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Abstract

We consider the problem of state estimation in general state-space models using variational inference. For
a generic variational family defined using the same backward decomposition as the actual joint smoothing
distribution, we establish for the first time that, under mixing assumptions, the variational approximation of
expectations of additive state functionals induces an error which grows at most linearly in the number of
observations. This guarantee is consistent with the known upper bounds for the approximation of smoothing
distributions using standard Monte Carlo methods. Moreover, we propose an amortized inference framework
where a neural network shared over all times steps outputs the parameters of the variational kernels. We also
study empirically parametrizations which allow analytical marginalization of the variational distributions, and
therefore lead to efficient smoothing algorithms. Significant improvements are made over state-of-the art
variational solutions, especially when the generative model depends on a strongly nonlinear and noninjective
mixing function.

1 Introduction
When generative data models involve so-called hidden or latent states, providing statistical estimates of the latter
given observed data - also known as state inference - is the cornerstone of many machine learning algorithms
[Dempster et al., 1977, Kingma and Welling, 2014]. Traditional models usually introduce low-dimensional
states having directly interpretable meaning, while benefiting from accurate inference via exact or consistent
Monte Carlo methods. In contrast, modern latent-data machine learning models are rooted in the so-called
manifold hypothesis which views high dimensional data as originating from hidden representations in an
unknown space and via a complex nonlinear mapping. In the context of unsupervised representation learning,
state inference is a goal in itself. Due to the intricacy and dimentionality of the inverse problems involved,
most of these works resort to a combination of deep neural networks (DNNs) and variational approximations
which allow tractable inference and serve as a principled proxy for maximum likelihood estimation (MLE)
[Higgins et al., 2017, Locatello et al., 2020].

The particular case of dependent data is of special importance as it guarantees identifiability results
[Khemakhem et al., 2020], especially in the sequential setting [Gassiat et al., 2020, Hälvä et al., 2021]. This in
turn renews interest in a more solid theoretical understanding of the behaviour of sequential variational methods.
In this work, we focus on the case where the true generative model is assumed to be a state-space model (SSM). In
the general SSM litterature, theoretical analysis of the conditional distribution of the states given the observations -
commonly referred to as the smoothing distribution - has been extensively conducted to derive efficient estimation
algorithms with good convergence properties. Among these works, a keystone in sequential inference is the
computation of expected values of additive state functionals under the smoothing distribution, known as additive

1



smoothing ([Cappé et al., 2005], Chap. 4), and more precisely the control of the additive smoothing error when
the target expectations are approximated. Theoretical guarantees have been provided when the approximation is
performed using a surrogate of the true smoothing distribution provided by Sequential Monte Carlo (SMC) meth-
ods [Douc et al., 2011, Dubarry and Le Corff, 2013, Olsson et al., 2017, Gloaguen et al., 2022]. In addition, in
[Gloaguen et al., 2022], a control has also been derived when the smoothed expectations are computed under a
biased joint distribution of the hidden states and the observations.

In parallel to these works, sequential variational methods rely on a tractable approximation of the smoothing
distribution to compute these expectations. However, this variational approximation has to account for the
dependencies implied by the data model [Bayer et al., 2021], and typically does not recover the true distribution
in the limit of infinite data when using mean-field variational families. This is why introducing dependency in
the variational family has been recently explored in the literature. In [Johnson et al., 2016], the authors obtained
promising results by combining conjugate graphical models with variational inference, see also [Lin et al., 2018]
for variational methods based on graphical models in the inference network fostering fast amortized inference. In
[Krishnan et al., 2017], the variational approximation uses a forward decomposition, parameterized by recurrent
neural networks, which allows to mimic the forward decomposition of the true posterior distribution. More
recently, [Campbell et al., 2021] proposed a variational family using the so-called backward factorization. Such
a choice has very appealing properties as it is prone to online state estimation and parameter learning in SSMs.

However, the question of whether these variational families suited to SSMs lead to good variational approxi-
mations for additive smoothing remains open. Indeed, to the best of our knowledge, there are no theoretical results
providing upper bounds on the state estimation error when using any (mean field or involving dependencies)
variational posterior in state-space models. In this paper, we establish the first theoretical guarantees for the
variational approximation of additive smoothing in state-space-models, see Proposition 3.1.

In Section 3, we prove that, in the case of strongly mixing state hidden Markov models, the variational
estimation error of smoothed additive functional grows at most linearly with the number of observations. In
Section 4, we build a backward variational inference algorithm involving fully amortized networks and amenable
to recursive learning. In Section 5, we illustrate the theoretical results numerically, and additionally show that a
linear Gaussian parametrization of the backward variational kernels can achieve good performance at a small
computational cost, even in the case of a strongly nonlinear and noninjective observation model.

2 Background
Notations. Let Θ ⊂ Rq be a parameter space and consider a state-space model depending on θ ∈ Θ where the
hidden Markov chain in Rd is denoted by (Xk)k>0. The distribution of X0 has density χθ with respect to the
Lebesgue measure µ and for all k > 0, the conditional distribution of Xk+1 given X0:k has density mθ

k(Xk, ·),
where au:v is a short-hand notation for (au, . . . , av) for 0 6 u 6 v and any sequence (a`)`>0. In SSMs, it is
assumed that this state is partially observed through an observation process (Yk)06k6n taking values in Rm. The
observations Y0:n are assumed to be independent conditionally on X0:n and, for all 0 6 k 6 n, the distribution
of Yk given X0:n depends on Xk only and has density gθk(Xk, ·) with respect to the Lebesgue measure.

In the following, for any measure ν on a measurable space (X,X ) and any measurable function h on X, write
νh =

∫
h(x)ν(dx). In addition, for any measurable spaces (X,X ) and (Y,Y), any measure ν on (X,X ), any

kernel K : (X,Y) → R+ and any measurable function h on X × Y, write Kh : x 7→
∫
h(x, y)K(x, dy) and

νKh =
∫
h(x, y)ν(dx)K(x, dy). For simplicity, if for all x ∈ X, K(x, ·) has a density k(x, ·) with respect

to a reference measure ν, we write kh : x 7→
∫
h(x, y)K(x,dy) =

∫
h(x, y)k(x, y)ν(dy). Let also 1 be the

constant function which equals 1 on Rd.

