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Abstract  10 

Real-time prediction of product temperature is a challenge for cold chain monitoring. The use 11 

of machine learning methods, especially neural networks, has been suggested as a possible 12 

approach. However, their training requires a large amount of good quality data. We found that 13 

experimental data leads to better results (by 20 to 40% compared with synthetic data) but require 14 

material investment, while synthetic data generated from thermal model is plentiful but tends 15 

to cause overfitting and overestimation of prediction performance (up to 150%). Our study 16 

shows that increasing the amount of synthetic data only decreases the variance, but not the mean 17 

error. The best strategy is to improve the thermal model used. As for experimental data, it is 18 

more useful to find an optimal position of the sensor in the pallet than using ever increasing 19 

realistic scenarios. Overall, even with imperfect predictions, machine learning models are able 20 

to predict temperature in real time thus enabling to take preventive measures when needed.  21 
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1. Introduction 24 

Food cold chain is composed of different stages: production (or harvest), product handling, 25 

processing, distribution, and consumption. Temperature control along the cold chain is essential 26 

to provide consumers with safe food of high organoleptic quality. Worldwide, it has been 27 

estimated that 40% of food products require refrigeration (James and James 2010), and in 28 

developed countries, 12% of losses of perishable foods is due to a lack of refrigeration (IIR 29 

2021). A review of Ndraha et al. (2018) identified cold chain breaks in numerous studies. For 30 

example, a field study in France showed that around 12% products in transport and distribution 31 

had an average temperature above the recommended value (Derens et al. 2006). The recent 32 

development of wireless temperature sensors at affordable prices enables real-time temperature 33 

measurement along the cold chain (Bouzembrak et al. 2019). 34 

Measuring and predicting the products’ temperature in real-time are essential to detect cold 35 

chain breaks and to estimate their impact on product quality. In practice, temperature sensors 36 

such as Radio Frequency IDentification (RFID) tags are placed in the food stack to measure the 37 

air temperature. One of the limitation in the use of such wireless sensors is that the temperature 38 

is measured at one (or only at a few) position(s) in a pallet while products temperature is 39 

heterogeneous (Laguerre et al. 2013). Hence, the measured temperature is not representative of 40 

the full load. The temperature heterogeneity presents an issue when it comes about cold chain 41 

break detection (Loisel et al. 2021). For example, a detection system may alert operators about 42 

a cold chain break while products are not affected. Inversely, it may not detect and not alert the 43 

operators while a corrective action would be necessary. Thus, the development of a model for 44 
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products’ temperature prediction from measurement by few sensors located in a pallet is 45 

appealing since it makes possible the detection of cold chain breaks. 46 

In order to predict in real-time load temperature in refrigerating equipment from one or few 47 

sensors, Badia-Melis et al. (2016) used thermodynamics based approaches such as kriging or 48 

capacitive heat transfer models as well as machine learning methods. The authors showed that 49 

predictions by physical based models were less precise in transitionary state heat transfer than 50 

in stationary state, which is an issue when detecting cold chain breaks. Overall, machine 51 

learning models such as neural networks were more precise than physical based models and 52 

have proved their performance in several other studies (Nunes et al. 2014; Hoang et al. 2021; 53 

Mellouli et al. 2019; Mercier and Uysal 2018; Xiao et al. 2016). 54 

Temperature data are necessary to train machine learning models for temperature prediction. 55 

As discussed in Loisel et al. (2021), different sources of data are available: experimental data 56 

(collected on field and in laboratory) and synthetic data (generated from simulation using 57 

thermal models). However, field data are often incomplete (e.g., unknown environmental 58 

conditions, few measured products), thus the options for different machine learning tasks are 59 

limited. As alternatives, experimental data generated in laboratory and synthetic data generated 60 

by thermal model are more robust to build a training dataset for machine learning models. 61 

Indeed, all the temperatures at various locations on a pallet can be measured and calculated. 62 

These two types of data involve different costs, different uncertainties, and different times. 63 

Experimental data generation requires a controlled temperature test room, an experimental 64 

device, a product to be tested and time to conduct the experiment (Duret et al. 2014). However, 65 

this data can be assumed as representative of field data if physical properties such as ambient 66 

air temperature or velocity are reproduced in the experimental room. Synthetic data generation 67 

is less time consuming but it requires the use of thermal models, which can be obtained from 68 

literature and from a specific development (Ambaw et al. 2021). As with all thermal models, 69 
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the uncertainty of temperature prediction is a common issue. The data uncertainty, related to 70 

the applied assumptions, may affect the performance of a machine learning model trained with 71 

those data.  72 

The machine learning models used to predict product temperature in the cold chain reported by 73 

several studies are based on both experimental (Badia-Melis et al. 2016) and synthetic data 74 

(Mercier and Uysal 2018). However, to our knowledge, the precision of prediction by machine 75 

learning models trained by these types of data were not compared in these studies.  76 

This study aims to compare the use of experimental and of synthetic training data for machine 77 

learning approaches using neural network (NN) models to predict product temperature 78 

distribution in a pallet. The following questions are addressed: 79 

• What is the impact of the sensor position on temperature prediction accuracy? 80 

