
HAL Id: hal-03683608
https://hal.science/hal-03683608v1

Preprint submitted on 31 May 2022 (v1), last revised 8 Sep 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The robust cyclic job shop problem
Idir Hamaz, Laurent Houssin, Sonia Cafieri

To cite this version:
Idir Hamaz, Laurent Houssin, Sonia Cafieri. The robust cyclic job shop problem. 2022. �hal-
03683608v1�

https://hal.science/hal-03683608v1
https://hal.archives-ouvertes.fr

The robust cyclic job shop problem

Idir Hamaza, Laurent Houssina,b,∗, Sonia Cafieric

aLAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
bISAE-SUPAERO, Université de Toulouse, Toulouse, France
cENAC, Université de Toulouse, F-31055 Toulouse, France

Abstract

This paper deals with the cyclic job shop problem where the task durations

are uncertain and belong to a polyhedral uncertainty set. We formulate

the cyclic job shop problem as a two-stage robust optimization model. The

cycle time and the execution order of tasks executed on the same machines

correspond to the here-and-now decisions and have to be decided before the

realization of the uncertainty. The starting times of tasks corresponding

to the wait-and-see decisions are delayed and can be adjusted after the

uncertain parameters are known. In the last decades, different solution

approaches have been developed for two-stage robust optimization problems.

Among them, the use of affine policies, row and row-and-column generation

algorithms are the most common. In this paper, we propose a branch-and-

bound algorithm to tackle the robust cyclic job shop problem with cycle

time minimization. The algorithm uses, at each node of the search tree,

a robust version of the Howard’s algorithm to derive a lower bound on

the optimal cycle time. Moreover, we design a row generation algorithm

and a column-and-row generation algorithm and compare it to the branch-

and-bound method. Finally, encouraging preliminary results on numerical

experiments performed on randomly generated instances are presented.

Keywords: Scheduling, Cyclic job shop problem, Robust optimization

∗Corresponding author
Email address: houssin@laas.fr (Laurent Houssin)

Preprint submitted to Elsevier May 31, 2022

1. Introduction

Most models for scheduling problems assume deterministic parameters.

In contrast, real world scheduling problems are often subject to many sources

of uncertainty. For instance, activity durations can decrease or increase,

machines can break down, new activities can be incorporated, etc. In this

paper, we focus on scheduling problems that are cyclic and where activity

durations are affected by uncertainty. Indeed, the best solution for a de-

terministic problem can quickly become the worst one in the presence of

uncertainties.

In this work, we focus on the Cyclic Job Shop Problem (CJSP) where

processing times are affected by uncertainty. Several studies have been con-

ducted on the CJSP in its deterministic setting. The CJSP with identical

jobs is studied in [12] and the author shows that the problem is NP-hard

and proposes a Branch-and-Bound algorithm to solve the problem. A more

general CJSP is investigated in [10], where the author proposes a mixed

linear integer programming formulation and presents a Branch-and-Bound

procedure to tackle the problem. A general framework for modeling and

solving cyclic scheduling problems is presented in [4] and different models

for cyclic versions of CJSP are developed . The flexible CJSP, where the

assignment of tasks to machines is a part of the decision, is tackled in [11].

However, a few works consider cyclic scheduling problems under uncertainty.

The cyclic hoist scheduling problem with processing time window constraints

where the hoist transportation times are uncertain has been investigated by

[5]. The authors define a robustness measure for cyclic hoist schedule and

present a bi-objective mixed integer linear programming model to optimize

both the cycle time and the robustness.

Two general frameworks have been introduced to tackle optimization

problems under uncertainty: Stochastic Programming (SP) and Robust Op-

timization (RO). The main difference between the two approaches is that

the Stochastic Programming requires the probability description of the un-

certain parameters while RO does not. In this paper, we focus on the RO

paradigm. More precisely, we model the robust CJSP as a two-stage RO

2

problem where the task durations are uncertain. The cycle time and the

execution order of tasks on the machines corresponding to the here-and-

now decisions have to be decided before the realization of the uncertainty,

while the starting times of tasks corresponding to the wait-and see decisions

are delayed and can be adjusted after the uncertain parameters are known.

In recent years there has been a growing interest in the two-stage RO and

more generally in the multi-stage RO. The two-stage RO is introduced in [2],

referred to as adjustable optimization, to address the over-conservatism of

single stage RO models. Unfortunately, the two-stage RO problems tend to

be intractable [2]. In order to deal with this issue, the use of affine policies

([2]) and decomposition algorithms ([13], [14], [1]) have been proposed.

This paper deals with the CJSP where the task durations are uncer-

tain and belong to a polyhedral uncertainty set. The objective is to find a

minimum cycle time and an execution order of tasks executed on the same

machines such that a schedule exists for each possible scenario in the uncer-

tainty set. To tackle the problem we design a Branch-and-Bound algorithm.

More precisely, at each node of the search tree, we solve a robust Basic

Cyclic Scheduling Problem (BCSP), which corresponds to the CJSP with-

out resource constraints, using a robust version of the Howard’s algorithm

to get a lower bound. We also propose a heuristic algorithm to find an

initial upper bound on the cycle time. Moreover, the proposed approach is

validated through results on numerical experiments performed on randomly

generated instances are provided and compared with other approaches such

as row generation and row and column generation.

This paper is structured as follows. In Section 2, we present both the

Basic Cyclic Scheduling Problem and the Cyclic Job Shop Problem in their

deterministic case and introduce the polyhedral uncertainty set considered

in this study. Section 3.1 describes a Branch-and-Bound (B&B) procedure

to solve the robust CJSP. Numerical experiments performed on randomly

generated instances are reported and discussed in Section 4. Finally, some

concluding remarks and perspectives are drawn in Section 5.

3

2. Cyclic scheduling problems and their robust counterpart

In this section, we first introduce the Basic Cyclic Scheduling Problem

which corresponds to the CJSP without resource constraints. After present-

ing the deterministic version of this problem we present the uncertainty set

that we consider in this paper and recall recent work on a robust version of

BCSP. This problem represents a basis for the Branch-and-Bound method

designed for solving the robust CJSP. Next, we present the CJSP in its de-

terministic case. Finally, we present the uncertainty set that we consider in

this paper and we formulate the CJSP with uncertain processing times as a

two-stage robust optimization problem.