2.1 Latent data models and additive state functionals
In this context, for any 0 6 k1 6 k2 6 n the joint smoothing distribution φθk1:k2

is the conditional law of Xk1:k2

given Y0:n. For any function h from Rd×(n+1) to Rd, we define its smoothed expectation when the model is
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parameterized by θ as:

φθ0:nh = Eθ [h (X0:n) |Y0:n] (1)

= Lθn(Y0:n)−1

∫
h(x0:n)χθ(x0)gθ0(x0, Y0)

n−1∏
k=0

`θk(xk, xk+1)µ(dx0:n) ,

where1

`θk(xk, xk+1) = mθ
k(xk, xk+1)gθk+1(xk+1, Yk+1)

and Lθn(Y0:n) is the likelihood of the observations:

Lθn(Y0:n) =

∫
χθ(x0)gθ0(x0, Y0)

n−1∏
k=0

`θk(xk, xk+1)µ(dx0:n) . (2)

In the context of state-space models, additive state functionals are functions h0:n from Rd×(n+1) to Rd

satisfying:

h0:n : x0:n 7→
n−1∑
k=0

h̃k(xk, xk+1) , (3)

where h̃k : Rd × Rd → Rd. In Bayesian inference, point estimates of most quantities of interest are naturally
expressed as posterior means of random functionals belonging to this class. For state inference at a fixed θ, i.e. the
recovery ofXk for 0 6 k 6 n given the observations Y0:n, a standard estimator is Eθ[Xk|Y0:n] which corresponds
to h̃k(xk, xk+1) = xk. In Expectation Maximization-based MLE estimation, the intermediate quantity θ 7→
Q(θ, θ′) = Eθ′ [

∑n−1
k=0 log `θk(Xk, Xk+1)|Y0:n] is another example where h̃k(xk, xk+1) = log `θk(xk, xk+1).

Recursive MLE (RMLE) methods express ∇θ log Lθn = Eθ[
∑n−1
k=0 ∇θ log `θk(Xk, Xk+1)|Y0:n] via Fisher’s

identity under some regularity conditions (see [Cappé et al., 2005], Chap. 10), in which case h̃k(xk, xk+1) =
∇θ log `θk(xk, xk+1).

The challenge of computing (1) is twofold, i) the smoothing distribution is generally intractable, ii) under
this distribution, expectations are also intractable. A classical approach is to learn both the distribution and
expectations using Markov chain or sequential Monte Carlo methods, (see [Chopin et al., 2020], Chapter 12, for a
recent review of SMC methods). In the case of additive functionals, more recent generic estimators based on SMC
have been designed [Mastrototaro et al., 2021, Martin et al., 2022], and their theoretical properties (consistency,
asymptotic variance and normality) have been studied [Gloaguen et al., 2022]. However, Monte Carlo methods
show limitations when the dimension d of the latent space is large, and alternatives using variational inference
are appealing and computationally efficient solutions.

2.2 Variational inference for sequential data
In variational approaches, instead of designing Monte Carlo estimators of φθ0:nh (or of the conditional distribution
of the states given the observations), the conditional law φθ0:n of X0:n given Y0:n is approximated by choosing a
candidate in a parametric family {qλ0:n}λ∈Λ, referred to as the variational family, where Λ is a parameter set.
Parameters are then learned by maximizing the evidence lower bound (ELBO) defined as:

L(θ, λ) = Eqλ0:n

[
log

pθ0:n(X0:n, Y0:n)

qλ0:n(X0:n)

]
=

∫
log

pθ0:n(x0:n, Y0:n)

qλ0:n(x0:n)
qλ0:n(x0:n)µ(dx0:n) , (4)

where pθ0:n is the joint probability density function of (X0:n, Y0:n) when the model is parametrized by θ. A
critical point therefore lies in the form of the variational family. Motivated by the sequential nature of the data,
most works impose further structure on the variational family via a factorized decomposition of qλ0:n over x0:n

[Johnson et al., 2016, Krishnan et al., 2017, Lin et al., 2018, Marino et al., 2018]. Here, the natural strategy is
to reintroduce part or all of the conditional independence properties of the true generative model.

1Note that the dependence of `θk on Yk+1 is omitted in the notation for better clarity.
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2.3 Backward factorization of the smoothing distribution
Under the true model, the filtering distribution at time k is defined as the distribution of Xk given Y0:k, with
density w.r.t the Lebesgue measure denoted as φθk. One known factorization of φθ0:n - albeit not used in the
aforementioned works - exists by further introducing the distribution of the so-called backward kernels, that is,
for each 0 6 k 6 n− 1, the conditional distribution of Xk given (Xk+1, Y0:k) whose density is proportional to
xk 7→ mθ

k(xk, xk+1)φθk(xk). A key result for SSMs is that, conditionally on the observations, the reverse-time
process (Xn−k)06k6n is an inhomogeneous Markov chain whose initial distribution is the filtering distribution
at n, and whose transition kernels are precisely the backward kernels. This allows the following backward
factorization:

φθ0:n(x0:n) = φθn(xn)

n∏
k=1

mθ
k−1(xk−1, xk)φθk−1(xk)∫

mθ
k−1(x, xk)φθk−1(x)µ(dx)

.

Since each backward kernel at time k only depends on observations up to time k, a major practical advantage
of this decomposition is to allow recursive estimation of the smoothing distributions: when a new observation
Yk+1 is processed, obtaining φθ0:k+1 only amounts to computing φθk+1 and the associated backward kernel, while
previous terms in the product stay fixed. Recently, [Campbell et al., 2021] proposed a related variational family
by introducing

qλ0:n(x0:n) = qλn(xn)

n∏
k=1

qλk−1|k(xk, xk−1) , (5)

where qλn (resp. qλk−1|k(xk, ·)) are user-chosen p.d.f. whose parameters typically would depend on Y0:n (resp.
Y0:k). Under (5), the ELBO (4) becomes an expectation of an additive functional.

3 A control on backward variational additive smoothing
In the context where the variational factorization follows 5, we now present our main theoretical result.

For all xk ∈ Rd and θ ∈ Θ, define Lθk(xk, ·) the kernel with density `θk(xk, ·) with respect to the Lebesgue
measure:

Lθk(xk,dxk+1) = mθ
k(xk, xk+1)gθk+1(xk+1, Yk+1)µ(dxk+1) .

H1 There exist distributions q̃λk , λ ∈ Λ, and functions ck, 0 6 k 6 n, such that q̃λn = qλn and for all 1 6 k 6 n,
θ ∈ Θ, λ ∈ Λ, all bounded measurable functions h on Rd × Rd,∣∣∣∣∣q̃λk qλk−1|kh−

q̃λk−1L
θ
k−1h

q̃λk−1L
θ
k−11

∣∣∣∣∣ 6 ck(θ, λ)‖h‖∞,

and for all bounded measurable functions h on Rd,∣∣q̃λ0h− φθ0h∣∣ 6 c0(θ, λ)‖h‖∞ ,

where φθ0 is the filtering distribution at time 0, i.e. φθ0h = χθgθ0h/χ
θgθ01.