• Between experimental and synthetic data, which one allows obtaining the best 81 

performance using machine learning models? 82 

• Which strategies can be implemented to optimize the performances of the machine 83 

learning models when only synthetic data is available? 84 

  85 

2. Material and methods 86 

2.1. Overview of the methodology 87 

Figure 1 presents the overview of the methodology developed in this study. First, the data 88 

sources are presented: namely an experimental set-up description (section 2.2.1) and the heat 89 

balance equations for the developed thermal model (section 2.2.2). The data generated by 90 

experiment and by thermal model according to different cold chain scenarios are presented 91 

(sections 2.3.1 and 2.3.2). Then, the machine learning models trained on these two data sources 92 
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are described (section 2.4). Finally, their performances evaluated by using Root Mean Square 93 

Error (RMSE) as criteria (section 2.5) are reported and compared (section 3). 94 

 95 

2.2. Data sources 96 

2.2.1 Experimentation 97 

An experimental set-up (Figure 2) representing a level of a pallet (1.2m long, 1m wide and 0.1m 98 

high) was installed inside a controlled-temperature test room of 29 m3 (3.4m long, 3.4m wide 99 

and 2.5m high). Eight crates were filled with 28 apples each (sp. Rubinette Rosso, mass of an 100 

apple = 120 g, diameter = 0.064 m). Two polystyrene plates (5 cm thickness) were placed at 101 

the top and the bottom of the device to represent an intermediate level in a pallet. Air was sucked 102 

through the device by 3 fans located at the exit enabling stable one-directional airflow. Air 103 

velocity was fixed at 0.2 m.s-1 at the entrance of the pallet to represent the pallet located in clam 104 

air. Air flowed only through the space over the crates since the sidewalls were closed. The inlet 105 

air temperature could be changed instantaneously by switching a shutter at different moments 106 

to alternate between the cold air (of the test room) and warm air (previously flowing through a 107 

heat resistance). Hence, different inlet air temperature profiles could be generated. 108 

Temperatures were measured with T-type thermocouples previously calibrated at 0°C, 10°C, 109 

20°C, 30°C and 40°C (precision +/-0.2°C). These thermocouples were placed at the core and 110 

the neighboring air of 16 apples (2 apples/crate, Figure 2b). In addition, a thermocouple was 111 

placed at the entrance of the device to measure the inlet air temperature. In each experiment, 112 

the product initial temperature was considered as homogeneous while it was different in 10 113 

studied scenario (see section 2.3). Temperatures were recorded every 20s for 12h. 114 

 115 
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2.2.2 Thermal model 116 

A thermal model was developed to predict air and product temperatures at different positions 117 

in a pallet using the inlet air temperature profile as input parameter. These predicted 118 

temperatures are called synthetic data.  119 

The model was based on a zonal approach. The model considers that a crate is composed of 2 120 

zones, one near the side and one near the center of a pallet. Each zone is characterized by one 121 

air and one core temperatures. Thus, a pallet level is composed of 16 zones.  122 

As air flows through a pallet, it exchanges heat first with products upstream of the pallet. 123 

Consequently, upstream products are more susceptible to variations in temperature as a result 124 

of changes in ambient temperature. For this reason, temperature heterogeneity can be observed 125 

in a pallet of product (Duret et al. 2014). The Biot number (𝐵𝑖 = ℎ𝑅/𝜆, ratio between internal 126 

and external heat transfer resistances) of product is about 0.4 (where R= 0.032 m, λ=0.39 W.m-127 

1.K-1 and h=5 W.m-2.C-1). Thus, the internal heat transfer resistance due to conduction inside 128 

the apple is on the same order of magnitude as the convection and cannot be ignored. 129 

In order to generate synthetic data, the numerical model used in this study used a zonal approach 130 

to describe the evolution of air temperature through a pallet coupled with a 1D thermal model 131 

to predict the product core temperature in each zone.  132 

Assuming that in a zone, product temperature was homogeneous. Moreover, the heat transfer 133 

by radiation was considered as negligible in this study. 134 

 135 

Air temperature calculation 136 

Only convective heat exchange between air and product was considered. At the time t, the inlet air 137 

of temperature 𝑇𝑖𝑛𝑙𝑒𝑡,𝑡 
𝑎𝑖𝑟  exchanges with product in the zone 1 (with convective heat transfer 138 
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coefficient h), this gives the air outlet of 𝑇1,1,𝑡
𝑎𝑖𝑟  , which is the inlet air of the zone 5 and so on. The 139 

generalization of the balance equation over 16 zones is presented as follows: 140 

𝑚̇ × 𝐶𝑝𝑎𝑖𝑟 × (𝑇𝑖,𝑗,𝑡
𝑎𝑖𝑟 − 𝑇𝑖−1,𝑗,𝑡

𝑎𝑖𝑟 ) + ℎ × 𝑆 × (𝑇𝑖,𝑗,𝑡
𝑎𝑖𝑟 − 𝑇𝑖,𝑗,𝑡

𝑝𝑟𝑜𝑑,𝑠) = 0  (1) 141 

With 𝑚̇, the air mass flow rate (kg.s-1), Cpair the air heat capacity (J.kg-1.°C-1), 𝑇𝑖,𝑗,𝑡
𝑝𝑟𝑜𝑑,𝑠 the 142 

product surface temperature (°C), S the product surface area (m²) and h the convective heat 143 

transfer coefficient between air and product surface was considered as constant in all 16 zones. 144 