2.1. Basic Cyclic Scheduling Problem (BCSP) and Robust Basic Cyclic Schedul-

ing Problem (RBCSP)

Let T = {1, ..., n} be a set of n generic operations. Each operation i ∈ T
has a processing time pi and must be performed infinitely often. We denote

by < i, k > The kth occurrence of the operation i and by t(i, k) the starting

time of < i, k >.

The operations are linked by a set P of precedence constraints (uniform

constraints) given by

t(i, k) + pi 6 t(j, k +Hij), ∀(i, j) ∈ P, ∀k ≥ 1, (1)

where i and j are two generic tasks and Hij is an integer representing the

depth of recurrence, usually referred to as height.

Furthermore, two successive occurrences of the same task i are not al-

lowed to overlap. This constraint corresponds to the non-reentrance con-

straint and can be modeled as a uniform constraint with a height Hii = 1.

A schedule S is an assignment of starting time t(i, k) for each occurrence

< i, k > of tasks i ∈ T such that the precedence constraints are met. A

schedule S is called periodic with cycle time α if it satisfies

t(i, k) = t(i, 0) + αk, ∀i ∈ T , ∀k ≥ 1. (2)

4

For the sake of simplicity, we denote by ti the starting time of the occur-

rence < i, 0 >. Since the schedule is periodic, a schedule can be completely

defined by the vector of the starting times (ti)i∈T and the cycle time α.

The objective of the BCSP is to find a schedule that minimizes the cycle

time α while satisfying precedence constraints. Note that other objective

functions can be considered, such as work-in-process minimization ([10]).

A directed graph G = (T ,P), called uniform graph, can be associated

with a BCSP such that each node v ∈ T (resp. arc (i, j) ∈ P) corresponds

to a generic task (resp. uniform constraint) in the BCSP. Each arc (i, j) ∈ P
is labeled with two values, a length Lij = pi and a height Hij .

We denote by L(c) (resp. H(c)) the length (resp. height) of a circuit

c in graph G, representing the sum of lengths (resp. heights) of the arcs

composing the circuit c. Let us recall the necessary and sufficient condition

for the existence of a feasible schedule.

Theorem 1 ([10]). There exists a feasible schedule if and only if any cir-
cuit of G has a positive height.

A graph that satisfies the condition of Theorem 1 is called consistent.

In the following, we assume that the graph G is always consistent. In other

words, a feasible schedule always exists.

The minimum cycle time is given by the maximum circuit ratio of the

graph G that is defined by

α = max
c∈C

L(c)

H(c)

where C is the set of all circuits in G. The circuit c with the maximum

circuit ratio is called a critical circuit. Thus, the identification of the critical

circuit in graph G allows one to compute the minimum cycle time.

Many algorithms for the computation of the cycle time and the criti-

cal circuit can be found in the literature. A binary search algorithm with

time complexity O(nm
(
log(n) + log(max(i,j)∈E(Lij , Hij))

)
) has been pro-

posed in[8]. An experimental study about maximum circuit ratio algorithms

has been presented in [6]. This study shows that the Howard’s algorithm is

the most efficient among the tested algorithms.

5

Once the optimal cycle time α is determined by one of the algorithms

cited above, the optimal periodic schedule can obtained by computing the

longest path in the graph G = (T ,P) where each arc (i, j) ∈ P is weighted

by pi − αHij .

The BCSP can also be solved by using the following linear program:

min α (3)

s.t. tj − ti + αHij ≥ pi ∀(i, j) ∈ P (4)

where ti represents t(i, 0), i.e., the starting time of the first occurrence of the

task i. Note that the precedence constraints (4) are obtained by replacing

in (1) the expression of t(i, k) given in (2).

2.1.1. Robust version

A robust version of the BCSP, named UΓ-BCSP, is studied in [9]. The

authors consider that the processing time values are uncertain and defined

by the budgeted uncertainty set introduced in [3]. Each processing time pi

of a task i ∈ T belongs to the interval [p̄i, p̄i + p̂i], where p̄i is the nominal

value and p̂i the deviation of the processing time pi from its nominal value.

A binary variable ξi is associated to each operation i ∈ T . The variable ξi

is equal to 1 if the processing time of the operation i takes its worst-case

value, 0 otherwise. The number of processing time deviations that can occur

simultaneously is limited by a parameter Γ called budget of uncertainty

For a given budget of uncertainty Γ, that is a positive integer representing

the maximum number of tasks allowed to take their worst-case values, the

processing time deviations can be modeled through the following uncertainty

set:

UΓ =

{
(ξi)i∈T

∣∣∣ T∑
i=1

ξi ≤ Γ, ξi ∈ {0, 1}

}
and the processing time of a task i ∈ T is described by

pi(ξ) = p̄i + ξip̂i, ∀ξ ∈ UΓ.

We model the Robust Basic Cyclic scheduling problem as a two-stage

6

robust optimization problem. The mathematical formulation of the R-BCSP

is given below.

min α (5)

s.t. tj(ξ)− ti(ξ) + αHij ≥ pi(ξ) ∀(i, j) ∈ P,∀ξ ∈ UΓ (6)

The following theorem characterizes the value of the optimal cycle time

for UΓ-CJSP:

Theorem 2 ([9]). The optimal cycle time α of the UΓ-CJSP is character-
ized by

α = max
c∈C


∑

(i,j)∈c
L̄ij∑

(i,j)∈c
Hij

+ max
ξ:
∑
i∈T ξi≤Γ


∑

(i,j)∈c
L̂ijξi∑

(i,j)∈c
Hij


 ,

where L̄ij = p̄i, L̂ij = p̂i and C is the set of all circuits in G.

The problem is proved to be polynomial and three exact algorithms are

proposed in [9] to solve the problem. Two of them use a negative circuit

detection algorithm as a subroutine and the last one is a Howard’s algo-

rithm adaptation. Results of numerical experiments show that the Howard

algorithm adaptation yields efficient results.

2.2. Cyclic Job Shop Problem (CJSP)

In the present work, we focus on the cyclic job shop problem (CJSP).

Contrary to the BCSP, in the CJSP, the number of machines is lower than

the number of tasks. As a result, a sequence of the operations executed on

the same machine has to be determined. In [10], the authors prove that the

problem is in NP.