Note that under H1, choosing h such that there exists h̃ satisfying h : (xk−1, xk) 7→ h̃(xk), yields for all θ ∈ Θ,
λ ∈ Λ, ∣∣∣∣∣q̃λk h̃− q̃λk−1L

θ
k−1h̃

q̃λk−1L
θ
k−11

∣∣∣∣∣ 6 ck(θ, λ)‖h̃‖∞.

H2 There exist constants 0 < σ− < σ+ <∞ such that for all k ∈ N, θ ∈ Θ, λ ∈ Λ and (xk, xk+1) ∈ Rd×Rd,

σ− ≤ `θk(xk, xk+1) ≤ σ+

and
σ− ≤ qλk|k+1(xk+1, xk) ≤ σ+.
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Proposition 3.1. Assume that H1 and H2 hold. Then, for all n ∈ N, θ ∈ Θ, λ ∈ Λ, and all additive functionals
h0:n as in (3),

∣∣qλ0:nh0:n − φθ0:nh0:n

∣∣ ≤ 2
σ+

σ−

n−1∑
k=0

∥∥∥h̃k∥∥∥
∞

×

(
c0(θ, λ) +

k∑
m=1

ρk−m+1cm(θ, λ) + ck+1(θ, λ) +

n∑
m=k+2

ρm−k−1cm(θ, λ)

)
,

where ρ = 1− σ−/σ+ and where σ− and σ+ are defined in H2.

Proof. The proof is postponed to Appendix A.

By Proposition 3.1, if there exist h∞ and c+ such that for all 0 ≤ k ≤ n − 1, ‖h̃k‖∞ ≤ h∞ and for all
θ ∈ Θ, λ ∈ Λ, 0 ≤ m ≤ n, cm(θ, λ) ≤ c+(θ, λ) then

∣∣qλ0:nh0:n − φθ0:nh0:n

∣∣ ≤ 4
σ+

σ−

(
1 +

ρ

1− ρ

)
c+(θ, λ)h∞n . (6)

On the other hand, if we are interested in marginal smoothing distributions, i.e. cases where h̃j = 0 for all j 6= k,
Proposition 3.1 yields a uniform control in time:

∣∣qλ0:nh̃k − φθ0:nh̃k
∣∣ ≤ 4

σ+

σ−

(
1 +

ρ

1− ρ

)
c+(θ, λ)h∞ .

3.1 Comments on assumptions H1 and H 2
Assumption H1 is a pivotal technical tool to prove Proposition 3.1. Nonetheless, it is not a strong assumption
as for any sequence of distributions

(
q̃λk
)

16k6n
, the sequence ck(θ, λ) can be chosen to be the total variation

between (xk−1, xk) 7→ q̃λk (xk)qλk−1|k(xk, xk−1) and the probability density proportional to (xk−1, xk) 7→
q̃λk−1(xk−1)`θk−1(xk−1, xk). However, a challenging task for future research would be to find the best sequence
of q̃λk in terms of ck(θ, λ). We now show that in some specific examples, given a sequence of q̃λk , an explicit
sequence of ck(θ, λ) can be given.

Exact inference. It is worth noting that if qλn is the true filtering distribution at time n and (qλk−1|k)k>1 are the
true backward distributions, then the unique sequence (q̃λk )k>1 that achieves ck(θ, λ) = 0 in H1 for all k is the
sequence of true filtering distributions.

Linear and Gaussian case. In the linear and Gaussian case, we assume that for all xk−1, mθ
k−1(xk−1, ·) is the

Gaussian p.d.f with mean Aθkxk−1 and variance Rθk and that gθk(xk, ·) is the Gaussian p.d.f with mean Bθkxk and
variance Sθk .

In this setting, assume that q̃λk is the Gaussian p.d.f. with mean µλk and variance Σλk and that for all
xk, qλk−1|k(xk, ·) is the Gaussian p.d.f with mean Aλkxk and variance Rλk . Therefore, we assume (i) that the
variational backward kernels are linear as are the backward kernels of the true model and (ii) that the instrumental
intermediate distributions q̃λk , 0 ≤ k ≤ n− 1, are Gaussian as the filtering distributions of the true model. As
described below, this choice allows to obtain an explicit upper bound for ck, 0 ≤ k ≤ n. This highlights that
assumption H1 can be made usable in practice. This also emphasizes the versatility of H1 as other instrumental
densities could be tuned, since this specific choice is not proved to be optimal.

Choosing qλk−1:k (resp. qλ,θk−1:k) as a short-hand notation for the joint distribution q̃λk q
λ
k−1|k (resp. q̃λk−1L

θ
k−1h/q̃

λ
k−1L

θ
k−11),

standard computations show that qλk−1:k (resp. qλ,θk−1:k) is a multivariate Gaussian distributions with known mean
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Mλ
k (resp. Mλ,θ

k ) and variance Vλk (resp. Vλ,θk ). In this case, for all bounded and measurable function h,∣∣∣∣∣q̃λk qλk−1|kh−
q̃λk−1L

θ
k−1h

q̃λk−1L
θ
k−11

∣∣∣∣∣ 6 2
∥∥∥qλk−1:k − q

λ,θ
k−1:k

∥∥∥
tv
‖h‖∞,

where ‖ · ‖tv is the total variation distance. Therefore, we can choose ck(θ, λ) = 2‖qλk−1:k − qλ,θk−1:k‖tv.
It remains to use the fact that qλk−1:k and qλ,θk−1:k are Gaussian distributions, that ‖qλk−1:k − qλ,θk−1:k‖tv 6

(KL(qλk−1:k‖q
λ,θ
k−1:k)/2)1/2 and that we have an explicit expression of the KL divergence between Gaussian

distributions which yields

ck(θ, λ) ∝
(

log
∣∣∣Vλ,θk ∣∣∣ / ∣∣Vλk ∣∣+

(
∆λ,θ
k

)>
(Vλ,θk )−1

(
∆λ,θ
k

)
+ Tr

(
(Vλ,θk )−1Vλk

)
− d
)−1/2

,

where ∆λ,θ
k = Mλ

k −Mλ,θ
k , Tr is the Trace operator and ∝ means up to a multiplicative constant independent of

θ and λ.

About H2 This assumption is rather strong, but typically satisfied in models where the state space is compact.
This assumption is classic in the SMC literature in order to obtain quantitative bounds for errors or variance of
estimators.

