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Chapter 1

HRTF performance evaluation:
methodology and metrics for
localisation accuracy and
learning assessment
David Poirier-Quinot, Martin S. Lawless, Peter Stitt and
Brian F.G. Katz

Abstract

Through a review of the current literature, this chapter defines a methodology
for the analysis of HRTF localisation performance, as applied to assess the
quality of an HRTF selection or learning program. A case study is subsequently
proposed, applying this methodology to a cross-comparison on the results of five
contemporary experiments on HRTF learning. The objective is to propose a set of
steps and metrics to allow for a systematic assessment of participant performance
(baseline, learning rates, foreseeable performance plateau limits, etc.) to ease future
inter-study comparisons.

Keywords: Spatial hearing, binaural, localisation accuracy, evaluation, HRTF
selection, HRTF training.

1. Introduction

If you reached this point, you are probably familiar with the concept of binaural
rendering. You likely also know that it is used for producing spatial sound
over headphones in most of today’s personal mixed reality experiences. While
conceptually sound, binaural rendering is subject to several limitations in practice,
some of them leading users to perceive distorted versions of the encoded 3D
scene. Those distortions range from slight localisation blur to critical scenarios
where auditory events are perceived on the opposite hemisphere from their actual
position. Researchers have been working on techniques to address this problem
of binaural localisation accuracy for some time now. To establish the benefit of
these techniques, they predominantly, and quite naturally, rely on localisation
performance evaluations.

The problem that concerns us here is that there is no standard for said evalua-
tion. As a consequence, fully appreciating the value of a technique often requires
careful reading and interpretation of both protocols and associated results. This
becomes truly problematic when comparing the results of several studies, where
differences in protocol and evaluation metrics make for complicated analysis
at best, simply impossible in some cases. Without inter-study comparison, it
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HRTF performance evaluation methodology

becomes hard to reach any conclusion on the overall and added value of an HRTF
selection, synthesis, or learning method. The objective of this chapter is to lay the
foundations of such a standard.

1.1 Context

One of the most frequent causes of auditory space distortion in binaural
rendering is related to the use of non-individual Head Related Transfer Functions
(HRTF)1. An HRTF is a collection of filter pairs that, applied to a mono signal,
modify it so that it has the same characteristics as if it had physically been
travelling from a specific point in space to our ears. The term HRTF refers to
the set of filter pairs, each corresponding to a different source position, typically
forming a sphere of fixed radius around the listener. When sound travels to our
ears, the acoustic wave interactions with our morphology causes deformations in
the perceived signal. From childhood, our brain learned to interpret these acoustic
cues as different source positions. Since there exist many variations of ear, head,
and torso shapes that each deform the sound differently, so too are there variations
in HRTFs. While we are quite adept at sound localisation with our own ears and
our own HRTF, the problem arises when we start using someone else’s.

In practice, most users will end up experiencing binaural rendering using an
HRTF that is not their own, as in the case of a non-individual HRTF, generally
taken from an existing database. Presently, measuring an individual’s HRTF most
often requires specific equipment and access to an anechoic room. Methods exist
to simulate an HRTF from geometrical head scans or morphological data, but they
suffer the same drawbacks: the techniques are either too costly or burdensome
to implement in practical scenarios, or they produce HRTFs that do not exactly
match the individual users. As mentioned, using a non-individual HRTF, which
the brain has not trained with, often results in distortions of the perceived auditory
space. Researchers have been working on this issue, proposing new simulation
methods, HRTF selection processes, and even HRTF training programs focused on
the reduction of these distortions.

Naturally, all these lines of research end up using a localisation evaluation
task to assess the benefit of new techniques. As mentioned above, there exists no
standard method for this evaluation, hindering results appraisal and inter-study
comparisons.

1.2 Chapter scope and organisation

The objective of this chapter is to outline a set of metrics and propose a
methodology to assess localisation performance in the context of HRTF selection
and training programs. While the tools proposed can be applied to other contexts,
they were designed with HRTF training in mind as not only do they assess instan-
taneous performance but also performance evolution, adding another dimension
to the analysis workflow.

Section 2 presents a state of the art of evaluation metrics used to assess
localisation accuracy in previous studies. Section 3 introduces the proposed
methodology and the set of metrics on which it is built. Section 4 is a case-study,

1 We use the term individual to identify the HRTF of the user, individualised or personalised to indicated
an HRTF modified or selected to best accommodate the user, and non-individual or non-individualised to
indicate an HRTF that has not been tailored to the user. A so-called generic or dummy-head HRTF are
specific instances of non-individual HRTFs.
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Figure 1.
(a) Spherical and (b) Interaural coordinate systems used in the methodology, for a source positioned at angles (55◦,
46◦) as defined in each coordinate system. Spherical azimuth angle θ is defined in [-180◦:180◦], elevation angle ϕ
in [-90◦:90◦]. Interaural lateral angle α is defined in [-90◦:90◦], polar angle β in [-180◦:180◦]. The lateral angle
used here is shifted by 90◦ compared to that originally defined by Morimoto and Aokata [32]. In both systems,
listeners are facing X with their left ear pointing towards Y.

using the methodology to re-analyse and compare the results of five contemporary
experiments on HRTF learning. Section 5 concludes this chapter.

2. State of the art

This section presents and discusses a variety of metrics and methods of
analysis introduced in previous studies for the evaluation of auditory localisation
performance, in the context of HRTF selection and learning. Further, it discusses
what aspect of the data or human behaviour is highlighted by each metric.

2.1 Analysis based on angular distances

The majority of the metrics used in the literature to assess localisation per-
formance are derived from the angular distance from the source position to the
participant’s response. This section discusses the most common of these metrics,
their interpretation, and limitations. It builds upon the work presented in Letowski
and Letowski [24].

2.1.1 Egocentric coordinate systems

Many auditory localisation tasks have participants indicating perceived target
locations around them. As such, egocentric coordinate systems are a logical choice
for the assessment of pointing errors. The spherical coordinate system, illustrated
in Figure 1(a), uses axes of azimuth and elevation angles. As most researchers are
familiar with this coordinate system, it provides an intuitive framework to view
and present results.

Alternatively, the interaural coordinate system has been proposed to evaluate
localisation results as a more natural representation of how sound is perceived.
The lateral angle, referred to as the “binaural disparity cue” by Morimoto and
Aokata [32], defines cones-of-confusion along which the binaural cues of Inter-
aural Level Difference (ILD) and Interaural Time Difference (ITD) are approx-
imately constant. A cone-of-confusion is a set of positions presenting binaural
cue/localisation ambiguities, that listeners may not be able to differentiate unless
provided with further spectral cues or head movement information [6]. While
not truly ‘cones’, these constant ILD or ITD surfaces generally define a circle
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when the radius is fixed (see [18] for more discussion on the variation with
radius of these constant-value surfaces). To maintain accepted terminology in the
field, each of these circles is termed a “cone-of-confusion”. The polar angle, or
“spectral cue”, is primarily linked with the monaural spectral cues in the HRTF.
This independence of binaural and monaural cues makes the interaural coordinate
system a compelling choice when assessing localisation performance, particularly
when monaural cues are of special interest as in HRTF selection and learning tasks.

Other conventions have been proposed, such as the double-pole [27] or three-
pole [20] coordinate systems. These systems have been designed to circumvent
compression issues impacting single-pole (spherical and interaural) coordinate
systems, further discussed in Section 2.1.3. They can prove very helpful for some
types of data presentation [27], yet can confuse the analysis as more than one
coordinate vector can be assigned to any given point in space.

2.1.2 Azimuth, elevation, lateral, and polar errors

Regardless of the coordinate system used, angular errors can be calculated
using either the signed or absolute difference between target and response coor-
dinates. The signed error will give an indication on the “localisation bias” [27]
where the absolute error, more often used in the literature [7, 33, 34, 39], provides
a measure of how close a response is to the target, regardless of error direction.
Computing summary statistics from these values can be a first and straightforward
step to characterise both the central tendency and dispersion, or “localisation blur”
[13], of participant responses [24].

