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Mass leakage at boundaries can be a critical issue for reliability of the lattice Boltzmann11

(LB) method based on Cartesian grids. Despite numerous work based on the LB method,12

the intrinsic macroscopic mechanisms causing mass leakage are still not fully charac-13

terised, but are essential to improve the mass conservation of LB simulations. In this paper,14

an original theoretical investigation of mass leakage at boundaries is proposed within the15

general LB framework. It is demonstrated that the mass leakage originates from the in-16

trinsic deficiency of the wall-cut LB links at boundary nodes in recovering macroscopic17

momenta. From a mesoscopic-level definition, i.e. the net loss of distribution functions18

during the streaming process, the local mass leakage at individual boundary nodes and its19

averaged value along smooth boundaries are mathematically expressed using macroscopic20

variables. The local mass leakage is shown to be dominated by terms proportional to the21

tangential momentum component. In contrast, the averaged mass leakage is shown to be22

contributed from various terms including the boundary curvature, the tangential momen-23

tum, and the gradients of density, momentum and momentum flux. Meanwhile, amplitude24

of the averaged mass leakage is theoretically estimated to be proportional to the local grid25

spacing, based on which a first-order accurate correction scheme is proposed. In addition,26

both the local and averaged mass leakage are demonstrated to be significantly dependent27

on boundary orientation with respect to the grid. The proposed theoretical analysis is28

assessed by performing numerical experiments. Two-dimensional weakly compressible29

flows through straight and curved moving channels are considered to estimate each term30

appearing in the theoretical analysis. The numerical results are in very good agreement31

with the proposed analysis, and the proposed mass correction scheme based on the av-32

eraged mass leakage effectively cures the mass leakage problems in the considered test33

cases.34
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I. INTRODUCTION35

During the last three decades, the lattice Boltzmann (LB) method has received a growing inter-36

est as an alternative computational fluid dynamic (CFD) tool, and it is nowadays widely applied37

in various problems1–3. Compared to the conventional CFD techniques the LB method is praised38

for its linear convective term, simple parallel implementation and high computational efficiency39

for unsteady flow simulations. However, since the LB method is usually implemented on Carte-40

sian grids, the stair-wise Cartesian grid boundaries (defined by “boundary nodes") near curved41

and/or inclined solid walls raise challenges for accurate boundary treatments. Especially, the mass42

conservation (or inversely the mass leakage minimization) at boundary nodes is of fundamental43

importance to guarantee reliable and accurate solutions, in particular in internal flows, but it is still44

not fully understood and requires to be theoretically addressed.45

Despite the stair-wise distribution of boundary nodes, various boundary treatments have been46

developed within the LB framework. The simplest and most commonly used boundary method is47

the bounce-back (BB) scheme in which the distribution functions streaming towards boundaries48

are directly returned to the boundaries node along the reversed directions to mimic particles col-49

lision dynamics on non-slip interfaces4–6. Although this method is simple to implement for arbi-50

trary geometries and satisfies the mass conservation well, it has a zero-order accuracy for pressure51

and first-order accuracy for velocity only when non-aligned boundaries involved7–9, while the LB52

method itself is of second-order accurate10,11. To develop more accurate boundary treatments,53

Chen et al.12 proposed an extrapolation scheme to reconstruct the unknown distribution functions54

directly from their neighbouring counterparts. Filipova and Hanel13 proposed a scheme to recon-55

struct the unknown distribution functions from macroscopic variables and their gradients, which56

are extrapolated from those known in the fluid domain. These two schemes are expected to ex-57

hibit a second-order accuracy, but suffer from numerical instability in some situations due to the58

extrapolation operations. The extrapolation-caused instability was cured by Mei et al.14 by ad-59

justing the extrapolation stencil properly. Later, Bouzidi et al.15 proposed a second-order accurate60

method which avoids extrapolation by combining the bounce-back concept with interpolation.61

This is achieved by extending the interpolation stencil for a prescribed LB link reversely to the62

fluid domain when a node in the non-fluid region is required. The scheme was further improved63

by Ginzburg and d‘Humieres16 who proposed a more general framework from which a third-order64

accurate multi-reflection scheme was derived. These schemes have been demonstrated to be ap-65
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parently more accurate than the BB method. However, except in some special cases (e.g. simple66

steady Stokes flow simulations where the LB process is purely linear7,17,18), the mass conservation67

is generally compromised by the applied interpolation or extrapolation operations19,20.68

Apart from the above mentioned schemes focusing on the reconstruction of the unknown distri-69

bution functions, there is another kind of boundary treatment relying on the use of an external body70

force tuned to enforce some constrains on the macroscopic quantities. Following the seminal work71

on immersed boundary method by Peskin21, many variants and improvements have been proposed72

and extensively applied within the LB framework, e.g.22,23. Usually, this boundary strategy uses73

lattice nodes in non-fluid regions so that the streaming process can be implemented without sens-74

ing the boundaries. On the one hand this feature is very favourable for moving and/or deformable75

boundary interfaces, but on the other hand it allows for local non-physical information leakage,76

e.g. mass and momentum, to the non-fluid regions.77

Many research efforts have been devoted to studying the mass leakage in LB simulations. Con-78

ceptually, the LB method relies on the preservation of conservativity, i.e. preserving the zeroth79

and first-order moments of the distribution function to recover density and momentum, along with80

the associated collision invariants to recover the correct macroscopic mass and momentum con-81

servation equations.82

Ginzburg & d’Humières7 proposed a local second order accurate boundary (LSOB) treatment83

reconstructing unknown distribution functions from macroscopic variables and their gradients ac-84

cording to Chapman-Enskog analysis up to second order. In the analysis of simple Stokes flows85

(Reynolds number much less than unit), including the Couette and Poiseuille flow, using linear86

LB simulations, the LSOB method gave exact results without mass leakage. Meanwhile, the lo-87

cal mass leakage along aligned boundaries was analysed to be linearly dependant on the normal88

momentum as well its high order (≥2) normal gradients. In a more general background beyond89

Stokes flow, Lallemand and Luo19 pointed out that interpolation during the reconstruction of un-90

known distribution functions could lead to a breakdown of mass conservation, thus yielding mass91

leakage. To avoid interpolation-related issues, Kao and Yang24 proposed an interpolation-free92

scheme based on the grid refinement concept13 without refining the grid in practice. However,93

this scheme still does not guarantee mass conservation25. Rohde et al.26 observed mass leak-94

age in LB simulations applying finite-volume flux techniques at moving boundaries. Bao et al.27
95

observed apparent mass leakage in simulating flow through a U-shaped tube using interpolation-96

based boundary methods, and proposed a scheme to enforce mass conservation by directly ad-97
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TABLE I. Examples of mass leakage observation using the BGK lattice Boltzmann model. “FH" refers

to the method proposed by Filipova and Hanel13, “MLS" refers to the boundary treatment proposed by

Mei et al.14, “IPF" refers to the interpolation-free method proposed by Kao and Yang24, “NEE" is short

for “Non-equilibrium extrapolation", “Bouzidi" refers to the schemes proposed by Bouzidi et al.15, “ZY"

refers to the scheme proposed by Zhao and Yong33, “LSOB" refers to the scheme proposed by Ginzburg7,

and “MR" refers to the scheme proposed by Ginzburg and d‘Humieres16.

Ref. Boundary methods Configurations

Bao et al.27 FH, MLS U-shaped channel

Oulaid&Zhang11 Density extrapolation Aligned boundaries

Sanjeevi et al.25 IPF Aligned boundaries, sharp corners

Feng&Lim30 NEE Aligned boundaries , sharp corners

Yu et al.29 MLS, Bouzidi, ZY Aligned boundaries

Ginzburg et al.7,17,18 LSOB, MR Straight channel, curved bounaries

justing local density values. Similar mass correction schemes are also proposed and tested by98

other researchers28,29. There are also some mass-conservative strategies specifically valid for flat99

walls aligned with coordinate axes11,28,30. Especially, Feng and Lim30 reported that mass leak-100

age around sharp boundary corners is much more significant than along aligned walls in their LB101

simulations. In addition, it was reported that mass leakage in LB simulations of Stokes flow is so102

low that local mass correction is not necessary and even harmful in some situations31,32, which is103

consistent with the observation that mass leakage is more significant at high Reynolds numbers104

and/or at moving boundaries25. More recently, Ginzburg17 proposed to include mass sources in105

the multi-reflection boundary scheme within a two-relaxation-time LB framework, and it was suc-106

cessfully applied to achieve mass balance across interfaces in advection-diffusion and Stokes flow107

simulations. Besides, within the same LB framework, a uniform normal mass flux was demon-108

strated to outperform a uniform mass-source in advection-diffusion simulations18. Some examples109

of mass leakage observation are summarised in Table I. Apparently, the observed mass leakage110

is supposed to depends on many factors, such as the boundary orientation, the Reynolds number111

value and specific flow characteristics. However, mechanisms responsible for the mass leakage at112

boundaries within the LB framework are still not clearly and rigorously characterised, which is the113

motivation of this paper.114
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This paper is focused on macroscopic mechanisms of mass leakage in LB simulations. Firstly,115

some basic characteristics of the LB method are presented in §II. Secondly, the mass leakage is116

defined as the net loss of distribution functions from a mesoscopic view in §III. Thirdly, local mass117

leakage at individual boundary nodes is mathematically expressed using macroscopic variables in118

§IV. Based on the local mass leakage analysis, averaged mass leakage over smooth boundaries119

is theoretically investigated in §V. After that, a mass correction scheme based on the averaged120

mass leakage is proposed in §VI. To validate the proposed theoretical analysis and assess the mass121

correction scheme, numerical experiments dealing with two-dimensional flows through straight122

and curved channels with moving boundaries are simulated using an in-house LB solver in §VII.123