4 Recursive backward variational learning with amortizing networks
Written as in (5), the backward factorization of the variational family only imposes dependencies between the
latent states. This minimal setup, sufficient to derive the theoretical results above, leaves a lot of freedom for
implementation.

4.1 Amortized parametrization of the variational distribution
First, suppose that we want to learn the variational parameters by computing ELBO gradients on sequences
of fixed length n. Implementing (5) requires to define n + 1 distributions (qλk−1|k)0≤k≤n and qλn. A direct
approach would be to freely parameterize these distributions. In this case, the number of parameters to learn
would grow linearly with n, which is prohibitive for long sequences. To reduce the computational burden, a
popular alternative is amortized inference, which in this context amounts to output the parameters of each kernel
via a common highly expressive mapping, – typically, a DNN which itself holds a fixed number of parameters.

For this purpose, an appealing property of the backward kernels of the true data model is the incremental
dependency on the observations (see Section 2.3). Indeed, the backward distribution of xk−1 depends on the
observations up to time Y0:k−1 (through the filtering distribution at time k − 1) and on the state xk. Our first
step is then to encode sequentially the dependencies on the observations through a recurrent neural network
fλk−1(y0:k−1), such that parameters of qλk−1|k are given by a non linear function gλk

(
fλk−1(y0:k−1), xk

)
. Finally,

parameters of qλn are given by a last non linear function fλn (y0:n), that typically would depend on fλn−1(y0:n−1).

4.2 Variational recursions and online computation of the ELBO
In the setting presented above an interesting implementation choice is when the RNN fλk outputs the parameters
of a p.d.f. The RNN therefore indirectly outputs a sequence of distributions

(
qλk
)

16k6n
. These distributions can

be used at each time k to define online variational distributions that factorize as in (5) (replacing qλn by qλk ). From
there, the ELBO can be computed online. Indeed, note that at time n, using the tower property of expectations,
L(θ, λ) = Eqλn [Tn(Xn)] where Tn(Xn) = Eqλ0:n [log pθ0:n(X0:n, Y0:n)/qλ0:n(X0:n)|Xn]. This statistic can be

6



computed recursively, since, for all k ≥ 0,

Tk(Xk) = Eqλ
k−1|k

[
Tk−1(Xk−1) + log

`θk(Xk−1, Xk)qλk−1(Xk−1)

qλk−1|k(Xk, Xk−1)qλk (Xk)

∣∣∣∣∣Xk

]
. (7)

A more detailed derivation is provided in the appendix. An important point is that contrary to [Campbell et al., 2021],
we only assume that each of the joint distributions (qλ0:k)k≥0 is an approximation of (φθ0:k)k≥0. Interestingly,
H1 hints that best results may be obtained by actually enforcing that (qλk )k≥0 and (qλk−1|k)k≥0 approximate
the densities of the true filtering and backward distributions. Still, we find that competitve results are obtained
without further regularization, even in the amortized setting where the global set of parameters is optimized
jointly over time.

5 Numerical experiments

5.1 Linear Gaussian SSMs and equality in H1
First, we want to study empirically the special case where the variational family contains the true model. This
can be achieved when the true state-space model is a linear and Gaussian SSM, i.e. when χθ (resp. mθ

k(Xk, ·)
and gθk(Xk, ·)) are densities of Gaussian distributions with mean A0 (resp. AXk and BXk) and variance Q0

(resp. Q and R), such that θ = (A0, Q0, A,Q,B,R). If we define (qλk−1|k)k≤n and qλn as the backward and
filtering densities of a similar model with parameters λ = (Ā0, Q̄0, Ā, Q̄, B̄, R̄), then qλ0:n = φθ0:n for λ = θ.
When this is achieved, Section 3.1 shows that ck(θ, λ) = 0 for all k, suggesting that the additive error vanishes.
In this setting, the form and parameters of the variational backward and filtering kernel is given analytically via
the Kalman filtering and smoothing recursions, thus the computations of φθ0:n, qλ0:n and all expectations in (7) are
fully tractable. In this example, the parameter θ is known and λ is trained in the case d = 1 and using samples of
n = 64 observations. The training curve is given in Figure 1a.

In Figure 1b, we depict the controlled term of Proposition 3.1 in the case of state estimation, i.e. for
h0:n : x0:n 7→

∑n
k=0 xk. This is done by sampling J = 20 observation sequences (Y j0:n)1≤j≤J of length

n = 2000 using the true model with parameter θ. This clearly illustrates the linear dependency on the number
of observations. We also find that the error rates can vary greatly between parameters λ1 6= λ2, even when
|L(θ, λ1) − L(θ, λ2)| is small. This is observed by computing the errors for different stopping points of the
optimization. Sampling distinct sequences (Y j0:n)1≤j≤J highlights the dependency of (ck(θ, λ))0≤k≤n on the
observations. In the appendix, we provide more implementation details, as well as additional figures for the
errors on the marginal distributions.

5.2 Expressive capabilities of backward variational families in nonlinear Gaussian
SSMs

We now consider a generative model where the prior distribution and transition kernels are still linear, but
gθk(Xk, ·) is the Gaussian probability density with mean hθ(Xk) and variance R, hθ being a nonlinear mapping
commonly referred to as the decoder. In this setting, [Hälvä et al., 2021] showed for the first time that no
assumptions are required on hθ for identifiable state estimation. The authors obtained promising results via a
variational approximation qλ0:n which can be analytically marginalized and therefore allows fast inference. We
briefly explain how this variational approximation can be generalized in our context. For all k ≥ 0, qλk (resp.
qλk−1|k(Xk, ·)) is a Gaussian probability density with mean µk (resp.

←−
AkXk +←−a k) and variance Σk (resp.

←−
Σ k).

Moreover, a variational prior χ̄λ and variational transition kernels m̄λ
k(Xk, ·) are introduced as Gaussian densities

with mean Ā0 (resp. ĀXk) and variance Q̄0 (resp. Q̄) which enforces hidden dynamics of the variational model
to have the same form as the data model. We then suppose that:

• (µk,Σk) = rλ(uk, yk), where uk = (Āµk−1, ĀΣk−1Ā
T + Q̄) and rλ is a mapping to be specified below.

• qλk−1|k(Xk, Xk−1) ∝ m̄λ
k(Xk−1, Xk)qλk (Xk).
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(b) Smoothing errors between the variational model and the
true model, i.e.

∣∣qλ0:nh0:n−φθ0:nh0:n

∣∣ for h̃k(xk, xk+1) = xk;

Figure 1: ELBO during the training of λ (left). Additive smoothing error for a linear Gaussian variational model
at successive stopping points of the optimization (blue, green and red), on J = 20 different observation sequences
(right).

