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Real-time prediction of product temperature is a challenge for cold chain monitoring. The use of machine learning methods, especially neural networks, has been suggested as a possible approach. However, their training requires a large amount of good quality data. We found that experimental data leads to better results (by 20 to 40% compared with synthetic data) but require material investment, while synthetic data generated from thermal model is plentiful but tends to cause overfitting and overestimation of prediction performance (up to 150%). Our study shows that increasing the amount of synthetic data only decreases the variance, but not the mean error. The best strategy is to improve the thermal model used. As for experimental data, it is more useful to find an optimal position of the sensor in the pallet than using ever increasing realistic scenarios. Overall, even with imperfect predictions, machine learning models are able to predict temperature in real time thus enabling to take preventive measures when needed.

Introduction

Food cold chain is composed of different stages: production (or harvest), product handling, processing, distribution, and consumption. Temperature control along the cold chain is essential to provide consumers with safe food of high organoleptic quality. Worldwide, it has been estimated that 40% of food products require refrigeration [START_REF] James | The food cold-chain and climate change[END_REF], and in developed countries, 12% of losses of perishable foods is due to a lack of refrigeration (IIR 2021). A review of [START_REF] Ndraha | Time-temperature abuse in the food cold chain: Review of issues, challenges, and recommendations[END_REF] identified cold chain breaks in numerous studies. For example, a field study in France showed that around 12% products in transport and distribution had an average temperature above the recommended value [START_REF] Derens | The cold chain of chilled products under supervision in France[END_REF]. The recent development of wireless temperature sensors at affordable prices enables real-time temperature measurement along the cold chain [START_REF] Bouzembrak | Internet of Things in food safety: Literature review and a bibliometric analysis[END_REF].

Measuring and predicting the products' temperature in real-time are essential to detect cold chain breaks and to estimate their impact on product quality. In practice, temperature sensors such as Radio Frequency IDentification (RFID) tags are placed in the food stack to measure the air temperature. One of the limitation in the use of such wireless sensors is that the temperature is measured at one (or only at a few) position(s) in a pallet while products temperature is heterogeneous [START_REF] Laguerre | Experimental investigation and modelling in the food cold chain: Thermal and quality evolution[END_REF]. Hence, the measured temperature is not representative of the full load. The temperature heterogeneity presents an issue when it comes about cold chain break detection [START_REF] Loisel | Cold chain break detection and analysis: Can machine learning help[END_REF]. For example, a detection system may alert operators about a cold chain break while products are not affected. Inversely, it may not detect and not alert the operators while a corrective action would be necessary. Thus, the development of a model for J o u r n a l P r e -p r o o f products' temperature prediction from measurement by few sensors located in a pallet is appealing since it makes possible the detection of cold chain breaks.

In order to predict in real-time load temperature in refrigerating equipment from one or few sensors, [START_REF] Badia-Melis | Artificial Neural Networks and Thermal Image for Temperature Prediction in Apples[END_REF] used thermodynamics based approaches such as kriging or capacitive heat transfer models as well as machine learning methods. The authors showed that predictions by physical based models were less precise in transitionary state heat transfer than in stationary state, which is an issue when detecting cold chain breaks. Overall, machine learning models such as neural networks were more precise than physical based models and have proved their performance in several other studies [START_REF] Nunes | Improvement in fresh fruit and vegetable logistics quality: berry logistics field studies[END_REF][START_REF] Hoang | Development of deep learning artificial neural networks models to predict temperature and power demand variation for demand response application in cold storage[END_REF][START_REF] Mellouli | Deep Learning Models for Time Series Forecasting of Indoor Temperature and Energy Consumption in a Cold Room[END_REF][START_REF] Mercier | Neural network models for predicting perishable food temperatures along the supply chain[END_REF][START_REF] Xiao | Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics[END_REF].

Temperature data are necessary to train machine learning models for temperature prediction.

As discussed in [START_REF] Loisel | Cold chain break detection and analysis: Can machine learning help[END_REF], different sources of data are available: experimental data (collected on field and in laboratory) and synthetic data (generated from simulation using thermal models). However, field data are often incomplete (e.g., unknown environmental conditions, few measured products), thus the options for different machine learning tasks are limited. As alternatives, experimental data generated in laboratory and synthetic data generated by thermal model are more robust to build a training dataset for machine learning models. Indeed, all the temperatures at various locations on a pallet can be measured and calculated.

These two types of data involve different costs, different uncertainties, and different times.