Finally, some conclusions are drawn in §VIII.124

II. FUNDAMENTALS OF THE LB METHOD125

As a fundamental basis to study mass leakage in LB simulations, some key features of the LB126

method are reminded with an emphasis on the mass conservation issue in this section. The LB127

method models fluid dynamics by considering a finite set of discrete velocities ei and distribution128

functions fi defined at a mesoscopic level. Specifically, the distribution functions are assumed to129

obey a set of coupled advection-relaxation partial differential equations, which can be interpreted130

as a discretisation in space, time and velocity space of the original continuous Boltzmann equation131

in kinetic theory. The relaxation term is a model of the exact collision term that appears in the132

Boltzmann equation, stemming from the idea that the net statistical effect of collisions is to drive133

the flow toward thermodynamic equilibrium.134

Generally, the LB method can be formulated as follows:135

fi (x, t)− fi (x−ei∆t, t−∆t) = `i(f −f eq) (1)136

where ∆t is the time step, f and f eq are vectors containing fi (x−ei∆t, t−∆t) and the equi-137

librium distribution functions f eq
i , respectively, and `i is a scalar collision function of f −f eq for138

fi. Each component of ei is equal to either 0 or ±c with c = ∆x/∆t and ∆x being the grid spacing.139

The left-hand side of Eq. (1) originates in a Lagrangian implementation of the linear convective140

streaming process, while the right-hand side is generally a nonlinear collision process (might also141

be linear when the physics is linear, e.g. advection-diffusion Stokes flow). By selecting adequate142

collision operator `i, Eq. (1) is able to recover the classic single-relaxation-time (SRT)34, the143
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multiple-relaxation-times (MRT)35, and the regularised (RLB)36 LB methods. The most widely144

applied definition of f eq
i is a truncated polynomial expansion of the original Maxwell-Boltzmann145

equilibrium distribution function, i.e.146

f eq
i = ωiρ

[
1+

ei ·u
c2

s
+

(ei ·u)2

2c4
s
− u ·u

2c2
s
+O(Ma3)

]
. (2)147

where ωi is the ith weighting factor, cs is the lattice sound speed, ρ = ∑ fi, u = ∑ fiei/ρ , and148

,Ma is the local Mach number ‖u‖/cs. It should be noticed that cs/c is a tunable parameter de-149

pending on the lattice configuration as well as the adopted discrete velocities (e.g., cs/c = 1√
3

for150

regular lattices using the D2Q9 model)16,37. By using terms up to the first-order in f eq
i (i.e. without151

non-linear terms in Eq. (2)) the LB method could restore to linear advection-diffusion equations.152

Considering that mass leakage in this kind of linear LB processes has been well analysed by153

Ginzburg7, and demonstrated to be fully avoidable by choosing proper high order accurate bound-154

ary treatments in simple Stokes flow simulations7,17, hereafter this paper will be focused on more155

general and complex situation. Usually, by using terms up to second-order in f eq
i , the LB method156

is sufficient to recover the low-Mach weakly compressible Navier-Stokes equations35. The higher157

order terms, e.g. O(Ma3) in Eq. (2), can be used to account for thermal and compressible effect38.158

Particularly, the LB equation (1) can be directly restored to the macroscopic mass equation by159

taking its zeroth moment, i.e.,160

∂ρ/∂ t +∇ · (ρu) = 0. (3)161

However, it should be pointed out that this restoration is based on a complete stream process,162

i.e., all the neighbouring nodes are within the fluid domain, thus not taking boundary conditions163

into consideration. In addition, as discussed in the introduction, the reported boundary treatments164

within LB framework are not designed to directly satisfy the mass equation but are more likely165

focused on the boundary velocity condition. Consequently, mass leakage usually occurs along166

boundaries and cannot be directly described by the macroscopic mass equation.167

To unveil the macroscopic mechanisms of mass leakage, it is important to express the non-168

equilibrium parts of the distribution functions, f ne
i = fi− f eq

i , as functions of their macroscopically169

determined equilibrium counterparts f eq
i . By applying Taylor’s series expansion, the LB equation170

(1) can be rewritten as:171

Df

Dt
+

∆t
2

D2f

Dt2 +O(∆t2) =
1
∆t

L (fne) (4)172
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where fne = f − f eq, D/Dt is a diagonal matrix spanned by material derivative operators,173

e.g. ∂/∂ t +ei ·5 along ei, and L is a matrix that contains all the linear collision operators `i.174

Applying D/Dt to both sides of Eq. (4), one obtains:175

D2f

Dt2 =
1
∆t

L

(
Dfne

Dt

)
− ∆t

2
D3f

Dt3 +O(∆t2). (5)176

Substituting f = f eq +fne and Eq. (5) into Eq. (4), the non-equilibrium part can be expressed177

as follows178

fne = ∆tL −
(

Df eq

Dt

)
+∆t

(
L −1 +

1
2

Id
)(

Dfne

Dt

)
+O(∆t2) (6)179

where Id is the identity matrix. Applying D/Dt to both sides of this equation, it comes:180

Dfne

Dt
= ∆tL −

(
D2f eq

D2t

)
+∆t

(
L −1 +

1
2

Id
)(

D2fne

D2t

)
+O(∆t2) (7)181

Now substituting Eq. (7) into Eq. (6), one obtains:182

fne = ∆tL −1
(

Df eq

Dt

)
+O(∆t2) (8)183

This relation shows that fne contains time-dependent informations. Based on Eq. (8), f can be184

expressed as a function of f eq :185

f = f eq +fne = f eq +∆tL −1
(

Df eq

Dt

)
+O(∆t2) (9)186

where f eq is explicitly determined by ρ and u through Eq. (2). According to Eq. (8), amplitude187

of the non-equilibrium distribution functions fne scales as O(∆t Df eq

Dt ), which is consistent with the188

widely used Chapman-Enskog analysis35. Noticeably, external body force is not included from Eq.189

(1) to (9) because its effect on mass leakage can be directly expressed by the change of f eq due190

to the induced change of ρu. This is reasonable considering that the LB simulations have been191

verified to be insensitive to the adopted external force models39.192

At boundary nodes, reconstruction of f using Eq. (9) represents a second-order accurate193

boundary treatment. The mass leakage analysis presented hereafter is related to second-order194

accurate boundary treatments based on this equation in 2D.195
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III. DEFINITIONS OF MASS LEAKAGE196

The mass leakage at boundaries in LB simulations is defined in this subsection. For the sake197

of convenience, a discrete velocity together with the associated distribution function is referred to198

as a LB link hereafter, and a fluid lattice node with wall-cut LB links is referred to as a boundary199

node (e.g. node B1 shown in Fig. 1(a)).200

Following the widely applied conception40–45, the mass leakage is defined as the difference201

between the sum of the distribution functions streaming out from the fluid domain ( e.g. f1 and f3202

in Fig. 1(a)) and that of those streaming into the fluid domain (e.g. f2 and f4 Fig. 1(a)). In addition,203

the normal mass flux due to the movement of the boundary should be deducted. Consequently, the204

local mass leakage per time unit per area unit can be defined as205

E(x) =
∆xD

∆S∆t ∑
x+ei∆t∈S

[ fi (x)− fī (x+ei∆t)]+ρwU ·n (10)206

where x is the coordinate vector of a boundary node, D is the number of spatial dimensions207

(D = 2 here), S is the solid side of the boundary, fi and fī corresponds to discrete velocities in208

opposite directions, i.e. ei and −ei, respectively, ρw and U are the fluid density and velocity at209

the projection of x onto the boundary, n is the unit normal vector (pointing to the fluid side) at210

the projection point, ∆x is the local grid spacing, and ∆S is the projection area of a lattice on the211

boundary. Clearly, the mass leakage E defined in Eq. (10) is a density flux. Actually, it can be212

considered as an approximation to the conventional density flux loss (−ρu+ρwU) ·n:213

E(x) =
∆xD

∆S∆t ∑
x+ei∆t∈S

[ fi (x)− fī (x+ei∆t)]+ρwU ·n

≈− ∆xD

∆S∆t ∑
i

fiSign(ei ·n)+ρwU ·n

≈−∑
i

fiei ·n+ρwU ·n= (−ρu+ρwU) ·n

(11)214

It should be noticed that Eq. (11) is an effective but not the unique measurement of the potential215

mass leakage, for example, at a steady flow state the density at t −∆t could be directly used to216

determine the mass leakage as ρ(t −∆t)−∑i fi(t). By implicitly included this measurement as217

a correction source term within a two-relaxation-time LB framework, Ginzburg46 proposed a LB218

scheme successfully reproducing the Poiseuille flow without mass leakage. Apparently, the steady219

state intended measurement is not suitable for general LB simulations as concerned in this paper.220
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FIG. 1. Sketches of the streaming process at boundary nodes considering a D2Q9 lattice: (a) boundary

nodes with LB links irregularly cut by a general smooth boundary and (b) boundary nodes with LB links

regularly cut by an aligned planar boundary. Nodes in the solid area, e.g. G1, are not necessary.