The linear dynamics of m̄λ
k(Xk, ·) prescribe Kalman-type predict and backward updates, while uk are the

parameters of an intermediate predictive Gaussian distribution. The mapping rλ then performs the Bayesian
update step and can be of any form. In [Hälvä et al., 2021], the authors do not use of a generic form for this update
step but follow [Johnson et al., 2016] and impose that µk,Σk is the result of the conjugation of two Gaussian
distributions: the predictive whose parameters are uk, and a variational approximation of xk 7→ gθk(xk, yk)
whose parameters are given by a DNN fλenc (referred to as the encoder) which takes only yk as input. While
this form is required for tractable inference in their framework (as they build qλ0:n from it with the sum-product
algorithm for SSMs) our backward formulation does not require this, and we show that higher performance
can be obtained by letting a DNN rλ learn a more realistic conjugation of new observations with the running
variational filtering estimates.

In this context, the true smoothing distribution φθ0:n has no analytic form. As a surrogate for this ground
truth, we use the particle-based Forward Filtering Backward Simulation (FFBSi) algorithm. The FFBSi outputs
trajectories (here, 1000 samples) approximately sampled from the true target smoothing distributions using
sequential importance sampling and resampling steps. This algorithm is also based on a forward-backward
decomposition of the smoothing distributions (see [Douc et al., 2014], Chapter 11, for details). We remain in the
case d = 1 to ensure that this approximation is good. We provide additional implementation details and figures
in the appendix.

In the case where hθ is a non-injective mapping, we compare the additive error with respect to the FFBSi
(i.e. the left hand term of equation (6)) obtained for our parametrization and the one of [Hälvä et al., 2021]
for h0:n : x0:n 7→

∑n
k=0 xk. Figure 2 shows that our method reduces significantly this error. In Figure 3, we

report the quality of the FFBSi estimator in the form of the sample mean and variance of its error against the
true states. We then report the final additive smoothing errors of the variational methods after processing all
of the n = 500 observations of the evaluation sequences. The results confirm our intuition that our framework
leads to more expressive variational distributions, especially when the distribution of Xk given Yk admits several
modes. Indeed, the framework of [Hälvä et al., 2021] approximates xk 7→ pθ(xk|yk) by an encoder fλenc(yk) that
outputs a Gaussian density. In contrast, our parametrization only assumes Gaussianity for the variational filtering
distribution and does not attempt to solve the inverse problem of modeling the distribution of Xk given Yk
without the dynamics. Therefore, here, the backwards formulation allows to conserve analytical marginalisation
of qλ0:n without modeling the previous distribution as an intermediate step, which increases performance.
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0.3Figure 2: Smoothing errors
∣∣qλ0:nh0:n − φθ0:nh0:n

∣∣ for h̃k(xk, xk+1) = xk, with our variational approach (blue
dots) and that of [Hälvä et al., 2021] (green stars). Experiments were produced on 5 independent (simulated)
data set, hence the 5 replicates.

Seq. Mean err.FFBSi Var err.FFBSi Smooth err.FFBSi/Johnson Smooth err.FFBSi/Ours

0 0.05 0.01 4.95 0.73
1 0.04 0.00 3.80 0.97
2 0.05 0.01 4.00 0.27
3 0.03 0.00 3.67 0.97
4 0.07 0.02 6.63 3.61

Figure 3: First column: empirical mean of {(x̂k,FFBSi − x∗k)2}06k6n where x∗k is the true state and x̂k,FFBSi
is the marginal mean of φθ0:n at time k provided by the FFBSi algorithm. Second column: empirical variance of
the same quantity. Third and fourth column: smoothing errors

∣∣qλ0:nh0:n − φθ0:nh0:n

∣∣ for h̃k(xk, xk+1) = xk of
the two compared methods at time n = 500 when φθ0:n is given by the FFBSi algorithm.
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6 Discussion
We have provided the first bound on the additive smoothing error in the context of sequential variational inference
using a backward factorization. We have empirically presented clear cases to highlight the practical consequences
of this theoretical result. We have also shown that existing methods can be reframed into filtering and backward
recursions: in this case, we found that more flexible updates are available without increasing the computational
workload. Some limitations of our work and challenges for further research are the following.

• Our theoretical result sheds light on important properties of sequential variational methods, but the
assumptions involved are not fully constructive, i.e. we believe that further works may provide more
explicitly the form of the optimal variational factors under given parametric families of the variational
kernels.

• Empirically, we have restricted to the case where analytical computations are available to marginalize the
joint variational smoothing distribution. More computationally heavy approaches requiring Monte Carlo
sampling for marginalisation are possible, and may further improve the state estimation results shown in
Section 5.

• Since the DNNs involved in our implementation take the estimations of the current dynamics as input, we
find that training in our context suffers more easily from the drawbacks of gradient descent in recurrent
models, e.g. it is more amenable to vanishing / exploding gradients.

As a novel variational approach for sequential data, this work has potential applications in many areas. This
work does not present any foreseeable societal consequence.
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A Proof of Proposition 3.1
Following [Gloaguen et al., 2022], write

qλ0:nhn − φθ0:nhn =

n−1∑
k=0

(
qλ0:nh̄k|n − φθ0:nh̄k|n

)
,

where, for each k ∈ {0, n− 1}, h̄k|n is defined on (Rd)n+1 by

h̄k|n : x0:n 7→ h̃k(xk, xk+1) . (8)
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Define, for each n ∈ N and m ∈ {0, n}, the kernel

Lθm,n(x′0:m,dx0:n) := δx′0:m(dx0:m)

n−1∏
`=m

Lθ` (x`,dx`+1) (9)

on (Rd)n+1 × B((Rd)n+1), with the convention
∏n−1
`=n f(`) = 1 . This yields the following decomposition:

qλ0:nh̄k|n − φθ0:nh̄k|n =

n∑
m=1

(
q̃λ0:mLθm,nh̄k|n

q̃λ0:mLθm,n1
−
q̃λ0:m−1L

θ
m−1,nh̄k|n

q̃λ0:m−1L
θ
m−1,n1

)

+
q̃λ0L

θ
0,nh̄k|n

q̃λ0L
θ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

,

where q̃λ0:m = q̃λm
∏m
k=1 q

λ
k−1|k, (1 ≤ m ≤ n), q̃λ0:0 = q̃λ0 , and since χθgθ0L

θ
0,nh̄k|n/χ

θgθ0L
θ
0,n1 = φθ0:nh̄k|n.

