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Switching control applied to interconnected Boost converters: A
comparison with hysteresis current control

Ryan P. C. de Souza, Zohra Kader, Member, IEEE, and Stéphane Caux, Member, IEEE

Abstract— In this paper, the stabilization of the voltage at
the output of Boost converters is studied using a switching
control method developed in the field of switched affine systems.
This control law uses the instantaneous model instead of the
nonlinear average model of the converter and has certain
advantages compared to traditional approaches. Despite these
advantages, the closed-loop system suffers from the occurrence
of sliding modes, leading to unacceptable rises in the switching
frequency. An adaptation of this control law is proposed in
this paper to overcome this problem, and the adopted strategy
is based on the introduction of hysteresis in the switching
law. Moreover, the extension to Boost converters in parallel
is also shown, with the attractive property of each converter
only needing local measurements for global stabilization of
the system. A comparison with the hysteresis current control
method is conducted in simulations.

I. INTRODUCTION

Due to the objectives of mitigating the rise in greenhouse
gas emissions in electricity generation, there has been a
growing demand for renewable sources. Depending on the
application, they can be integrated in a DC microgrid, which
is a solution that is increasingly popular due to a number
of reasons, including higher efficiency and a more natural
interface with many types of renewable sources [1].

In some scenarios, the energy sources connected to a
microgrid produce a lower voltage compared with the voltage
at the DC bus. This is often the case with photovoltaic panels
[2]. In this case, Boost converters are suitable for interfacing
the sources with the microgrid [3]. This raises the question
of how to control each converter in order to stabilize the
main bus at the desired voltage reference.

In order to tackle the challenge of global stabilization of
the DC microgrid, a switching control law introduced in [4]
is used in this paper. This control method is based on the
instantaneous model of the converters, instead of the more
traditional approach of using their (often nonlinear) average
models. Moreover, the switching law can be deduced by
solving a Linear Matrix Inequality (LMI), for which efficient
solvers are available. Two advantages of this method are: (i)
Pulse-Width Modulation (PWM) is not required to generate
the gate signal to each switching device, since the control law
can already provide it, and (ii) linearization of the model
is not necessary (as it is normally the case when working
with Boost converters, whose average models are nonlinear)
and global stabilization can be theoretically ensured. The
main issue with the control method in [4] is that it leads
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to sliding modes (with ideally infinite-rate switching), and
thus the switching frequency rises to unacceptable values,
damaging the switches.

The aim of this paper is to overcome the issue of infinite
switching frequency by employing hysteresis. In addition,
the proposed hysteresis-based switching method applies only
local measurements, meaning that the resulting control law
is decentralized. This can be interesting in practical situa-
tions where communication between different source units
is impaired or non-existent.

This paper is organized as follows. In Section II, the
instantaneous models of the two systems addressed here
are presented. In Section III, the method proposed in this
paper is introduced for both systems presented in Section
II. Simulation results comparing the proposed method with
hysteresis current control are shown in Section IV. Finally,
conclusions are drawn in Section V.

Notation: If w is a vector, then w(k) denoted its k-th
component. If Q is a matrix, QT is its transpose, and Q ≺ 0
(resp. Q � 0) means that Q is negative-definite (resp.
positive-definite). The null matrix of q rows and r columns is
denoted as 0q×r. Given a positive integer N , the unit simplex
∆N is defined as ∆N := {δ ∈ [0, 1]N :

∑N
k=1 δ(k) = 1} and

set IN is defined as IN := {1, 2, . . . , N}. Given matrices
Qk, k = 1, 2, . . . , N , their convex combination defined by
δ ∈ ∆N is denoted as Q(δ) :=

∑N
k=1 δ(k)Qk.

II. SYSTEM MODELS

In this section, the mathematical models of the two con-
verter configurations addressed in this paper are presented. It
is assumed that the converters always operate in continuous
current mode. First, consider the equation describing the
dynamics of a switched affine system [4], [5], [6]:

ż(t) = Aσz(t) +Bσ , (1)

where σ is a discrete variable taking values in the set IM ,
with M denoting the number of modes in the system. Vector
z is the state vector, and matrices Aσ and Bσ , σ = 1, . . . ,M ,
are the system parameters. At each time instant, the system
evolves according to the dynamics dictated by one of the
modes, and the system can always switch from one mode to
another at any time.