Care must be taken in calculating signed and absolute errors because of the
discontinuities in the azimuth and polar angles of the spherical and interaural
coordinate systems. If a source is close to the discontinuity and the response
crosses it (e.g. 179◦ to −179◦), the calculated error will be artificially large. Likewise,
summary statistics such as mean or standard deviation should also be computed
away from those discontinuities. Another problem that results from working
with egocentric systems is that data distributions will be warped by the sphere
curvature, requiring in theory to use circular statistics when comparing statistical
distributions. As discussed in [24], linear statistics can however be used in practice
if the directional judgements are relatively well concentrated around a central
direction.

2.1.3 Compensating for spatial compression

Both the spherical and interaural coordinate systems introduce spatial com-
pression at their poles. In the interaural coordinate system for example, the
circumference of the cone-of-confusion at 80◦ lateral angle is much smaller than
that of a cone at 0◦ lateral angle. Therefore, polar angle errors at the poles (near
± 90◦ lateral angle) are more exaggerated than near the median plane. The same
problem impacts azimuth errors near the poles (near ± 90◦ elevation angle) for the
spherical coordinate system.

Previous studies have sought to avoid the spatial compression problem alto-
gether by limiting the analysis to targets away from the poles [30]. The downside
of this method is that it limits the scope of the study’s conclusions because a
large region of space cannot be studied. Still others have proposed compensation
schemes, using for example the lateral angle to weight the response contribution
to the average polar error [8, 25, 38]. Carlile et al. [8] for example weighted polar
response errors using the cosine of the target lateral angle, decreasing response
contributions as targets moved towards the interaural axis. This method more
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accurately reflects the arc length between the target and response locations on the
circle, keeping in mind that this weighting does not take the lateral angle of the
response into account.

2.1.4 Using directional statistics to analyse sound localisation accuracy

Due to the discontinuities and spatial compression in the angular metrics of
the typical coordinate systems, some work has simply examined the distance
between the participant responses and the true target positions to assess the extent
of localisation error. The most basic method, the great-circle error used in several
studies [34, 38, 49], is measured as the distance along the unit sphere between the
response and target locations. The great-circle error is independent of the selected
coordinate system, not affected by the issues related to discontinuity in the axes or
spatial compression.

Great-circle error on its own does not provide information about the direction
of the response. Paired with the angular direction, it becomes a vector that fully
describes the difference between the response and target positions [24]. Similar
to bearing used to navigate on the globe, angular direction is the angle between
the vector of the target towards the positive pole and that of the target towards
the response. This vector can be used to compute the mean position of the
responses, or centroid, and perform directional or spherical statistics. Alternatively,
the centroid of the response locations may be calculated by separately summing
the x, y, and z coordinates of the responses and dividing by the resultant length
[23, 46], though this method may experience some undesirable results for edge
cases with widely-scattered locations on the sphere.

To perform statistical analyses of the localisation accuracy, the variance in the
response locations must be quantified [12, 16] . Given the two-dimensionality of the
data, previous work has used Kent distributions on a sphere [9, 23] to determine
ellipses that portray the variance of the data along major and minor axes of the
spread of the responses. With Kent distributions, circular statistical tests may be
conducted to evaluate the significance of the distance between the centroid of the
responses and the target location (such as the Rayleigh z test) or the differences
between mean response locations for different conditions (such as the Watson two-
sample U2 test) [17]. Alternatively, Wightman and Kistler [46] suggest the use of
the “concentration parameter” κ to characterise the variance, or “dispersion”, of
the response locations on the sphere.

2.1.5 Further high level metrics based on angular distances

The spherical correlation coefficient has been used to provide an overall measure of
the correlation between target and response positions [8, 23, 46]. As with standard
correlation, the spherical correlation coefficient ranges from −1 to 1, where a value
of 1 is obtained for two identical data sets, and a value of −1 is obtained for two
sets that are reflections of one another. By construction, the spherical correlation
coefficient is invariant for global rotations between the two sets.

Rather than looking at single or mean error values to assess localisation
accuracy, Hofman et al. [14] and Trapeau et al. [40] studied the linear regression
between targets and responses elevation angles. Termed “elevation gain”, the slope
of this regression provides a higher level metric that can be used to detect com-
pression or dilation effects in participant responses. Van Wanrooij and Van Opstal
[42] extended this technique, applying the regression on target vs. response
azimuth as well as elevation angles. To account for azimuthal dependence of the
elevation gain, they also introduced the notion of “local elevation gain”, averaging
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elevation gain values based on a sliding azimuthal window. This metric allows
the assessment of how elevation compression and dilation effects impact different
regions of the sphere.

2.2 Analysis based on confusions classification

2.2.1 Confusions classification

An analysis based on angular distances alone would fail to distinguish local
accuracy misinterpretations from critical space confusions, where responses are
often on the opposite hemisphere from target positions. These kinds of errors are
very common in studies using non-individualised HRTFs [33, 39, 45, 50], though
they also occur when listening with one’s own ears or HRTF [27].

One of the simplest techniques is that used by Honda et al. [15], which defines
a hit-miss criterion based on a threshold great-circle error value. Though intuitive,
the method does not provide much information on the nature or potential origin
of the confusions.

A slightly more elaborate form of confusion classification was used by Middle-
brooks [30], which flags responses as confusions when they are in a different hemi-
sphere than that of the target. To avoid reporting small local accuracy errors as
confusions for targets near the hemispheres limits, only those responses with polar
angle errors greater than 90◦ were considered when searching for confusions.
The classification thus resulted in three types of “quadrant confusions”: front-
back, up-down, and left-right. Majdak et al. [25] further improved the definition,
introducing a weighting factor to compensate for polar angle compression near the
interaural axis. A comparable strategy was adopted by Carlile et al. [8], excluding
from confusion checks those targets too close to the interaural axis.

A parallel classification was proposed by Martin et al. [28], determining confu-
sion types based on cone-of-confusion angle values rather than sphere quadrants.
The classification was further refined by Yamagishi and Ozawa [48], Parseihian
and Katz [33] and Zagala et al. [49], adding “precision” and “combined” confu-
sions to the already existing confusion types. This classification is discussed in
more detail in Section 3.1.4.

2.2.2 Separating angular and confusions errors contributions

Given the relatively high incidence of front-back confusions in non-individual
HRTF localisation tasks, results often exhibit a bi-modal distribution [39].Analyses
applied to data that contain a large portion of front-back confusions will have large
variance and potentially inaccurate averages. The other confusion types also have
a similar, if somewhat less characteristic, impact on the data, artificially inflating
localisation errors. As such, it is common practice to split the data to analyse
confusions separately from local performance [24–26, 30]. A potential problem with
this approach is that excluding data from an analysis may result in an unbalanced
data set, which limits the use of classical repeated-measures statistics.

Another approach that preserves the sample size of the data consists of ‘folding’
the responses into the same subspace as that of the target prior to the analysis.
This technique has only ever been applied to mirror front-back confusions [46], as
it may only apply to very specific circumstances and tends to inflate the power of
the resulting conclusions [24].
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2.3 Additional analysis methods

2.3.1 Decomposing the analysis across sphere regions

Several studies have shown variations in localisation accuracy as a function
of region on the sphere due to, amongst other things, cue interpretation [6] or
reporting method [3]. In these cases, decomposition schemes were used to better
characterise those variations and understand their origins. As mentioned in Sec-
tion 2.1.5, Van Wanrooij and Van Opstal [42] for example decomposed the analysis
of elevation gain across azimuthal regions. Later, Majdak et al. [25] proposed
an analysis split into hemi-fields to detect higher accuracy variations for targets
in the rear region. Middlebrooks [30] applied a similar spatial decomposition
to detect high variability for responses in the upper-rear quadrant, temporarily
excluding them from the analysis to better assess variations in remaining regions.
The principal drawback of decomposition is that it reduces the statistical power
of the analysis, and can result in unbalanced data sets if responses are not evenly
spread across the regions under consideration.