Both free and forced convection can be considered for low air velocity used in our study (0.2 145 

m.s-1). The corresponding convective heat coefficient ℎ =  5 W.m-2.C-1 was obtained by fitting 146 

product core temperature change with time during a cooling from 20°C to 4°C (independent 147 

scenario from all scenarios presented next in this work). This value in the condition of our study 148 

corresponds to mixed convection (Richardson number = 𝐺𝑟
𝑅𝑒2⁄ ~ 0.8) and is in agreement with 149 

previous values observed in pallets in the literature (min=2 W.m-2.C-1 and max=20 W.m-2.C-1; 150 

Duret et al. 2014, Laguerre et al. 2014). 151 

Product temperature calculation 152 

For simplification, an apple was considered as a sphere with no heat generation and constant 153 

thermal diffusivity α (α = 1.1 × 10
−7

m2.s-1). Inside a product, conduction only in radial 154 

direction was considered (1D model). The transient heat conduction equation in spherical 155 

coordinates is:  156 

1

𝛼

𝜕𝑇

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
)   (2) 157 

Symmetry and convective boundary conditions were considered in product core and surface, 158 

respectively: 159 

𝜕𝑇

𝜕𝑟
|

𝑟=0
= 0   (3) 160 
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−𝜆
𝜕𝑇

𝜕𝑟
|

𝑟=𝑅
= ℎ(𝑇𝑎𝑖𝑟 − 𝑇𝑝𝑟𝑜𝑑,𝑆)   (4) 161 

At t = 0, 𝑇𝑖,𝑗,𝑡
𝑝𝑟𝑜𝑑

 = T0 (homogeneous product initial temperature in all zones). 162 

This equation was solved using FTCS (Forward Time Centered Space) method (Thibault et al. 163 

1987). At the top and the bottom of the experimental device, adiabatic walls are considered to 164 

represent an intermediate layer in a pallet. 165 

2.3. Data generation from different cold chain scenarios 166 

2.3.1. Experimental dataset 167 

Ten profiles of the inlet air temperature (𝑇𝑖𝑛𝑙𝑒𝑡
𝑎𝑖𝑟 ) were created using the experimental device to 168 

represent 10 cold chain scenarios for a fixed duration of 12h each (Figure 3 A & B). These 169 

scenarios were built by combining cooling and warming events at the inlet air temperature to 170 

represent the ones observed in real situations, e.g. products loading/unloading in a cold 171 

equipment, temperature fluctuations due to on/off cycles of compressor, defrosting during 172 

which compressor is turned off, product transferred from one to another cold equipment in 173 

which the set temperatures are different…). The mean and standard deviation of the inlet air 174 

temperature in these scenarios were different in order to represent as much as possible real 175 

conditions. It is to be emphasized that for one scenario, a core and an air temperature in 16 176 

zones in the experimental set-up were generated.  177 

2.3.2. Synthetic dataset 178 

The air inlet temperature profiles, used as inputs of thermal model for synthetic data generation 179 

(Figure 3 C & D), were obtained by applying a moving average smoothing method on the 180 

experimental profiles. In this manner, noiseless data was generated from the same 10 scenarios. 181 
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Similarly to the experimental dataset, each scenario generated a core and an air temperatures in 182 

the 16 zones. 183 

2.4 Machine learning models 184 

Numerous machine learning models exist in the literature. Only the results obtained with neural 185 

networks are reported in this work. Neural networks are representative of machine learning 186 

methods with the same issue of generalizing from data while avoiding overfitting. In addition, 187 

we obtained better results with neural networks than with ensemble methods such as Random 188 

Forests and Adaboost, as well as linear methods such as Linear Regression, Lasso, and SVM. 189 

Therefore, results obtained with neural networks are indicative of what one can hope for using 190 

the best machine learning method to date on that type of learning task.  191 

The conclusions we reached in our experimental study would remain qualitatively the same if 192 

we had used other machine learning methods, but with inferior performance. Since we are 193 

comparing synthetic and experimental data, neural networks were selected to alter their 194 

architecture. This was done to see if the difference between the two training datasets was the 195 

same for different architectures. 196 

2.4.1 Inputs and output of the Neural Network (NN)  197 

The objective of a NN is to predict the products’ core temperatures in each 16 zones from an 198 

air temperature measurement, as in field practice. Hence, the NNs were trained to predict the 199 

16 apples’ core temperature at time 𝑡 (𝑇𝑖,𝑗,𝑡
𝑐𝑜𝑟𝑒) knowing the air temperature inside the pallet at 200 

the previous time steps (𝑇𝑖,𝑗,𝑡−𝜆𝛥𝑡
𝑎𝑖𝑟 , 𝑇𝑖,𝑗,𝑡−(𝜆−1)𝛥𝑡

𝑎𝑖𝑟 , . . . , 𝑇𝑖,𝑗,𝑡−𝛥𝑡
𝑎𝑖𝑟 ) (Figure 4). In each of the 16 zones, 201 

indices 𝑖 and j = [1,..4] represent the coordinates of the position of the zone in the experimental 202 

set-up (Figure 2.b), 𝜆𝛥𝑡 the time delay between the last measurement (at 𝑡 = 𝑡 − 𝛥𝑇) and the 203 
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oldest measurement (at 𝑡 = 𝑡 − 𝜆𝛥𝑇) used as input of the NN, 𝛥𝑡 the time step between two 204 

measurements. According to our preliminary study, 𝜆 = 50 is an optimal value. 205 