For each n ∈ N, define Lλ,θ
0,n(x′0,dx0:n) := δx′0(dx0)

∏n−1
`=0 Lθ` (x`,dx`+1) and for m ∈ {1, n},

Lλ,θ
m,n(x′m,dx0:n) := δx′m(dxm)

m−1∏
`=0

qλk|k+1(x`+1,dx`)

n−1∏
`=m

Lθ` (x`,dx`+1), (10)

on Rd × B((Rd)n+1). As for all m ∈ {1, n} and measurable function h, q̃λ0:mLθm,nh = q̃λmLλ,θ
m,nh,

q̃λ0:mLθm,nh̄k|n

q̃λ0:mLθm,n1
−
q̃λ0:m−1L

θ
m−1,nh̄k|n

q̃λ0:m−1L
θ
m−1,n1

=
q̃λmLλ,θ

m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

.

Therefore,

qλ0:nh̄k|n − φθ0:nh̄k|n =

n∑
m=1

(
q̃λmLλ,θ

m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

)

+
q̃λ0L

θ
0,nh̄k|n

q̃λ0L
θ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

. (11)

By Lemma B.1, ∣∣∣∣∣ q̃λ0Lθ0,nh̄k|nq̃λ0L
θ
0,n1

−
φθ0L

θ
0,nh̄k|n

φθ0L
θ
0,n1

∣∣∣∣∣ 6 2c0(θ, λ)
σ+

σ−
‖h̃k‖∞ .

Consider now the error term at time m > 0 in (11). Define the kernel

L̃λ,θm,n(x′m−1, x
′
m,dx0:n) := δx′m−1

(dxm−1)

m−2∏
`=0

qλ`|`+1(x`+1,dx`)δx′m(dxm)

n−1∏
`=m

Lθ` (x`,dx`+1), (12)

on (Rd)2 × B((Rd)n+1) so that for all xm−1, xm ∈ Rd,

L̃λ,θm,nh̄k|n(xm−1, xm) =


qλm−2|m−1 . . . q

λ
k|k+1h̃k(xm−1)Lθm,n1(xm) if k ≤ m− 2 ,

h̃k(xm−1, xm)Lθm,n1(xm) if k = m− 1 ,

Lθm,nh̃k(xm) if k ≥ m.

Then, write

q̃λmLλ,θ
m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

=
q̃λmq

λ
m−1|mL̃

λ,θ
m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

θ
m−1L̃λ,θm,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

.
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Let 1 ≤ m ≤ n and x∗m−1 and x∗m be arbitrary elements in Rd. For k 6= m− 1, define

L∗,λ,θm,n h̄k|n(xm−1, xm) =
L̃λ,θm,nh̄k|n(xm−1, xm)

L̃λ,θm,n1(xm−1, xm)
−
L̃λ,θm,nh̄k|n(x∗m−1, x

∗
m)

L̃λ,θm,n1(x∗m−1, x
∗
m)

, (13)

=
L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
−
L̃λ,θm,nh̄k|n(x∗m−1, x

∗
m)

Lθm,n1(x∗m)

and for k = m − 1, L∗,λ,θm,n h̄k|n(xm−1, xm) = h̃k(xm−1, xm). By Lemma B.2,
∥∥L∗,λ,θm,n h̄k|n

∥∥
∞ can be upper

bounded and note that

q̃λmLλ,θ
m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

=
q̃λmq

λ
m−1|m

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
q̃λmLλ,θ

m,n1
−
q̃λm−1L

θ
m−1

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
q̃λm−1L

λ,θ
m−1,n1

.

Define now the normalized measure φ̃λmh by q̃λm−1L
θ
m−1h/q̃

λ
m−1L

θ
m−11, so that

q̃λmLλ,θ
m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

=
q̃λmq

λ
m−1|m

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
q̃λmLλ,θ

m,n1
−
φ̃λm

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
φ̃λmL̃

λ,θ
m,n1

=
q̃λmq

λ
m−1|m

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
− φ̃λm

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
φ̃λmL̃

λ,θ
m,n1

+
q̃λmq

λ
m−1|m

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
q̃λmLλ,θ

m,n1

(
φ̃λmL̃λ,θm,n1− q̃λmLλ,θ

m,n1

φ̃λmL̃
λ,θ
m,n1

)
.

Then, using that ∣∣∣∣∣∣
q̃λmq

λ
m−1|m

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
q̃λmLλ,θ

m,n1

∣∣∣∣∣∣ 6 ∥∥L∗,λ,θm,n h̄k|n
∥∥
∞ ,

and by H1, ∣∣∣∣∣ φ̃λmL̃λ,θm,n1 − q̃λmLλ,θ
m,n1

φ̃λmL̃
λ,θ
m,n1

∣∣∣∣∣ 6 cm(θ, λ)

∥∥∥L̃λ,θm,n1∥∥∥∞
φ̃λmL̃

λ,θ
m,n1

,∣∣∣∣∣∣
q̃λmq

λ
m−1|m

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
− φ̃λm

{
L∗,λ,θm,n h̄k|nL̃λ,θm,n1

}
φ̃λmL̃

λ,θ
m,n1

∣∣∣∣∣∣ 6 cm(θ, λ)

∥∥L∗,λ,θm,n h̄k|n
∥∥
∞

∥∥∥L̃λ,θm,n1∥∥∥∞
φ̃λmL̃

λ,θ
m,n1

,

yields ∣∣∣∣∣ q̃λmLλ,θ
m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

∣∣∣∣∣ 6 2cm(θ, λ)

∥∥L∗,λ,θm,n h̄k|n
∥∥
∞

∥∥∥L̃λ,θm,n1∥∥∥∞
φ̃λmL̃

λ,θ
m,n1

.

Note also that by H2,
φ̃λmL̃λ,θm,n1 > σ−µL

θ
m+1,n−11 ,
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and for all xm ∈ Rd,
L̃λ,θm,n1(xm) 6 σ+µL

θ
m+1,n−11 .

Therefore, ∣∣∣∣∣ q̃λmLλ,θ
m,nh̄k|n

q̃λmLλ,θ
m,n1

−
q̃λm−1L

λ,θ
m−1,nh̄k|n

q̃λm−1L
λ,θ
m−1,n1

∣∣∣∣∣ 6 2
σ+

σ−
cm(θ, λ)

∥∥L∗,λ,θm,n h̄k|n
∥∥
∞ .

The proof is completed using Lemma B.2.

B Technical results
Lemma B.1. Assume that H1 and H2 hold. Then for all, θ ∈ Θ, λ ∈ Λ, n ≥ 1, k ∈ {0, n− 1}, bounded and
measurable function h̃k, ∣∣∣∣∣ q̃λ0Lθ0,nh̄k|nq̃λ0L

θ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

∣∣∣∣∣ ≤ 2c0(θ, λ)
σ+

σ−
‖h̃k‖∞ ,

where h̄k|n is defined in (8).