2.3.2 Performance evolution modelling and analysis

For the evaluation of HRTF learning, it is essential to assess the progression
of participant performance over multiple sessions. On the assumption that any
adaptation to an HRTF is a process with diminishing returns with repeated
training sessions, localisation performances may be modelled as an exponential
decay y = y0 exp(−t/τ) + c [26, 38]. Here y0 is the initial performance, t is the time
(training day, session, etc.), τ is the improvement time constant, and c is the long
term performance. This model of performance over time allows for comparisons
between studies, such as determining if different protocols lead to faster learning
rates or if better long term performance can be achieved. If the training duration
proves insufficient to reach a performance plateau/asymptote, like that seen in
Stitt et al. [39], the improvement data may be better modelled using the linear
form ax+ b [26, 34]. In addition to performance modelling, the correlation between
training duration and performance metrics has been used to determine if factors
other than training duration, like participant attention, should be considered to
explain performance evolution [21].

Analysis of performance evolution can be performed per condition (grouping
participants) [33, 39] or per participant [14]. Participant performance evaluation
makes it harder to draw general conclusions, but potentially provides deeper
insight into performance as not all participants exhibit the same ability to adapt to
a new HRTF [40]. This adaptation capacity appears to be a function of initial HRTF
affinity or “perceptual quality” [39]. For inter-study comparisons, some form of
performance scaling or normalisation may first be required to compensate for such
affinities, highlighting performance improvement rather than absolute value [39].

3. Methodology for assessing localisation performance

From the literature review in the previous section, a methodology is derived
for assessing binaural localisation accuracy. Though it was designed with a
focus on HRTF training programs, it should be applicable to any HRTF-related
study interested in localisation performance assessment. Section 3.1 introduces the
conventions and metrics used in the methodology, itself detailed in Section 3.2. The
metrics proposed along with the notions they examine are summarised in Table 1
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at the end of this section. A MATLAB toolbox for the evaluation of all the metrics
discussed here is available online2.

3.1 Conventions and evaluation metrics

3.1.1 Coordinate systems

The methodology makes use of both spherical and interaural coordinate sys-
tems, illustrated in Figure 1. While the spherical coordinate system provides an
intuitive perspective on the results, the interaural system has been especially
designed to separate the analysis of binaural and monaural cues, as discussed
in Section 2.1.1, making it a natural choice for the analysis of HRTF-related
localisation performance.

3.1.2 Protocol space coverage

Space coverage is a set of metrics, scangle and scshape, designed to provide insight
on the density of points tested during the localisation task, as well as on the
homogeneity of their distribution on the sphere. scangle represents the density of
the evaluated positions for a given test protocol. It is is computed based on the
spherical Voronoi diagram built from the evaluated positions, as the average over
the solid angles of its cells [41], accompanied, ±, by its standard deviation. As
illustrated in Figure 2, denser grids result in smaller scangle, with standard deviation
decreasing for increasingly homogeneous distributions.

scshape is computed as the average over the shape indices of the cells of the
Voronoi diagram, defined as:

shape index = 4π
cell area

(cell perimeter)2

where the perimeter is computed as the sum of the great-circle values between the
cell vertices, expressed in radians. The squared value of the perimeter, as well as a
4π normalisation factor, are used so that the final shape index value is defined in
[0,1]. Cells shaped as circles will have an index close to 1, whereas the index will
decrease towards 0 as the cell grows into an elongated polygon. As illustrated in
Figure 2, scshape is used in addition to scangle standard deviation to detect uneven
evaluation grid distributions. Note that grid density has a negative impact on
scshape: dropping from 0.91 to 0.84 for uniform grids of 20 and 80 points respectively
[37].

3.1.3 Great circle error and angular direction

The great-circle error is defined as the minimum arc between the response
and the true target position. This metric provides an intuitive way to assess the
local localisation accuracy as the spherical distance between the responses and
the target. Given xyztarget and xyzresponse as the vectors in Cartesian coordinates of
the target and response positions respectively, the great-circle error is defined in

2 MATLAB auditory localisation evaluation toolbox: https://hal.archives-ouvertes.fr/hal-03265190.
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Figure 2.
Various test grids and associated space coverage statistics. (a) homogeneous grid with large number of points,
(b) homogeneous grid with small number of points, (c) non-homogeneous grid with small number of points, (d)
horizontal grid with small number of points.

[0◦:180◦] as:

great circle error = arctan

( xyztarget × xyzresponse


xyztarget · xyzresponse

)
where smaller values correspond to better localisation performances.

The angular direction is coupled to the great circle to enable vector summation
of target to response arcs on the sphere. The direction towards the right ear
constitutes the positive pole in the interaural coordinate system. The angular
direction may then be calculated from the interaural coordinates as:

angular dir. = arctan(
cos(αresp)sin(βresp − βtarget)

cos(αtarget)sin(αresp) − sin(αtarget)cos(αresp)cos(βresp − βtarget)
)

where α is the lateral angle and β is the polar angle.

3.1.4 Confusion classification

As discussed in Section 2.2, confusion classification schemes are primarily
designed to separate small localisation errors from larger errors caused by erro-
neous localisation behaviours typically observed in binaural localisation tasks. The
scheme used in the methodology is designed around notions borrowed from both
cone-of-confusion [28, 33, 39, 49] and sphere quadrant [25, 30] classifications. It
separates responses into 4 categories: those near the target (precision errors), those
opposite the target compared to the YZ plane (front-back errors), those within the
target cone-of-confusion (in-cone errors), and the remainder (off-cone errors).

The classification is illustrated in Figure 3(a). Responses within a 45◦ radius
cone around the target are defined as precision errors. Responses within a 45◦

cone around the symmetrical of the target position regarding the YZ plane, not
already classified as precision errors, are defined as front-back errors. Responses
with a lateral angle within 45◦ of that of the target, not already classified as
either precision or front-back confusions, are defined as in-cone errors. Remaining
responses are defined as off-cone errors. Figure 3(b-c) schematically show several
alternate approaches, evaluated before choosing the current method (discussed in
more detail below).

The proposed 45◦ threshold value is somewhat arbitrary, based on a seg-
mentation of localisation error distributions of responses from previous studies
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Figure 3.
Confusion type as a function of response position on the sphere, for a target at spherical coordinates (35◦, 10◦)
and a listener facing X with his left ear pointing towards Y. (a) Proposed classification scheme, (b) classification
used in Stitt et al. [39] based on polar angle only, (c) attempt at solving pole compression issues of (b).

Figure 4.
Confusion type as a function of response position on the sphere for the proposed classification scheme with an
angle threshold of 20◦ and a listener facing X with his left ear pointing towards Y. Target at spherical coordinates
(a) (35◦, 10◦), (b) (70◦, 40◦), and (c) (80◦, 10◦).

[33, 34, 39]. This value can be adapted depending on the context of the study
and the nominal localisation accuracy expected. To improve understanding, the
evolution of confusion zones for a 20◦ threshold and various target position is
illustrated in Figure 4. The sum of the four confusion category rates always sums
to 100%.

The distinction between in- and off-cone confusions is inspired from the
duplex theory [31, 36], separating responses based on whether they are caused
by misinterpreting monaural cues (in-cone confusions) or binaural cues (off-
cone confusions). The commonly cited front-back confusion category has been
maintained, despite not having a clearly identified origin in signal symmetry, as
it represents a behaviour frequently observed in localisation studies [5]. Other
confusion categories have been considered for this scheme, such as up-down or
combined up-down-front-back confusions. They have been discarded however,
as their representative patterns were not prevalent in the ≈ 10000 participant
responses analysed in Section 4 or the meta analysis on ≈ 80000 responses in free
field by Best et al. [5].