A. Single Boost converter

Consider the idealized circuit of the Boost converter
depicted in Fig. 1. Let i(t) be the current flowing in inductor
L (i.e., the input current) and v(t) be the output voltage.
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Fig. 1: Boost converter supplying a load Ro.

Since in this paper the instantaneous model is considered,
the model is determined from the current and voltage laws
applied to the circuit according to whether switch S is closed
or not. By introducing the discrete variable σ ∈ I2, with
σ = 1 corresponding to the situation where S is closed
and σ = 2 to when S is open, the equation governing the
system dynamics is given by (1), with state z(t) being equal
to z(t) = [i(t) v(t)]T in this case and with:

A1 =

[
0 0
0 −1/(RoC)

]
, B1 =

[
E/L

0

]
, (2)

A2 =

[
0 −1/L

1/C −1/(RoC)

]
, B2 = B1. (3)

Note that the number of modes is M = 2. Define
i? and v? as the input current and the output voltage in
equilibrium, respectively. The equilibrium points of (1) can
be determined using the formalism of discontinuous systems
(see, for instance, [7]). Using this formalism, z? = [i? v?]T

is an equilibrium of (1) if there exists δ? ∈ ∆M such that:
M∑
σ=1

δ?(σ) (Aσz
? +Bσ) = 0, (4)

Let α? := δ?(1) ∈ [0, 1]. Since δ?(2) = 1− α?, then (4) can
be written as:

α? (A1z
? +B1) + (1− α?) (A2z

? +B2) = 0. (5)

Note that (5) is exactly the same equation of the state-
space average dynamics [8] in equilibrium, wherein α?

corresponds to the duty cycle in steady state. Therefore, the
equilibrium of the instantaneous model (1) can be character-
ized in the same way as in the case of the nonlinear average
model. From (5), one can easily obtain the classical relation-
ship between the input and steady-state output voltages:

v? =
E

1− α?
. (6)

The inductor current reference i? can be calculated as:

i? =
v?

(1− α?)Ro
. (7)

It is also useful to define the dynamics in equilibrium in
mode σ as bσ := Aσz

? +Bσ , σ = 1, 2.

B. Boost converters in parallel

In Fig. 2, the connection of two Boost converters feeding
a load is shown. Each one is connected to the load through
an LC filter modeled by capacitance Cj and inductance L′j ,
j ∈ {1, 2}. Note that the parasitic resistances associated with
this inductor is represented by R′j . Parameters L′j and R′j
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Fig. 2: Two Boost converters supplying load Ro.

TABLE I: States of the switches in each mode σ ∈
{1, 2, 3, 4}.

σ σ1 σ2

1 1 1
2 1 2
3 2 2
4 2 1

could also be used to model the inductance and the resistance
of the cables connecting each converter to the DC bus, to
which the load Ro is connected. The capacitance of the bus
is modeled by Co.

The state vector, for this system, is given by z(t) =
[z1(t)T z2(t)T v(t)]T , where zj(t) = [ij(t) vj(t) i′j(t)]

T

represents the local state variables of the j-th converter,
j = 1, 2. Note that the output current of each converter (i′j)
has been included as a local variable.

Since two switches are present in the circuit, σ can take
4 different values, each one corresponding to a different
combination of switches S1 and S2. Thus, the number of
modes is M = 4. Table I shows the state of each switch σj ,
j = 1, 2, for each mode σ ∈ I4. The convention adopted
here is that σj = 1 when Sj is closed and σj = 2 when it
is open.

Using the circuit laws once again for each different mode,
the dynamics are dictated by (1), and are written here as1:

ż =

 ż1
ż2
v̇

 =

 g1,σ1 (z1, v)
g2,σ2 (z2, v)

v̇

 = Aσz +Bσ , (8)

with gj,σj (zj , v) defined as the dynamics of the local vari-
ables of converter j, and matrices Aσ and Bσ , σ = 1, . . . , 4,
are in this case given by:

A1 =

 A1,1 03×3

03×3 A2,1
W

U ao

 , (9)

A2 =

 A1,1 03×3

03×3 A2,2
W

U ao

 , (10)

A3 =

 A1,2 03×3

03×3 A2,2
W

U ao

 , (11)

1σ1 and σ2 are associated with mode σ according to Table I.