2.4.2 Tested NN architectures 206 

The type of NN used is the Multilayer Perceptron Regressor (MLP), that uses back propagation 207 

and stochastic gradient descent to optimize the squared loss. The activation function for the 208 

hidden layers was the Rectified Linear Unit function (RELU). For all tested NNs, the 209 

hyperparameters (e.g. α: L2 penalty parameter) were set at the default values of the library 210 

scikit-learn (Pedregosa et al. 2011). In this case, the multi-output version of the MLP was 211 

implemented: the output layer’s size is 16, corresponding to the 16 apple core temperatures. 212 

The objective of this work is not to find the best model, but to compare the quality of the training 213 

data. Tests were performed on various NN architectures, from 1 hidden layer to 3 hidden layers 214 

to evaluate the impact of different strategies (noise addition, data augmentation). The different 215 

sizes of the hidden layers were chosen according to preliminary simulations. Finally, 5 different 216 

hidden layer architectures were presented in this work: 217 

• 1-hidden layer architectures: 5 and 15 218 

• 2-hidden layers: (10, 4)  219 

• 3-hidden layers: (5, 5, 5) and (24, 12, 4) 220 

2.5 Performance evaluation 221 

The models were trained and tested through a leave-one out (LOO) cross-validation procedure. 222 

This procedure evaluates the model’s capacity to predict the target on an unknown profile. In 223 

our case, a dataset includes 10 temperature scenarios (16 air temperatures and 16 core 224 

temperatures in each). A model was trained on 9 scenarios (scenarios 2 to 10) then tested on 225 

the remaining scenario (scenario 1- see Figure 5). This process was repeated 10 times. In the 226 
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second step, scenario 2 is used for the test, in third step, scenarios 3 is used for the test and so 227 

on. The LOO cross-validation procedure enables estimating the performance of the model when 228 

generalizing to an independent real scenario. 229 

It is of major importance to emphasize here that the scenario used for the test are always 230 

experimental. Even when NNs are trained with synthetic data, the performance is evaluated by 231 

testing in comparison with experimental data. In this way, the NN models trained with the 232 

experimental and synthetic datasets are evaluated on the same data and their performance 233 

comparison is possible. Moreover, it corresponds to the field operational conditions as these 234 

NNs are meant to predict temperature from a wireless sensor placed in a pallet. 235 

The chosen performance criteria was the Root Mean Square Error (RMSE) since it is 236 

appropriate for numerical predictions: 237 

𝑅𝑀𝑆𝐸 =  √ 𝛥𝑡

𝑁𝑧𝑜𝑛𝑒×𝑡𝑚𝑎𝑥
∑ ∑ (𝑇̂𝑛,𝑡

𝑐𝑜𝑟𝑒 − 𝑇𝑛,𝑡
𝑐𝑜𝑟𝑒)

2
𝑡𝑚𝑎𝑥

𝛥𝑡
𝑡=0

𝑁𝑧𝑜𝑛𝑒
𝑛=1  (3) 238 

With the number of zones 𝑁𝑧𝑜𝑛𝑒  = 16, the time step 𝛥𝑡 = 60𝑠, 𝑡𝑚𝑎𝑥  =  12𝑥3600𝑠. 𝑇𝑛,𝑡
𝑐𝑜𝑟𝑒 239 

and 𝑇̂𝑛,𝑡
𝑐𝑜𝑟𝑒 are respectively the measured and predicted (by the NN) core temperatures of the 240 

apple of the zone n at time t. 241 

Furthermore, NN training uses pseudo-random numbers generated from a random seed. The 242 

same model trained on the same data with different random seeds will not give us the same 243 

results. The random seed has an impact on how the NN weights are initialized.  244 

Depending on the analysis provided, some specifications of the RMSE calculation are given: 245 

2.5.1. Performance over the 10 scenarios. In sections 3.1, 3.2 and 3.3, the 𝑅𝑀𝑆𝐸𝑠 is used. 246 

𝑅𝑀𝑆𝐸𝑠 is based on 𝑅𝑀𝑆𝐸 defined in (3). In the LOO cross validation process (Figure 5.A), for 247 

each of the 10 training and testing steps 𝑠, a total of 50 iterations with different random seeds 248 
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are processed, resulting in 50 𝑅𝑀𝑆𝐸𝑠,𝑖 . Then, the average value is calculated (𝑅𝑀𝑆𝐸𝑠) and 249 

presented by boxplots describing the distribution of the 10 𝑅𝑀𝑆𝐸𝑠 . In other words, these 250 

boxplots represent the performances distribution according to the 10 temperature scenarios. 251 

This allows us to present results that are independent from the random seed and hence 252 

independent from the NN initialization. 253 

2.5.2. Performance over time. In Figure 7 (section 3.2), the evolution of the NN performance 254 

over time is studied, this is represented by a 𝑅𝑀𝑆𝐸𝑡: 255 

𝑅𝑀𝑆𝐸𝑡 =  √ 𝛥𝑡

𝑁𝑧𝑜𝑛𝑒×𝑡𝑚𝑎𝑥
∑ ∑ (𝑇̂𝑛,𝑢

𝑐𝑜𝑟𝑒 − 𝑇𝑛,𝑢
𝑐𝑜𝑟𝑒)