Compared to traditional cone-of-confusion classifications defined using only
polar angle [28, 33, 39, 49], the main drawback of the proposed scheme is that it
is susceptible to ITD mismatch. By only looking at the difference in polar angle
between target and response, these classifications are not impacted by participants
misinterpreting the ITD of the target, focusing on monaural cues interpretation
characterisation. As illustrated in Figure 3(b), the problem of these classifications
is that they have high rate of false error detection at the poles of the interaural
coordinate system, were a small shift in response can be interpreted as e.g. a front-
back confusion instead of a precision error.
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An attempt was made to propose a new scheme, inspired by the one used in
Stitt et al. [39], alleviating the pole issue by increasing the (polar) spread of the
precision zone as targets near the poles, constraining said spread to always span
45◦ of great-circle angle when projected on the sphere. As illustrated in Figure 3(c),
this constraint results in a undesirable warping of the precision error zone for
targets within a certain lateral distance from the poles.

The solution proposed for studies needing a classification based on monaural
cues interpretation alone is to extend the proposed scheme, artificially adjusting
the lateral position of targets prior to the classification to discard errors related
to ITD mismatch. This adjustment can be made on a per-participant/target basis,
replacing the lateral angle of targets by the mean lateral angle of their associated
responses prior to the classification. It can also be performed on a per-response
basis by simply assuming that targets and responses always have the same lateral
position. The case study of Section 4 uses the second, simple, non-adaptive form
of the classification scheme.

3.1.5 Azimuth, elevation, lateral, and polar errors and biases

Lateral and polar errors are defined as the absolute difference between tar-
get and response positions in interaural coordinates. They are used to project
localisation errors onto spatial dimensions associated with separate cues in the
HRTF, allowing for an analysis of their independent contribution to the overall
performance. Both are defined in [0◦:180◦], where smaller values correspond to
better localisation performances. In the methodology, lateral and polar errors
will be evaluated only on responses classified as precision confusions, hence
referred to as local lateral and polar errors. This limitation allows to avoid the
discontinuities discussed in Section 2.1.2 as well as the hazardous interpretation
of values compounding local errors and spatial confusions.

As mentioned in Section 2.1.3, compression at the poles will lead to artificially
inflated polar errors for targets near the interaural axis. A weight, proportional to
the target lateral position, can be applied to the polar error to compensate for the
compression, defining the polar error weighted as:

polar error weighted = polar error ∗ cos(αtarget)

This weight is designed so that, for a target and a response that share the same
lateral angle, the polar error weighted is equal to the arc length (great-circle)
that separates them, regardless of said lateral angle. Note that while lateral error
is not impacted by pole compression, it ‘folds’ near the interaural axis: random
responses will overall have a lower local lateral error for targets in this region.
This is a valuable feature of the interaural system when assessing the symmetric
contribution of binaural cues (ITD/ILD) to localisation error. It can nonetheless
lead to artificially deflated lateral errors when used in a different context.

Azimuth and elevation errors are defined as the absolute difference between
target and response positions in spherical coordinates. They correspond to a more
traditional projection of spherical coordinates, more intuitive yet no longer guided
by auditory cue separation. Like interaural errors, azimuth and elevation errors are
defined [0◦:180◦] and will be used only for local precision evaluation. As for polar
error, azimuth error compression near the poles can be compensated for, defining
the azimuth error weighted as:

azimuth error weighted = azimuth error ∗ cos(ϕtarget)
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In addition to absolute errors, signed lateral and elevation errors are used in
the methodology. Mean signed errors, referred to as biases, are typically used to
examine systematic rotational biases, induced for example by an offset between
the tracking system used for measuring the HRTF and that used during the
evaluation task, or reporting bias. As for absolute errors, usage of both metrics
will be restricted to responses classified as precision confusions.

Finally, lateral and elevation compression errors are used to highlight space com-
pression and dilation effects. Lateral compression, is defined as | |αtarget | | − | |αresponse | |,
so that a positive error corresponds to a compression towards the median plane
ZX. Respectively, a negative error corresponds to a dilation away from the median
plane. Similarly, the elevation compression is defined as | |ϕtarget | | − | |ϕresponse | |, so that
a positive error corresponds to a compression towards the horizontal plane XY.
Respectively, a negative error corresponds to a dilation away from the horizontal
plane. Compression errors are for example used to characterise a pointing bias
caused by the reporting interface, or to detect lateral compressions resulting from
an ITD mismatch between the presented HRTF and that of the participants.

3.1.6 Sphere regions

The decomposition of the analysis in sphere regions depends on the context. As
such, there exists no one ideal decomposition scheme. To support the case study
presented in the next section, the sphere will be split into 6 regions: front-up (x > 0
and z > 0), front-down (x > 0 and z < 0), back-up (x < 0 and z > 0), back-down
(x < 0 and z < 0), left (y > 0), and right (y < 0). This scheme has been chosen
to best highlight region specific behaviours while remaining manageable, based
on a preliminary analysis of the experiments studied in Section 4. The redundant
left and right regions have been added for systematic checks on lateralisation
discrepancies in participant responses.

3.2 Methodology

The methodology is proposed as a set of analysis steps, each building on the
previous one to provide a comprehensive assessment of participants localisation
performance.

3.2.1 Evaluation task characterisation

The first step of the analysis is to assess how much of the space, i.e. sphere,
has been tested during the localisation task. In addition to depicting the grid
of tested positions, this step reports its space coverage statistics as defined in
Section 3.1.2. This provides readers with a simple set of metrics that reflect the
spatial thoroughness of the evaluation, a value they can use to qualify the study’s
conclusions as well as for inter-study comparisons.

Atypical evaluation grids and their potential impact on participant results
should also be discussed here. An evaluation on frontal field positions alone
is likely to result in better overall performance compared to one encompassing
the whole sphere, due to known variations of perceptual accuracy across sphere
regions [27]. When using such grids, reporting metrics chance rates, i.e. their
values for responses randomly distributed on the sphere, as proposed by Majdak
et al. [25] can greatly help readers appreciate the presented results. Another prob-
lematic example is the use of evaluation grids sparse enough for participants to
identify and recall the tested positions, likely impacting participants performance
and associated conclusions.
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Finally, the stimulus characteristics (type, duration, etc.) as well as the reporting
method should be described and discussed here, so that any systematic bias they
may have on participant responses can be detected during the analysis.

3.2.2 Assess global extent of localisation error

The objective here is to get a rough overview of participant performance during
the localisation task, simply answering the question “how far were responses from
the true target position?”. The assessment is based on the great-circle error as
defined in Section 3.1.3.

3.2.3 Assess critical localisation confusions

The next step consists in separating small precision errors from critical confu-
sions. The nature and types of confusions is characterised early on as they can
have a critical impact on localisation performance, often far more detrimental than
local localisation accuracy issues. This characterisation is performed using one of
the classification methods defined in Section 3.1.4.

3.2.4 Assess local extent of localisation error

This next step takes a closer look at responses classified as precision errors, i.e.
the non-confused responses, to examine the local localisation performance. The
mean great-circle error and angular direction of responses classified as precision
confusions is computed to analyse the extent of local errors. Note that this metric
does not depend on the confusion classification method used, as precision errors
are defined using the same criterion in both methods. Conclusions drawn from
this local analysis should naturally be leveraged by the percentage of responses it
encompasses.

3.2.5 Horizontal and vertical decomposition of the localisation error

Whether or not this step should be included in the analysis, and which metrics it
should make use of, depends on the context of the study. An experiment focusing
on perceptual ITD adjustment for example would likely make use of both local
lateral error as well as lateral compression. A training program attempting to fine
tune participant interpretation of monaural cues would on the other hand base its
evaluation on the local polar error. For some studies, this decomposition will not
make sense and should be avoided to limit Type I error inflation.