A4 =

 A1,2 03×3

03×3 A2,1
W

U ao

 , (12)

and

B1 = B2 = B3 = B4 =


E1/L1

02×1

E2/L2

02×1

0

 , (13)

where:

Aj,1 :=

 0 0 0
0 0 −1/Cj
0 1/L′j −R′j/L′j

, j = 1, 2, (14)

Aj,2 :=

 0 −1/Lj 0
1/Cj 0 −1/Cj

0 1/L′j −R′j/L′j

, j = 1, 2, (15)

W :=
[

0 0 −1/L′1 0 0 −1/L′2
]T
, (16)

U :=
[

0 0 1/Co 0 0 1/Co
]
, (17)

and
ao := −

1

RoCo
. (18)

By using once again the formalism of discontinuous
systems, the equilibrium points z? satisfy (4), with M = 4.
Let α?1 := δ?(1) + δ?(2) and α?2 := δ?(1) + δ?(4) denote the
duty cycles of converters 1 and 2, respectively. Then, the
equilibrium points z? satisfy the following relations:

v?j =
Ej

1− α?j
, j = 1, 2, (19)

i′?j = (1− α?j )i?j , j = 1, 2, (20)

v?j = v? +R′ji
′?
j , j = 1, 2, (21)

v? = Ro(i
′?
1 + i′?2 ). (22)

There is a certain freedom with respect to how the load
current is shared between the output currents of both con-
verters. For the purposes of this paper, it is simply assumed
that i′?2 = κi′?1 , where κ ≥ 0 is a design parameter. Thus,
(22) becomes:

i′?1 =
v?

Ro(κ+ 1)
. (23)

The dynamics in equilibrium for each mode of converter
j is simply defined as bj,σj := gj,σj (z

?
j , v

?), σj = 1, 2,
j = 1, 2.

Remark 1: It can be seen that the modeling procedure
for the converters in parallel is modular, in the sense that
the parameter matrices can be algorithmically constructed
from blocks corresponding to each module. This makes the
modeling process scalable to a large number of converters
in parallel, as in the case of a DC microgrid. Note also that
more complex configurations for linear output filters can be
considered through proper choices for matrices Aj,1, Aj,2,
j = 1, 2, and W . This means that the control law discussed
in the next two sections may be used in more complex
scenarios. �

III. HYSTERESIS-BASED SWITCHING CONTROL

A. Ideal switching law for switched affine systems

The switching law presented in the sequel has been
proposed in [4] for global stabilization of switched affine
systems. Firstly, assume that the following LMI is feasible:

A(δ?)TP + PA(δ?) ≺ 0, (24)

for some P = PT � 0. Vector δ? is obtained according to
the desired equilibrium point. For example, in the case of a
single Boost converter, δ? = [α? 1−α?]T and α? is the duty
cycle determined from (5) to obtain the desired steady-state
output voltage v?.

With a matrix P satisfying (24), the following control law
exponentially stabilizes system (1) at z? [4]:

σ(z) ∈ arg min
m∈IM

(z − z?)TP (Amz +Bm). (25)

In the system models used in this paper, B1 = B2 = . . . =
BM . With this in mind, (25) can be simply written as:

σ(z) ∈ arg min
m∈IM

(z − z?)TPAmz. (26)

Since σ(z) only depends on z, it is said that (26) is
a state-dependent control law. It is interesting to remark
that the application of control law (26) does not require
the system to be linearized around the desired equilibrium
point. And yet, as shown in [4], the equilibrium point is
globally exponentially stable. This contrasts with the use of
more traditional methods, where linearization of the average
model is employed and thus stability can only be ensured
in a neighborhood of the equilibrium. Moreover, since (26)
directly selects the mode that should be activated, a PWM
module generating the gate signal for the switching device
is not needed.