2
𝑡

𝛥𝑡
𝑢=0

𝑁𝑧𝑜𝑛𝑒
𝑛=1  (4) 256 

With t the time at which the 𝑅𝑀𝑆𝐸𝑡 is calculated. For example, at time 𝑡 = 2ℎ, the 𝑅𝑀𝑆𝐸𝑡 from 257 

time 𝑢 = 0h to 𝑢 = 2h is calculated. 258 

2.5.3. Average performance over 50 different weight initializations. In section 3.4 (Impact 259 

of additional synthetic data), the 𝑅𝑀𝑆𝐸𝑖  is used. 𝑅𝑀𝑆𝐸𝑖 is also based on the 𝑅𝑀𝑆𝐸  (see 260 

equation 3). The LOO cross validation (Figure 5.A) is processed for a given seed for the 10 261 

steps 𝑠, resulting in 10 𝑅𝑀𝑆𝐸𝑠,𝑖  (Figure 5.B) which are averaged. This process is conducted 50 262 

times with 50 different random seeds (i.e., NN initializations, data shuffle …) resulting in 50 263 

𝑅𝑀𝑆𝐸𝑖. The corresponding results are presented using boxplots describing the distribution of 264 

the 50 𝑅𝑀𝑆𝐸𝑖  of each iteration i (seed setting); in other words, the model performance 265 

according to 50 different NN initializations. 266 

  267 

3. Results & Discussion 268 

3.1. Position of the temperature sensor in the pallet.  269 
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All sensors’ positions were tested, but only two results with sensors placed at the front and at 270 

the back are presented. Figure 6 shows the 𝑅𝑀𝑆𝐸𝑠  distribution according to the sensor’s 271 

position in the pallet and the architecture of the tested NN. Among the different proposed NNs 272 

(number of hidden layers, hidden layer size), none of the architectures showed consistently 273 

better performances. In single-sensor configurations, the NN performances are better when the 274 

sensor is placed at the back (𝑅𝑀𝑆𝐸𝑖 = 0.95; downstream airflow) than at the front of the pallet 275 

(𝑅𝑀𝑆𝐸𝑖 = 1.41; upstream airflow). Results agree with similar studies in the literature (Badia-276 

Melis et al. 2016; Mercier and Uysal 2018). Indeed, the air temperature (measured by the 277 

sensor) in the back depends on the air and product temperatures located at the upstream 278 

positions in the pallet. In other words, the evolution of the air temperature at the back contains 279 

information about the air and product temperatures of the previous zones. The air temperature 280 

at the front, on the other hand, depends mostly on the external ambient air. In field conditions, 281 

it is difficult to control the airflow direction around a pallet. Moreover, the pallet position in an 282 

equipment can change through the cold chain, e.g. a crate at the back (downstream airflow) in 283 

a specific equipment can become the crate at the front (upstream airflow) in another equipment. 284 

Taking into consideration this fact, when only one sensor is available, it should be placed at the 285 

center of the pallet: either at the two opposite sides in a pallet (Mercier and Uysal 2018). These 286 

two sensor positions would allow more robust results (𝑅𝑀𝑆𝐸𝑖 = 0.65), but at a higher cost. A 287 

cost analysis should take into consideration the performance of the cold chain break detection 288 

system, its implementation cost (linked to the number sensors), product economical value and 289 

cost of product losses following cold chain break. This analysis would help the decision-making 290 

of the most appropriate solution for a given product.  291 

 292 

3.2. Evolution of model performance over time 293 
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The core temperature evolutions (average value of 16 measurements) and the predicted ones 294 

(by NN) are presented in Figure 7.A, and the comparison of 𝑅𝑀𝑆𝐸𝑡 evolution  for the NN 295 

trained with experimental and synthetic data presented in Figure 7.B. It is obvious that the 296 

core temperature is poorly predicted during the first hour (𝑅𝑀𝑆𝐸𝑡 > 2), then, the 297 

𝑅𝑀𝑆𝐸𝑡 decreases rapidly over time (𝑅𝑀𝑆𝐸𝑡 < 1). This can be explained by the fact that at 298 

time 𝑡 = 0, the NN does not have the data of the initial product temperature. Indeed, in 299 

practice, the sensor is placed in the pallet and measures the air temperature, no data of product 300 

temperature provided to the NN. The precision of prediction increases with time, this can be 301 

explained by the fact that the product measured and predicted temperatures (by NN) reach 302 

progressively the inlet air temperature. In practice, in order to avoid false or undetected cold 303 

chain breaks, the sensor should be placed in the pallet long time before shipping. In this 304 

manner, the NN will be able to determine a product temperature in controlled conditions and 305 

then to predict the product temperature correctly after shipping.  306 

 307 

3.3. Influence of data source on NN model performance 308 

 309 

3.3.1 Comparison of model performances 310 

The performances of the NNs trained with two data sources (experimental and synthetic) are 311 

shown in Figure 8 for two sensor positions (back and front). For all tested NNs, the RMSEs of 312 

the NNs trained with experimental data are lower than the RMSEs of the NNs trained with 313 

synthetic data. These results were expected as the calculation of the RMSEs for the data sources 314 

are performed on experimental data. Moreover, this is also due to the uncertainty of the 315 

synthetic data as this dataset was generated from a numerical model with its own uncertainty. 316 

However, the difference of the performances between the two types of data is lower when the 317 
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sensor is located at the back of the pallet (up to 0.2 °C corresponding to 20%; Figure 7.A) than 318 

when the sensor is placed at the front (up to 0.6 °C corresponding to 40%; Figure 7.B). Although 319 