Each occurrence of an operation i ∈ T = {1, ..., n} has to be executed,

without preemption, on the machine M(i) ∈ M = {1, ...,m}. Operations

are grouped on a set of jobs J , where a job j ∈ J represents a sequence

of generic operations that must be executed in a given order. To avoid

overlapping between the tasks executed on the same machine, for each pair

7

of operations i and j where M(i) = M(j), the following disjunctive constraint

holds

∀ i, j s.t. M(i) = M(j), ∀k, l ∈ N : t(i, k) ≤ t(j, l)⇒ t(i, k)+pi ≤ t(j, l). (7)

To summarize, the CJSP is defined by

• a set T = {1, ..., n} of n generic tasks,

• a set M = {1, ...,m} of m machines,

• a processing time pi for each task i ∈ T , that has to be executed on

the machine M(i) ∈M,

• a set P of precedence constraints,

• a setD of disjunctive constraints that occur when two tasks are mapped

on the same machine,

• a set J of jobs corresponding to a sequence of elementary tasks. More

precisely, a job Jj defines a sequence Jj = Oj,1 . . . Oj,k of operations

that have to be executed in that order.

The CJSP can be represented by a directed graph G = (T ,P ∪ D),

called disjunctive graph. The sequence of operations that belong to the

same job are linked by uniform arcs in P where the heights are equal to

0. Additionally, for each pair of operations i and j executed on the same

machine, a disjunctive pair of arcs (i, j) and (j, i) occurs. These arcs are

labeled respectively with Lij = pi and Hij = Kij , and Lji = pj and Hji =

Kji where Kij is an occurrence shift variable to determine that satisfies

Kij + Kji = 1 (see [10] for further details). Note that the Kij variables

are integer variables and not binary variables unlike the non-cyclic job shop

problem and the allow an easier formulation of the constraint (7). Two

dummy nodes s and e representing respectively the start and the end of the

pattern are added to the graph. An additional arc (e,s) with Les = 0 and

8

Hes = WIP is considered. The WIP parameter is an integer, called a work-

in-process, and represents the number of occurrences of a job concurrently

executed in the system.

Finally, the CJSP can be solved by the following MIP:

min α (8a)

s.c. tj − ti + αHij ≥ pi ∀(i, j) ∈ P (8b)

tj − ti + αKij ≥ pi
Kij +Kji = 1

Kij ∈ Z

 ∀ (i, j) ∈ D (8c)

ti ≥ 0 ∀i ∈ T (8d)

where (8b) are the precedence constraints (the same as (4)) and (8c) are

the disjunctive constraints that replace (7).

Job J1 J2

Task t1 t2 t3 t4 t5 t6 t7 t8
Duration 3 2 4 2 2 1 3 2
Machine M1 M1 M3 M1 M2 M1 M3 M2

Table 1: Instance data for Example 1.

Example 1. Let us consider an example of a job shop with a set T =
{1, 2, 3, 4, 5, 6, 7, 8} of 8 tasks, 2 jobs, 3 machines and a WIP = 2. The
data are described in Table 1. The job J1 is composed by task 1, 2, 3 and
4 and the job J2 is composed of tasks 5, 6, 7 and 8. The disjunctive graph
associated to this problem is given in figure 1. The solid black lines depict
the uniform constraint and the coloured dashed line indicate the disjunctive
constraints (for the purpose of clarity only the disjunctive edges of Machine
M2 are labelled). Moreover, the Figure 2 represents a non optimal schedule
with α = 9. However, the optimal cycle time is αopt = 8 and the associated
schedule is shown in Figure 3 but it is necessary to mention that several
schedules lead to the same cycle time.

9

s

1 2 3 4

5 6 7 8

e

(0,2)

(0
,0

)

(3,0) (2,0) (4,0)

(2,0)

(0,0)

(2,0) (1,0) (3,0)

(2
,0

)

(2, K58)

(2, K85)

Figure 1: Disjunctive graph associated to instance of Example 1.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

5

6 1

5

M3

M2

M1

α = 9

0 3 6 9 12 15 18 21 24 27 30

Figure 2: A periodic schedule associated with the CJSP instance with WIP = 2.

A lower bound on each occurrence shift value Kij that makes the graph

G consistent can be obtained as follows (see [10], [7]):

K−ij = 1−min{H(µ) |µ is a path from j to i in G = (T ,P ∪ ∅)}. (9)

Since Kij +Kji = 1, we can infer an upper bound:

K−ij ≤ Kij ≤ 1−K−ji . (10)

The objective of the problem is to find an assignment of all the occurrence

shifts: in other words, determining a sequence of the operations mapped to

the same machine such that the cycle time is minimum. Note that, once the

occurrence shifts are determined, the minimum cycle time can be obtained

10

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

1

5

6

7M3

M2

M1

α = 8

0 3 6 9 12 15 18 21 24 27 30

Figure 3: An optimal periodic schedule associated with the CJSP instance with
WIP = 2.

by computing the critical circuit of the associated graph G since the resulting

problem is nothing less than a BCSP.

2.2.1. Robust version

Unlike the BCSP, a robust version of the Cyclic Job Shop Problem has

not been considered in the literature. In the following, we present a robust

version of the CJSP where the processing times of tasks belongs to the

uncertainty set UΓ presented in the Section 2.

Example 2. Figure 4 illustrates the disjunctive graph G associated to the
robust version of the cyclic job shop problem described in Example 2. For the
sake of clarity, we don’t represent the disjunctive edges in this figure. Unlike
the deterministic CJSP, the length of an arc (i, j) belong to an interval
[p̄i, p̄i + p̂i].

Let us consider three different schedules s1, s2 and s3 described by Table
2. All three schedules lead to a cycle time of 8 in nominal conditions (no
deviation of the processing times) and are depicted in Fig. 5. However,
these schedules don’t behave the same way when uncertainties occur. More
precisely, considering Γ = 1, schedule s1 leads to a cycle time of 13 when
ξ8 = 1. In the same conditions, schedule s3 leads to a cycle time of 12 while
schedule s2 has a cycle time of 11 for his one deviation worst-case (ξ3 = 1).
Furthermore, increasing the uncertainty budget to Γ = 2 lead to a cycle time
of 17 (resp. 14 and 14) for schedule s1 (resp. s2 and s3).

Among these 3 schedules, we can conclude that s2 is the most robust one
when considering Γ = 1 and both s2 and s3 are the most robust when Γ = 2
(but with different worst-case scenario). All these results are resumed in the
last columns of Table 2 and in the Figures 6 and 7.