Based on the local mass leakage at individual boundary nodes defined in Eq. (10), the averaged221

mass leakage over a smooth boundary can be now expressed as:222

Ē =
(
∑E∆S

)/
∑∆S (12)223

where the summation is conducted over all the involved boundary nodes.224

IV. LOCAL MASS LEAKAGE AT INDIVIDUAL BOUNDARY NODES225

Based on the fundamentals of the LB method presented in §II, the local mass leakage at indi-226

vidual boundary nodes defined by Eq. (10) is now theoretically expressed in terms of macroscopic227

variables in this section. Firstly, mass leakage at boundary nodes with LB links regularly cut by228

aligned planar boundaries (referred to as “regular boundary nodes", see Fig. 1(b)) is analysed in229

§IV A. Based on that, mass leakage at boundary nodes with LB links irregularly cut by general230

smooth boundaries (referred to as “irregular boundary nodes", see Fig. 2(a)-(c)) is considered in231

§IV A.232

A. Regular boundary nodes233

Due to the symmetry of wall-cut LB links at a regular boundary node, the zero and first order234

moments of the links can be directly expressed by macroscopic variables. Hence, regular boundary235
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nodes are an ideal starting point to express the mass leakage by macroscopic variables.236

By applying the symmetry of the wall-cut LB links at regular boundary nodes, the mass leakage237

can be expressed as (see Appendix A for details):238

E(x)≈−ρum +
∆x
6

c∂mρ +
∆x
3

∂m(ρum)+
∆x
6

∇ · (ρu)

+
∆x
4c

[∂m(ρu2
m)+∇ · (ρumu)]+ρwU ·n

(13)239

where the sub-index m indicates components along the symmetry axis of the wall-cut LB links240

(referred to as “main direction" with a unit vector nm pointing to the fluid domain). It is worth241

noticing that ρum is the major part of the momentum recovered by the wall-cut LB links, and242

expression (13) is accurate without requiring nm = n and will be used for irregular boundary243

nodes in the next subsection.244

Considering that nm = n is satisfied for aligned boundaries, Eq. (13) can be further simplified245

as:246

E(x) =
(

∆x
3
−∆w

)
∂n(ρun)+

∆x
6

c∂nρ +
∆x
6

∇ · (ρu)+ ∆x
4c

[∂n(ρu2
n)+∇ · (ρunu)] (14)247

where ∆w is the wall distance (∆w < ∆x), and ∂n and un are the normal gradient and velocity248

components, respectively.249

The last relation (14) clearly shows that the mass leakage along aligned boundaries mainly250

arises from the normal gradient of density ρ , normal momentum ρun, and the corresponding251

kinetic energy ρu2
n, as well as the divergence of the momentum ∇ · (ρu) (compressibility effect)252

and the normal momentum flux ∇ · (ρunu). Moreover, amplitude of the mass leakage is in the253

order of O(∆x). As a consequence, in the case of weakly compressible flows with fixed non-slip254

boundaries, all the terms in Eq. (14) are all supposed to be negligibly small, as is the resultant255

local mass leakage. It should be noticed that this conclusion does not conflict with the reported256

mass leakage along aligned boundaries11,29 because they adopted an external force at boundary257

nodes, thus yielding a significant ∂n(ρun) in Eq. (14).258

B. Irregular boundary nodes259

The mass leakage at irregular boundary nodes is now addressed. The analysis is conducted by260

approximating irregular boundary nodes as regular ones, and then estimating the mass leakage by261
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applying the analysis proposed for regular nodes in §IV A.262
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FIG. 2. Irregular boundary nodes at a smooth boundary. The symbols are the same with those in Fig. 1(a).

Lattice cells with boundary going through two perpendicular edges, e.g. B in (b) and C (c), are referred to as

“irregular cells". Three typical cases are illustrated: boundary node irregularly cut with the cut-links similar

to those cut by aligned boundaries in Fig. 1(b), without irregular cells involved (a); part of the boundary

nodes are involved with irregular cells (b); and all boundary nodes are involved with irregular cells when a

straight boundary is inclined at 45◦ (c),

Firstly, some basic characteristics of irregular boundary nodes are emphasised. As shown in263

Fig. 2(a)-(c), irregular boundary nodes are distinguished by an angle deviation θ (0◦ ≤ θ ≤ 45◦)264

between n and the coordinate axes. Noticeably, when the boundary goes through two perpendic-265

ular edges of a lattice cell (referred to as “irregular cell", e.g. the one containing B and C shown266

in Fig. 2(b)-(c)), the cut links change rapidly by every node. For a well resolved smooth boundary267

wall (without sharp corners) in 2D, irregular cells always occur in pairs (e.g. B and C), with three268

irregular boundary nodes (e.g. B1, B2 and B3) involved.269

For irregular boundary nodes not associated with irregular cells ( e.g. B1 shown in Fig. 2(a)),270

they can be directly approximated as regular boundary nodes because the cut links are exactly the271

same as those cut by aligned boundaries (see B1 shown in Fig. 1(b) and Fig. 2(a)). The main272

difference is that the main direction nm of the approximated regular boundary node is different273

from the local normal vector n. By applying Eq. (13), the mass leakage can be estimated as (see274

Appendix B):275

E(x) =±ρut tanθ +O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
(15)276
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where ut is the tangential velocity component.277

For irregular boundary nodes associated with irregular cell pairs, they can be approximated as278

regular boundary nodes through two kinds of operations. Firstly, the links between neighbouring279

boundary nodes could be treated as virtual cut links without causing extra net mass leakage. For280

example, as shown in Fig. 2(a), by considering the virtually cut links e5 and e6 between B2 and281

B3, the node B3 can be treated as an approximated regular boundary node with a horizontal main282

direction. Secondly, wall-cut LB links at one boundary node can be shifted to its neighbouring283

boundary nodes to complete the remained approximation to regular boundary nodes. For example,284

as shown in Fig. 2(a), by shifting the cut links e3 and e4 at B1 to B2, the total cut links, including285

the virtual e5 and e6, exactly approximate B2 as two regular boundary nodes with different main286

directions (one is horizontal and the other is vertical). Mass leakage at the approximated regular287

node pairs, e.g. those at B2 as analysed, can be estimated by Eq. (13) as (see Appendix B):288

E(x) =ρut tan(±θ ∓45◦)+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
(16)289

Clearly, relations (15) and (16) shows that the mass leakage at both kinds of irregular boundary290

nodes are dominated by terms proportional to ρut . Recalling Eq. (13), it can be concluded that the291

dominating terms in Eqs. (15) and (16) are due to ρum 6= ρwU ·n when n 6=nm, indicating that the292

mass leakage is mainly caused by the intrinsic deficiency of the wall-cut LB links in recovering the293

momenta. Meanwhile, these terms depends on the boundary orientation significantly. Particularly,294

for θ → 0, only the first kind of irregular boundary nodes emerges, and the dominating term295

ρut tanθ → 0; For θ → 45◦, only the second kind of irregular boundary nodes emerges, and the296

dominating term ρut tan(±θ ∓45◦)→ 0.297

To this point it should be pointed out that, from Eq. (13) to (16), the potential significant298

mass leakage ∝ ρut is inevitable for general non-aligned boundaries because it originates from299

the intrinsic deficiency of the incomplete distribution functions at boundary nodes in restoring the300

momentum vector properly. In addition, the dependence of mass leakage on different boundary301

treatments is supposed to be included in the potentially different coefficients before the qualitative302

terms (e.g. O(∆xc‖∇ρ‖)), and this can be expected to holds for the corresponding averaged mass303

leakage discussed in the followed §V.304
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V. AVERAGED MASS LEAKAGE OVER SMOOTH BOUNDARIES305

A. Estimates of the averaged mass leakage306

Based on the estimates for local mass leakage at individual boundary nodes derived in §IV, the307

averaged mass leakage over smooth boundaries is analysed in this section.308

Firstly, for aligned boundaries, regular boundary nodes are uniformly distributed, and the av-309

eraged mass leakage is exactly the same as the local value at an individual node given by Eq.310

(14).311

Secondly, for 45◦ inclined boundaries, all the boundary nodes are associated with irregular312

cells, and the mass leakage can be estimated by Eq. (16) taking θ = 45◦, i.e.313

Ē = O(∆xc‖∇ρ‖)+O(∆x‖∇(ρun)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
(17)314

Finally, for general smooth boundaries, the boundary nodes can be decomposed into a series of315

serrated cells (see Fig. 3(a)-(d)), and the overall averaged mass leakage can be estimated from that316

of the serrated cells. Specifically, a general serrated cell can be deemed as a linear supperposition317

of four basic types, and so is the averaged mass leakage.318

Figures 3(a)-(d) display the four basic kinds of serrated cells, i.e. an ideal serrated cell with the319

two sawtooth tip nodes exactly on a planar boundary (see Fig. 3(a)), an ideal serrated cell shifted320

from the planar solid boundary by a distance ∆s (see Fig. 3(b)), an ideal serrated cell rotated from321

the planar boundary by an angle of ∆θ (see Fig. 3(c)), and an ideal serrated cell with the sawtooth322

tip nodes on a boundary with a curvature radius Rc (see Fig. 3(d)).323

By combining the local mass leakage (Eqs. (15) and (16)), the definition of averaged mass324

leakage (Eq. (12)) and the geometry relationships shown in Fig. 3(a)-(d), the averaged mass325

leakage of an ideal serrated cell, and those caused by ∆s, ∆θ and Rc are estimated as (see Appendix326

C for details):327


Esc =O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O

[
∆x
‖∇(ρuu)‖

cs

]
E∆s =∆s∂n(ρun), E∆θ = ρut tan∆θ = O(ρut

∆x
L
), ERc = O

(
ρ‖u‖∆x

Rc

) (18)328

It should be noted that E∆s, E∆θ and ERc are not just for a local serrated cell, but have taken329

the whole smooth boundary into consideration (see Appendix C). Consequently, the resultant330

averaged mass leakage for smooth boundaries can be estimated as the sum of Eq. (18):331
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FIG. 3. Sketches of serrated cells including boundary nodes between two successive “sawtooth tips" (e.g. A

and C ). Four basic types are shown: an ideal serrated cell with the two sawtooth tips (A and C) on a planar

boundary (a), an ideal serrated cell shifted from a planar boundary by ∆s (b), an ideal serrated cell deviating

from a planar boundary by an angle of ∆θ (c), and an ideal serrated cell with the sawtooth tips on a curved

boundary. AC is a real (solid) or virtual (dashed) planar boundary. θ is the minimal angle between AC and

the coordinate axes. ut and un are the tangential and normal velocity components, respectively. In (d), Rc is

the local boundary curvature, ϕ is angle corresponding to the arc
_
AC, and ∆ϕ is angle between AC and the

local tangential direction.