NNs trained with experimental data show better performances, their generation has constraints. 320 

 321 

3.3.2 Estimation of the model performance without experimental data 322 

Although it is possible to train NNs with synthetic data, the evaluation of an NN performances 323 

without any experimental or field data is more complex. When no experimental data is 324 

available, one would have to train NNs on synthetic data. In this case, the LOO cross-validation 325 

process would be conducted using also synthetic data as test data. However, as observed in 326 

Figure 9, the RMSEs estimated using synthetic noiseless data as test data (0.7± 0.35°C) are 327 

lower than the RMSEs calculated using experimental data (1.22 ±0.47 °C), leading to an 328 

overestimation of the NN performances (up to 150%). This observation could be explained by 329 

the fact that the NN are trained using noiseless synthetic data. Indeed, the noise of the measured 330 

data is mainly due to the uncertainty of the thermocouple (+/- 0.2°C). To limit the 331 

underestimation of the RMSE of NN trained with synthetic data and tested on synthetic data, 332 

different noise levels were added to the synthetic test data. However, in all tested cases, the 333 

RMSEs were underestimated in comparison to the RMSEs calculated on experimental data 334 

(Figure 9).  335 

 336 

3.4. Impact of additional synthetic data 337 

Previously, NN models were trained with experimental and synthetic datasets generated from 338 

10 cold chain scenarios. Now a question is: what is the impact of the choice of the scenarios? 339 

Can the model train on synthetic data be improved by adding some random scenarios?  340 
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In order to answer this question, 50 additionnal random scenarios were generated and used as 341 

input to the thermal model to generate synthetic data. It should be remined that realistic 342 

scenarios require field studies. 343 

 344 

3.4.1 Impact of scenarios used for training 345 

The performance of NN trained with the synthetic data described in section 2.3.2 are compared 346 

with the performances of NN trained with synthetic data of scenarios generated randomly with 347 

the thermal model by varying the time-temperature evolution of inlet air temperature. The 348 

results are presented in the Figure 10 and showed that NNs trained on synthetic data generated 349 

from random scenarios performed similarly to NNs trained on realistic scenarios. This 350 

observation is of interest as it implies that NN can be trained without accurate information of 351 

the given cold chain. Thus, to implement product temperature prediction using wireless 352 

temperature sensor and NN, it is not necessary to conduct a complete field study to identify 353 

representative scenario. 354 

 355 

3.4.2 Impact of increasing the dataset’s size  356 

Once a thermal model is developed, it is easy to generate large synthetic datasets from numerous 357 

synthetic cold chain scenarios. This represents the main advantage of synthetic data in 358 

comparison to the generation of experimental data. With a large dataset, it is expected that the 359 

NN performance would improve significantly, allowing one to achieve the performance of an 360 

NN trained on experimental data. In Figure 11, the impact of the number of random scenarios 361 

added to the original dataset on the 𝑅𝑀𝑆𝐸𝑖 is presented, compared to 𝑅𝑀𝑆𝐸𝑖 obtained from NN 362 

trained on experimental data. Overall, the average 𝑅𝑀𝑆𝐸𝑖 is similar for all tested cases (from 0 363 
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to 50 scenarios added to the original dataset). Adding more synthetic scenarios will not suffice 364 

to overcome the drawbacks of synthetic data.  However, the variance of the 𝑅𝑀𝑆𝐸𝑖 decreases 365 

as the number of added scenarios to the training increases. Hence, while the number of scenarios 366 

does not impact the overall performance of the 𝑅𝑀𝑆𝐸𝑖, it helps reducing the impact of the 367 

weights’ initialization, thus reducing the variance of the final model. Precautions need to be 368 

taken on the development of NN when little data is used for trained as the NN is sensitive to 369 

the weights’ initialization. In this case, additional scenarios could help reducing the model 370 

variance, thus, reducing false or non-undetected cold chain breaks. 371 

 372 

3.5. General discussion. 373 

The main issue to develop machine learning models to predict product temperature is to collect 374 

the training data. This data may come from several sources:  field measurement, experiments 375 

in laboratory, or synthetic from more or less complex thermal models (Loisel et al. 2021). In 376 

this study, the impact of experimental and synthetic data on the performance of machine 377 

learning model was conducted. While NNs trained with experimental data showed better 378 

performances, this kind of data require material investment. To be able to predict product 379 

temperatures under various conditions (air velocity, product and pallet geometries…), the use 380 

of physical based thermal model to generate synthetic data is promising. NNs trained on 381 

experimental data performed better ( 𝑅𝑀𝑆𝐸  10% lower in average) than NNs trained on 382 

synthetic data. In addition, even though one can use only synthetic data of various 383 

configurations to train NNs, the main issue concerns the method of evaluating the NN 384 

performance. As seen in section 3.3. the use of synthetic data as test data leads to an 385 

overestimation of the model performances. Furthermore, noise addition during testing is not 386 

enough to overcome this issue. Measurement data (issued from laboratory experiments or 387 
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ideally from field data) should be used as test data to evaluate properly performances of NNs 388 

trained with synthetic data. In other words, synthetic data can be used to train NNs but 389 

experimental measurements should be used as test data. It should be noted that the results and 390 

conclusions of this study are not generalizable to other applications or models with different 391 

uncertainties. Results obtained with models with lower uncertainty (e.g. models taking into 392 

account more detailed hydrodynamics effects) might be different from this study. There is a 393 

need for further study of the effect of uncertainty on NN performances. In the view of the 394 

development of more flexible predictive tool able to describe the high variability of 395 

configurations encountered in the cold chain, without a tremendous work on model 396 

development or experimental data generation, transfer learning methodology might be of 397 

interest.  The increasing availability of powerful machine learning methods that are efficient in 398 

the large and highly variable set of situations encountered in the cold chain, is accompanied by 399 

a growing demand for learning data. But, given the difficulty of producing experimental data, 400 

it might be worth considering the use of transfer learning where one starts with a previously 401 

learned model with similar data in order to learn a model for a new task, thus reducing the need 402 

for new training data.  403 

It is to be emphasized that the 𝑅𝑀𝑆𝐸 was calculated including data measured before the first 404 