3.2.6 Decompose the analysis across sphere regions

This final step consists in repeating all of the above, decomposing the analysis
based on target positions to assess how participants fared in specific regions of
the sphere. Given the loss of statistical power and the additional clutter that
this analysis represents, it only needs to apply to those studies interested in
characterising spatial imbalances in performance. The decomposition can then
be performed using either a sphere splitting scheme as the one described in
Section 3.1.6, or on a per-target position basis. For example, this approach can
be used to support the design of HRTF learning programs that would focus
dynamically on those regions/confusions that are the most problematic [34].

To further characterise local localisation behaviours, the analysis can be com-
pleted by evaluating average response positions and spherical response distri-
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name notion examined

space coverage statistic density and homogeneity of the evaluation grid

confusion rates percentage of errors resulting from cone-of-confusion or quadrant
ambiguities

great-circle error overall localisation accuracy
local great-circle error overall localisation accuracy, excluding confusions

local lateral error localisation accuracy in the horizontal plane, excluding confusions
local polar error localisation accuracy in the vertical plane, excluding confusions

local azimuth error localisation accuracy in the horizontal plane, excluding confusions
local elevation error localisation accuracy in the vertical plane, excluding confusions

local lateral compression whether localisation errors are distorted systematically towards the
median plane ZX, excluding confusions

local elevation compression whether localisation errors are distorted systematically towards the
horizontal plane XY, excluding confusions

local lateral bias whether there is a systematic rotational offset on responses around
the Z axis, excluding confusions

local elevation bias whether there is a systematic upward offset on responses, towards
positive Z, excluding confusions

per-region metrics decomposition of the analysis across target regions

local responses distribution whether two sets of responses, excluding confusions, belong to dif-
ferent spherical distributions (using Kent distribution and circular
statistics)

Table 1.
Summary of the evaluation metrics used in the methodology, grouped by concept similarity.

butions. The former, computed by summing local great-circle error vectors, as
discussed in Section 3.1.3, will help characterise variations of localisation accuracy
across sphere regions [9]. The latter, characterised using Kent distributions (see
Section 3.1.3), will provide the statistical framework to assess the significance of
those variations.

4. Case study

The methodology defined in the previous section is applied here to build
a comparative analysis on a selection of studies, focusing on the use of, and
adaptation to, binaural cues for auditory localisation. The objective of this case
study collection is not so much to present a thorough comparison of these studies
as to illustrate how the methodology can be applied to a practical use case, and
how its constituting metrics react to concrete scenarios. To further focus the case-
study on these points, significance assessment is based on the overlapping of
estimated distributions Confidence Intervals (CIs) rather than on null-hypothesis
tests [10].
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4.1 Study selection overview

Several studies of the impact of HRTF training on localisation accuracy have
been selected from existing literature, for which authors graciously provided raw
participant data used in the comparative analysis. A short description of each
study is provided in the next section, reporting only those elements that concern
the present analysis.

Common to most of the presented studies is the notion of HRTF perceptual
quality. This term refers to the perceptual matching, localisation wise, between a
participant and an HRTF. A low quality HRTF is one that results in bad localisation
accuracy. Inversely, the higher the quality, the better the localisation accuracy, the
highest quality match corresponding in theory to one’s own HRTF. Replicating the
potential outcomes of selecting an HRTF from an existing database, three degrees
of perceptual matching are considered in these studies in addition to individual
HRTF: worst-match, random-match, and best-match HRTF. Best and worst-match
HRTFs represent respectively a best and worst case outcome, typically obtained
by asking participants to perform a localisation task with, or a perceptual ranking
of, an existing set of HRTFs.

4.1.1 Majdak et al. [25] (exp-majdak)

A 2010 study on the impact of various reporting methods during training
with their individual HRTF. 10 participants trained on auditory localisation: 5
reporting perceived localisation positions with their hand, 5 with their head. Each
participant completed 600 to 2200 localisation trials over a span of 2 to 32 d.
Training and evaluation were performed within each trial: a session was composed
of 50 trials, completed in 20 to 30 min. Each trial consisted of a localisation task
with feedback, testing participants on 1380 positions overall, distributed on a
sphere, using a 500 ms burst of white noise as stimulus. As the reporting method
proved to have only a small impact on training efficiency, the 10 participants
have hereafter been aggregated in a single group (grp-majdak-indiv), focusing
the analysis on the impact of HRTF quality on performance evolution.

4.1.2 Parseihian and Katz [33] (exp-parseihian)

A 2012 study on accommodation to non-individual HRTF. 12 participants
trained on auditory localisation, each completing 3 sessions of 12 min each on
3 consecutive days. Each session consisted of an interactive audio localisation
game followed by a localisation task evaluation testing participants on 25 positions
distributed on a sphere, using a 180 ms sequence of white noise bursts as stimulus.
Before training, each participant ranked a set of 7 perceptually orthogonal HRTFs
[2, 19] from the LISTEN database [44] based on localisation accuracy as perceived
during predefined audio trajectories. The best and worst-match HRTF for each
participant was extracted from this ranking. Participants were then divided into
3 groups: 2 that trained with their individual HRTF (grp-parse-indiv), 5 with
the best-match HRTF (grp-parse-best), and 5 with the worst-match HRTF (grp-
parse-worst). An additional 2 groups that performed only 1 training session are
not considered in the current analysis. The ITDs of all HRTFs were adjusted
based on individual participant head circumference, using a model derived from a
regression between measured ITDs and morphological parameters. This technique
is used as a practical method, easily carried out by end-users, to maximise initial
localisation performance accuracy.
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4.1.3 Stitt et al. [39] (exp-stitt)

A 2019 study on accommodation to non-individual HRTF. 16 participants
trained on auditory localisation, each completing 10 sessions of 12 min each over a
span of 10 to 20 weeks. The worst-match HRTF selection, training game, stimulus,
and tested audio source positions during the localisation task evaluation at the
end of each training session were the same as those of exp-parseihian. Participants
were divided into 2 groups: 4 training with individual HRTFs (grp-stitt-indiv) and
8 with worst-match HRTFs (grp-stitt-worst). An additional 8 participants trained
for only 4 sessions with their worst-match HRTFs are not considered in the current
analysis.

4.1.4 Steadman et al. [38] (exp-steadman)

A 2019 study on accommodation to non-individual HRTF. 27 participants
trained on auditory localisation, each completing 9 sessions of 12 min each over
a span of 3 d. A localisation task evaluation was conducted at the beginning
and end of each day as well as between each training session the first day,
testing participants on 12 positions distributed on a sphere using a 1.6 s stimulus
merging bursts of white noise and speech signal. All participants trained with
the same randomly-matched HRTF selected from the 7 LISTEN database of exp-
parseihian. Participants were distributed in 3 groups, training on various gamified
and interactive versions of an audio localisation game, aggregated as one group in
the current analysis (grp-steadman-random). An additional 9 participants, acting
as a control group not undertaking training, are also not considered in the current
analysis, as well as the results of a parallel evaluation task performed on another
HRTF than that used during training.

4.1.5 Poirier-Quinot and Katz [34] (exp-poirier)

A 2021 study on accommodation to non-individual HRTF. 12 participants
trained on auditory localisation (grp-poirier-best), each completing 3 sessions of
12 min each over a span of 3 to 5 d. Participants trained using a best-match HRTF
selected from the 7 LISTEN database of exp-parseihian, though the simplified
subjective selection method was only concerned with identifying the best-match
HRTF. An additional 12 participants trained with their best-match HRTF in a
reverberant condition are not considered in the current analysis. Each session
consisted of an interactive audio localisation game followed by a localisation task
evaluation testing 20 positions distributed on a sphere using the same stimulus as
in exp-parseihian.