Ē = O(ρut
∆x
L
)+O

(
ρ‖u‖∆x

Rc

)
+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O

[
∆x
‖∇(ρuu)‖

cs

]
(19)332

As shown by this relation, the averaged mass leakage mainly originates in several sources,333

including the tangential momentum ρut , the boundary curvature and the momentum ρu/Rc and334

the gradients of density ρ , momentum ρu and momentum flux tensor ρuu. Moreover, all the335

terms are proportional to the grid spacing O(∆x), indicating that the averaged mass leakage can336

be reduced by refining grids. In addition, it should be noticed that all the terms appearing in Eq.337

(19) are significantly dependent on the boundary orientation. For example, the first term caused338

by ∆θ is zero when the boundary is inclined at θ = arctan 1
N with N = 1,2,3 · · · , e.g. θ = 45◦339
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corresponding to N = 1.340

Physically, moving boundaries induce significant velocities at boundary nodes, and high341

Reynolds numbers are associated with strong gradients near the boundaries. According to Eq.342

(19), these two situations are expected to induce significant averaged mass leakage, which is343

consistent with the previous observations reported in25.344

B. Examples on two academic cases: Poiseuille and Taylor-Couette flows345

The above expressions for mass leakage can be used to analyse the behaviour of mass leakage346

in simple flow configurations, for which analytical solutions are available. Hereafter, averaged347

mass leakage along boundaries for steady laminar Poiseuille flow and Taylor-Couette flow are348

estimated thanks to Eq. (19).349

For Poiseuille flow, considering ∇ρ = 0, un = 0, ∂tut = 0 and ∇ · (ρu)≈ 0, the averaged mass350

leakage along the straight walls can be expressed as:351

Ē =O(ρut
∆x
L
)+O(∆xρ∂nut)+O

(
∆x

ρut∂nut

cs

)
(20)352

For the steady laminar weakly compressible Taylor-Couette flow with a static outer cylinder353

(pressure gradient offseted by external body force), one has ∇ρ = 0, un = 0 and ∇ · (ρu)≈ 0, and354

the averaged mass leakage along the curved inner wall can be expressed as:355

Ē = O(∆xρΩ)+O
(

∆x
ρr1Ω2

cs

)
(21)356

where the reference length L in Eq. (19) is represented by the inner radius r1, and Ω is the357

angular velocity of the inner cylinder.358

VI. A FIRST-ORDER ACCURATE MASS CORRECTION SCHEMES359

Corresponding to the local and averaged mass leakage estimates, there are two mass correction360

schemes, i.e. the local mass correction (LMC) scheme and the averaged mass correction (AMC)361

scheme.362

With the LMC, the local mass leakage is used to satisfy mass conservation by applying a cor-363

rection as:364
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∆ρ(x) =
∆t∆S
∆xD E(x) = ∑

x+ei∆t∈S
[ fi (x)− fī (x+ei∆t)]+

∆t∆S
∆xD ρwU ·n (22)365

where E is defined in Eq. (10). For static or tangentially moving boundaries (i.e. U ·n), this366

scheme complies with the way of mass conservation of the well-known bounce-back method, has367

been used by Sanjeevi et al.25, and is similar to most of the reported mass correction schemes27–29.368

According to the analysis in §IV, the local mass leakage could be proportional to the tangential369

velocity amplitude, and thus the LMC scheme adds a zero-order perturbation to the solution of370

density.371

In contrast, the averaged mass leakage is promising to facilitate a first-order accurate correction372

scheme because it has an amplitude in the order of O(∆x). With the AMC, the mass correction can373

formulated as:374

∆ρ(x) =
∆t∆S
∆xD Ē =

∑Ω ∑x+ei∆t∈S [ fi (x)− fī (x+ei∆t)]

∑Ω ∆S
+

∆t∆S
∑Ω ∆S ∑

Ω

(ρwU ·n∆S) (23)375

where Ē is defined in Eq. (12), and Ω represents a concerned boundary. It should be noticed376

that ∆ρ(x) is implied locally, but the AMC only provide a global mass conservation, which is377

consistent with local mass flux correction proposed by Ginzburg17. The two schemes will be378

compared in the followed §VII.379

VII. NUMERICAL VALIDATION ON THE CHANNEL AND TAYLOR-COUETTE380

FLOWS381

A preliminary validation of the proposed scaling laws for the mass leakage error is achieved382

by performing 2D simulations of two academic flows with straight and curved boundaries, e.g.383

the Poiseuille flow and the Taylor-Couette flow, respectively. Meanwhile, the influence of mass384

leakage on the numerical solutions as well as the effectiveness of the LMC and AMC schemes are385

investigated. Without loss of generality, the multiple-relaxation-times (MRT) LB method together386

with a second-order accurate immersed boundary method will be used for the validation.387

An in-house C/C++ solver22 applying the LB method based on multi-block Cartesian grids is388

used to perform the simulations until otherwise specified. In this solver, the multiple-relaxation-389

times (MRT)47 method together with the D2Q9 lattice is used for two-dimensional simulations.390

The no-slip boundary condition is implemented by an interpolation-based scheme similar to the391
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one discussed in Ref.13,38. In this approach, as shown in Fig. 4, the macroscopic variables (ρ and392

u) at a boundary node are reconstructed from quadratic interpolation using a stencil including the393

six nearest fluid domain nodes (the projection point on the boundary is also used for u). Then, the394

equilibrium parts of the distribution functions are calculated based on the obtained macroscopic395

variables, while the non-equilibrium parts are the averaged values of those at the neighbouring396

fluid domain nodes. All the considered simulations are converged to steady states.397

FIG. 4. Sketch of the interpolation based IB method. For interpolation of velocity, the projection point is

also used.398

399

A. The Poiseuille flow through straight channels with variously inclined and translating400

boundaries401

To validate our analysis of mass leakage at planar wall boundaries (§IV A-IV B), the laminar402

steady Poiseuille flow through straight channels inclined at different angles are simulated. Both403

walls of the channel are set to move in translation to emphasised the role of the tangential velocity404

(ut) on the mass leakage. As shown in Fig. 5, h is the half height of the channel, L is the channel405

length (L/h = 80), and a prescribed parabolic velocity profile is imposed at inlet on the left bound-406

ary. A reference velocity (Ure f ) is chosen to satisfy a low Reynolds number Re = Ure f h/ν = 25407

and Mach number Ma = Ure f /cs = 0.0866. The flow is driven by an external body force. A408

minimum grid spacing ∆x/h = 0.025 is applied unless otherwise specified.409

The averaged mass leakage for the Poiseuille flow is estimated by Eq. (20). Since the serrated410

cell at the lower and upper walls (denoted by indices l and u, respectively) are rotational symmet-411
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rical by 180◦, the tangential velocity ut in Eq. (20) is in opposite signs to estimate their averaged412

mass leakage. Therefore, Ēl− Ēu is supposed to be contributed by the linear terms O(ρut
∆x
L ) and413

O(∆xρ∂nut), and the net mass leakage Ēl + Ēu is supposed to be contributed by the non-linear term414

O(∆xρut∂nut/cs) as well as the coupling between the linear terms and the asymmetrical geometry415

uncertainties (e.g. ∆s in Eq. (18) could be different for the two walls).416

2h

L

θ Horizontal

u

x

y

U b

FIG. 5. Sketch of the Poiseuille flow through a straight channel inclined at θ . Ub is the translating velocity

of both walls.

1. Effect of geometry orientation417

To investigate the mass leakage dependence on geometry orientation, the Poiseuille flow with418

tangentially moving walls inclined from θ = 0◦ to 45◦ by an increment of 5◦ is simulated. A finite419

boundary velocity Ub = 0.5Ure f is enforced to provide significant velocity at the boundary nodes.420

To illustrate and validate the numerical solution, grid distribution at θ = 30◦ and streamwise421

velocity profiles (at x/L = 0.5) at different θ are shown in Fig. 6(a) and (b), respectively. It422

can be observed the multi-block grid refinement has no spurious effect on the solution, making it423

possible to measure boundary-condition-based errors in a clean way. The velocity profiles shown424

in Fig. 6(b) with θ = 0◦, 20◦ and 45◦ correspond to an aligned boundary (§IV A), a general425

irregularly-oriented boundary and a 45◦ inclined boundary (§IV B), respectively. It is seen that426

the solved velocity profiles exhibit good agreement with the theoretical results, indicating that the427

flow is well reproduced by the solver. All the Poiseuille flow in the rest of this paper are accurately428

simulated similarly unless further specified.429

Fig. 7(a) displays the local mass leakage amplitude |E|max at each wall as a function of the430

inclined angle θ . As can be observed, |E|max at the two walls varies significantly with θ in a431
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FIG. 6. Grid distribution at θ = 30◦ (a) and streamwise velocity profile at different θ (b).

similar manner. Specifically, |E|max approaches zero at θ = 0◦ and 45◦, and hold a significant432

amplitude around 0.2ρUre f with a decreasing trend over 5◦ ≤ θ ≤ 20◦ and an increasing trend433

over 30◦ ≤ θ ≤ 40◦. These observations can be well explained by the theoretical analysis of local434

mass leakage in §IV B, i.e. the dominating terms is zero at 0◦ (ρut tanθ = 0 in Eq. (15)) and 45◦435

(ρut tan(45◦− θ) = 0 in Eq. (16)), and otherwise |E|max is dominated by a U-shaped function436

determined by max[ρut tanθ , ρut tan(45◦−θ)].437

Fig. 7(b) shows the averaged mass leakage Ē as a function of θ . The linear part |Ēl − Ēu|438

approaches zero at θ = 0◦ and 45◦, and displays significant oscillations over 0◦ < θ < 45◦. This439

indicates that |Ēl − Ēu| is dominated by the term O(ρut
∆x
L ) which is zero at tanθ = 1/N, e.g.440

0◦, 26.6◦ and 45◦ (see §V). In contrast, the net mass leakage Ēl + Ēu generally increases with441

θ , indicating that the term O(∆xρut∂nut) has a positive reliance on θ . The observable average442

mass leakage is consistent with the analysis in Ref.46 that the non-linear terms in the equilibrium443

definition of distribution functions cause unavoidable mass leakage.444

2. Effect of tangential velocity445

To emphasise the effect of tangential velocity on the mass leakage, simulations with the walls446

translating at a finite tangential velocity Ub varying from 0 to 0.5Ure f are performed in this sub-447

section. The normal gradient of tangential velocity ∂nut is set to be constant so that ut is the sole448

changing variable in Eq. (20). In addition, to clarify effect of the angle bias ∆θ , i.e. the term449

O(ρut
∆x
L ) in Eq. (20), configurations at θ = arctan 1

2 (≈ 26.6◦, ∆θ = 0) and θ = 30◦ (∆θ 6= 0) are450

simulated and compared.451
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FIG. 7. Mass leakage as a function of the inclined angle θ . The sub-indices l and u indicate the lower and

upper walls, respectively. In (a), |E|max is the local mass leakage amplitude. In (b), Ēl − Ēu and Ēl + Ēu

correspond to the averaged mass leakage due to the linear terms in Eq. (20) and the net averaged mass

leakage, respectively.