Experimental data generation requires a controlled temperature test room, an experimental device, a product to be tested and time to conduct the experiment [START_REF] Duret | Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[END_REF]). However, this data can be assumed as representative of field data if physical properties such as ambient air temperature or velocity are reproduced in the experimental room. Synthetic data generation is less time consuming but it requires the use of thermal models, which can be obtained from literature and from a specific development [START_REF] Ambaw | Thermo-Mechanical Analysis in the Fresh Fruit Cold Chain: A Review on Recent Advances[END_REF]. As with all thermal models, J o u r n a l P r e -p r o o f the uncertainty of temperature prediction is a common issue. The data uncertainty, related to the applied assumptions, may affect the performance of a machine learning model trained with those data.

The machine learning models used to predict product temperature in the cold chain reported by several studies are based on both experimental [START_REF] Badia-Melis | Artificial Neural Networks and Thermal Image for Temperature Prediction in Apples[END_REF]) and synthetic data [START_REF] Mercier | Neural network models for predicting perishable food temperatures along the supply chain[END_REF]. However, to our knowledge, the precision of prediction by machine learning models trained by these types of data were not compared in these studies.

This study aims to compare the use of experimental and of synthetic training data for machine learning approaches using neural network (NN) models to predict product temperature distribution in a pallet. The following questions are addressed:

• What is the impact of the sensor position on temperature prediction accuracy?

• Between experimental and synthetic data, which one allows obtaining the best performance using machine learning models?

• Which strategies can be implemented to optimize the performances of the machine learning models when only synthetic data is available?

Material and methods

Overview of the methodology

Figure 1 presents the overview of the methodology developed in this study. First, the data sources are presented: namely an experimental set-up description (section 2.2.1) and the heat balance equations for the developed thermal model (section 2.2.2). The data generated by experiment and by thermal model according to different cold chain scenarios are presented (sections 2.3.1 and 2.3.2). Then, the machine learning models trained on these two data sources J o u r n a l P r e -p r o o f are described (section 2.4). Finally, their performances evaluated by using Root Mean Square Error (RMSE) as criteria (section 2.5) are reported and compared (section 3).

Data sources

Experimentation

An experimental set-up (Figure 2) representing a level of a pallet (1.2m long, 1m wide and 0.1m high) was installed inside a controlled-temperature test room of 29 m 3 (3.4m long, 3.4m wide and 2.5m high). Eight crates were filled with 28 apples each (sp. Rubinette Rosso, mass of an apple = 120 g, diameter = 0.064 m). Two polystyrene plates (5 cm thickness) were placed at the top and the bottom of the device to represent an intermediate level in a pallet. Air was sucked through the device by 3 fans located at the exit enabling stable one-directional airflow. Air velocity was fixed at 0.2 m.s -1 at the entrance of the pallet to represent the pallet located in clam air. Air flowed only through the space over the crates since the sidewalls were closed. The inlet air temperature could be changed instantaneously by switching a shutter at different moments to alternate between the cold air (of the test room) and warm air (previously flowing through a heat resistance). Hence, different inlet air temperature profiles could be generated.

Temperatures were measured with T-type thermocouples previously calibrated at 0°C, 10°C, 20°C, 30°C and 40°C (precision +/-0.2°C). These thermocouples were placed at the core and the neighboring air of 16 apples (2 apples/crate, Figure 2b). In addition, a thermocouple was placed at the entrance of the device to measure the inlet air temperature. In each experiment, the product initial temperature was considered as homogeneous while it was different in 10 studied scenario (see section 2.3). Temperatures were recorded every 20s for 12h.
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Thermal model

A thermal model was developed to predict air and product temperatures at different positions in a pallet using the inlet air temperature profile as input parameter. These predicted temperatures are called synthetic data.

The model was based on a zonal approach. The model considers that a crate is composed of 2 zones, one near the side and one near the center of a pallet. Each zone is characterized by one air and one core temperatures. Thus, a pallet level is composed of 16 zones.

As air flows through a pallet, it exchanges heat first with products upstream of the pallet.

Consequently, upstream products are more susceptible to variations in temperature as a result of changes in ambient temperature. For this reason, temperature heterogeneity can be observed in a pallet of product [START_REF] Duret | Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[END_REF]. The Biot number (𝐵𝑖 = ℎ𝑅/𝜆, ratio between internal and external heat transfer resistances) of product is about 0.4 (where R= 0.032 m, λ=0.39 W.m - 1 .K -1 and h=5 W.m -2 .C -1 ). Thus, the internal heat transfer resistance due to conduction inside the apple is on the same order of magnitude as the convection and cannot be ignored.

In order to generate synthetic data, the numerical model used in this study used a zonal approach to describe the evolution of air temperature through a pallet coupled with a 1D thermal model to predict the product core temperature in each zone.

Assuming that in a zone, product temperature was homogeneous. Moreover, the heat transfer by radiation was considered as negligible in this study.