Proof. Consider the following decomposition of the first term:

q̃λ0L
θ
0,nh̄k|n

q̃λ0L
θ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

=
q̃λ0L

θ
0,nh̄k|n

q̃λ0L
θ
0,n1

−
φθ0L

θ
0,nh̄k|n

φθ0L
θ
0,n1

,

=
q̃λ0L

θ
0,nh̄k|n − φθ0Lθ0,nh̄k|n

q̃λ0L
θ
0,n1

+
φθ0L

θ
0,nh̄k|n

φθ0L
θ
0,n1

φθ0L
θ
0,n1 − q̃λ0Lθ0,n1
q̃λ0L

θ
0,n1

,

where φθ0 the filtering distribution at time 0, i.e the law defined as φθ0h = χθgθ0h/χ
θgθ0 . Then, by H1,∣∣∣∣∣ q̃λ0Lθ0,nh̄k|nq̃λ0L

θ
0,n1

−
φθ0L

θ
0,nh̄k|n

φθ0L
θ
0,n1

∣∣∣∣∣ 6 2c0(θ, λ)
‖Lθ0,n1‖∞‖h̄k|n‖∞

q̃λ0L
θ
0,n1

.

By H2, for all x0 ∈ Rd,

Lθ0,n1(x0) =

∫
`0,θ(x0, x1)µ(dx1)Lθ1,n1(x1) 6 σ+

∫
µ(dx1)Lθ1,n1(x1)

and
q̃λ0L

θ
0,n1 =

∫
q̃λ0 (dx0)`0,θ(x0, x1)µ(dx1)Lθ1,n1(x1) > σ−

∫
µ(dx1)Lθ1,n1(x1) ,

which yields ∣∣∣∣∣ q̃λ0Lθ0,nh̄k|nq̃λ0L
θ
0,n1

−
φθ0L

θ
0,nh̄k|n

φθ0L
θ
0,n1

∣∣∣∣∣ 6 2c0(θ, λ)
σ+

σ−
‖h̃k‖∞ .

Lemma B.2. Assume that H2 holds. Then for all n ∈ N, θ ∈ Θ, λ ∈ Λ, m ∈ {1, n}, k ∈ {0, n − 1},
xm−1, xm, x

∗
m−1, x

∗
m in Rd, bounded and measurable function h̃k,

∣∣L∗,λ,θm,n h̄k|n(xm−1, xm)
∣∣ ≤


‖h̃k‖∞ρm−k−1 if k ≤ m− 2 ,

‖h̃k‖∞ if k = m− 1 ,

‖h̃k‖∞ρk−m+1 if k ≥ m.

where ρ = 1− σ−/σ+ and h̄k|n is defined in (8) and L∗,λ,θm,n h̄k|n is defined in (13).
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Proof. The proof is adapted from [Gloaguen et al., 2022, Lemma D.3] and given here for completeness. Assume
first that k ≤ m− 2. Then,

L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
= qλm−2|m−1 . . . q

λ
k|k+1h̃k(xm−1)

Therefore,

L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
−
L̃λ,θm,nh̄k|n(x∗m−1, x

∗
m)

Lθm,n1(x∗m)
= (δxm−1

− δx∗m−1
)qλm−2|m−1 . . . q

λ
k|k+1h̃k .

By H2, the Dobrushin coefficient of the variational backward kernels is upper-bounded by 1− σ−/σ+ so that∣∣∣∣∣ L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
−
L̃λ,θm,nh̄k|n(x∗m−1, x

∗
m)

Lθm,n1(x∗m)

∣∣∣∣∣ 6
(

1− σ−
σ+

)m−k−1 ∥∥∥h̃k∥∥∥
∞
.

In the case where k = m− 1,
L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
= h̃k(xk, xk+1) ,

so that the result is straightforward. Assume now first that k ≥ m. Note that

L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
=

Lθm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
=
F θm|n . . . F

θ
k|nh̄k|n(xm) · Lθm,n1(xm)

Lθm,n1(xm)
,

where the forward kernel Fθ`|n is given by

Fθ`|nh(x`) =
Lθ` (hL

θ
`+1,n−11)(x`)

Lθ`,n−11(x`)
.

By H2,
Fθ`|nh(x`) >

σ−
σ+

µ`|nh ,

with µ`|nh = µ(hLθ`+1,n−11)(x`)/µL
θ
`+1,n−11. Therefore, the Dobrushin coefficients of the kernels F θ`|n are

also upper-bounded by 1− σ−/σ+. On the other hand,

L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
−
L̃λ,θm,nh̄k|n(x∗m−1, x

∗
m)

Lθm,n1(x∗m)
= (λm|n − λ′m|n)Fθm|n . . .F

θ
k|nh̄k|n,

where λm|nh = δxmhL
θ
m,n1/δxmL

θ
m,n1 and λ′m|nh = δx′mhL

θ
m,n1/δx′mL

θ
m,n1. This yields∣∣∣∣∣ L̃λ,θm,nh̄k|n(xm−1, xm)

Lθm,n1(xm)
−
L̃λ,θm,nh̄k|n(x∗m−1, x

∗
m)

Lθm,n1(x∗m)

∣∣∣∣∣ 6
(

1− σ−
σ+

)k−m+1 ∥∥∥h̃k∥∥∥
∞
,

which concludes the proof.

C Deriving the recursive form of the ELBO
To obtain a recursion on Tn(Xn) = Eqλ0:n [log pθ0:n(X0:n, Y0:n)/qλ0:n(X0:n)|Xn], we notice, as in [Campbell et al., 2021],
that

qλ0:k(x0:k) = qλ0:k−1(x0:k−1)q̄λk|k−1(xk−1, xk) ,
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where q̄λk|k−1(xk−1, xk) = qλk−1|k(xk, xk−1)qλk (xk)/qλk (xk−1). The function xk 7→ q̄k|k−1(xk−1, xk) is not
the density of a Markov kernel but allows an alternate decomposition of the variational family forward in
time. Since the density of the complete data model x0:n 7→ pθ0:n(x0:n, Y0:n) also factorizes via the densities
xk 7→ `θk(xk−1, xk) of the forward kernels, the statistic Tn(Xn) writes:

Tn(Xn) = Eqλ0:n

[
log

χθ(X0)gθ0(X0)
∏n
k=1 `

θ
k(Xk−1, Xk)

qλ0 (X0)
∏n
k=1 q̄

λ
k|k−1(Xk−1, Xk)

∣∣∣∣∣Xn

]
.