Fig. 8(a) and (b) display the mass leakage as functions of Ub for θ = arctan 1
2 and 30◦, respec-452

tively. As can be observed, for both values of θ , the local amplitude |E|max at both walls is almost453

proportional to the boundary velocity Ub, which can be related to the dominating terms ∝ ρut454

in Eqs. (15) and (16). Meanwhile, the net mass leakage Ēl + Ēu in both figures exhibits similar455

linear dependence versus Ub, which can be explained by the nonlinear term O(∆xρut∂nut) in Eq.456

(20). The main difference between the two figures is that Ēl− Ēu remains almost unchanged about457

3×10−5ρUre f for θ = arctan 1
2 (Fig. 8(a)), while that shows a significant linear dependence on Ub458

for θ = 30◦ (Fig. 8(a)). This clearly confirms the effect of ∆θ is definitely well estimated by the459

term O(ρut
∆x
L ).460

3. Effect of velocity gradient461

To measure the effect of velocity gradient on the mass leakage, simulations with the maximum462

relative incoming velocity umax−Ub varying from 0 to Ure f are now performed. Without loss of463

generality, the solid walls are set to move tangentially at Ub/Ure f = 0.5 so that ∂nut is the sole464

changing variable in Eq. (20). θ = arctan 1
2 is chosen to vanish the term O(ρut∆x) in Eq. (20),465

and thus to avoid the uncertainty induced by ∆θ .466

Figure 9(a) and (b) display the computed streamwise velocity profiles and the mass leakage over467

0≤ (umax−Ub)/Ure f ≤ 1, respectively. As shown in Fig. 9(a), profiles of the relative streamwise468
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velocity (u−Ub) is well reproduced as expected. For the mass leakage shown in Fig. 9(b), the local469

amplitude |E|max at both walls exhibits linear dependence on ∂nut with a small amplitude variation470

(2%). This is consistent with that ∂nut only emerges linearly in minor terms in Eqs. (15) and (16).471

Comparatively, the linear averaged mass leakage Ēl − Ēu is almost proportional to ∂nut , which472

could be attributed to the linear term O(∆xρ∂nut) in Eq. (20). Differently, the net mass leakage473

Ēl + Ēu is well described by a parabolic curve, which can be explained by the considerable increase474

of ut due to ∂nut in the nonlinear term O(∆xρut∂nut). By taking this increment into consideration,475

the nonlinear term is changed to O[∆xρ(ut +∆w∂nut)∂nut ], including eventually a quadratic term476

for significant ∂nut (the relative increase of ut at (umax−Ub)/Ure f = 1 reaches a considerable477

amplitude of about 10%Ub in Fig. 9(a)).478

4. Effect of grid spacing ∆x479

To examine effect of ∆x on the mass leakage, simulations using four different grid spacings480

near the solid walls, i.e. ∆x/h = 0.025,0.0125, 0.00625 and 0.0003125, are performed. Without481

loss of generality, Ub is taken equal to 0.5Ure f , and the channel is inclined at θ = 30◦ to include482

all the terms in Eq. (20).483

Figure 10 displays the mass leakage as functions of ∆x. The local amplitude of the mass484

leakage |E|max at both walls is slightly affected (1%) in a linear way, which can be attributed to the485

∆x∂nut-related terms in Eqs. (15) and (16). Meanwhile, the averaged mass leakage at both walls486

exhibits a general linear growth versus ∆x with some observable deviations. This can be deemed487
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as reasonable validation of Ē ∝ ∆x (Eq. (20)) considering that refining the grid could generate488

substantial uncertainties to the boundary node distribution, e.g. ∆s and ∆θ in Eq. (18).489

5. Effect of mass leakage on wall-modelled turbulent flow through straight channel490

As demonstrated above (§VII A 1-VII A 4), mass leakage in the laminar Poiseuille flow simula-491

tions is well predicted by the proposed theory, but the amplitude is too low (0.01%) to significantly492

impact the solution. Thus, to emphasise the effect of mass leakage, a wall-modelled RANS simu-493

lation of turbulent flow at Re = 5×104(Retau ≈ 2000) is performed. At steady state, this solution494
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is similar with the Poiseuille flow in terms of mass leakage estimate, i.e. still described by Eqs.495

(15), (16) and (20). Moreover, the velocity and its gradients at the boundary nodes are supposed to496

be large enough to involve a significant mass leakage. Finally, the use of wall function increases497

the sensitivity of the solution to the boundary treatment. Without loss of generality, the channel is498

inclined at θ = 30◦ with L/h = 200, and a uniform grid spacing ∆x/h = 0.05 is used. Instead of a499

parabolic velocity profile at the inlet, a uniform inlet velocity is imposed.500

The simulation is conducted using the ProLB software38 in 2D by extending one layer of grid501

along the third axis with periodic setup. In ProLB, the D3Q19 LB model is solved for the fluid502

dynamics by applying the hybrid recursively regularised strategy38. The one-equation Spalart-503

Allmaras turbulence model is used to model the turbulence in the fluid domain, and the power-law504

wall function48 is adopted to model the near-wall turbulence effect. Meanwhile, an interpolation-505

based second-order accurate immersed boundary treatment is applied to implement the non-slip506

boundary condition. Similar to the boundary treatment used for the above laminar simulations, the507

macroscopic variables are interpolated from the Lagrangian boundary points and the neighbouring508

fluid domain nodes. Differently, the non-equilibrium distribution functions are reconstructed from509

the macroscopic gradient information48.510

Fig. 11(a) and (b) display the local mass leakage and sectional mass flux variation, respectively.511

As can be observed, without mass correction, the local mass leakage varies significantly with512

an amplitude about two orders higher than the averaged values. This observation can be well513

explained by the proposed theory ( Eqs. (15), (16) and (19) ). Meanwhile, the sectional mass flux514

shown Fig. 11(b) exhibits a loss up to 1.3%, and the AMC scheme apparently outperforms the515

LMC scheme in controlling the mass flux loss.516517

Fig. 12(a)-(b) display the friction coefficient and sectional velocity profile, respectively. As518

can be observed, without mass correction, the mass leakage causes significant error to the solution,519

e.g. the flow symmetry is ruined and both the friction and streamwise velocity significantly deviate520

from the reference data. Notably, these problems are well cured by the AMC scheme, while the521

LMC scheme leads to worse result.522523

B. Taylor-Couette flow524

In order to validate the proposed theoretical analysis of mass leakage on curved boundaries, the525

steady laminar Taylor-Couette flow is considered. The boundary set up is shown in Fig. 13(a). The526
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FIG. 11. Local mass leakage (a) and sectional mass flux (b). “NMC" is short for “no mass correction".
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FIG. 12. Friction coefficient (a) and sectional velocity profiles (b). The DNS data reported by Hoyas49 is

used as reference data.

inner and outer cylinders’ radii are denoted as r1 and r2, respectively. The inner cylinder rotates527

clockwise at an angular velocity Ω. The half channel height, i.e. h = (r2− r1)/2, is used as the528

reference length. A reference value of angular velocity Ωre f is defined as Re = Ωre f h/ν = 50.529

Accordingly, a reference velocity is defined as Ure f = Ωre f h. A volumic forcing term equal to530

ρu2
t /r (with r being the local radial distance) is used to ensure negligible density gradients. The531

minimum grid spacing is fixed at ∆x/h = 0.02 unless otherwise specified. The generated multi-532

block grid is shown in Fig. 13(b).533

The averaged mass leakage is assumed to be described by Eq. (21). Due to the symmetry of the534

geometry setup, the serrated cells are symmetrically distributed around every line inclined at 0◦ or535

45◦. Therefore, the linear averaged mass leakage (denoted as ĒL, corresponding to O(∆xρΩ) in536
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Eq. (21)) is evaluated as the difference between two adjacent 45◦ arcs. In contrast, the net mass537

leakage of a 90◦ arc is denoted as ĒNL, corresponding to O(∆xρr1Ω2) in (21).538

r
1

r
2

Fluid

Solid

(a) Geometry sketch (b) Grid distribution

FIG. 13. Sketch of Taylor-Couette flow through a circular channel (a) and the adopted grid distribution (b).