Air temperature calculation

Only convective heat exchange between air and product was considered. At the time t, the inlet air of temperature 𝑇 𝑖𝑛𝑙𝑒𝑡,𝑡 𝑎𝑖𝑟 exchanges with product in the zone 1 (with convective heat transfer J o u r n a l P r e -p r o o f generalization of the balance equation over 16 zones is presented as follows:

𝑚̇× 𝐶𝑝 𝑎𝑖𝑟 × (𝑇 𝑖,𝑗,𝑡 𝑎𝑖𝑟 -𝑇 𝑖-1,𝑗,𝑡 𝑎𝑖𝑟 ) + ℎ × 𝑆 × (𝑇 𝑖,𝑗,𝑡 𝑎𝑖𝑟 -𝑇 𝑖,𝑗,𝑡 𝑝𝑟𝑜𝑑,𝑠 ) = 0 (1)

With 𝑚̇, the air mass flow rate (kg.s -1 ), Cp air the air heat capacity (J.kg -1 .°C -1 ), 𝑇 𝑖,𝑗,𝑡 𝑝𝑟𝑜𝑑,𝑠 the product surface temperature (°C), S the product surface area (m²) and h the convective heat transfer coefficient between air and product surface was considered as constant in all 16 zones.

Both free and forced convection can be considered for low air velocity used in our study (0.2 m.s -1 ). The corresponding convective heat coefficient ℎ = 5 W.m -2 .C -1 was obtained by fitting product core temperature change with time during a cooling from 20°C to 4°C (independent scenario from all scenarios presented next in this work). This value in the condition of our study corresponds to mixed convection (Richardson number = 𝐺𝑟 𝑅𝑒 2 ⁄ ~ 0.8) and is in agreement with previous values observed in pallets in the literature (min=2 W.m -2 .C -1 and max=20 W.m -2 .C -1 ; [START_REF] Duret | Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[END_REF], Laguerre et al. 2014).

Product temperature calculation

For simplification, an apple was considered as a sphere with no heat generation and constant thermal diffusivity α (α = 1.1 × 10 -7 m 2 .s -1 ). Inside a product, conduction only in radial direction was considered (1D model). The transient heat conduction equation in spherical coordinates is:

1 𝛼 𝜕𝑇 𝜕𝑡 = 1 𝑟 2 𝜕 𝜕𝑟 (𝑟 2 𝜕𝑇 𝜕𝑟 ) (2) 
Symmetry and convective boundary conditions were considered in product core and surface, respectively:

𝜕𝑇 𝜕𝑟 | 𝑟=0 = 0 (3) J o u r n a l P r e -p r o o f = ℎ(𝑇 𝑎𝑖𝑟 -𝑇 𝑝𝑟𝑜𝑑,𝑆 ) (4)
At t = 0, 𝑇 𝑖,𝑗,𝑡 𝑝𝑟𝑜𝑑 = T0 (homogeneous product initial temperature in all zones).

This equation was solved using FTCS (Forward Time Centered Space) method [START_REF] Thibault | On finite-difference solutions of the heat equation in spherical coordinates[END_REF]. At the top and the bottom of the experimental device, adiabatic walls are considered to represent an intermediate layer in a pallet.

Data generation from different cold chain scenarios

Experimental dataset

Ten profiles of the inlet air temperature (𝑇 𝑖𝑛𝑙𝑒𝑡 𝑎𝑖𝑟 ) were created using the experimental device to represent 10 cold chain scenarios for a fixed duration of 12h each (Figure 3 A & B). These scenarios were built by combining cooling and warming events at the inlet air temperature to represent the ones observed in real situations, e.g. products loading/unloading in a cold equipment, temperature fluctuations due to on/off cycles of compressor, defrosting during which compressor is turned off, product transferred from one to another cold equipment in which the set temperatures are different…). The mean and standard deviation of the inlet air temperature in these scenarios were different in order to represent as much as possible real conditions. It is to be emphasized that for one scenario, a core and an air temperature in 16 zones in the experimental set-up were generated.

Synthetic dataset

The air inlet temperature profiles, used as inputs of thermal model for synthetic data generation (Figure 3 C & D), were obtained by applying a moving average smoothing method on the experimental profiles. In this manner, noiseless data was generated from the same 10 scenarios.

J o u r n a l P r e -p r o o f

Similarly to the experimental dataset, each scenario generated a core and an air temperatures in the 16 zones.

Machine learning models

Numerous machine learning models exist in the literature. Only the results obtained with neural networks are reported in this work. Neural networks are representative of machine learning methods with the same issue of generalizing from data while avoiding overfitting. In addition, we obtained better results with neural networks than with ensemble methods such as Random Forests and Adaboost, as well as linear methods such as Linear Regression, Lasso, and SVM.

Therefore, results obtained with neural networks are indicative of what one can hope for using the best machine learning method to date on that type of learning task.