2h. The 𝑅𝑀𝑆𝐸 presented throughout this paper would have been lower if our experiments were 405 

conducted on 24h or 48h. For this reason, the comparison of the performances with other similar 406 

studies is not possible. The 𝑅𝑀𝑆𝐸𝑠 could have been calculated omitting for example the first 407 

two or three hours, in order to provide the information to the NN about the initial product 408 

temperature. However, this would have been difficult to justify and in addition, there was not 409 

sufficient information to set an appropriate cut-off time. Further work could be conducted on 410 

defining an appropriate evaluation metric. 411 

Jo
urn

al 
Pre-

pro
of



In order to improve the performances of machine learning models trained with synthetic data, 412 

several studies added noise to the training data. Indeed, contrary to the experimental data, the 413 

synthetic data is noiseless. Adding noise to the synthetic data could describe more accurately 414 

the experimental data. To evaluate the noise impact on performance, a comparison between 415 

noiseless synthetic data, synthetic data with standard deviation of 0.1°C (corresponding to ± 416 

0.2°C uncertainty of the sensor used in the experimentation, 95% of Confidence Interval), 0.2°C 417 

and 0.5°C was conducted. However, no difference was found in terms of performances (results 418 

not shown). Further work needs to be conducted in order to improve models trained with 419 

synthetic data. 420 

There are many types of NNs. In this study, Mulit-Layer Perceptrons were used. This choice 421 

was made since our configuration was simple (one level of a pallet) and our preliminary tests 422 

showed good results using them. The comparison of different types of NN was out of the scope 423 

of this study. In further studies, focusing on more complex configurations (pallet, equipment, 424 

…), other types of NNs could be used such as RNN  that are better adapted to temporal data 425 

(Jaeger 2002), Convolutional Neural Networks (CNN) that are better adapted to spatial data (Le 426 

Cun et al. 1990), or other methods combining both (Convolutional Recurrent Neural Networks 427 

- CRNN) (Zuo et al. 2015).  428 

Finally, such models to predict in real time the temperature could be associated with anomaly 429 

detection algorithms in order to alert operators when cold chain breaks occur or are about to 430 

occur. This would allow operators to prevent cold chain breaks by implementing corrective 431 

measures to reduce the food quality degradation, ensure food safety and reducing waste 432 

(Achenchabe et al. 2021). 433 

 434 

4. Conclusion and perspectives 435 
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An experimental set-up and a physical-based model were developed to generate two datasets of 436 

air and product temperatures in a pallet of apples. The objective of this study was to compare 437 

performances of neural networks trained with the experimental and synthetic dataset. The main 438 

conclusions are as follows: 439 

a) Neural networks trained with experimental dataset showed better performances (20 to 440 

40%) in comparison to the one trained with synthetic dataset.  441 

b) Sensor position inside the pallet is a determining factor to predict the product 442 

temperatures by neural networks.  443 

c) Similar results were obtained from models trained with synthetic data generated from 444 

realistic scenarios and from random scenarios.  445 

d) Increasing the synthetic training dataset with 10 to 50 additional scenarios did not 446 

significantly improve the model precision but reduced the model variance.  447 

e) Models’ precision is increasing over measurement time. The uncertainty of the 448 

prediction during the first hours should be considered.  449 

 450 

The implementation of such methodology in the cold chain permits to envision the preservation 451 

of food quality and safety and to reduce waste. The use of neural networks would allow, in real 452 

time, the prediction of product temperatures in a cold chain using wireless sensors placed in the 453 

pallets. This would help operators to detect and prevent cold chain breaks on time.  454 
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 549 

Figure 1: Overview of the methodology processed to compare performances of machine 550 

learning models trained with two types of datasets. 551 
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(a) Side view 563 
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 564 

 565 

(b) Top view 566 

Figure 2: Experimental set up. (a) Side view (sidewall open to show product arrangement 567 

inside) (b) Top view. Red apples represent the instrumented product, the value over them 568 

corresponds to the zone number. White circles are non-instrumented apples. 569 
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 571 

Figure 3: Inlet air temperature profiles of the studied cold chain scenarios: (A) and (B) -572 

Experimental profiles, (C) and (D) - Synthetic profiles (experimental profiles were 573 

smoothed to obtain profiles of the thermal model input). Five profiles are plotted in each 574 

graph for readability purpose.  575 

 576 
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 578 

Figure 4 : Schematic representation of a 1- hidden layer NN of size k with air temperature 579 

at one position from time t-λΔt to time t in the input layer and 16 product core 580 

temperatures at time t in the output layer. 581 
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 584 