B. Adding hysteresis

The main drawback of the switching strategy described
by (26) is that it leads to sliding modes [4]. Thus, direct
application of (26) causes the switching frequency to rise
to unacceptable levels, possibly damaging the switching
devices. The proposed method for overcoming this issue is
based on an adaptation of control law (26) to incorporate
hysteresis and the development of this method is carried
out for the particular cases of the two systems presented
in Section II. The newly obtained control shall be referred
to as Hysteresis-Based Switching Control (HBSC).

1) Single Boost converter: In the case of one Boost
converter, there are only two modes. Define s(z) := (z −
z?)TPDz, where D := A1 − A2. The application of (26)
implies the following:
• σ(z) = 1, if s(z) < 0;
• σ(z) = 2, if s(z) > 0;
• σ(z) ∈ {1, 2} if s(z) = 0.
On the switching surface s(z) = 0, there are two pos-

sibilities for the evolution of the system trajectory: (i) the
mode is switched from one to the other and the trajectory
simply crosses the surface to the other side; (ii) a sliding
mode occurs along the switching surface.



The HBSC can be described as follows: instead of switch-
ing as soon as the trajectory reaches the switching surface,
switching is stopped while |s(z)| < h, where h > 0 is a
design parameter. When |s(z)| ≥ h, then the mode is chosen
according to (26). In the sequel, the link between h and the
steady-state switching frequency is made clear.

Due to hysteresis, the behavior of the system in steady
state is characterized by periodical oscillations in the current
and voltage. Just as in traditional methods in power elec-
tronics, the system spends a certain time t1 in mode 1 and a
time t2 in mode 2. The sum of t1 and t2 gives the switching
period, whose inverse is the switching frequency fss.

It is assumed that h is sufficiently small so that the time
evolution of s(z) is piecewise linear. This assumption is
analogous to the statement often made in power electronics
that the switching frequency is very high with respect to the
bandwidth of the system. Thus, in order to keep the current
or voltage ripples at acceptable levels, this assumption often
holds in practice. Since, during hysteresis, s(z) varies be-
tween −h and h (and thus the absolute variation of s(z) is
2h):

|ṡ(z)| =
2h

tσ
, σ = 1, 2, (27)

for z in a small neighborhood of z?. The gradient of s(z) is
given by:

∇s(z) = (DTP + PD)z −DTPz?. (28)

In the neighborhood of z?, ṡ(z) can be approximated by
ṡ(z?) = ∇s(z?)T bσ while in mode σ. Since ∇s(z?) =
PDz?, the following expressions are obtained from (27):

tσ =
2h

|z?TDTPbσ |
, σ = 1, 2. (29)

From (29) and the fact that fss is the inverse of the sum
of t1 and t2, the following expression is obtained:

fss =
1

2h

|bT1 PDz?z?
TDTPb2|(

|bT1 PDz?|+ |bT2 PDz?|
) . (30)

The acceptable current ripple ∆I is linked to the switching
frequency by the same expression that is normally used in
traditional methods:

∆I =
α?E

Lfss
. (31)

Thus, from (30) and (31), h can be determined to bound
the current ripple at a value ∆I chosen by the designer.

2) Boost converters in parallel: In the case of the Boost
converters in parallel, there are 4 modes instead of 2. This
means that there are more than one switching surface, and
each one may involve all state variables of the system.
However, a procedure is proposed in the sequel to implement
hysteresis separately in each converter, where only local
measurements are used in the control law. As it will be
seen, only one switching surface may be considered for
each converter, and thus hysteresis may be implemented in a
similar way as for a single converter. Firstly, rewrite matrices

Aσ and Bσ , ∀σ ∈ I4, as follows:

Aσ =

Ā︷ ︸︸ ︷[
06×6 W
U ao

]
+

Ã1,σ1︷ ︸︸ ︷[
A1,σ1 03×4

04×3 04×4

]
+

+

 03×3 03×3 03×1

03×3 A2,σ2 03×1

01×3 01×3 0


︸ ︷︷ ︸

Ã2,σ2

,

(32)

Bσ = B̄ := B1, (33)

where the correspondence between σ and σj , j = 1, 2, is
given by Table I.

