Results obtained for the344

ten configurations defined in Tab. III are displayed in Fig. 7.345

C. Deploying the methodology346

For numerical purposes, we consider discretized expansions associated with a frequency347

step of 4 [Hz]. Notice that the results reported in this section are displayed in terms of348

frequency f .349
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TABLE III. List of parameters for the virtual sphere-packing samples analyzed in Fig. 7.

Parameter
Sample name

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Diameter, d [mm] 5.24 3.07 8.60 2.75 3.03 2.54 3.05 4.92 3.79 9.31

Thickness, L [mm] 93.24 74.38 51.42 59.96 27.54 48.59 96.49 56.95 54.51 27.00

500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

FIG. 7. Predicted sound absorption coefficients for the ten virtual samples described in Tab. III.

1. Statistical reduction for the computational surrogate350

The first step of the methodology consists in analyzing the reduction of the process351

{αsim(ω), ω ∈ W}, based on a set of samples of µ. To identify the number of realizations that352

are necessary to achieve convergence for the projection basis, we characterize the convergence353

of the statistical estimator for the covariance matrix of the discretized process, denoted354

by [C̃]. The graph of the function N sim 7→ ∥[C̃(N sim)]∥ is shown in Fig. 8, where N sim
355

24



Learning acoustic responses from experiments

denotes the number of realizations used to compute the estimator. It is seen that reasonable356

0 50 100 150 200
0

10

20

30

40

50

60

FIG. 8. Graph of the Frobenius norm of the statistical estimator for the covariance matrix, as

a function of the number of samples N sim. This figure shows that 200 samples are sufficient to

compute [C̃].
357

358

convergence is achieved for N sim = 200, which is the number considered in subsequent359

calculations.360

We next determine the truncation order ν in the statistical reduction (see Eq. (5)) by361

analyzing the convergence of the function m 7→ Err(m) defined as362

Err(m) = 1 −
∑m

i=1 λsim
i

tr([C̃])
. (29)

The graph of the error function is shown in Fig. 9. It is found that the error is less than363364

1 × 10−2 (respectively 1 × 10−4 and 1 × 10−6) for m = 10 (respectively m = 21 and m = 33).365

The graphs of the first five eigenfunctions {ω 7→ φsim
i (ω)}5

i=1 are displayed in Fig. 10. In what366367

follows, we consider a truncation at order ν = 21, and a quantitative comparison between the368
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FIG. 9. Graph of the function m 7→ Err(m) measuring the error induced by the truncation in the

KL decomposition.
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FIG. 10. Graph of the five first eigenfunctions which are used to represent the sound absorption

coefficient obtained from the multiscale formulation.
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reference sound absorption coefficient αsim and the truncated KL representation is provided369

in Fig. 11, for a specific microstructural sample.370

500 1000 1500 2000 2500 3000 3500 4000
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1

FIG. 11. Graphs of the reference function f 7→ αsim(f) (black dots) and approximation f 7→ αsim
21 (f)

for a truncation order ν = 21 (blue dots) for the virtual sample with d = 9.61 [mm] and L = 52.00

[mm].
371

372

2. Neural network surrogate for the computational reduced coordinates373

Following the second step in the approach outlined in Sec. II A, samples for the reduced374

coordinates associated with the multicale computational model are obtained as375

ηsim
i (m) = 1√

λsim
i

⟨αsim(• ;m) − αsim, φsim
i ⟩ , (30)

where m denotes a realization of µ, and the mapping µ 7→ ηsim(µ) is approximated by using376

a neural network (with I = 2 and O = 21, following the notation introduced in Sec. II B 1).377
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As previously indicated, a feed forward NN is used in this work, and the architecture was378

determined through a parametric analysis in terms of NH (number of hidden layers) and the379

set {nℓ}NH
ℓ=1 (number of neurons per layer, for all layers). While no attempt was made to fully380

optimize the architecture for the problem at hand, a structure with 5 hidden layers and ν, 3ν,381

ν, ν, and ν neurons per layer, respectively, was found to provide reasonably accurate results382

(recall that ν = 21). The convergence of the mean squared error for the training, validation,383

and testing stages can be seen in Fig. 14. Here, the training, validation, and testing sets384

were composed of 144, 18, and 18 samples, respectively. The prediction obtained by using385