1. Effect of boundary curvature539

To validate effect of boundary curvature on the mass leakage, simulations with r1 ranging from540

h to 6h are performed in this subsection. The angular velocity is set as Ω = Ωre f .541

Figure 14(a), (b) and (c) display the computed velocity profiles, the local and averaged mass542

leakage, respectively. As shown in Fig. 9(a), profiles of the relative velocity (u−Ωr1) agree well543

with the analytical solutions. All the Taylor-Couette flow in the rest of this paper is accurately544

reproduced similarly without showing. For the mass leakage shown in Fig. 14(b)-(c), the local545

amplitude |E|max is almost proportional to r1. Considering r1 is proportional to the tangential ve-546

locity ut = Ωr1 and Ω is fixed, this observation can be explained by the leading terms (∝ ρut) in547

Eqs. (15) and (16). Meanwhile, the linear averaged mass leakage ĒL exhibits significant oscilla-548

tions without an obvious increasing or decreasing trend. The oscillations can be attributed to the549

substantial uncertainties associated with the boundary node distribution caused by the change of550

geometry configuration. The unclear trend is consistent with the term O(ρ∆xΩ) (see Eq. (21))551

which is independent of r1. In contrast, the net averaged mass leakage ĒNL shown in Fig. 14(c) is552
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FIG. 14. Velocity profiles (a), local mass leakage (b) and averaged mass leakage (c) for 1≤ r1/h≤ 6.

almost proportional to r1/h, which can be well explained by the term O(∆xr1Ω2/cs) in Eq. (21).553

2. Effect of angular velocity554

To quantify effect of the angular velocity on the mass leakage, simulations with Ω ranging from555

0.125Ωre f to Ωre f are performed with r1 = 2h.556

Figure 15(a) and (b) display the local and averaged mass leakage over 0.125 ≤ Ω/Ωre f ≤ 1,557

respectively. As can be observed, the local amplitude |E|max (Fig. 15(a)) and the linear averaged558

mass leakage ĒL (Fig. 15(b)) are almost proportional to Ω. The former can be well explained559

by the leading error terms (∝ ρut) in Eqs. (15) and (16), and the later is consistent with the term560

O(∆xρΩ) in Eq. (21). In contrast, the net averaged mass leakage ĒNL shown in Fig. 15(b) is561

almost proportional to Ω2, which is consistent with the term O
(
∆xρr1Ω2) in Eq. (21).562
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FIG. 15. Local (a) and averaged mass leakage (b) for 0.125≤Ω/Ωre f ≤ 1.

3. Effect of grid spacing ∆x563

In order to measure the effect of grid spacing ∆x on the mass leakage, simulations are performed564

considering five different values of ∆x at the wall, i.e. ∆x/h = 0.04,0.02,0.01,0.005 and 0.0025.565

r1 and Ω are set equal to h and Ωre f , respectively.566

Figure 16(a) and (b) display the local and averaged mass leakage over 0.0025≤ ∆x/h≤ 0.04,567

respectively. As can be observed, the local amplitude |E|max (Fig. 16(a)) is slightly affected within568

2%, which is consistent with Eqs. (15) and (16) where the ∆x-related terms are of relatively minor569

amplitude. In contrast, the net mass leakage ĒNL (Fig. 16(b)) is almost proportional to ∆x, and570

the linear averaged mass leakage ĒL (Fig. 16(b)) exhibits a similar trend with some oscillations.571

Considering the substantial uncertainties associated with boundary node distribution caused by572

the grid refinement, behaviours of both ĒNL and ĒL reasonably validate the theoretical prediction573

Ē ∝ ∆x (Eq. (21)).574

4. Effect of mass leakage on the solution575

To emphasise the effect of mass leakage on the simulation of Taylor-Couette flow, a case with-576

out body force using a uniform coarse grid spacing ∆x/h = 0.1 is conducted. The body force is577

cancelled to clarify the influence on the pressure estimate. Other parameters are set as: r1 = h and578

Ω = Ωre f .579

Fig. 17(a) and (b) display the local mass leakage along the inner cylinder and time history of580

the total mass M, respectively. As shown in Fig. 17(a), the local mass leakage varies significantly581
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with an amplitude comparable to ρUre f , but the negative averaged value has an amplitude about582

three order lower than ρUre f . These observations can be well explained by the proposed theory583

( Eqs. (15), (16) and (21) ). Consistent with the negative average mass leakage in Fig. 17(a),584

without mass correction, the total mass M within the circular channel increases linearly with time,585

to an increment of 17% at Ure f t/h = 600. In contrast, both the local and averaged schemes are586

effective to remove the total mass leakage.587588

Fig. 18(a) displays the pressure coefficient profile at x/h = 0. As can be observed, without589

mass correction, a significant shift of pressure is produced due to the significant mass increment590

shown in Fig. 17(b). In contrast, both the local and averaged correction schemes successfully591

remove the pressure shift. However, the AMC scheme performances much better than the LMC592
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scheme in terms of accuracy and smoothness. The superiority of the averaged scheme is further593

corroborated by the pressure coefficient contours shown in Fig. 18(b) and (c).594

VIII. CONCLUSIONS595

In this paper, mass leakage within the general lattice Boltzmann framework is theoretically596

analysed for boundary treatments of at least second-order accuracy. The local mass leakage, de-597

fined from a mesoscopic viewpoint, is theoretically approximated using macroscopic variables at598

regular (aligned boundaries) and irregular boundary nodes. Based on that, the averaged mass leak-599
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age over smooth boundaries is mathematically estimated from that of a basic serrated structure of600

boundary nodes.601

The present theoretical results show that the mass leakage in LB simulations originates from the602

deficiency of the wall-cut links in recovering momenta at the boundary nodes. Unexpectedly, from603

the macroscopic point of view, the local mass leakage at individual boundary nodes is dominated604

by terms proportional to the tangential momentum (i.e. ρut). In contrast, the averaged mass605

leakage involves several different terms related to the tangential momentum ρut , product of the606

boundary curvature and the momentum ρu/Rc and the gradients of density ρ , momentum ρu and607

momentum flux tensor ρuu. Moreover, the present analysis shows its amplitude is proportional608

to the local grid spacing. Based on that, a mass correction scheme is proposed. Besides, both the609

local and averaged mass leakage significantly depends on the boundary orientation. Particularly,610

the mass leakage at fixed no-slip aligned boundaries is negligibly small.611

The good agreement between the proposed theoretical estimates and numerical results extracted612

from the simulations of the two-dimensional weakly compressible flows through moving straight613

and curved channels provides a preliminary validation of the theory. In addition, the numerical614

results show that LB solutions can be significantly impacted by mass leakage. However, the av-615

eraged mass correction scheme designed from the present theoretical analysis performs well in616

curing the mass leakage problems in the considered cases.617

The theoretical analysis proposed in this paper unveils the basic mechanisms of mass leakage618

in the LB framework. However, its validity is limited to 2D flow academic configurations and its619

validation in more complex situations as well as its extension to 3D still requires future research620

efforts as its validation. In addition, the complex dependance of the evitable local mass leakage621

on local flow characteristics indicates that it might be necessary to includes specific characteristic622

like “steady flow" into the configuration of boundary treatments as preliminarily demonstrated by623

Ginzburg & d’Humières7,46,50.624
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Appendix A: Local mass leakage at regular boundary nodes627

Theoretically, mass leakage defined by Eq. (10) can be decomposed into three parts by splitting628

f into then equilibrium f eq and non-equilibrium fne parts, i.e.629

E(x) =Eeq(x)+Ene(x)+ρwU ·n (A1)630

with631 
Eeq(x) =

∆xD

∆S∆t ∑
x+ei∆t∈S

[
f eq
i (x)− f eq

ī (x+ei∆t)
]

Ene(x) =
∆xD

∆S∆t ∑
x+ei∆t∈S

[
f ne
i (x)− f ne

ī (x+ei∆t)
] (A2)632

It should be noted that f ne
i could contribute to mass leakage during the stream process (involv-633

ing two neighbouring nodes) despite that its zero and first order moments are theoretically zero at634

a given node.635

Applying the definition of f eq
i given by Eq. (2), the equilibrium error part Eeq can be expanded636

as:637

Eeq(x) =
∆xD

∆S∆t ∑
x+ei∆t∈S

[
2ωi

ρei ·u
c2

s
+2∆tωiei∇ ·

ρei ·u
c2

s
−∆tei ·5 f eq

i +O(∆t2)

]
=

∆xD

∆S∆t ∑
x+ei∆t∈S

{
2ωi

ρei ·u
c2

s
+∆tωiei ·5

ρei ·u
c2

s
−∆tωiei ·5ρ +O(∆t2)

}
− ∆xD

∆S ∑
x+ei∆t∈S

[
ωi

ei ·∇(ρei ·u)2

2c4
s

−ωiρ
ei ·∇(ρu ·u)

2c2
s

+O
(∥∥ρMa2

∇u
∥∥)]

(A3)638

Clearly, Eq. (A3) shows that high-order terms O(ρMan) in f eq
i could induce a mass leakage639

that scales as O
(
Man−1ρ ‖∇u‖

)
. Without loss of generality, in the rest of this paper, Ma-related640

high-order terms, e.g. O(Ma3), will be neglected because their effect can be inferred from those of641

O(Ma) and O(Ma2). Hence, by omitting the high-order terms O
(
Ma2ρ ‖∇u‖

)
and O(∆t2), Eq.642

(A3) simplifies as:643

Eeq(x) =
∆xD

∆S∆t ∑
x+ei∆t∈S

[
2ωi

ρei ·u
c2

s
−∆tωiei ·5ρ +∆tωiei ·5

ρei ·u
c2

s

]
− ∆xD

∆S ∑
x+ei∆t∈S

{
ωi

ei ·∇[ρ(ei ·u)2]

2c4
s

−ωi
ei ·∇(ρu ·u)

2c2
s

} (A4)644
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As illustrated in Fig. 1(b), at a boundary node along an aligned boundary, the wall-cut LB links645

is symmetrical around an axis, e.g. the mth axis, with a unit vector nm pointing to the fluid side646

(referred to as “main direction"). Accordingly, all wall-cut links share a non-zero mth velocity647

component ei,k =±c, and the other components ei, j 6=m are symmetrically distributed among−c,0648

and c. Considering the symmetry of wall-cut links and ∆S = ∆xD−1, the linear terms of u on the649

right-hand side of Eq. (A4) can be evaluated as:650



∆xD

∆S∆t ∑
x+ei∆t∈S

(
2ωi

ρei ·u
c2

s

)
=c

Q

∑
i=1

(
ωi
−cρum

c2
s

)
=−ρum

∆xD

∆S∆t ∑
x+ei∆t∈S

(∆tωiei ·5ρ) =
∆x
2

Q

∑
i=1

(−cωi∂mρ) =−∆x
6

c∂mρ

∆xD

∆S∆t ∑
x+ei∆t∈S

(
∆tωiei ·5

ρei ·u
c2

s

)
=

∆x
2

Q

∑
i=1

[
ωi

e2
i,m∂m(ρum)

c2
s

]
+∆x ∑

x+ei∆t∈S, j 6=m

[
ωi

e2
i, j∂ j(ρu j)

c2
s

]