The objective function in (26) can be written as (z −
z?)TP (Āz+B̄+Ã1,σ1

z1+Ã2,σ2
z2). Minimizing this expres-

sion is equivalent to simultaneously solving the minimization
problems:

σj(z) ∈ arg min
m∈I2

(z − z?)TPÃj,mz, j = 1, 2, (34)

which directly give the values σj corresponding to the state
of each controlled switch Sj . Once again, the mode σ can
be recovered by association of each pair (σ1, σ2) with each
σ ∈ I4 (see Table I).

Now, consider (24) with P taking the following block-
diagonal form:

P =

 P1 03×3 03×1

03×3 P2 03×1

01×3 01×3 p3

 , (35)

where P1, P2 ∈ R3×3 and p3 ∈ R.
This choice for the form of P has been made so that

switching law (26) can be used in such a way that the control
signal for each converter depends only on its local variables.
The zeroes in P are there to cancel the dependence of the
control law on variables of the other converter or the DC
bus. The LMI (24) can then be solved for the variables P1,
P2 and p3. The solution of this problem is straightforward
in commercial softwares such as MATLAB.

It can be shown that (34), with P taking the form (35),
can be written as:

σj(zj) ∈ arg min
m∈I2

(zj − z?j )TPjAj,mzj , j = 1, 2. (36)

Note that control law (36) can directly provide the gate
signal for each converter j and only requires local measure-
ments from each one. Moreover, since (36) has been derived
from (26) with a matrix P that is a solution of (24), then the
whole closed-loop system is globally exponentially stable.

Similarly to what has been done for a single converter,
define sj(zj) := (zj − z?j )TPjDjzj , where Dj := Aj,1 −
Aj,2, for j = 1, 2. The application of the ideal control law
(36) for each converter j implies that:
• σj(zj) = 1, if sj(zj) < 0;
• σj(zj) = 2, if sj(zj) > 0;
• σj(zj) ∈ {1, 2}, if sj(zj) = 0.
Therefore, the surface sj(zj) = 0 can be recognized as

the switching surface corresponding to each converter j,
and it only depends on the local variables zj . Thus, by



defining parameters hj > 0, j = 1, 2, hysteresis can be
implemented for each converter in a similar fashion as it
has been done for a single Boost converter in Section III-
B.1. Under the assumption that hj is sufficiently small and
developing the equations for |ṡj(zj)| as in Section III-B.1,
fss,j is determined as:

fss,j =
1

2hj

bTj,1PjDjz
?
j z
?
j
TDTj Pjbj,2(

|bTj,1PjDjz?j |+ |bTj,2PjDjz?j |
) , j = 1, 2. (37)

The acceptable current ripple for each converter (∆Ij) is
calculated in the same way as in (31). Thus:

∆Ij =
α?jEj

Ljfss,j
, j = 1, 2. (38)

Remark 2: Applying control law (36) with hysteresis boils
down to comparing the absolute value of sj(zj) (whose ex-
pression is simply given by a matrix product) with hj , which
can be advantageous in a real-time application. Moreover, P
is computed offline. �

IV. SIMULATION RESULTS
In this section, results from MATLAB simulations con-

cerning the application of the methods developed in this
paper are presented. In order to highlight their interest in
the case of Boost converters, comparisons are made with
current hysteresis control, briefly explained hereafter.

A. Current hysteresis control
Suppose that a certain current ripple ∆I is acceptable

in the inductor of a single Boost converter. Then, Current
Hysteresis Control (CHC) consists in the following:
• If the current i(t) is lower than i?−∆I/2, then activate

mode 1;
• If the current i(t) is higher than i?+∆I/2, then activate

mode 2;
• If i(t) is in the hysteresis band defined by |i(t)− i?| ≤

∆I/2, then keep the same mode as before.
The use of CHC is widespread in the field of power

electronics in general. Similarly to the technique discussed
in this paper, CHC does not require a PWM module either.
In the case of two converters, the procedure outlined above
is carried out independently for each converter.