The conclusions we reached in our experimental study would remain qualitatively the same if we had used other machine learning methods, but with inferior performance. Since we are comparing synthetic and experimental data, neural networks were selected to alter their architecture. This was done to see if the difference between the two training datasets was the same for different architectures.

Inputs and output of the Neural Network (NN)

The objective of a NN is to predict the products' core temperatures in each 16 zones from an air temperature measurement, as in field practice. Hence, the NNs were trained to predict the 16 apples' core temperature at time 𝑡 (𝑇 𝑖,𝑗,𝑡 𝑐𝑜𝑟𝑒 ) knowing the air temperature inside the pallet at oldest measurement (at 𝑡 = 𝑡 -𝜆𝛥𝑇) used as input of the NN, 𝛥𝑡 the time step between two measurements. According to our preliminary study, 𝜆 = 50 is an optimal value.

Tested NN architectures

The type of NN used is the Multilayer Perceptron Regressor (MLP), that uses back propagation and stochastic gradient descent to optimize the squared loss. The activation function for the hidden layers was the Rectified Linear Unit function (RELU). For all tested NNs, the hyperparameters (e.g. α: L2 penalty parameter) were set at the default values of the library scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. In this case, the multi-output version of the MLP was implemented: the output layer's size is 16, corresponding to the 16 apple core temperatures.

The objective of this work is not to find the best model, but to compare the quality of the training data. Tests were performed on various NN architectures, from 1 hidden layer to 3 hidden layers to evaluate the impact of different strategies (noise addition, data augmentation). The different sizes of the hidden layers were chosen according to preliminary simulations. Finally, 5 different hidden layer architectures were presented in this work:

• 1-hidden layer architectures: 5 and 15

• 2-hidden layers: (10, 4)

• 3-hidden layers: (5, 5, 5) and (24, 12, 4)

Performance evaluation

The models were trained and tested through a leave-one out (LOO) cross-validation procedure.

This procedure evaluates the model's capacity to predict the target on an unknown profile. In our case, a dataset includes 10 temperature scenarios (16 air temperatures and 16 core temperatures in each). A model was trained on 9 scenarios (scenarios 2 to 10) then tested on the remaining scenario (scenario 1-see Figure 5). This process was repeated 10 times. In the J o u r n a l P r e -p r o o f second step, scenario 2 is used for the test, in third step, scenarios 3 is used for the test and so on. The LOO cross-validation procedure enables estimating the performance of the model when generalizing to an independent real scenario.

It is of major importance to emphasize here that the scenario used for the test are always experimental. Even when NNs are trained with synthetic data, the performance is evaluated by testing in comparison with experimental data. In this way, the NN models trained with the experimental and synthetic datasets are evaluated on the same data and their performance comparison is possible. Moreover, it corresponds to the field operational conditions as these NNs are meant to predict temperature from a wireless sensor placed in a pallet.

The chosen performance criteria was the Root Mean Square Error (RMSE) since it is appropriate for numerical predictions: This allows us to present results that are independent from the random seed and hence independent from the NN initialization.

𝑅𝑀𝑆𝐸 = √ 𝛥𝑡 𝑁 𝑧𝑜𝑛𝑒 ×𝑡 𝑚𝑎𝑥 ∑ ∑ (𝑇 ̂𝑛,𝑡 𝑐𝑜𝑟𝑒 -𝑇 𝑛,𝑡 𝑐𝑜𝑟𝑒 ) 2 𝑡 𝑚𝑎𝑥 𝛥𝑡 𝑡=0 𝑁 𝑧𝑜𝑛𝑒 𝑛=1 ( 

Performance over time.

In Figure 7 (section 3.2), the evolution of the NN performance over time is studied, this is represented by a 𝑅𝑀𝑆𝐸 𝑡 :

𝑅𝑀𝑆𝐸 𝑡 = √ 𝛥𝑡 𝑁 𝑧𝑜𝑛𝑒 ×𝑡 𝑚𝑎𝑥 ∑ ∑ (𝑇 ̂𝑛,𝑢 𝑐𝑜𝑟𝑒 -𝑇 𝑛,𝑢 𝑐𝑜𝑟𝑒 ) 2 𝑡 𝛥𝑡 𝑢=0 𝑁 𝑧𝑜𝑛𝑒 𝑛=1 (4)
With t the time at which the 𝑅𝑀𝑆𝐸 𝑡 is calculated. For example, at time 𝑡 = 2ℎ, the 𝑅𝑀𝑆𝐸 𝑡 from time 𝑢 = 0h to 𝑢 = 2h is calculated. 