0 50 100 150

10-4

10-2

100

FIG. 12. Performance of the proposed NN model within the numerical training dataset: Conver-

gence of the mean squared errors for training, validation, and testing, respectively.
386

387

the NN surrogate with the truncated (KL) expansion for a given sample (not considered388

during the training process) can be seen in Fig. 13. It is seen that the surrogate predicts the389390

sound absorption response fairly accurately over the whole frequency domain for the virtual391
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FIG. 13. Graphs of the reference function f 7→ αsim(f) (black dots) and approximation f 7→

αsim,NN
21 (f) defined through the KL expansion (ν = 21) and the NN model (blue dots) for the

virtual sample with d = 3.8 [mm] and L = 54.51 [mm].

sample under consideration. In particular, the location and magnitude of the peaks are well392

estimated. It should, however, be pointed out that larger (but still contained) discrepancies393

can be observed on some other samples. The observed errors stem from the combination of394

the error raised by the truncation in the KL expansion, which can be reduced by increasing395

ν, and the error generated by the NN surrogate, which may be decreased by refining the396

architecture and training strategy.397

29



Learning acoustic responses from experiments

3. Neural network surrogate for the experimental reduced coordinates and exper-398

imental sound absorption prediction399

In the final step of the methodology, transfer learning is applied to approximate the400

mapping µ 7→ η̂exp(µ) with the limited dataset (composed of only 10 samples). To this end,401

a shallow network is added to the neural network constructed and calibrated in Sec. III C 2,402

with the aim of representing the mapping ηsim 7→ η̂exp. The additional layer contains ν403

neurons, and is also optimized with the Levenberg-Marquardt algorithm. Results from the404

training, validation, and testing stages are reported in Fig. 14. A small number of epochs405

0 2 4 6 8

10-4

10-2

100

FIG. 14. Performance of the proposed NN model within the experimental dataset: Convergence

of the mean squared errors for training, validation, and testing, respectively.
406

407

is necessary to obtain good approximation results in the transfer learning approach, which408

suggests that the computational surrogate is fairly accurate. The increase of the mean409

squared error for the validation test suggests overfitting, which may be alleviated through410
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various strategies including model simplification, regularization (with early stopping, for411

instance), and noise addition to list a few. As stated earlier, no attempt was made to412

optimize the machine learning part of the framework, given the scope of this study, and413

refinements along those lines are left for future work.414

Finally, the experimental sound absorption coefficient is predicted as415

αexp,NN
ν (ω) = αexp(ω) +

ν∑
i=1

√
λsim

i η̂exp,NN
i φsim

i (ω) , (31)

where η̂exp,NN denotes the neural network surrogate calibrated through transfer learning.416

The graphs of the experimentally-measured sound absorption coefficient αexp and the pre-417

diction αexp,NN
ν for the physical samples R3 and R7 (see Tab. I), which were both discarded418

for training, are shown in Figs. 15 and 16, respectively. It is seen that the hybrid surrogate419
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FIG. 15. Graphs of the experimentally-measured sound absorption coefficient αexp and neural

network prediction αexp,NN
21 for sample R3 (see Tab. I).

420

421422

model combining the KL expansion with the computationally-based projection basis and423
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FIG. 16. Graphs of the experimentally-measured sound absorption coefficient αexp and neural

network prediction αexp,NN
21 for sample R7 (see Tab. I).

the neural network calibrated through transfer learning predicts the experimental responses424

very well, even if only 8 experimentally-characterized samples were used as the dataset.425

While the responses for R3 and R7 remain quite different from one another, the surrogate426

can properly estimate the locations of small and large peaks, as well as the corresponding427

magnitudes in both cases. In practice, a normalized L2 error, defined as428

εν = ∥αexp − αexp,NN
ν ∥

∥αexp∥
, (32)

can be used to assess the accuracy of the prediction. This error is equal to 5.4% and 5.7%429

for samples R3 and R7, respectively. Other analyses (which are not reported below for the430

sake of conciseness) were performed by using other pairs of discarded responses (in lieu of431

R3 and R7), and similar results were obtained regarding the quality of the approximations.432

It should be noticed that the asymptotic result limν→∞ εν = 0 holds in the big data limit433

32



Learning acoustic responses from experiments

(which is not the setting considered in this paper), owing to the universal approximation434

theorem47,48. The rate of convergence depends on several factors, among which the accu-435

rary of the computational model, the architecture of the neural network, and the amount436

of experimental data available for transfer learning. It is also noteworthy that the sound437

absorbing spectrum obtained from the recorded time series (Fig. 3) showed significant dips438