The problem we adress in this study can be casted as follows:

11

K12 K14 K16 K24 K26 K46 K58 K37 αΓ=0 αΓ=1 αΓ=2

s1 0 -1 0 0 1 2 0 1 8 13 17
s2 0 -1 0 -1 1 2 -1 1 8 11 14
s3 0 -1 0 0 0 1 -1 0 8 12 14

Table 2: Three schedules of Example 1 and their worst-case cycle time for different value
of Γ.

s

1 2 3 4

5 6 7 8

e

(0,2)

([0
,0

],0
)

([3,4],0) ([2,4],0) ([3,4],0)

([2,3],0)

([0,0],0)

([2,5],0) ([1,2],0) ([3,4],0)

([2
,8

],0
)

Figure 4: Disjunctive graph associated to instance of Example 2.

min α (11)

s.t. tj(ξ)− ti(ξ) + αHij ≥ p̄i + p̂iξi ∀ (i, j) ∈ P, ∀ξ ∈ UΓ (12)

tj(ξ)− ti(ξ) + αKij ≥ p̄i + p̂iξi ∀ (i, j) ∈ D, ∀ξ ∈ UΓ (13)

Kij +Kji = 1 ∀ (i, j) ∈ D (14)

K−ij ≤ Kij ≤ 1−K−ji ∀ (i, j) ∈ D (15)

Kij ∈ Z ∀ (i, j) ∈ D (16)

α ≥ 0 (17)

In other words, we aim to find the minimal cycle α and occurrence shifts

(Kij)(i,j)∈D such that, for each possible scenario ξ, there always exists a

feasible vector of starting time (ti(ξ))i∈T .

12

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1

5

6

7M3

M2

M1

α = 8

0 3 6 9 12 15 18 21 24 27 30

(a) Schedule s1.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

5

6

7

1 2

5

6

M3

M2

M1

α = 8

0 3 6 9 12 15 18 21 24 27 30

(b) Schedule s2.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

1 2

5

M3

M2

M1

α = 8

0 3 6 9 12 15 18 21 24 27 30

(c) Schedule s3.

Figure 5: Schedules s1, s2 and s3 in nominal conditions.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

5

6

7

8

1

M3

M2

M1

α = 13

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(a) Schedule s1 when ξ8 = 1.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

5

6

7M3

M2

M1

α = 11

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(b) Schedule s2 when ξ3 = 1.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

5

6 1

5

M3

M2

M1

α = 12

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(c) Schedule s3 when ξ3 = 1.

Figure 6: Schedules s1, s2 and s3 in their worst-case scenario with Γ = 1.

13

1 2

3

4

5

6

7

8

1 2

3

5

6

7

8

1

5

M3

M2

M1

α = 17

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(a) Schedule s1 when ξ5 = 1 and ξ8 = 1.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

8

1 2

3

5

6

7M3

M2

M1

α = 14

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(b) Schedule s2 when ξ3 = 1 and ξ7 = 1.

1 2

3

4

5

6

7

8

1 2

3

4

5

6

7

1 2

3

5

6

M3

M2

M1

α = 14

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(c) Schedule s3 when ξ2 = 1 and ξ3 = 1.

Figure 7: Schedules s1, s2 and s3 in their worst-case scenario with Γ = 2.

This problem is nonlinear because of the product between the variables

(Kij)(i,j)∈D and α but it can be linearized by a variable change first intro-

duced by Hanen [10], by defining τ = 1/α and ui = τ × ti for each task i in

the set T . The remaining problem is a mixed integer linear program that

will be referred as UΓ-CJSP and can be written as follows:

max τ (18)

s.t. uj(ξ)− ui(ξ) ≥ τ(p̄i + p̂iξi)−Hij ∀ (i, j) ∈ P, ∀ξ ∈ UΓ (19)

uj(ξ)− ui(ξ) ≥ τ(p̄i + p̂iξi)−Kij ∀ (i, j) ∈ D,∀ξ ∈ UΓ (20)

Kij +Kji = 1 ∀ (i, j) ∈ D (21)

K−ij ≤ Kij ≤ 1−K−ji ∀ (i, j) ∈ D (22)

Kij ∈ Z ∀ (i, j) ∈ D (23)

τ ≥ 0 (24)

Note that, once the occurrence shifts are fixed, the problem can be solved

as a robust BCSP by using the algorithms described in [9].

14

3. Solution methods for UΓ-CJSP

In this section, we present three new methods to solve the UΓ-CJSP. The

first one is a tailored Branch-and-Bound based on the robust version of the

BCSP (see §2.1.1). The two other approaches are based on decomposition

methods and more classical in the area of robust optimization.

3.1. Branch-and-Bound method

In the Branch-and-Bound algorithm that we propose to solve, each node

of the Branch-and-Bound corresponds to a subproblem defined by the sub-

graph Gs = (T ,P ∪ Ds), where Ds ⊆ D is a subset of occurrence shifts

already fixed. The algorithm starts with a root node Groot where Droot = ∅,
in other words, no occurrence shifts are yet decided. The branching is per-

formed by fixing an undetermined occurrence shift Kij and creates a child

node for each possible value of Kij in [K−ij , 1 − K
−
ji]. Each of these nodes

is evaluated by computing the associated cycle time, such that a schedule

exists for each scenario ξ. This evaluation is made by means of the robust

version of the Howard’s algorithm. Our method explores the search tree

in best-first search (BeFS) manner, and, in order to branch, it chooses the

node having the smallest lower bound. This search strategy can lead to a

good feasible solution. A feasible solution is reached when all occurrence

shifts are determined. Note that the nominal starting times (i.e. the start-

ing times when no deviation occurs) can be determined by computing the

longest path in the graph G where each arc (i, j) is valued by pi−αHij , and

the adjustment is accomplished by shifting the starting time of the following

tasks by the value of the deviation. More details are provided in the next

subsections.

3.1.1. Computation of an initial upper bound of the cycle time

In order to compute an initial upper bound, we design a heuristic that

combines a greedy algorithm with a local search. The greedy algorithm

assigns randomly a value to a given occurrence shift Kij in the interval

[K−ij , 1−K
−
ji], and updates the bounds on the rest of the occurrences shifts

such that the graph remains consistent. These two operations are repeated

15

until all occurrence shifts are determined. Once all occurrence shifts are de-

cided, a feasible schedule is obtained, consequently the associated optimal

cycle time represents an upper bound of the global optimal cycle time. The

local search algorithm consists in improving the (greedy-computed) cycle

time by adjusting the values of the occurrence shifts that belong to the crit-

ical circuit. The idea behind these improvements is justified by the following

proposition:

Proposition 1. Let (Kij)(i,j)∈D be a vector of feasible occurrence shifts and
ᾱ the associated cycle time given by the critical circuit c. Let (u, v) ∈ D be
a disjunctive arc such that (u, v) ∈ c. If the following relation holds:

max
l∈Puv

max
ξ

∑
(i,j)∈l

(p̄i + p̂iξi)− ᾱHij + (p̄v + p̂vξv)− ᾱ(Kvu − 1) ≤ 0, (25)

where P uv is the set of paths from u to v, then the solution (K
′
ij)(i,j)∈D where

K ′uv = Kuv + 1 and K ′vu = Kvu− 1 has a cycle time less than or equal to ᾱ.