Results & Discussion

3.1. Position of the temperature sensor in the pallet.

J o u r n a l P r e -p r o o f

All sensors' positions were tested, but only two results with sensors placed at the front and at the back are presented. Figure 6 shows the 𝑅𝑀𝑆𝐸 𝑠 distribution according to the sensor's position in the pallet and the architecture of the tested NN. Among the different proposed NNs (number of hidden layers, hidden layer size), none of the architectures showed consistently better performances. In single-sensor configurations, the NN performances are better when the sensor is placed at the back (𝑅𝑀𝑆𝐸 𝑖 = 0.95; downstream airflow) than at the front of the pallet (𝑅𝑀𝑆𝐸 𝑖 = 1.41; upstream airflow). Results agree with similar studies in the literature [START_REF] Badia-Melis | Artificial Neural Networks and Thermal Image for Temperature Prediction in Apples[END_REF][START_REF] Mercier | Neural network models for predicting perishable food temperatures along the supply chain[END_REF]. Indeed, the air temperature (measured by the sensor) in the back depends on the air and product temperatures located at the upstream positions in the pallet. In other words, the evolution of the air temperature at the back contains information about the air and product temperatures of the previous zones. The air temperature at the front, on the other hand, depends mostly on the external ambient air. In field conditions, it is difficult to control the airflow direction around a pallet. Moreover, the pallet position in an equipment can change through the cold chain, e.g. a crate at the back (downstream airflow) in a specific equipment can become the crate at the front (upstream airflow) in another equipment.

Taking into consideration this fact, when only one sensor is available, it should be placed at the center of the pallet: either at the two opposite sides in a pallet [START_REF] Mercier | Neural network models for predicting perishable food temperatures along the supply chain[END_REF]. These two sensor positions would allow more robust results (𝑅𝑀𝑆𝐸 𝑖 = 0.65), but at a higher cost. A cost analysis should take into consideration the performance of the cold chain break detection system, its implementation cost (linked to the number sensors), product economical value and cost of product losses following cold chain break. This analysis would help the decision-making of the most appropriate solution for a given product.

Evolution of model performance over time

J o u r n a l P r e -p r o o f

The core temperature evolutions (average value of 16 measurements) and the predicted ones (by NN) are presented in Figure 7.A, and the comparison of 𝑅𝑀𝑆𝐸 𝑡 evolution for the NN trained with experimental and synthetic data presented in Figure 7.B. It is obvious that the core temperature is poorly predicted during the first hour (𝑅𝑀𝑆𝐸 𝑡 > 2), then, the 𝑅𝑀𝑆𝐸 𝑡 decreases rapidly over time (𝑅𝑀𝑆𝐸 𝑡 < 1). This can be explained by the fact that at time 𝑡 = 0, the NN does not have the data of the initial product temperature. Indeed, in practice, the sensor is placed in the pallet and measures the air temperature, no data of product temperature provided to the NN. The precision of prediction increases with time, this can be explained by the fact that the product measured and predicted temperatures (by NN) reach progressively the inlet air temperature. In practice, in order to avoid false or undetected cold chain breaks, the sensor should be placed in the pallet long time before shipping. In this manner, the NN will be able to determine a product temperature in controlled conditions and then to predict the product temperature correctly after shipping.

Influence of data source on NN model performance

Comparison of model performances

The performances of the NNs trained with two data sources (experimental and synthetic) are shown in Figure 8 for two sensor positions (back and front). For all tested NNs, the RMSEs of the NNs trained with experimental data are lower than the RMSEs of the NNs trained with synthetic data. These results were expected as the calculation of the RMSEs for the data sources are performed on experimental data. Moreover, this is also due to the uncertainty of the synthetic data as this dataset was generated from a numerical model with its own uncertainty.

However, the difference of the performances between the two types of data is lower when the J o u r n a l P r e -p r o o f sensor is located at the back of the pallet (up to 0.2 °C corresponding to 20%; Figure 7.A) than when the sensor is placed at the front (up to 0.6 °C corresponding to 40%; Figure 7

.B). Although

NNs trained with experimental data show better performances, their generation has constraints.

Estimation of the model performance without experimental data

Although it is possible to train NNs with synthetic data, the evaluation of an NN performances without any experimental or field data is more complex. When no experimental data is available, one would have to train NNs on synthetic data. In this case, the LOO cross-validation process would be conducted using also synthetic data as test data. However, as observed in Figure 9, the RMSEs estimated using synthetic noiseless data as test data (0.7± 0.35°C) are lower than the RMSEs calculated using experimental data (1.22 ± 0.47 °C), leading to an overestimation of the NN performances (up to 150%). This observation could be explained by the fact that the NN are trained using noiseless synthetic data. Indeed, the noise of the measured data is mainly due to the uncertainty of the thermocouple (+/-0.2°C). To limit the underestimation of the RMSE of NN trained with synthetic data and tested on synthetic data, different noise levels were added to the synthetic test data. However, in all tested cases, the RMSEs were underestimated in comparison to the RMSEs calculated on experimental data (Figure 9).