Figure 5: Method used to train (LOO process) and evaluate (RMSE) NN: (A) Method to 585 

evaluate the model’s performance according to various parameters (sensor, training data 586 

type) (B) Method to evaluate the impact of the NN initialization on the NN performance  587 

 588 
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 590 

 591 

Figure 6 : Impact of sensor’s position on the distribution of the RMSEs for five NN 592 

models trained with experimental data. Boxplots represents the distribution of the 10 593 

RMSEs resulting from the leave-one-out cross validation. White dots and black 594 

diamonds represent the average of the 10 RMSE and the outliers, respectively.  595 
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 601 

Figure 7 : (A) Temperature evolution over 12h of one cold chain scenario: Blue line - sensor 602 

measured air temperature (input of NN); Black line - experimental core temperature; Green line 603 

- core temperature predicted by NN trained with experimental data; Red line - core temperature 604 

predicted by NN trained with synthetic data. These core temperatures are the average value of 16 605 

apples (B) Evolution of the 𝑅𝑀𝑆𝐸𝑡 of the NN trained with experimental and synthetic data (green 606 

and red lines, respectively). Results obtained with the sensor at the back of the pallet with the NN 607 

(24,12,4). 608 
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 616 

Figure 8: RMSEs distribution of five NN trained with experimental and synthetic data. 617 

(A) Sensor measuring air temperature at the back (B) Sensor measuring air temperature 618 

at the front. Boxplots represents the distribution of the 10 RMSEs resulting from the leave-619 

one-out cross validation (see section 2.5 for further details on RMSEs calculation). White 620 

dots and black diamonds represent the average of the 10 RMSE and the outliers, 621 

respectively. 622 
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 629 

Figure 9: 𝑹𝑴𝑺𝑬𝒔 distribution of five NN trained with synthetic data and tested on 630 

experimental data, noiseless synthetic data and synthetic data with three different noise 631 

(2xσ = 0.2°C to represent thermocouple uncertainty). The sensor is placed at the back of 632 

the pallet. Boxplots represents the distribution of the 10 RMSEs resulting from the 633 

leave-one-out cross validation (see section 2.5 for further details on RMSEs calculation).  634 
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Afin de ǵenérer expérimentalement des données thermiques dans une palet te de pommes et de valider un

modèle thermique simplifié, nous avons mis en place un disposit if dans une chambre froide.

Le disposit if est installé dans une chambre froide avec température cont rôlée de 29m3 (3.4m long ⇥ 3.4m

large ⇥ 2.5m haut ). Le volet permet de simuler des changements de température (rapides, moins rapides).

 

 
 

 

 
 
 
 

 
 
 
 
 
 
 

 
 
 

  

 
  
 
 
  

 
  
 
 
  

 
  
 
 
  

 
  
 
 
  

Instrumented apples fan apples 

shutter 

resistor 

Cold air entry 

Warm air entry 

Cold room 

Figure 2: Disposit if expérimental vu de profil

Nous avons inst rument é un niveau de palet te comprenant 4 x 2 caget tes de 28 pommes soit 224 pommes.

Parmi ces 228 pommes, nous avons inst rument é et numérot é 16 pommes comme mont ré dans 2.1. Pour

chaque pomme inst rument ée, un thermocouple mesure la température à coeur, un mesure la température

de surface et un mesure la température de l’air à proximit é de cet te pomme. De plus nous mesurons la

température de l’air à l’ent rée de la palet te.

Nous mesurons ces 16 ⇥ 3 + 1 = 49 températures toutes les 20 secondes avec des thermocouples de type

T ayant une précision de 0.2 ◦ C.

Au total, nous mesurons toutes les 20 secondes 16 ⇥ 3 + 1 = 49 températures.

2.2 Scénar ios

Nous appelons un scénar io une succession de consignes thermiques qui décrivent une châıne du froid. Par

exemple un sćenario peut êt re : les pommes ont une température init iale de 5◦ C et la température de l’air

est à 5◦ C pendant 2 heures puis à 20◦ C pendant 10 heures. La température de l’air à l’ent rée de la palet te

décrit le sćenario.

Afin de créer not re ensemble d’apprent issage, nous suivons 10 sćenarios que nous avons choisit comme

combinaisonsdeplusieurs évènements fréquents : refroidissements, réchau↵ ements, oscillat ions, températures

constantes.

Nous appelons un profi l de t empér at ur es l’ensemble des courbes temps/ températuremesurées pendant

un scénar io.

On note :

4

Sensors’s position:

Front

(upstream airflow)

Sensors’s position:

Back

(downstream airflow)
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 644 

Figure 10: RMSEs distribution of five NN trained by synthetic data using the 10 scenarios 645 

described in section 2.3.2 (blue) and 10 scenarios generated randomly. Results presented with the 646 

sensor placed at the back of the pallet.  647 
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 653 

Figure 11: Impact of the number of scenarios added to the original dataset on the 𝑹𝑴𝑺𝑬𝒊 654 

(criteria dependent of NN initialization – see section 2.5)  655 
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Highlight 

• Product temperature in a pallet is predicted with neural networks trained on 
experimental and synthetic data 

• Neural networks trained using experimental data give better performance 

• Increasing the size of the synthetic dataset helps reducing the model’s variance 

• Noise addition to the synthetic dataset did not improve the model’s performance 

• Realistic time temperature scenarios based from field studies are not required to train 
machine learning model 
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