4.2 Application of the methodology

4.2.1 Time alignment of evaluation sessions

In all these experiments, the training sessions lasted for 12 min, except for exp-
majdak where both training and evaluation were performed in a single block of
20 min to 30 min. According to exp-majdak, the evaluation itself took half that
time, leaving a per-session training duration equivalent to that of the other studies.
A time realignment across experiments was executed such that the evaluation
sessions compared are separated by equivalent training durations. Thus, the
sessions have been renumbered to account for changes in protocol.
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Figure 5.
Space coverage statistics of the evaluation task in the selected studies.

In the analysis, evaluation sessions are numbered from 1 to 11, each separated
by a 12 min training. exp-poirier and exp-parseihian only performed 3 training
sessions, hence the missing data-points in subsequent figures. Likewise, exp-stitt
and exp-majdak did not report pre-training performances, missing session 1 data-
points. Finally, the number of evaluations in exp-steadman spreads out from
session 4 onward, switching from an evaluation session after each training to an
evaluation at the beginning and end of each 3-sessions training day.

4.2.2 Evaluation task characterisation

The space coverage of target positions evaluated during the localisation task of
each study are reported in Figure 5. The high density of the grid of exp-majdak
results in a very low average scangle compared to those of the other experiments. Its
comparatively high standard deviation is due to the absence of test positions in the
bottom part of the sphere (polar gap). For comparison, a homogeneous grid with
the same number of points would have yielded scangle = 0.5◦ ± 0.003. Distribution
homogeneity is also responsible for the lower scangle standard deviation value
observed in exp-poirier compared to that of exp-parseihian and exp-stitt. Finally,
exp-steadman, with fewer test points and a polar gap in the bottom hemisphere,
has the highest scangle value and standard deviation.

As could be expected, all the grids present high scshape values, being overall
evenly distributed on the sphere. Grid density around polar gaps impacts the
metric, explaining why exp-poirier value is higher than that of exp-majdak while
both grids are evenly distributed: removing polar gap contributions in these grids
would yield scshape values of 0.91 and 0.84 respectively.

Two different reporting methods were used in the five studies: head
pointing (exp-majdak and exp-steadman) and hand pointing (exp-majdak, exp-
parseihian, exp-steadman, exp-poirier). This should have little to no impact on
the comparative analysis however, as both methods lead to similar reporting
biases [3]. exp-parseihian, exp-stitt, and exp-poirier used the same stimulus: a
180 ms sequence of three white noise bursts. exp-majdak used a slightly longer,
unique burst of 500 ms, and exp-steadman used a 1.6 s stimulus composed
of both white noise bursts and speech signal. All these stimuli are likely to
present the transient energy and the broad frequency content necessary for
auditory space discrimination [11, 22]. The difference in stimulus duration may
have repercussions in the analysis, as the participants can initiate more head
movements to facilitate auditory localisation during the presentation of longer
stimuli [47]. While adaptive rendering (i.e. dynamic cues) was disabled during
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Figure 6.
Great-circle error mean and CI evolution across sessions and experiments. The great-circle error value for random
responses is of ≈90◦ for all experiments.

Figure 7.
Precision confusion rates mean and CI evolution across sessions and experiments. grp-parse-indiv was removed
from the figure, composed of only 2 participants, resulting in a CI so large it confused the whole plot.

stimulus presentation in exp-parseihian, exp-stitt, and exp-poirier, this is not
explicitly stated in exp-majdak and exp-steadman.

4.2.3 Assessing the global extent of localisation error

The evolution of great-circle angle error across studies and training sessions is
reported in Figure 6. Besides the clear benefit of training observed in all studies, the
metric also highlights the overall positive impact of HRTF quality on initial perfor-
mance. Interestingly, while the results from exp-parseihian suggest a similar intra-
HRTF quality/performance relationship, it reports larger great-circle angle errors
compared to those of the other experiments. This point already illustrates how
differences in evaluation protocols or inter-participant variations may complicate
the comparison of results across studies, as discussed in Section 4.3.

4.2.4 Assessing the critical localisation confusions

Much like the great-circle error, precision confusion rates can be used to assess
performance evolution during training, as illustrated in Figure 7. Trends observed
on initial precision rates and their evolution reflect the observation made on
the great-circle error analysis. Precision rates and great-circle angle values are
indeed highly correlated across training sessions, with correlation coefficients in
[−1.0:−0.9] for all studies. As each confusion rate aggregates all the responses of a
participant during an evaluation session however, their CI is by construction often
wide enough to confuse the analysis compared to that based on great-circle errors.

This widening of the CIs is particularly apparent in the comparison of the other
confusion rates, reported in Figure 8 for the evaluation that took place after the
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Figure 8.
Confusion rates after the first training session across experiments.

Figure 9.
Confusion rates mean and CI evolution across sessions for grp-stitt-worst.

first training session. While a trend indeed suggests that the amount of confusions
increases with decreasing HRTF quality, overlapping CIs often prevent any definite
conclusion. Observing these rates can still help inform the analysis, as the poor
performance of grp-parse-indiv on great-circle error observed in the previous
section can be partly attributed to their high in-cone confusion rates, while their
off-cone confusion rate is on par with that of grp-stitt-indiv and grp-majdak-
indiv.

Maybe the most interesting use of confusion rates is to decompose the overall
performance evolution. As illustrated by its confusion rate evolution in Figure 9,
grp-stitt-worst performance evolution observed in Figure 6 should, confusion
wise, mainly be attributed to improvements in front-back confusions during
training.

4.2.5 Assessing the local extent of localisation error

Results of the confusion classification indicate that roughly 50% of responses
were within the vicinity of the target (precision errors) after the first training ses-
sion across experiments. The analysis here focuses on these responses, assessing
local accuracy issues to complete that on localisation confusions.

Figure 10 reports local great-circle errors across training sessions and experi-
ments. Looking once more at grp-stitt-worst, their local accuracy did not improve
during training, oscillating around 25◦. The improvement seen on overall great-
circle error for that group can therefore be solely attributed to the reduction
in front-back confusions reported in the previous section. Likewise, the 10◦

improvement on overall great-circle error observed for grp-parse-worst between
sessions 2 and 3 can be attributed to a reduction in confusion rates, as it does not
appear on local great-circle error. Separating the contribution of confusions from
that of local accuracy also reveals a significant difference between grp-stitt-indiv
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Figure 10.
Local great-circle error mean and CI evolution across sessions and experiments.

and grp-majdak-indiv improvement of local great-circle error between sessions 2
and 6, not visible on global great-circle error.

4.2.6 Horizontal and vertical decomposition of the localisation error

Local lateral error evolution across sessions for all experiments is reported in
Figure 11(a). As expected, initial performances indicate that participants using
individual HRTF were quite apt at lateral localisation, accustomed as they were
to the presented ITD and ILD cues. exp-poirier, exp-stitt, and exp-parseihian
used a similar ITD adjustment scheme, slightly improved in its last iteration for
exp-poirier compared to that of exp-stitt, itself an incrementation on that of exp-
parseihian. As such, the progression of initial lateral errors between grp-parse-
worst, grp-stitt-worst, and grp-poirier-best can be expected. The performance of
grp-steadman-random, on par with that of participants using ITD-adjusted or
individual HRTFs, could be either attributed to the small number of evaluation
positions (similar to that used during training), or to the 1.6 s burst and voice
stimulus used as compared to the 180 ms to 500 ms burst trains used in the other
experiments.

Participants trained with individual HRTF did not improve much on local
lateral error overall, starting at ≈ 11◦ after the first training session and only
improving to at ≈ 9◦ after the last. Comparison of performance evolution between
groups training with a worst-match HRTF (grp-parse-worst and grp-stitt-worst)
against that of groups training with a best-match HRTF (grp-parse-best and grp-
poirier-best) suggests a positive impact of HRTF quality on potential local lateral
error improvement. It would also seem that the ITD adjustment applied in exp-
parseihian and exp-stitt was not sufficient to compensate for poor HRTF quality
regarding lateral localisation accuracy.