(400 [Hz]) and peaks (700 [Hz]) of small amplitudes; similar features can also be seen in439

the frequency range [3000 − 4000] [Hz]. Figures 15 and 16 suggest that these inaccuracies440

originating presumably from the experimental setup and associated characterization method441

are also captured and reproduced by the neural network; meaning that the transfer learn-442

ing approach produces datasets consistent with experimental observations and quantified443

experimental uncertainties.444

IV. CONCLUSION445

A novel methodology to learn acoustical responses based on limited experimental datasets446

was presented. From a methodological standpoint, the approach combines a multiscale-447

informed encoder, used to cast the learning task in a finite-dimensional setting, with a448

neural network model acting between the set of microstructural descriptors (comprised of449

the monodisperse particle diameter and the sample thickness in the presented application)450

and the reduced (latent) variables. The neural network is trained through transfer learn-451

ing, using synthesized multiscale data to compensate for experimental data scarsity. The452

relevance of the approach was investigated by considering the prediction of the sound ab-453

sorption coefficient. It was shown that the proposed strategy allows for the map between the454
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microstructural parameters and the acoustic response to be well approximated, even with455

limited data.456

From an application standpoint, this work demonstrates how the experiments and models457

typically obtained and developed into several significant contributions to acoustics can be458

combined to enrich datasets in a context that many researchers in the field of acoustical459

materials encounter—namely, the identification and validation of models parameterized by460

micro-/structural features, based on a few experimental samples. The methodology allows461

one to explore these important aspects with the ability to account for microscopic effects,462

as well as correlation effects between local properties of the medium. It also paves the way463

for cost reduction through the efficient exploration of the parameter space for acoustical464

materials design.465

Avenues for future research include refinements on the learning components such as net-466

work architecture and learning strategy, as well as the assessment of the methodology for467

other acoustical responses (e.g., intrinsic frequency-dependent properties of polydisperse468

granular structures).469
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APPENDIX A: VALIDATION OF MULTISCALE-INFORMED PREDICTIONS473

In this appendix, we report results pertaining to code verification and model valida-474

tion. Alternative analytical models for transport parameters are first presented in Sec. A1.475

Comparisons of multiscale-inferred estimations for the transport properties and the sound476

absorption coefficient are then proposed in Secs. A2. and A3477

1. Analytical models for transport properties478

Several analytical models can be used for estimating the transport properties fed as479

inputs for the JCAPL semi-phenomenological model. Here, we specifically consider three480

models proposed in Refs.44,45, whose parameters are estimated as follows. The characteristic481

lengths and permeabilities are defined by the equations listed in Tab. IV. Three cases are482

considered, namely (i) the P-estimate (for which the shear stress vanishes at the boundary);483

(ii) the V-estimate (for which tangential velocities are equal at the boundary); and (iii) the484

C-estimate (with vanishing velocity at the boundary). The high-frequency tortuosity factor485

is defined as α∞ = (3 − ϕ)/2 for all three cases. The static viscous tortuosities are estimated486

for ϕ = 0.37 as α0V = 1.52, α0C = 1.58, and α0P = 1.60. The static thermal tortuosity α′
0 is487

finally equal to 1.94, in agreement with Ref.34.488

2. Validation of the multiscale framework489

Three classical cubic lattices are chosen for the sake of verification, namely simple cubic490

(SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices; see Fig. 17. Here,491492
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TABLE IV. Analytical estimates derived by combining periodic homogenization and the self-

consistent scheme. The determination of the characteristic lengths and permeabilities of spherical

packings is based on a bicomposite spherical pattern. Here, R = d/2β with β = 3√1 − ϕ.45

Factor
Method

P-estimate C-estimate V-estimate

Λ/R
2ϕ(3 − ϕ)
9(1 − ϕ)

2ϕ(3 − ϕ)
9(1 − ϕ)

2ϕ(3 − ϕ)
9(1 + β4)(1 − ϕ)