=
∆x
2

∂m(ρum)+
∆x
6

∂ j(ρu j) =
∆x
3

∂m(ρum)+
∆x
6

∇ · (ρu)

(A5)651

where ∂m = nm ·∇, um = u ·nm, j denotes the axis perpendicular to the main direction (or the652

mth axis), Q is the number of the discrete velocities (e.g. Q = 9 for the D2Q9 model), and the653

following relations hold:654



e2
i,m = c2, c2

s = c2/3,
Q

∑
i=1

ωi
e2

i, j

c2
s
= 1

ei,m ·nm =−c for x+ei∆t ∈ S

2 ∑
x+ei∆t∈S, j 6=m

(
ωi

e2
i, j

c2
s

)/
Q

∑
i=1

(
ωi

e2
i, j

c2
s

)
=

c2
s

c2

(A6)655

In the last relation of Eq. (A6), compared to the denominator, the nominator does not include656

the discrete velocities perpendicular to the main direction, e.g. the links between B1 and B2 in Fig.657

1(b). The relations in Eq. (A6) are valid for the D2Q5 and D2Q9 models as well as D3Q19 and658

D3Q27 models when the solution is invariant along the third axis. Equation (A5) demonstrates659

that the wall-cut LB links at a regular boundary node are only able to restore velocity and gradient660

components along the main direction, while the other components are completely omitted. Still,661

by applying Eq. (A6), the non-linear terms in Eq. (A4) can simplified as:662
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∆xD

∆S ∑
x+ei∆t∈S

{
ωi

ei ·∇[ρ(ei ·u)2]

2c4
s

−ωi
ei ·∇(ρu ·u)

2c2
s

}

=
∆x
2

Q
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i=1

[
ωi
−ce2

i,m∂m(ρu2
m)

2c4
s

]
+∆x ∑

x+ei∆t∈S, j 6=m

{
ωi

ei,me
2
i, j

2c4
s

[∂m(ρu2
j)+∂ j(ρumu j)]

}

− ∆x
2

Q

∑
i=1

[
ωi
−c∂m(ρu2

m +ρu2
j)

2c2
s

]

=− ∆x
2

c

[
∂m(ρu2

m)

2c2
s

+
c2

s
c2

∂m(ρu2
j)+∂ j(ρumu j)

2c2
s

−
∂m(ρu2

m +ρu2
j)

2c2

]

=− ∆x
2

c
[

∂m(ρu2
m)

3c2
s

+
∂ j(ρumu j)

6c2
s

]
=−∆x

4c
[∂m(ρu2

m)+∇ · (ρumu)]

(A7)663

Consequently, by substituting Eqs. (A5) and (A7) into Eq. (A3), the mass leakage directly664

induced by f eq can be expressed as:665

Eeq(x) =−ρum +
∆x
6

c∂mρ +
∆x
3

∂m(ρum)+
∆x
6

∇ · (ρu)+ ∆x
4c

[∂m(ρu2
m)+∇ · (ρumu)] (A8)666

The mass leakage due to the non-equilibrium distribution function, i.e. Ene in Eq. (A2), is now667

analysed. Still considering regular boundary nodes along aligned boundaries (∆S = ∆xD−1), by668

applying the symmetry of discrete velocities, it can be rewritten as:669

Ene(x) =−
Q

∑
i=1

[ei,m f ne
i (x)]− ∆x

∆t ∑
x+ei∆t∈S

[ f ne
i (x+ei∆t)− f ne

i (x)]

=−∆x ∑
x+ei∆t∈S

[
D f ne

i (x)

Dt
+∆t

D2 f ne
i (x)

Dt2 +O(∆t2)

] (A9)670

Now using Eq. (8), one obtains :671

Ene(x) =− c∆x2
∑

x+ei∆t∈S
L −1

i
D2f eq (x)

Dt2 +O(∆x3) (A10)672

Substituting Eqs. (A8) and (A10) into Eq. (A1) and omitting high order terms, the resultant673

mass leakage is dominated by Eeq, and can therefore be expressed as:674

E(x)≈−ρum +
∆x
6

c∂mρ +
∆x
3

∂m(ρum)+
∆x
6

∇ · (ρu)

+
∆x
4c

[∂m(ρu2
m)+∇ · (ρumu)]+ρwU ·n

(A11)675

34



Appendix B: Local mass leakage at irregular boundary nodes676

As depicted in §IV, irregular boundary nodes can be classified into two kinds regarding whether677

they are associated with irregular cells. Their mass leakage are analysed separately now.678

For irregular boundary nodes not associated with irregular cells ( e.g. B1 shown in Fig. 2(a)),679

they can be directly approximated as regular boundary nodes because the cut links are exactly the680

same as those cut by aligned boundaries (see B1 shown in Fig. 1(b) and Fig. 2(a)). The main681

difference is that the main direction nm of the approximated regular boundary node is different682

from the local normal vector n, i.e.683

nm = cosγn− sinγnt (B1)684

where γ is the angle rotating from n to nm anti-clockwise, and nt is the tangential unit vector.685

By substituting Eq. (B1) into Eq. (A11), the mass leakage can be estimated as:686

E(x,γ) =
∆xD−1

∆S

{
−ρum +

∆xc∂mρ

6
+

∆x∂m(ρum)

3

+
∆x∇ · (ρu)

6
+

∆x
4c

[∂m(ρu2
m)+∇ · (ρumu)]

}
+ρwU ·n

(B2)687

which can be simplified as:688

E(x,γ) = ρut tanγ +
∆xc

6
(∂n− tanγ∂t)ρ +Esh +Eexp +Ediv (B3)689

with690



Esh =−
∆xsinγ

3
[∂t(ρun)+∂n(ρut)]−

∆xsin(2γ)

8c
[2∂n(ρunut)+∂t(ρu2

n)]

+
∆xsin2

γ

4c
[2∂t(ρunut)+∂n(ρu2

t )]

Eexp =

[
cos(2γ)

3cosγ
∆x−∆w

]
∂n(ρun)+

∆xcos2 γ

4c
[∂n(ρu2

n)− tan3
γ∂t(ρu2

t )]

Ediv =∆x
(

sin2
γ

3cosγ
+

1
6cosγ

)
∇ · (ρu)+ ∆xcos2 γ

4c
∇ · [ρ(un− tanγut)u]

(B4)691

where ∆S = ∆D−1xcosγ and ∂m = cosγ∂n− sinγ∂t are applied, un = u ·n, ut = u ·nt , and Esh,692

Eexp and Ediv are the mass leakages associated with fluid shear rate, expansion rate and divergence693

of the involved first- and second-order momentum, respectively. Geometrically, γ is related to the694

angle θ as γ =±θ , and thus −45◦ ≤ γ ≤ 45◦. Substituting γ =±θ into Eq. (A11), it becomes:695
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E(x) =±ρut tanθ +O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
(B5)696

For irregular boundary nodes associated with irregular cell pairs, they can be approximated as697

regular boundary nodes through two kinds of operations. Firstly, the links between neighbouring698

boundary nodes could be treated as virtual cut links without causing extra net mass leakage. For699

example, as shown in Fig. 2(a), by considering the virtually cut links e5 and e6 between B2 and700

B3, the node B3 can be treated as an approximated regular boundary node with a horizontal main701

direction. Secondly, wall-cut LB links at one boundary node can be shifted to its neighbouring702

boundary node to complete the remained approximation to regular boundary node. For example,703

as shown in Fig. 2(a), by shifting the cut links e3 and e4 at B1 to B2, the total cut links, including704

the virtual e5 and e6, exactly approximate B2 as two regular boundary nodes with different main705

directions (one is horizontal and the other is vertical). Mass leakage at the approximated regular706

node pairs, e.g. those at B2 as analysed, can be estimated by Eq. (B3) with γ being ±θ and707

±θ ∓90◦, respectively, i.e.708

E(x) =
E(x,±θ)∆xD−1 cosθ +E(x,±θ ∓90◦)∆xD−1 cos(±θ ∓90◦)

∆xD−1 cosθ +∆xD−1 cos(±θ ∓90◦)

=ρut tan(±θ ∓45◦)+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

] (B6)709

In addition, using shifted links to derive Eq. (B3) requires extra mass leakage correction terms.710

The required correction for shifting f j from x+ei∆t to x can be expressed as:711

Es(x) =
∆xD

∆S∆t

[
f j(x+ei∆t)− f j(x)

]
=

∆xD

∆S
ei ·∇ f j +O(∆x2) =

∆xD

∆S
ei ·∇ f eq

j +O(∆x2)

(B7)712

where the expression of f by f eq (Eq. (9)) has been used. Omitting the high order term713

O(c∆x2) and applying the analysis of ei ·∇ f eq
i given in Eqs. (A3) to (A8), Eq. (B7) can be714

rewritten as:715

Es(x) =O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
(B8)716

Since all the terms in Eq. (B8) have been included in Eq. (B6), Eq. (B6) adequately describes717

the resultant mass leakage at the irregular boundary nodes associated with irregular cells.718
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Appendix C: Averaged mass leakage over smooth boundaries719

As described in §V, the averaged mass leakage over general smooth boundaries can estimated720

from those of four basic kinds of serrated cells (see Fig. 3(a)-(d)), and they are quantified now.721

Firstly, mass leakage of an ideal serrated cell is quantified by considering the one shown in Fig.722

3(a) without loss of generality. Apparently, the averaged process is conducted over the boundary723

nodes along AB (excluding A) and the one at C. According to the analysis proposed in §IV B, the724

irregular boundary node at B and C can be approximated as two regular ones with a horizontal725

and vertical main directions, respectively, and those along AB (except B) can be approximated as726

regular ones with a vertical main direction. Accordingly, their mass leakage can be estimated by727

Eq. (B3) with γ being equal to 90◦− θ and −θ , respectively. Consequently, the averaged mass728

leakage of an ideal serrated cell can be expressed as:729

Esc,i =
∆sCE(xC)+∑

A
P=B[∆sPE(xP)]