Focusing on local lateral compression evolution, Figure 11(b) reveals a sys-
tematic over-estimation of the lateral angle across experiments, i.e. participants
overall reported targets closer to the inter-aural axis poles than they truly were.
Analysis of session 2, after the first training session, indicates that 62% of the
73 participants presented an overall lateral compression of less than −5◦, against
only 4% presenting one above 5◦.

Local polar error evolution across sessions for all experiments is reported in
Figure 12(a). Overall performance was still a function of HRTF quality, but for grp-
parse-indiv poor performance prior to training and grp-steadman-random, on
par with exp-stitt and exp-majdak control groups using individual HRTFs. The
impact of training is hardly more pronounced than that observed on local lateral
error. Training still helped lower local polar error overall, with even participants
using individual HRTFs slightly improving during training: grp-stitt-indiv and
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Figure 11.
(a) local lateral error and (b) local lateral compression evolution across sessions and experiments.

grp-majdak-indiv gained ≈ 3◦ in local polar accuracy over the course of training,
roughly identical to the improvement observed on local lateral accuracy. Note here
that an analysis based on the overall polar error, i.e. taking into account confusions,
would have suggested ≈ 12◦ improvement after training for these two groups.
Finally, most of the improvement on local polar error occurred during the early
stage of the training, decreasing of ≈ 7◦ between sessions 1 and 2 in average over
all experiments, not considering exp-stitt and exp-majdak as participants were not
tested prior to training, and of only ≈ 7◦ between sessions 2 and 4.

The analysis of local elevation compression also reveals a stronger tendency
to under-estimate target elevation, i.e. responses closer to the horizontal plane
than the true target, than that observed on local lateral compression. Across
experiments, 38% of the 73 participants presented a local elevation compression of
more than 5◦ after the first training session, compared to 14% for elevation dilation.
A trend suggests that local elevation compression is quickly corrected during the
first training session and remains at a relatively constant value regardless of the
method or number of training sessions. The surprisingly high plateau reached by
grp-majdak-indiv compared to grp-stitt-indiv, also training on individual HRTFs,
could be attributed to the the difference in tested grid positions: exp-majdak
presented far more targets near the 90◦ elevation pole than exp-stitt.

4.2.7 Decompose the analysis across sphere regions

This section illustrates how splitting results analysis across sphere regions
might highlight spatial imbalances in performance. To avoid further cluttering
the chapter, only two example decompositions will be presented: confusion rates
based on sphere regions, and local great-circle error based on individual target
locations.

Decomposition of confusion rates based on the regions defined in Section 3.1.6
is illustrated Figure 13. Results displayed are aggregated over all five studies, to
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Figure 12.
Participants (a) local polar error and (b) local elevation compression across training sessions and experiments.

Figure 13.
Evolution of confusion rates across sessions, decomposed based on sphere regions, aggregated over all experiments.

focus the analysis on general binaural localisation behaviours. The first noticeable
result is that targets in the front-down region were the most susceptible to front-
back and in-cone confusions initially, resulting in a very low precision rate (30% vs.
47% and more for the other regions) prior to the first training session. Interestingly,
confusion rates in the front-down region were systematically higher than those in
the front-up region, for all but off-cone confusions. The initial rate of front-back
confusions of targets in front of participants, more than twice that of targets behind
them, is likely due to the absence of visual feedback during the localisation task,
increasing likelihood of perceiving a sound as behind if they cannot see its source,
regardless of HRTF cues.

A second interesting result is the negligible evolution of front-back confusions
for targets in the back regions throughout training (i.e. back-to-front). While the
precision rate of all regions increased, and front-back confusions dropped for front
regions, training seemed to have no impact on front-back rates in the back region.
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Figure 14.
Evolution of mean response locations across targets and sessions in exp-poirier. Hollow circles represent target
positions. Filled circles represent mean response locations, surrounded by standard error ellipses computed using
Kent distributions.

Analysis of per-region accuracy however revealed that the local great-circle error
decreased evenly across regions, from ≈ 25◦ in session 1 to ≈ 21◦ in session 11.

These observations suggest that future training programs could be improved
by focusing slightly more on reducing front-back and in-cone confusions in the
front-down region. Stagnating rates, such as that of front-back confusions in the
back-up region, around 15 % across sessions, would also suggest that there is
room for improvement in the design of didactic training programs that would aid
participants towards reaching 0% confusion rates.

Further refining the analysis, Figure 14 focuses on the assessment of mean
response locations for each target presented in exp-poirier. Mean response loca-
tions were obtained by summing local great-circle error vectors as discussed
in Section 3.2.6. Their positions relative to targets, and the evolution of these
positions during training, provides a thorough characterisation of participant’s
local accuracy evolution on the sphere. Additionally, the lateral and elevation
compression effects observed in Section 4.2.6 are clearly visible, where mean
responses are generally biased towards the interaural axes and/or the horizontal
plane.

4.2.8 Handling initial performance offsets

This additional step in the analysis can be seen as an extension of the evaluation
task characterisation proposed in Section 4.2.2 specific to the assessment of
localisation performance evolution. It presents some of the techniques that exist
to compare said evolution despite unbalanced initial conditions across studies or
groups of participants.

Techniques have been proposed to conduct training efficiency analysis on
unbalanced initial conditions. Stitt et al. [39] for example applied per-participant
arithmetic normalisation, based on group baseline performances. Realigning ini-
tial conditions, this technique allows to focus the analysis on relative improvement,
as illustrated in Figure 15.

Another technique for relative improvement comparison, used for example by
Majdak et al. [26] and Poirier-Quinot and Katz [34], is to compare the coefficients
of a regression applied on performance evolution. As mentioned in Section 2.3.2,
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Figure 15.
Great-circle error evolution across sessions and experiments. Data normalised (subtraction) with group mean
results of session 2 as reference.

two main regression models have been adopted to fit said evolution depending on
the training stages represented in the data. Figure 16 illustrates how both can be
fitted to local great-circle error evolution across experiments. Groups performance
evolution was first fitted to the exponential form in Figure 16(a), resorting to the
linear form in (b) when the evolution did not follow an exponential form, resulting
in regression parameters CIs so wide as to prevent any meaningful interpretation.
The use of a regression is particularly attractive, as it reduces the performance
evolution analysis to a simple high level coefficient comparison, coefficients
that can usually be interpreted in simple terms such as initial performance or
improvement rate.

As mentioned, these techniques are generally applied to compensate for unbal-
anced initial performance. Although they are perfectly valid to assess the impact
of HRTF quality or training efficiency on relative improvement, the scope of any
conclusion made using them is greatly limited as the potential improvement
margin naturally depends on initial performance.

4.3 Discussion

As illustrated throughout Section 4.2, drawing clear cut conclusions from the
comparison of results from several studies is difficult at best. Most of the time,
it is simply impossible, generally because of uncontrolled variations across test
conditions. These variations, limiting both intra- and inter-study analysis, are
discussed in this section.

4.3.1 Evaluation task

Variations in the evaluation protocols and procedures between studies in the
literature present a challenge for comparing the multiple experiments. Different
experimental design choices, such as reporting method, spectral content and
duration of the stimulus, and evaluation grid, have a direct impact on the
baseline performance of participants [3]. For example, given the choice by exp-
steadman to use a random-match HRTF, the notable results of grp-steadman-
random compared to those of the other groups could be attributed to the training
program. However, the 1.6 sec stimulus (that may have enabled the use of head
movements during the evaluation) may also have contributed to the improved
performance of grp-steadman-random compared to the other studies that used
180 or 500 ms bursts [43].