Proof. Let (Kij)(i,j)∈D be a vector of feasible occurrence shifts, ᾱ the asso-
ciated cycle time given by the critical circuit c and (u, v) ∈ D a disjunctive
arc that belongs to c. Let us assume that relation (25) is verified. It is easily
seen that putting K ′uv = Kuv + 1 makes the height of the circuit c increase
by one and consequently makes the value of its circuit ratio decrease. In
order to maintain the condition K ′uv +K ′vu = 1 verified, increasing the value
of Kuv by 1 involve decreasing the value of Kvu by 1. Now, it follows that
decreasing the value of Kvu by 1 must ensure that the values of the circuits
passing through the disjunctive arc (u, v) do not exceed ᾱ. This condition
is verified, because by (25) we have:

max
l∈Puv

max
xi

∑
(i,j)∈l(p̄i + p̂iξi) + (p̄v + p̂vξv)∑

(i,j)∈lHij + (Kvu − 1)
≤ ᾱ

In other words, the maximum circuit ratio passing by the disjunctive arc
(j, i) has a value less than or equal to ᾱ. Moreover, since the value of ᾱ and
the values of the processing times are positive, then

∑
(i,j)∈lHij + (Kvu −

1) > 1. This ensure that the associated graph to the robust CJSP is still
consistent and the solution (K

′
ij)(i,j)∈D is feasible. �

The pseudo-code of the proposed heuristic is given in Algorithm 1.

16

Algorithm 1 Initial upper bound computation

1: Compute a lower bounds on the occurrences shifts Kij ;
2: for all (i, j) ∈ D do
3: Update bounds on the occurrence shifts;
4: Affect randomly value to Kij on the interval [K−ij , 1−K

−
ji];

5: end for
6: Compute the associated cycle time ᾱ and the critical circuit c.
7: while it < itmax do
8: Let (u, v) ∈ {(u, v) ∈ D such that (u, v) ∈ c};
9: luv ← max

l∈Puv
max
xi

∑
(i,j)∈l p̄i + p̂iξi − ᾱHij ;

10: if luv + pv − ᾱ(Kvu − 1) ≤ 0 then
11: Kuv ← Kuv + 1;
12: Kvu ← Kvu − 1;
13: end if
14: Compute the associated cycle time ᾱ and the critical circuit c;
15: it← it+1;
16: end while

3.1.2. Lower bound

In the Branch-and-Bound algorithm, an initial lower bound is derived

and compared to the incumbent. If the value of the initial lower bound and

the value of the incumbent are equal, then an optimal solution is obtained

and the Branch-and-Bound is stopped. It is easily seen that the problem

where the disjunctive arcs are ignored is a relaxation of the initial problem.

Consequently, the associated cycle time, αbasic, is a lower bound on the

optimal cycle time. Furthermore, another lower bound can be computed

by reasoning on the machine charges. Let M(i) ∈ M be a given machine

and S(i) ⊆ T the set of operations mapped on the machine M(i), then the

optimal cycle time is such that αopt ≥
∑

i∈S(i)
p̄i + p̂iξi, for each ξ. Since

this relation is verified for each machine, one can deduce the following lower

bound:

αmachine = max
m∈M,ξ∈UΓ

 ∑
i∈T :M(i)=m

p̄i + p̂iξi

 .

17

In the Branch-and-Bound procedure, we set the initial lower bound LB to

the maximum value between αmachine and αbasic.

3.1.3. Node evaluation

In the Branch-and-Bound algorithm, we aim to find a feasible vector

(Kij)(i,j)∈D of occurrence shifts such that the value of the associated cycle

time is minimal and ensures the existence of a schedule for each ξ ∈ UΓ. In

order to fathom a node with a partial solution in the search tree, the node

has to be evaluated by computing an associated lower bound. Let us consider

a given node of the search tree defined by the subgraph Gs = (T ,P ∪ Ds),
where Ds ⊆ D is the set of fixed occurrence shifts. This subgraph represents

a relaxation of the initial problem since only a subset of disjunctive arcs is

considered. Consequently, the associated cycle time is a lower bound on the

optimal cycle time.

3.1.4. Branching scheme and branching rule

To our knowledge, two branching schemes have been proposed in the

literature for the cyclic job shop problem. In both branching schemes, the

branching is performed on the unfixed occurrence shifts. The first one is

introduced in [10]. Based on the interval of possibles values [K−ij , 1 −K
−
ji]

for the occurrence shiftKij such that (i, j) ∈ D, the author uses a dichotomic

branching. In the first generated node, the interval of possible values of the

occurrence shifts Kij is restricted to [K−ij , cij] and in the second one it is

restricted to [cij + 1, 1−K−ji], where cij is the middle of the initial interval.

The second branching scheme is introduced in [7]. The branching consists in

selecting an unfixed disjunction and generates a child node for each possible

value of the occurrence shift Kij in the interval [K−ij , 1−K
−
ji]. In each node,

the algorithm assigns the corresponding possible value to the occurrence

shift Kij . In this paper, we follow the same branching scheme introduced in

[7]. This branching scheme allows us to have, at each node, a subproblem

which corresponds to a robust BCSP. Consequently, we can use the existing

robust version of the Howard’s algorithm to find the cycle time ensuring,

for each scenario ξ, the existence of a schedule. Different branching rules

18

have been tested and numerical tests show that branching on occurrence

shifts Kij where K−ij + K−ji is maximum yields best running times. This

performance can be explained by the fact that this branching rule generates

a small number of child nodes, which limits the size of the search tree.

3.2. Decomposition methods for the UΓ-CJSP

This subsection is dedicated to the adaptation of classical decomposition

methods for two-stage robust optimisation to the UΓ-CJSP case. More pre-

cisely, we adapt row generation and row-and-column generation algorithms

described in [1].

Obtaining a solution for the UΓ-CJSP is equivalent to solving the proba-

bly large-scale MIP (18)-(24), enumerating all variables and constraints for

each scenario. This approach is often unrealistic. That is where decomposi-

tion methods make sense and often perform well.