‖AC‖

=
ρut tan(90◦−θ)∆xsinθ

‖AC‖
+

∑
tan−1 θ
n=1

[
ρut +

∂ρut
∂y ∆x+ ∂ρut

∂x n∆x
]

tan(−θ)∆xcosθ

‖AC‖

+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
=ρut(cosθ sinθ − cosθ sinθ)−

[
∂ρut

∂y
+

tan−1 θ +1
2

∂ρut

∂x

]
∆xcosθ sinθ

+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
+O(∆x2)

≈O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]

(C1)730

where the macroscopic variables are evaluated at C, and the terms in the order of O(∆x2) are731

omitted.732

Secondly, extra mass leakage of a serrated cell (see Fig. 3(b)) induced by a non-zero distance733

shift ∆s (∆s <
√

D∆x) is estimated. As shown in Fig. 3(b), ∆s causes a uniform wall distance734

increase to the boundary nodes, e.g. xC = x′C +∆sn, but does not affect n and the main direc-735

tions of the approximated regular boundary nodes. Therefore, ∆s could directly modify the term736

∆w∂n(ρun), and its influence on the other terms appearing in Eq. (C1) is the order of O(∆x2).737

Consequently, the extra mass leakage caused by ∆s can be expressed as:738

37



Esc,s = ∆s∂n(ρun) (C2)739

Thirdly, extra mass leakage of a rotated serrated cell caused by an angle deviation ∆θ (see Fig.740

3(c)) is quantified. The mass leakage can be estimated based on the virtual ideal serrated cell ABC741

with the normal velocity of the virtual boundary AC being:742

un,v =−ut sin∆θ +un cos∆θ (C3)743

Combined Eq. (C3) with Eq. (C1), the mass leakage of a rotated serrated cell can be expressed744

as:745

Esc,r =
(Esc,i−ρun,v)‖AC‖
‖AC‖cos∆θ

+ρwU ·n

=ρut tan∆θ +O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

] (C4)746

Since the angle deviation ∆θ may vary significantly for each serrated cell, it is necessary to747

estimate averaged mass leakage of cascaded rotated serrated cells.748

Firstly, two cascaded serrated cells are considered. As shown in Fig. 19(a), averaged mass749

leakage of two cascaded serrated cells can be estimated from those of each cells (see Eq. (C4)) as:750

Esc,2rt = (ρut tan∆θ1)|x=xC

‖AA′‖
tan∆θ1

1
‖AA′‖(tan∆θ1 + tan∆θ2)

− (ρut tan∆θ2)|x=xA

‖AA′‖
tan∆θ2

1
‖AA′‖(tan∆θ1 + tan∆θ2)

+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O
[

∆x
‖∇(ρuu)‖

cs

]
=O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O

[
∆x
‖∇(ρuu)‖

cs

]
(C5)751

Interestingly, the averaged mass leakage of two cascaded serrated cells share a same formula752

with that of an ideal serrated cell (see Eq. (C1)). This similarity is important because it indicates753

that the mass leakage of two cascaded cells with an angle deviation can be directly described754

by that of a rotated cell given by Eq. (C4). Based on that, three cascaded serrated cells can be755

decomposed into one rotated serrated cell and two cascaded serrated cells with an angle deviation,756

and the total mass leakage is given by Eq. (C5). Recursively, a series of cascaded serrated cells757

with an angle deviation ∆θ (see Fig. 19(b)) can be estimated thanks to Eq. (C5).758
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Considering that the distance between the starting and ending “sawtooth" tip nodes (e.g. the759

“Start" and “End" points in Fig. 19(b)) could be comparable with the macroscopic reference length760

L, tan∆θ can scales like O(∆x/L), and the averaged mass leakage of a series of cascaded rotated761

serrated cells can be estimated as:762

Esc,rt ≈O
(

∆x
L

ρut

)
+O(∆xc‖∇ρ‖)+O(∆x‖∇(ρu)‖)+O

[
∆x
‖∇(ρuu)‖

cs

]
(C6)763

Comparing Eq. (C6) to Eq. (C1), the extra mass leakage term caused by ∆θ can be expressed764

as:765

Esc,θ = Esc,rt−Esc = ρut tan∆θ = O(ρut
∆x
L
) (C7)766

Fluid domain

Boundary

Solid

AB

C
A’

(a) Two cascaded serrated cells

Fluid domain

Boundary
SolidStart

Boundary
Solid

Fluid domain

End

(b) A serious of cascaded cells

FIG. 19. Sketches of cascaded serrated cells at a smooth boundary: two cascaded serrated cells (a) and a

serious of cascaded serrated cells (b).

Finally, the mass leakage caused by boundary curvature is analysed. As shown in Fig. 3(d),767

Rc is the local curvature radius, ϕ is the angle corresponding to the arc
_
AC, and ∆ϕ is the angle768

from the virtual planar boundary AC to the tangential direction at a point on the curved boundary769

(positive if clockwise measured).770

Before going further, two basic geometrical relationships are derived. First, θ and ϕ are related771

as:772

‖AC‖= 2Rc sin
ϕ

2
=

∆x
sinθ

(C8)773

Second, to avoid another intersection point (except A) between the curved boundary and the774

grid line AB, Rc is constrained to be:775
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‖AC‖
sinθ

≤ 2Rc ⇒ sinθ ≥
√

∆x
2Rc

⇒ sin
ϕ

2
≤
√

∆x
2Rc

and ϕ ∼ O(

√
∆x
Rc

) (C9)776

where ‖AC‖= ∆x
sinθ

and 2Rc sin ϕ

2 = ∆x
sinθ

are used.777

Based on Eqs. (C8) and (C9), the extra mass leakage of a serrated cell caused by boundary cur-778

vature can be estimated in a way similar to the mass leakage of an ideal serrated cell (see Eq. (C1)).779

As a matter of fact, the extra mass leakage can be attributed to the associated velocity disturbances.780

Along a curved boundary, the tangential and normal (relative to the virtual planar boundary, e.g.781

AC shown in Fig. 3(d)) velocity disturbances at a boundary node due to the boundary curvature782

can be estimated as:783

∆ut = ut(cos∆ϕ−1)−un sin∆ϕ, ∆un = ut sin∆ϕ +un(cos∆ϕ−1) (C10)784

where ut and un are the tangential and normal velocity components relative to the curved bound-785

ary, respectively. Applying Eq. C10, the mass leakage can be expressed as:786

Esc,c =
E(xC)∆sC +∑

B
P=A E(xP)∆sP

Rcϕ
= Esc,ct +Esc,cn (C11)787

with788


Esc,ct =

ρ∆ut cosθ∆x−∑
tan−1 θ
n=1 ρ∆ut sinθ∆x

Rcϕ
,

Esc,cn =
−ρ∆un sinθ∆x−∑

tan−1 θ
n=1 ρ∆un cosθ∆x

Rcϕ

(C12)789

where Esc,ct and Esc,cn are the mass leakage caused by the tangential and normal velocity dis-790

turbances, respectively, and terms in the order of O(∆x2) are omitted. Substituting Eq. (C10) into791

Eq. (C12), one obtains :792


Esc,ct =

ρ[ut(cos ϕ

2 −1)−un sin ϕ

2 ]cosθ∆x−∑
tan−1 θ
n=1 ρ[ut(cos∆ϕ−1)−un sin∆ϕ]sinθ∆x
Rcϕ

,

Esc,cn =
−ρ[ut sin ϕ

2 +un(cos ϕ

2 −1)]sinθ∆x−∑
tan−1 θ
n=1 ρ[ut sin∆ϕ +un(cos∆ϕ−1)]cosθ∆x
Rcϕ

(C13)793

In Eq. (C13), the angle variation ∆ϕ can be approximated as:794

∆ϕ ≈ n∆xcosθ

Rc
− ϕ

2
(C14)795
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Substituting ∆x
Rc

= 2sinθ sin ϕ

2 (Eq. (C8)) and sin ϕ

2 = ϕ

2 +O(ϕ3

8 ) into the above expression, it796

comes :797

∆ϕ ≈ 2nsinθ cosθ sin
ϕ

2
− ϕ

2
= [nsin(2θ)−1]

ϕ

2
+O(

ϕ3

8
) (C15)798

Now substituting (C15) along with sin ϕ

2 = ϕ

2 +O(ϕ3

8 ), cos ϕ

2 = 1− ϕ2

8 +O(ϕ4

16 ), sin∆ϕ = ∆ϕ +799

O(∆ϕ3) and cos∆ϕ = 1−∆ϕ2/2+O(∆ϕ4) into Eq. (C12), the mass leakages Esc,ct and Esc,cn can800

be simplified as:801


Esc,ct ≈−un cosθ

(
1+ sin2

θ − sinθ cosθ
) ∆x

Rc
+ut cos2

θ
∆x
4Rc

+O(ut
∆x3/2

R3/2
c

)

Esc,cn ≈−ρut
(
sin3

θ + cos3
θ
) ∆x

Rc
+ρun cos2

θ
∆x
4Rc

+O(ρun
∆x3/2

R3/2
c

)

(C16)802

Consequently, by omitting the terms in the order of O(∆x3/2

R3/2
c

), the dominating parts of the total803

mass leakage caused by boundary curvature can be estimated as:804

Esc,c = Esc,ct +Esc,cn ≈ O
(

ρut
∆x
Rc

)
+O

(
ρun

∆x
Rc

)
= O

(
ρ‖u‖∆x

Rc

)
(C17)805

Notably, the above analysis of averaged mass leakage is derived from the mesoscopic view to806

the macroscopic view, and thus is generally valid for LB simulation. Whereas, it should be noticed807

that it is not the only way to quantify the averaged mass flux. For example, Ginzburg7 proposed an808

exact computation of mass leakage in inclined channel Stokes flow based on distribution functions809

reconstructed by Chapman-Enskog analysis up to second order, and it has been already exemplified810

analytically for stair-wise boundaries.811
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