Impact of additional synthetic data

Previously, NN models were trained with experimental and synthetic datasets generated from 10 cold chain scenarios. Now a question is: what is the impact of the choice of the scenarios?

Can the model train on synthetic data be improved by adding some random scenarios?

J o u r n a l P r e -p r o o f

In order to answer this question, 50 additionnal random scenarios were generated and used as input to the thermal model to generate synthetic data. It should be remined that realistic scenarios require field studies.

Impact of scenarios used for training

The performance of NN trained with the synthetic data described in section 2.3.2 are compared with the performances of NN trained with synthetic data of scenarios generated randomly with the thermal model by varying the time-temperature evolution of inlet air temperature. The results are presented in the Figure 10 and showed that NNs trained on synthetic data generated from random scenarios performed similarly to NNs trained on realistic scenarios. This observation is of interest as it implies that NN can be trained without accurate information of the given cold chain. Thus, to implement product temperature prediction using wireless temperature sensor and NN, it is not necessary to conduct a complete field study to identify representative scenario.

Impact of increasing the dataset's size

Once a thermal model is developed, it is easy to generate large synthetic datasets from numerous synthetic cold chain scenarios. This represents the main advantage of synthetic data in comparison to the generation of experimental data. With a large dataset, it is expected that the NN performance would improve significantly, allowing one to achieve the performance of an NN trained on experimental data. In Figure 11, the impact of the number of random scenarios added to the original dataset on the 𝑅𝑀𝑆𝐸 𝑖 is presented, compared to 𝑅𝑀𝑆𝐸 𝑖 obtained from NN trained on experimental data. Overall, the average 𝑅𝑀𝑆𝐸 𝑖 is similar for all tested cases (from 0 J o u r n a l P r e -p r o o f to 50 scenarios added to the original dataset). Adding more synthetic scenarios will not suffice to overcome the drawbacks of synthetic data. However, the variance of the 𝑅𝑀𝑆𝐸 𝑖 decreases as the number of added scenarios to the training increases. Hence, while the number of scenarios does not impact the overall performance of the 𝑅𝑀𝑆𝐸 𝑖 , it helps reducing the impact of the weights' initialization, thus reducing the variance of the final model. Precautions need to be taken on the development of NN when little data is used for trained as the NN is sensitive to the weights' initialization. In this case, additional scenarios could help reducing the model variance, thus, reducing false or non-undetected cold chain breaks.

General discussion.

The main issue to develop machine learning models to predict product temperature is to collect the training data. This data may come from several sources: field measurement, experiments in laboratory, or synthetic from more or less complex thermal models [START_REF] Loisel | Cold chain break detection and analysis: Can machine learning help[END_REF]. In this study, the impact of experimental and synthetic data on the performance of machine learning model was conducted. While NNs trained with experimental data showed better performances, this kind of data require material investment. To be able to predict product temperatures under various conditions (air velocity, product and pallet geometries…), the use of physical based thermal model to generate synthetic data is promising. NNs trained on experimental data performed better ( 𝑅𝑀𝑆𝐸 10% lower in average) than NNs trained on synthetic data. In addition, even though one can use only synthetic data of various configurations to train NNs, the main issue concerns the method of evaluating the NN performance. As seen in section 3.3. the use of synthetic data as test data leads to an overestimation of the model performances. Furthermore, noise addition during testing is not enough to overcome this issue. Measurement data (issued from laboratory experiments or J o u r n a l P r e -p r o o f ideally from field data) should be used as test data to evaluate properly performances of NNs trained with synthetic data. In other words, synthetic data can be used to train NNs but experimental measurements should be used as test data. It should be noted that the results and conclusions of this study are not generalizable to other applications or models with different uncertainties. Results obtained with models with lower uncertainty (e.g. models taking into account more detailed hydrodynamics effects) might be different from this study. There is a need for further study of the effect of uncertainty on NN performances. In the view of the development of more flexible predictive tool able to describe the high variability of configurations encountered in the cold chain, without a tremendous work on model development or experimental data generation, transfer learning methodology might be of interest. The increasing availability of powerful machine learning methods that are efficient in the large and highly variable set of situations encountered in the cold chain, is accompanied by a growing demand for learning data. But, given the difficulty of producing experimental data, it might be worth considering the use of transfer learning where one starts with a previously learned model with similar data in order to learn a model for a new task, thus reducing the need for new training data.