By applying again the tower property of expectations, this yields:

Tn(Xn) = Eqλ0:n

[
Eqλ0:n

[
log

χθ(X0)gθ0(X0)
∏n
k=1 `

θ
k(Xk−1, Xk)

qλ0 (X0)
∏n
k=1 q̄

λ
k|k−1(Xk−1, Xk)

∣∣∣∣∣Xn−1, Xn

]∣∣∣∣∣Xn

]

= Eqλ0:n

[
Eqλ0:n−1

[
log

χθ(X0)gθ0(X0)
∏n−1
k=1 `

θ
k(Xk−1, Xk)

qλ0 (X0)
∏n−1
k=1 q̄

λ
k|k−1(Xk−1, Xk)

∣∣∣∣∣Xn−1

]

+ log
`θn(Xn−1, Xn)

q̄λn|n−1(Xn−1, Xn)

∣∣∣∣∣Xn

]
.

The inner expectation is Tk−1(Xk−1) by definition. Since all terms in the outer expectation are only functions of
Xn−1, the expectation under qλ0:n reduces to an expectation under the backward kernel qλn−1|n, i.e.

Tn(Xn) = Eqλ
n−1|n

[
Tn−1(Xn−1) + log

`θn(Xn−1, Xn)

q̄λn|n−1(Xn−1, Xn)

∣∣∣∣∣Xn

]
,

which is the recursion proposed in (7).

D Experiment details

D.1 Hardware configuration
We ran all experiments on a machine with the following specifications.

• CPUs: 4x Intel(R) Xeon(R) Gold 6154 (total 72 cores, 144 threads).

• RAM: 260 Go.

No GPU was used.

D.2 Linear Gaussian models
We provide here additional figures for the experiments of Section 5.1. Figure 4 shows the marginal errors across
time for the variational models for the different stopping points of Figure 1. Table 5 shows the accuracy of the
optimal Kalman smoothing (with true parameters θ) w.r.t the true states, as well as the numerical values for the
smoothing errors at the three stopping points of the optimization.

We also provide examples of smoothed states for the multivariate case. In Figure 6, we plot the paths of an
evaluation sequence where the state space is of dimension 3 and the observation space is of dimension 4. We
visualise the results by marginalizing φθ0:n q

λ
0:n on each dimension of the state space (and for each timestep).

Note that here we do not learn the emission matrix and the variances to avoid having to fix indeterminacies of the
multidimensional case (scaling and permutations).
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Figure 4: Marginal errors between the variational model and the true model at three different points of the
optimization: 60 epochs (blue), 80 epochs (green) and 100 epochs (red).

D.3 Nonlinear models
Here we provide additional details on the experiments of section 5.2.

• For the nonlinear emission function hθ of the data model, we used a single-layer perceptron with a tanh
activation function. We found that this mapping is sufficiently nonlinear to evaluate and compare the
models, but we further apply the cos function to the output to ensure noninjectivity.

• For the parameterization of the method based on [Johnson et al., 2016], the mapping fλenc is a multi-layer
perceptron (MLP) with two hidden layers of 16 neurons and a tanh activation function. The activation
function is not applied to the output layer to ensure that the values can exceed values outside the range
[−1, 1], being natural parameters of Gaussian distributions. The output of the network is split into two
natural parameters η1 and η2, the latter being constrained to strictly negative values by applying the softplus
function x 7→ − log(1 + ex). We use Xavier initialization for the matrix parameters, and random normal
initialisation for the bias parameters.

• For the parameterization of rλ in our method, we use the exact same MLP as fλenc described above but
take the predictive parameters uk as additinal input (we denote it f

′λ
enc). We add a forget gate to mitigate

vanishing / exploding gradient issues, where the forget state is computed by a single-layer perceptron. If
we denote by s this forget layer, then

rλ(uk, yk) = s(uk, yk) ∗ uk + [1− s(uk, yk)] ∗ f
′λ
enc(uk, yk) ,

where ∗ is the element-wise product.
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Seq nb. Mean err.θ Var err.θ Smoothing err.θ/λ60
Smoothing err.θ/λ80

Smoothing err.θ/λ100

0 0.001432 0.000004 0.954874 0.054593 0.000232
1 0.001432 0.000004 0.914786 0.052843 0.000227
2 0.001466 0.000004 1.039261 0.058327 0.000243
3 0.001420 0.000004 0.953855 0.054565 0.000232
4 0.001394 0.000004 0.943506 0.054108 0.000231
5 0.001473 0.000004 1.088147 0.060461 0.000249
6 0.001445 0.000004 0.944956 0.054160 0.000231
7 0.001415 0.000004 0.994196 0.056330 0.000237
8 0.001390 0.000004 0.849939 0.050003 0.000219
9 0.001404 0.000004 0.990084 0.056150 0.000237
10 0.001408 0.000004 0.959414 0.054805 0.000233
11 0.001378 0.000004 0.883776 0.051488 0.000223
12 0.001412 0.000004 0.952297 0.054494 0.000232
13 0.001405 0.000004 0.793487 0.047527 0.000212
14 0.001497 0.000005 0.996393 0.056432 0.000237
15 0.001495 0.000004 0.893889 0.051933 0.000225
16 0.001564 0.000005 0.916225 0.052907 0.000227
17 0.001406 0.000004 0.794842 0.047594 0.000212
18 0.001386 0.000004 0.968786 0.055223 0.000234
19 0.001373 0.000004 0.970476 0.055282 0.000234

Figure 5: First column: empirical mean of {(x̂k,θ − x∗k)2}06k6n where x∗k is the true state and x̂k,θ is the
marginal mean of φθ0:n at time k provided by Kalman smoothing with true parameters θ. Second column:
empirical variance of the same quantity. Third, fourth and fifth columns: smoothing errors

∣∣qλ0:nh0:n − φθ0:nh0:n

∣∣
for h̃k(xk, xk+1) = xk at n = 2000, when φθ0:n is given via Kalman smoothing with the true parameters θ and
qλ0:n is given via Kalman smoothing with parameters λ selected at epochs 60,80 and 100. Each line is corresponds
to one observation sequence in (Y j0:n)1≤j≤J , J = 20.
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Figure 6: Example of smoothed states when the dimension of the state space is 3 and the dimension of the
observations is 4. Left column: component-wise (from top to bottom) smoothed states with true parameters θ.
Right column: same thing with learnt parameters λ. Red stars: true state components. Blue dots: smoothed
marginal means of each component. Blue vertical lines: 95% confidence regions built from the smoothed
marginal variances of each component. The horizontal axis is the time axis.
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