Λ′/R
2ϕ

3(1 − ϕ)
2ϕ

3(1 − ϕ)
2ϕ

3(1 − ϕ)

k0/R2 2 − 3β + 3β5 − 2β6

9β + 6β6
10 − 18β + 10β3 − 2β6

45β

4 − 9β + 10β3 − 9β5 + 4β6

18(β1 − β6)

k′
0/R2 3

2π

10 − 18β + 10β3 − 2β6

45β

3
2π

10 − 18β + 10β3 − 2β6

45β

3
2π

10 − 18β + 10β3 − 2β6

45β

(a)                  (b)                           (c)                             (d)

FIG. 17. Periodic unit cells of [SC (a), BCC (b), and FCC (c)] at ϕ = 0.42, and FCC (d) at

ϕ = 0.26 within solder joints with a radius of 150 [µm].49

the sphere radius is equal to 1 [mm] for all patterns. Computational results are compared493

with those from Refs.50,51 and are found to be in good agreement, see Tab. V. The evolution494495

of the sound absorption coefficient (at normal incidence) obtained from either the semi-496
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TABLE V. Numerical transport properties for classical lattices of spheres.

Lattice Reference

Transport parameters

ϕ Λ′ Λ k0 k′
0 α∞ α0 α′

0

[-] [mm] [mm] ×10−10 [m2] ×10−10 [m2] [-] [-] [-]

SC

Ref.50

0.48
0.624 0.369 102 246 1.40 2.02 1.43

Present 0.621 0.338 103 251 1.38 2.16 1.44

Ref.51

0.42
1.56 0.99 535 1457 1.53 2.31 1.45

Present 1.56 0.99 546 1459 1.53 2.31 1.44

BCC

Ref.50

0.32
0.325 0.234 19.7 38.1 1.48 2.15 1.35

Present 0.319 0.189 21.1 37.9 1.47 2.22 1.39

Ref.51

0.42
1.43 1.11 435 800 1.32 1.95 1.32

Present 1.43 1.11 452 803 1.32 1.93 1.31

FCC

Ref.50

0.26
0.247 0.159 6.70 27 1.65 2.49 1.85

Present 0.247 0.157 6.76 26.3 1.66 2.65 1.91

Ref.51

0.42
1.43 1.12 365 817 1.32 1.86 1.55

Present 1.42 1.12 393 834 1.32 1.84 1.52
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phenomenological models (fed with transport parameters) or the direct numerical approach497

presented in Ref.49 is shown in Fig. 18. The agreement between the different predictions498
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FIG. 18. Comparison of the normal incidence sound absorbing behavior obtained with the direct

numerical method (circle markers) and a hybrid method based on the JCA model (dashed line),

the JCAL model (dash-dotted line), and the JCAPL model (continuous line): (a) L = 50 [mm]

and (b) L = 100 [mm]. The inset plots show the same information with a focus on low frequencies

(smaller than 0.1 [kHz]). The horizontal dashed line is the high-frequency sound absorption limit

αh = 0.56 for the FCC pattern under study, at a porosity ϕ = 0.26.
499
500

shows that the hybrid approach allows the sound absorbing behavior to be well described.501

The absorbers are based on FCC packings (Fig. 17d) having two different thicknesses, L ∈502

{50, 100} [mm]. The considered frequencies range between 1 to 10 000 [Hz]. In the direct503

approach, the SAC value is estimated from the effective factors ρ̃(ω) and β̃(ω) taken from504
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Tabs. 3.4 and 3.5 in Ref.49. In agreement with results published elsewhere,19,34,50 the normal505

incidence sound absorption coefficient of sphere-packed porous absorbers exhibits quarter-506

wavelength resonances (see also Sec. IIIA), and oscillates around the high-frequency sound507

absorption limit, αh = 1 − [(ẑ − 1)/(ẑ + 1)]2 with ẑ = ϕ/
√

α∞.52
508

3. Comparison of multiscale-informed sound absorption predictions509

The predictions of the normal incidence SAC obtained from different approaches are510

compared below. The experimentally-measured sound absorbing behavior of the ten real511

samples introduced in Tab. I is compared with both simulations (combining the JCAPL512

model with the finite element results on dense random packing of equal spheres) and ana-513

lytical estimates (combining the JCAPL model with the self-consistent estimates described514

in Sec. A1)44,45. In general, the hybrid multi-scale numerical approach is shown to provide515

a fairly good estimate of the experimental behavior, as seen in Fig. 19. However, as the516517

particle diameter to sample thickness ratio increases (samples R4 and R5), border effects518

become significant in the experimental response and a RVE model is less appropriate to519

simulate such configurations (Fig. 19d and e).520
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