It is to be emphasized that the 𝑅𝑀𝑆𝐸 was calculated including data measured before the first 2h. The 𝑅𝑀𝑆𝐸 presented throughout this paper would have been lower if our experiments were conducted on 24h or 48h. For this reason, the comparison of the performances with other similar studies is not possible. The 𝑅𝑀𝑆𝐸 𝑠 could have been calculated omitting for example the first two or three hours, in order to provide the information to the NN about the initial product temperature. However, this would have been difficult to justify and in addition, there was not sufficient information to set an appropriate cut-off time. Further work could be conducted on defining an appropriate evaluation metric.

J o u r n a l P r e -p r o o f

In order to improve the performances of machine learning models trained with synthetic data, several studies added noise to the training data. Indeed, contrary to the experimental data, the synthetic data is noiseless. Adding noise to the synthetic data could describe more accurately the experimental data. To evaluate the noise impact on performance, a comparison between noiseless synthetic data, synthetic data with standard deviation of 0.1°C (corresponding to ± 0.2°C uncertainty of the sensor used in the experimentation, 95% of Confidence Interval), 0.2°C and 0.5°C was conducted. However, no difference was found in terms of performances (results not shown). Further work needs to be conducted in order to improve models trained with synthetic data.

There are many types of NNs. In this study, Mulit-Layer Perceptrons were used. This choice was made since our configuration was simple (one level of a pallet) and our preliminary tests showed good results using them. The comparison of different types of NN was out of the scope of this study. In further studies, focusing on more complex configurations (pallet, equipment, …), other types of NNs could be used such as RNN that are better adapted to temporal data [START_REF] Jaeger | Tutorial on training recurrent neural networks, covering BPPT, RTRL[END_REF], Convolutional Neural Networks (CNN) that are better adapted to spatial data [START_REF] Le Cun | Handwritten Digit Recognition with a Back-Propagation[END_REF], or other methods combining both (Convolutional Recurrent Neural Networks -CRNN) [START_REF] Zuo | Convolutional recurrent neural networks: Learning spatial dependencies for image representation[END_REF].

Finally, such models to predict in real time the temperature could be associated with anomaly detection algorithms in order to alert operators when cold chain breaks occur or are about to occur. This would allow operators to prevent cold chain breaks by implementing corrective measures to reduce the food quality degradation, ensure food safety and reducing waste [START_REF] Achenchabe | Early classification of time series[END_REF]. The implementation of such methodology in the cold chain permits to envision the preservation of food quality and safety and to reduce waste. The use of neural networks would allow, in real time, the prediction of product temperatures in a cold chain using wireless sensors placed in the pallets. This would help operators to detect and prevent cold chain breaks on time. J o u r n a l P r e -p r o o f Front + back Back Front Sensor's position Afin de générer expériment al ement des don nées t hermiques dans une pal et t e de pom mes et de val ider un modèle t hermique simplifié, nou s avon s mis en place un disposit if dan s une chambre froi de.

Conclusion and perspectives

Ledisposit if est inst al lé dan s une chambre froi de avec t empérat ure cont rôl ée de 29m 3 (3.4m lon g ⇥ 3.4m lar ge ⇥ 2.5m hau t ). Le vol et permet de simuler des chan gement s de t empérat ure (rap ides, moi ns rap ides). 

Cold room

Figu re 2: Disposit if expériment al vu de profi l Nous avon s inst rumenté un niveau de pal et t e com prenant 4 x 2 caget t es de 28 pom mes soi t 224 pom mes. Par mi ces 228 pom mes, nou s avon s inst rumenté et numérot é 16 pom mes com me mont ré dan s 2.1. Pou r chaque pom me inst rumentée, un t hermocou ple mesure la t empérat ure à coeur, un mesure la t empérat ure de surface et un mesure la t empérat ure de l'ai r à proximité de cet t e pom me. De plus nou s mesuron s la t empérat ure de l'ai r à l'ent rée de la pal et t e.

Nous mesuron s ces 16 ⇥ 3 + 1 = 49 t empérat ures t ou t es les 20 secon des avec des t hermocou ples de type T ayant une précision de 0.2 • C. Au t ot al , nou s mesuron s t ou t es les 20 secon des 16 ⇥ 3 + 1 = 49 t empérat ures.

Scénar ios

Nous ap pelon s un scénar i o une succession de con sign es t hermiques qui décrivent une chaˆıne du froi d. Par exemple un scénar io peut êt re : les pom mes ont une t empérat ure init ial e de 5 • C et la t empérat ure de l'ai r est à 5 • C pendant 2 heures puis à 20 • C pendant 10 heures. La t empérat ure de l'ai r à l'ent rée de la pal et t e décrit le scénar io.

Afin de créer not re ensemble d'ap prent issage, nou s suivon s 10 scénar ios que nou s avon s choi sit com me combinai son s de plusieursévènement s fréquent s : refroi dissement s, réchau ↵ ement s, oscillat ion s, t empérat ures con st ant es.