The following proposition characterises the adversarial separation prob-

lem of a given assignment for the occurrence shifts.

Proposition 2. Let α∗ ∈ R+ and (K∗ij)(i,j)∈D ∈ Z|D| respectively a fixed
cycle time and a vector of fixed occurrence shifts. Then, the cycle time α∗

is feasible for each scenario ξ ∈ UΓ if and only if the value of the optimal
solution of the following mixed integer linear program :

max
∑
e∈P

(p̄e −Heα
∗)ue +

∑
e∈D

(p̄e −K∗eα∗)ue +
∑

e∈P∪D
p̂ese (26)

s.t.
∑
i∈T

ξi ≤ Γ (27)∑
e∈σ−(i)

ue −
∑

e∈σ+(i)

ue = 0 ∀ i ∈ T (28)

se ≤ ue ∀ e ∈ P(29)

se ≤ ξe ∀ e ∈ P(30)

1 ≥ ue ≥ 0 ∀ e ∈ P(31)

1 ≥ se ≥ 0 ∀ e ∈ P(32)

ξi ∈ {0, 1} ∀ i ∈ T (33)

is non-positive.

19

Proof. Once the occurrence shift variables is determined, the problem cor-
responds to the UΓ-BCSP that is solved in [9].

Both decomposition algorithms are based on the separation problem

(26)-(33). The idea behind these algorithms is to solve a so-called master

problem which corresponds to the extended formulation of UΓ-CJSP (see

equations (11)-(17)) by considering only a a subset of scenarios S ⊂ UΓ.

The separation problem give us one scenario ξ ∈ UΓ for which the solution

(α∗, (K∗ij)(i,j)∈D) is infeasible, and a dual vector (Ue)e∈P . The difference

between the two algorithms is in the way the information is incorporated in

the master problem in order to consider the violated scenario. The master

problem is formulated as follows:

min α (34)

s.t. tj(ξ)− ti(ξ) + αHij ≥ p̄i + p̂iξ ∀ (i, j) ∈ P, ξ ∈ S (35)

tj(ξ)− ti(ξ) + αKij ≥ p̄i + p̂iξ ∀ (i, j) ∈ D, ξ ∈ S (36)

Kij +Kji = 1 ∀ (i, j) ∈ D (37)

K−ij ≤ Kij ≤ 1−K−ji ∀ (i, j) ∈ D (38)

Kij ∈ Z ∀ (i, j) ∈ D (39)

Furthermore, the MIP (34)-(39) can be linearized in the same way as in

§2.2.1.

3.3. Row generation and Row-and-column generation algorithms

In this subsection, we apply two conventional techniques for solving 2-

stage RO problem to our scheduling problem:

• Row Generation (also known as Benders decomposition)

• Row and Column Generation

3.3.1. Row generation algorithm (RG)

The row generation algorithm is similar to Benders decomposition. More

precisely, the master problem is first solved, then two cases can arise: either

20

the value of the objective is non-positive, and in this case the current solution

(α∗, (K∗ij)(i,j)∈D) of the master is optimal, or the solution is not feasible. In

the latter case, we can retrieve the scenario ξ∗ ∈ UΓ for which the current

solution is not feasible and the vector of the dual solution (u∗e)e∈E∪D to

generate the following Benders cut:

∑
e∈P

(p̄e + p̂eξ
∗
e −Heα)u∗e +

∑
e∈D

(p̄e + p̂eξ
∗
e −Keα)u∗e ≤ 0 (40)

where ξ∗e and u∗e are given by the separation problem (26)-(33). This is

equivalent to force the value of the objective of the separation problem to

be non-positive. This would reject the current first stage solution. We note

that constraint (40) is not linear, due to the multiplication of the occurrence

shift variables (Kij)(i,j)∈D by the cycle time variable α. This product can

be linearized by introducing the production rate variable τ = 1
α , which gives

the following constraint:

∑
e∈P

(τ (p̄e + p̂eξ
∗
e)−He)u

∗
e +

∑
e∈D

(τ (p̄e + p̂eξ
∗
e)−Ke)u

∗
e ≤ 0 (41)

Thus, we have two formulations. For the master problem, to be linear, we

must use the formulation with the variable τ . Then, we use the formulation

with the variable α for the separation problem. Once the separation problem

is solved, we get a cut with the variable α. In order to linearize it and include

it in the master problem, we reformulate the cut using the variable τ . The

scheme of this algorithm is depicted in Fig. 8.

3.3.2. Column-and-row generation algorithm (CRG)

The column-and-row generation algorithm works in a similar way as

the Benders decomposition. The difference between this method and the

previous one is the way the information is incorporated into the master

problem. Indeed, instead of adding the Benders cut to the master problem,

this method adds a block of variables and constraints corresponding to the

ξ∗ ∈ UΓ scenario, which can be formulated as follows:

21

Master

Separation Problem

α∗ and K∗ optimal Compute cut (40) Compute cut (41)

α∗, K∗

Solution is < 0 Solution is ≥ 0

Linearize

Add cut
(41)

Figure 8: Row generation algorithm scheme

tj(ξ
∗
i)− ti(ξ∗i) + αHij ≥ p̄i + p̂iξ

∗
i ∀ (i, j) ∈ P (42)

tj(ξ
∗
i)− ti(ξ∗i) + αKij ≥ p̄i + p̂iξ

∗
i ∀ s ∈M, ∀ i, j ∈ Ts (43)

This block of variables and constraints can be linearized by setting τ = 1
α ,

which gives:

uj(ξ
∗
i)− ui(ξ∗i) +Hij ≥ τ(p̄i + p̂iξ

∗
i) ∀ (i, j) ∈ P (44)

uj(ξ
∗
i)− ui(ξ∗i) +Kij ≥ τ(p̄i + p̂iξ

∗
i) ∀ s ∈M,∀ i, j ∈ Ts (45)

The figure Fig. 9 depicts the scheme of the CRG method.

The global pseudo-code associated to RG and CRG algorithms is given

in Algorithm 2.

4. Numerical results

We have implemented the three algorithms in C++ and conducted the

numerical experiments on an Intel Xeon E5-2695 processor running at 2.30GHz

CPU. The time limit for each instance is set to 900 seconds.