B. Single Boost converter
The parameters of the Boost converter represented in Fig.

1 are: E = 400V, L = 1mH, C = 10µF, and Ro = 40Ω.
The goal is to stabilize the voltage at v? = 600V, which,
from (5), corresponds to 1 − α? = E/v? = 2/3. From
(7), i? = 22.5A. The acceptable current ripple is taken
to be ∆I = 5A. From (30) and (31), fss = 27kHz and
h = 19.8× 107. Using MATLAB, matrix P is determined
from (24) as P = [ρ1 ρ2], with ρ1 = [11.6 − 0.002]T and
ρ2 = [−0.002 0.12]T .

Figs. 3 to 5 show a comparison of the results obtained
from each method. Table II shows some performance indexes
using both control techniques2. It can be seen that the HBSC

2In this paper, the response time is considered to be the earliest time
instant tr such that the voltage remains bounded within ±5% around v?
for all t ≥ tr .
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Fig. 3: Evolution of input current i(t).
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Fig. 4: Evolution of output voltage v(t).

performed better in terms of current and voltage overshoot,
as well as response time. Thus, the HBSC technique has
brought improvements to the system response in transient
behavior. Moreover, the steady-state behavior is the same
using both methods. Indeed, it is shown in Fig. 3 that the
current ripple is 5A in both cases. Fig. 5 shows the trajectory
in state space using both methods.

C. Two Boost converters in parallel

The circuit parameters in Fig. 2 are the following: E1 =
E2 = 400V, L1 = 10mH, L2 = 8mH, L′1 = 1mH, L′2 =

Fig. 5: System trajectory in the state space.



TABLE II: Performance indexes for the Boost converter.

HBSC CHC
Peak current (A) 37.6 44.6

Peak output voltage (V) 625 687
Response time (µs) 235 558
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Fig. 6: Evolution of input current i1(t).

TABLE III: Performance indexes for the parallel connection
of two Boost converters.

HBSC CHC
Peak current in conv. 1 (A) 16.0 18.4
Peak current in conv. 2 (A) 19.2 22.7

Peak output voltage (V) 615 689
Response time (µs) 848 1801

0.6mH, C1 = Co = 10µF, C2 = 15µF, R′1 = R′2 = 1Ω,
and Ro = 40Ω. Here, the goal is also to stabilize the output
voltage at v? = 600V. Assume that the load current should
be equally shared between both converters, leading to κ = 1.
From (19)-(23), α?1 = α?2 = 0.34. A matrix P in the form
(35) that solves (24) is obtained. P1, P2 and p3 are given as:

P1 =

[
12.4 −0.004 −0.040
−0.004 0.013 −0.011
−0.010 −0.011 1.25

]
, (39)

P2 =

[
10.2 −0.007 −0.028
−0.007 0.019 −0.016
−0.028 −0.016 0.75

]
, (40)

and p3 = 0.013. The acceptable current ripples are chosen
to be ∆I1 = 0.8A and ∆I2 = 1.5A, corresponding to h1 =
3.0×105 and h2 = 5.2×105, according to (38). The steady-
state switching frequencies are fss,1 = 17kHz and fss,2 =
11.4kHz. Figs. 6 and 7 show the plots obtained for i1(t)
and v(t), respectively. Current i2(t) is not shown due to
lack of space, but its evolution is qualitatively similar to
i1(t). Table III shows some performance indexes in this case.
Note that the performance improvements seen in the case of
a single converter have also been observed for the parallel
association. Once again, the overshoots are smaller using the
HBSC and the response time of the output voltage is faster.
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Fig. 7: Evolution of the DC bus voltage v(t).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a control law that is well known in the
switched systems literature has been adapted to include an
hysteretic behavior, thus preventing unacceptable rises of
the switching frequency. This control law has been applied
to Boost converters and to their parallel interconnection.
It has been shown that the switching frequencies can be
easily chosen through the choice of the hysteresis parameters.
In simulations where a comparison is established with a
classical method that does not require PWM modulation
either, the method presented in this paper has performed
better as far as the transient behavior is concerned. Indeed,
it can be seen in Tables II and III that the response time and
the peak values are more satisfactory using this method. The
steady-state behavior has been shown to be similar to the
more traditional method. In addition, the gate signal to be
selected at the current time step is determined only from local
measurements and from the signal that had been formerly
selected. The next step in this research is to verify the results
in practice on an experimental setup.
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