Nous ap pelon s un pr ofil de t em pér at ur es l'ensemble des cou rbes t emps/t empérat ure mesurées pendant un scénar i o.

On not e : 

  the previous time steps (𝑇 𝑖,𝑗,𝑡-𝜆𝛥𝑡 𝑎𝑖𝑟 , 𝑇 𝑖,𝑗,𝑡-(𝜆-1)𝛥𝑡 𝑎𝑖𝑟 , . . . , 𝑇 𝑖,𝑗,𝑡-𝛥𝑡 𝑎𝑖𝑟 ) (Figure 4). In each of the 16 zones, indices 𝑖 and j = [1,..4] represent the coordinates of the position of the zone in the experimental set-up (Figure 2.b), 𝜆𝛥𝑡 the time delay between the last measurement (at 𝑡 = 𝑡 -𝛥𝑇) and the J o u r n a l P r e -p r o o f

  3) With the number of zones 𝑁 𝑧𝑜𝑛𝑒 = 16, the time step 𝛥𝑡 = 60𝑠, 𝑡 𝑚𝑎𝑥 = 12𝑥3600𝑠. 𝑇 𝑛,𝑡 𝑐𝑜𝑟𝑒 and 𝑇 ̂𝑛,𝑡 𝑐𝑜𝑟𝑒 are respectively the measured and predicted (by the NN) core temperatures of the apple of the zone n at time t. Furthermore, NN training uses pseudo-random numbers generated from a random seed. The same model trained on the same data with different random seeds will not give us the same results. The random seed has an impact on how the NN weights are initialized.Depending on the analysis provided, some specifications of the RMSE calculation are given:2.5.1. Performance over the 10 scenarios. In sections 3.1, 3.2 and 3.3, the 𝑅𝑀𝑆𝐸𝑠 is used.𝑅𝑀𝑆𝐸 𝑠 is based on 𝑅𝑀𝑆𝐸 defined in (3). In the LOO cross validation process (Figure5.A), for each of the 10 training and testing steps 𝑠, a total of 50 iterations with different random seeds J o u r n a l P r e -p r o o f are processed, resulting in 50 𝑅𝑀𝑆𝐸 𝑠,𝑖 . Then, the average value is calculated (𝑅𝑀𝑆𝐸 𝑠 ) and presented by boxplots describing the distribution of the 10 𝑅𝑀𝑆𝐸 𝑠 . In other words, these boxplots represent the performances distribution according to the 10 temperature scenarios.

  performance over 50 different weight initializations. In section 3.4 (Impact of additional synthetic data), the 𝑅𝑀𝑆𝐸 𝑖 is used. 𝑅𝑀𝑆𝐸 𝑖 is also based on the 𝑅𝑀𝑆𝐸 (see equation 3). The LOO cross validation (Figure 5.A) is processed for a given seed for the 10 steps 𝑠, resulting in 10 𝑅𝑀𝑆𝐸 𝑠,𝑖 (Figure 5.B) which are averaged. This process is conducted 50 times with 50 different random seeds (i.e., NN initializations, data shuffle …) resulting in 50 𝑅𝑀𝑆𝐸 𝑖 . The corresponding results are presented using boxplots describing the distribution of the 50 𝑅𝑀𝑆𝐸 𝑖 of each iteration i (seed setting); in other words, the model performance according to 50 different NN initializations.

  J o u r n a l P r e -p r o o f An experimental set-up and a physical-based model were developed to generate two datasets of air and product temperatures in a pallet of apples. The objective of this study was to compare performances of neural networks trained with the experimental and synthetic dataset. The main conclusions are as follows: a) Neural networks trained with experimental dataset showed better performances (20 to 40%) in comparison to the one trained with synthetic dataset. b) Sensor position inside the pallet is a determining factor to predict the product temperatures by neural networks. c) Similar results were obtained from models trained with synthetic data generated from realistic scenarios and from random scenarios. d) Increasing the synthetic training dataset with 10 to 50 additional scenarios did not significantly improve the model precision but reduced the model variance. e) Models' precision is increasing over measurement time. The uncertainty of the prediction during the first hours should be considered.

Figure 1 :

 1 Figure 1: Overview of the methodology processed to compare performances of machine
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 234 Figure 2: Experimental set up. (a) Side view (sidewall open to show product arrangement
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 56 Figure 5: Method used to train (LOO process) and evaluate (RMSE) NN: (A) Method to
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 89 Figure 8: RMSEs distribution of five NN trained with experimental and synthetic data.
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 1011 Figure 10: RMSEs distribution of five NN trained by synthetic data using the 10 scenarios
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