Since there are no existing benchmarks for the CJSP, even in its deter-

22

Master

Separation Problem

α∗ and K∗ optimal Compute cuts (42-43) Compute cuts (44-45)

α∗, K∗

Solution is < 0 Solution is ≥ 0

Linearize

Add cuts
(44-45)

Figure 9: Column-and-row generation algorithm scheme

Algorithm 2 Decomposition algorithms

Input: A disjunctive graph G = (T , E) , uncertainty set UΓ.
Output: A cycle time α such that, for each ξ ∈ UΓ, there exist a feasible

schedule.
1: repeat
2: solve the master problem;
3: let (α∗, (K∗ij)(i,j)∈D) the optimal solution;
4: solve the separation problem, let z∗ the value of the objective func-

tion;
5: if z∗ > 0 then
6: add the cut (41) if RG;
7: add the cuts (44) and (45) if CRG;
8: end if
9: until z∗ ≤ 0

10: return α∗

ministic version, we generate new instances. We consider instances in which

the number of tasks n belongs to {10, 20, 30, 40, 50, 60, 80, 100}, the num-

ber of jobs j is in {2, 3, 4, 5, 6, 10, 16} and the number of machines m is in

{5, 6, 8, 10}. Each nominal duration p̄i of task i is generated by means of

an uniform distribution in [1, 10] and its deviation value p̂i in [0, 0.5p̄i]. For

each configuration, we generate randomly 20 instances.

Tables 3-4 report average solution times for the instances having from

10 to 40 tasks and with a budget of uncertainty varying from 0% to 100%.

23

All these instances are solved by the Branch-and-Bound algorithm before

reaching the time limit. The average running times show that the Branch-

and-Bound algorithm is not very sensitive to the variation of the budget of

uncertainty. Unlike the B&B, both RG and CRG algorithms are sensitive

to the budget of uncertainty. The solving time of RG algorithm raises when

the budget of uncertainty increases but we can not draw the same conclu-

sion for CRG algorithm. Indeed, a signficant variation in the computation

time is observed for this last algorithm but it is difficult to establish a direct

connection of this behavior with the the budget of uncertainty. This can be

explained by the number of the nodes explored in the Branch-and-Bound

tree which can differ from an instance with a given value of Γ to another

one. Tables 3-4 also display the percentage of deviation, for a given budget

of uncertainty, of the optimal cycle time αΓ from the nominal optimal cycle

time αnom, where all task durations take their nominal values. This per-

centage of deviation is computed as Devα = αΓ−αnom
αnom

. The tables show that

the percentage of deviations varies from 25.41% to 56.43%. In other words,

these deviations represent the percentage of the nominal cycle time that has

to be increased in order to protect a schedule against the uncertainty. We

remark that the deviations stabilize when the budget of the uncertainty is

greater than 20 or 30 percent. This situation occurs probably when the

number of arcs of the circuit having the maximum number of arcs is less

than Γ. In this case, increasing Γ does not influence the optimal cycle time.

The second situation occurs when heights of other circuits than the actual

critical circuit c have greater value than the height of c. In this case, in-

creasing the budget of the uncertainty does not make the value of c lower

than the others. Comparing the three algorithms, we can remark that the

B&B is the only algorithm able to solve all the instances within the time

limit. Both RG and CRG algorithms encounter difficulties to solve the 30

tasks instances and even more significant RG algorithm performances start

to collapse with the 40 4 8 instances. Both the computation times and the

number of solved instances, indicated in Tables 3-4, also consolidate these

insights.

Table 5 shows the number of the instances that are solved before reaching

24

the time limit. These results concern instances having from 50 to 100 tasks.

The Branch-and-Bound is not able to solve all these instances in less then

900 seconds. For example, among instances with 80 tasks, 16 jobs and

5 machines, only three instances have been solved. Nevertheless, the two

other algorithms perform worse. Note that CRG is still slightly better than

RG.

5. Concluding remarks and perspectives

In this paper, we consider the cyclic job shop problem where the task

duration is subject to uncertainty and belong to a polyhedral uncertainty

set. We model the problem as two-stage robust optimization problem where

the cycle time and the execution order of tasks mapped on the same machine

have to be decided before knowing the uncertainty, and the starting times

of tasks have to be determined after the uncertainty is revealed. Three

algorithms are proposed: a dedicated Branch-and-Bound, a Row Generation

method and a Row and Column Generation method. The Branch-and-

Bound, based on the Basic Cyclic Scheduling Problem, provides the best

results and starts to encounter difficulties from 50 tasks. The two other

methods are more classical in the framework of robust optimization but

collapse when the number of tasks exceeds 30.

[1] Ayoub, J. and Poss, M. (2016). Decomposition for adjustable robust

linear optimization subject to uncertainty polytope. Computational Man-

agement Science, 13(2):219–239.

[2] Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. (2004).

Adjustable robust solutions of uncertain linear programs. Mathematical

Programming, 99(2):351–376.

[3] Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations

research, 52(1):35–53.

[4] Brucker, P. and Kampmeyer, T. (2008). A general model for cyclic ma-

chine scheduling problems. Discrete Applied Mathematics, 156(13):2561–

2572.

25

B
&

B
R

G
R

C
G

#
T

a
sk

s
#

J
o
b

s
#

M
a
ch

in
es

Γ
(%

)
D

ev
α
(%

)
T

(s
)

n
b

in
s

T
(s

)
n
b

in
s

T
(s

)
n
b

in
s

1
0

2
5

0
0

0.
01

2
20

0.
01

5
2
0

0.
0
17

2
0

10
25

.4
1

0.
01

2
20

0.
06

8
2
0

0.
0
59

2
0

20
41

.8
9

0.
01

3
20

0.
08

0
2
0

0.
0
65

2
0

30
48

.9
5

0.
01

5
20

0.
06

6
2
0

0.
0
62

2
0

40
51

.6
7

0.
01

7
20

0.
07

0
2
0

0.
0
55

2
0

50
53

.1
8

0.
01

8
20

0.
08

4
2
0

0.
0
50

2
0

70
53

.4
9

0.
02

1
20

0.
08

1
2
0

0.
0
40

2
0

90
53

.4
9

0.
02

5
20

0.
07

2
2
0

0.
0
42

2
0

10
0

53
.4

9
0.

02
5

20
0.