The use of a unique grid for localisation tasks across studies would assuredly
simplify results comparisons. Said grid could, for example, be designed to be
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Figure 16.
Regressions on local great-circle error evolution across training and experiments, (a) exponential regression
“y0 × exp(−sessionID/τ) + c”, (b) linear regression “a × sessionID + b”. y0 represents the initial performance,
τ the improvement time constant, and c the long term performance. b represents the initial performance, a the
improvement rate.

homogeneously distributed on the sphere [37]. For more flexible test conditions,
a series of test grids of increasing point densities could be defined, where test
positions of any given grid would be present on its higher density neighbours, eas-
ing down-sampling for comparison. Regarding the stimulus used or the reporting
method, a simple solution would be to settle on those that respectively optimise
localisation accuracy [4] and minimise reporting bias [3]. Pending the adoption of
common practices, the bias induced by those design choices could technically be
assessed from the results of a control group using individual HRTFs.

Another issue when comparing performance evolution across studies is the
alignment of the evaluation sessions for fair comparison. As proposed in Sec-
tion 4.2.1, a simple solution is to align them based on training duration. Time
alignment would seem a better option than its alternative, based on the number
of positions presented during the training. Time is of direct interest for end-users,
and an alignment based on presented positions would bias the analysis in favour
of slower exploratory training paradigms.

Finally, the merging of both evaluation and training sessions, as used in
exp-majdak, is not ideal in the context of inter-study comparison. Although
this practice allows for a more granular analysis of performance evolution, it
systematically leads to confusing analysis compared to studies alternating between
training and evaluation sessions. Additionally, it would seem that the alternating
design imposes a lesser constraint on the training paradigm itself, allowing for
implicit learning strategies not focused on target localisation [29].
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4.3.2 Intra- and inter-participant variations

Variations between participants’ performance is an issue common to most
psychophysical studies studies. Two aspects of these variations can become critical
in the context of HRTF learning studies.

The first aspect concerns imbalances in initial participant performance across
tested conditions. As discussed in Section 4.2.8, such imbalance is likely to
weaken or void conclusions resulting from the analysis. For within experiment
comparisons, a simple solution is to run a pre-training evaluation session, to then
create groups of equivalent performance based on the metrics used in the analysis.
The problem naturally worsens when dealing with inter-study analysis. The use
of a control group using individual HRTF is again advised to serve as a baseline
reference for the comparative analysis.

The second aspect concerns the difference in participants’ immediate sensitivity
to HRTF quality, and their ability to adapt to a non-individual HRTF. Both have
been discussed in previous studies, where some participants were more prone to
instantly benefit from a best-match HRTF [35] or to adapt to a poorly matched
HRTF [39]. To avoid missing out on interesting behaviours due to the variance
introduced by some participants, it is recommended to conduct a second pass of
the analysis on sub-groups, for example aggregated based on their improvement
rate [39]. Although the conclusions from the sub-group analysis may be weaker
compared to an overall analysis, the technique provides readers with a more
thorough understanding of the training as well as the potential advantages and
limitations of the tested conditions.

4.3.3 Procedural vs. perceptual learning

In the present context, procedural learning refers to participants becoming
familiar with the various aspects of the localisation task, resulting in a perfor-
mance improvement that is not due to an accommodation to HRTF specific cues
(perceptual learning). As of yet, there exists no model for a posteriori dissociating
the contribution of both types of learning to performance evolution. Intra-study
comparisons would most likely not be affected since one could generally assume
that the procedural learning has a similar impact on all tested conditions. However,
by not allowing the procedural learning to plateau before the first evaluation,
the generalisation of a study conclusions become problematic when one needs to
compare the results from various studies based on different protocols.

Results of control groups generally prove extremely valuable during inter-study
comparison. Participants only taking part in the evaluation and not the training, as
in exp-steadman, can provide a good insight on the impact of the evaluation task
implementation on performance across experiments. Even better, the inclusion of a
control group using their own HRTF, as in exp-stitt and exp-parseihian, provides
a solid baseline to dissociate procedural from perceptual learning during both
intra- and inter-study analysis.

Additionally, simple experimental design choices can be applied to avoid
having to deal with certain forms of procedural training. The proprioceptive
adjustment required for accurately reporting perceived positions [25] can for
example be greatly accelerated by using a natural 3D reporting method coupled
to a visual pointer [34], as well as providing a reference grid to help orientation
in the sphere [26]. Thorough beta testing can further eliminate design flaws that
participants can exploit to improve their performance, such as the use of too
small a set of test positions, or unconstrained tracking allowing for small head
movements during the stimulus presentation phase of the localisation task.
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Other aspects of procedural training, such as having participants focus on the
listening task, can only be removed by introducing a pre-experimental training
session. Such a session was applied in exp-majdak, where participants trained
for approximately 30 min on a localisation task coupling visual feedback and
stereo panning. This pre-experimental training likely contributed to the smooth
improvement in great-circle error by grp-majdak-indiv from session 2 onward
compared to the disjointed improvement observed for grp-stitt-indiv between
sessions 2 and 3 in Figure 6. Paradoxically, the only limitation of the pre-training
proposed in exp-majdak, which did not use actual binaural signals, is that it does
not familiarise participants with binaural rendering. Pending formal evidence, one
may assume that there exists an adaptation process during which participants will
grow consistent in their localisation estimation, even in the absence of feedback,
much like the effect observed on HRTF quality ratings reported by Andreopoulou
and Katz [1]. Regardless of whether this adaptation should be labelled as percep-
tual or procedural training, it will still interfere with the evaluation of training
efficiency itself.

Overall, it is reasonable to assume that one could design a pre-training session
that accommodates procedural learning in roughly 15 min, even taking into
account this last point, and relaxing the time constraint imposed in exp-majdak.
This session however still takes a non-negligible amount of time, which will
contribute to participant fatigue and loss of focus. Because of this, it is likely that
most experimental designs will continue to include aspects of procedural learning
as a shared effect, equally impacting all tested conditions. An alternative solution
would be to conduct a set of studies to measure and model the various aspects of
procedural learning in the present context, so that its contribution to performance
evolution could be dissociated from that of perceptual improvement even in the
absence of a pre-training session.

5. Conclusion

This chapter presented a methodology for the assessment of auditory local-
isation accuracy in the context of HRTF selection and learning tasks. Based
on existing metrics and decomposition schemes, the methodology consists of
a series of steps guiding analysis towards the creation of comprehensive and
repeatable performance assessments. A collected case-study was then proposed
that compared the results of five contemporary experiments on HRTF learning and
illustrates how the methodology can be applied to better understand participant
performances and their evolution.

The initial intent of this chapter was to propose a set of metrics and an analysis
workflow that would be adopted and adapted by the community to standardise
the evaluation of localisation performance. In time, the standardisation would
help simplify the comparison of results from different studies, allowing to assess
hypotheses and draw conclusions beyond the scope of the constituting stud-
ies. While the proposed case-study provides a glimpse at the benefits of such
standardisation, it is limited by one of, if not the most, major issue of inter-
study comparison: the lack of a reference between tested conditions. Without
this reference, conclusions drawn from the analysis can hardly be generalised,
much like those that would result from a comparison between language learning
techniques without a priori knowledge of participants learning abilities, or how
different is the language learnt compared to their mother tongue.

As of now, the only applicable solution to provide such reference across studies
is to systematically add a control group composed of participants using their
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own HRTF to the experiment. A large enough group composed of experts and
novices alike would indeed provide a stable reference that can be used to assert
a certain equivalence in e.g. the evaluation task before proceeding to inter-study
performance comparison. However, this solution is rarely practical due to the
complexity of the HRTF measurement process, which is the main incentive for
HRTF learning in the first place. A somewhat less constraining, yet highly unlikely,
scenario would be the creation and adoption of a unique evaluation platform,
shared across all studies to formalise future HRTF selection methods and training
program comparisons.

With luck, the issue will solve itself as the next generation of HRTF individ-
ualisation techniques render selection and training obsolete. In the meantime,
methodologies such as the one proposed here should help improve the rigour of
studies and consequently the understanding of the fundamental issues regard-
ing auditory localisation and spatial hearing accommodation to non-individual
HRTFs and their applications.
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