07
3

20
0
.0

3
8

20

2
0

3
6

0
0

0.
29

8
20

0.
13

9
2
0

0.
1
49

2
0

10
33

.6
1

0.
21

3
20

1.
45

4
2
0

0.
7
08

2
0

20
49

.4
9

0.
24

3
20

1.
86

9
2
0

0.
7
71

2
0

30
55

.4
4

0.
56

8
20

1.
91

8
2
0

0.
9
70

2
0

40
56

.4
3

0.
29

9
20

2.
20

7
2
0

0.
7
47

2
0

50
56

.4
3

0.
32

5
20

2.
14

4
2
0

0.
5
61

2
0

70
56

.4
3

0.
37

8
20

2.
08

5
2
0

0.
5
00

2
0

90
56

.4
3

0.
39

9
20

1.
61

8
2
0

0.
4
97

2
0

10
0

56
.4

3
0.

46
9

20
1.

60
7

20
0
.4

9
8

20

T
a
b
le

3
:

A
v
er

a
g
e

so
lu

ti
o
n

ti
m

e
in

se
co

n
d
s,

n
u
m

b
er

o
f

so
lv

ed
in

st
a
n
ce

s
a
n
d

re
la

ti
v
e

d
ev

ia
ti

o
n

o
f

th
e

cy
cl

e
ti

m
e

fr
o
m

th
e

n
o
m

in
a
l

cy
cl

e
ti

m
e.

26

B
&

B
R

G
R

C
G

#
T

a
sk

s
#

J
o
b

s
#

M
a
ch

in
es

Γ
(%

)
D

ev
α
(%

)
T

(s
)

n
b

in
s

T
(s

)
n
b

in
s

T
(s

)
n
b

in
s

3
0

5
8

0
0

22
.6

43
20

1.
99

2
18

1.
8
28

18
10

38
.2

5
12

.0
08

20
64

.3
88

1
7

12
2.

0
44

1
7

20
49

.0
3

15
.4

09
20

90
.9

19
1
7

11
7.

6
13

1
8

30
50

.9
1

66
.2

47
20

24
0.

92
9

1
6

5
4.

9
21

1
7

40
50

.9
1

16
.3

09
20

25
4.

99
2

1
1

4
4.

8
84

1
7

50
50

.9
1

17
.1

16
20

18
3.

67
5

9
38

.6
3
9

17
70

50
.9

1
13

.8
33

20
27

4.
77

5
1
1

7
.7

4
5

17
90

50
.9

1
15

.7
54

20
26

7.
00

8
1
2

1
0.

6
95

1
7

10
0

50
.9

1
15

.8
24

20
26

6.
17

3
1
2

2
0.

8
05

1
7

4
0

4
8

0
0

13
8.

91
7

20
4.

87
8

17
24

.8
3
3

1
7

10
37

.9
2

55
.9

22
20

10
8.

48
8

1
3

51
3.

0
52

1
0

20
54

.4
6

92
.1

45
20

33
9.

54
1

8
36

8.
1
23

8
30

54
.9

1
96

.7
58

20
28

9.
09

7
3

36
3.

9
23

1
2

40
54

.9
1

13
4.

44
4

20
63

0.
48

0
16

2
03

.7
4
7

13
50

54
.9

1
15

5.
23

2
20

-
0

8
0.

3
96

15
70

54
.9

1
18

7.
20

8
20

-
0

4
1.

4
56

15
90

54
.9

1
20

4.
48

1
20

67
3.

78
0

1
6
8.

9
28

1
6

10
0

54
.9

1
17

7.
24

5
20

66
3.

18
0

1
8
5.

2
41

1
6

T
a
b
le

4
:

A
v
er

a
g
e

so
lu

ti
o
n

ti
m

e
in

se
co

n
d
s,

n
u
m

b
er

o
f

so
lv

ed
in

st
a
n
ce

s
a
n
d

re
la

ti
v
e

d
ev

ia
ti

o
n

o
f

th
e

cy
cl

e
ti

m
e

fr
o
m

th
e

n
o
m

in
a
l

cy
cl

e
ti

m
e.

27

B&B RG RCG

#Tasks #Jobs #Machines Γ(%) nb ins nb ins nb ins

50 5 10

0 11 16 15
10 10 3 0
20 11 2 1
30 14 1 2
40 13 0 3
50 13 0 5
70 12 1 0
90 12 1 7
100 12 1 7

60 6 10

0 7 4 3
10 5 0 1
20 4 0 1
30 4 0 2
40 4 0 2
50 3 0 2
70 3 0 3
90 1 0 3
100 1 0 3

80 8 16

0 8 0 0
10 8 0 0
20 4 0 0
30 2 0 0
40 2 0 0
50 2 0 0
70 2 0 0
90 0 0 0
100 0 0 0

100 10 20

0 0 0 0
10 0 0 0
20 3 0 0
30 2 0 0
40 1 0 0
50 0 0 0
70 0 0 0
90 0 0 0
100 0 0 0

Table 5: Number of solved instances in less than 900 seconds among 20 instances.28

[5] Che, A., Feng, J., Chen, H., and Chu, C. (2015). Robust optimization

for the cyclic hoist scheduling problem. European Journal of Operational

Research, 240(3):627–636.

[6] Dasdan, A. (2004). Experimental analysis of the fastest optimum cycle

ratio and mean algorithms. ACM Transactions on Design Automation of

Electronic Systems (TODAES), 9(4):385–418.

[7] Fink, M., Rahhou, T. B., and Houssin, L. (2012). A new procedure for

the cyclic job shop problem. IFAC Proceedings Volumes, 45(6):69–74.

[8] Gondran, M., Minoux, M., and Vajda, S. (1984). Graphs and Algorithms.

John Wiley & Sons, Inc., New York, NY, USA.

[9] Hamaz, I., Houssin, L., and Cafieri, S. (2018). Robust Basic Cyclic

Scheduling Problem. EURO Journal on Computational Optimization,

6(3):291–313.

[10] Hanen, C. (1994). Study of a np-hard cyclic scheduling problem: The

recurrent job-shop. European journal of operational research, 72(1):82–

101.

[11] Quinton, F., Hamaz, I., and Houssin, L. (2020). A mixed integer linear

programming modelling for the flexible cyclic jobshop problem. Annals

of Operations Research, 285(1):335–352.

[12] Roundy, R. (1992). Cyclic schedules for job shops with identical jobs.

Mathematics of operations research, 17(4):842–865.

[13] Thiele, A., Terry, T., and Epelman, M. (2009). Robust linear optimiza-

tion with recourse. Rapport technique, pages 4–37.

[14] Zeng, B. and Zhao, L. (2013). Solving two-stage robust optimization

problems using a column-and-constraint generation method. Operations

Research Letters, 41(5):457–461.

29

