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Abstract—Early recognition of untrimmed handwritten ges-
tures is the task of recognizing as soon as possible gestures drawn
in a continuous stream, one after another. This is particularly
challenging for multi-touch gestures because it is impossible to
know when the gesture has started and finished. For mono-stroke
gestures, in an application context where the finger is never
removed from the device between gestures, the recognition is even
more complex. In this work we present an extension of the Online
Long-Term Convolutional 3D (OLT-C3D) network to address the
task of early recognition of untrimmed gestures which have been
addressed by very few works. To evaluate our approach, we
created two synthetic datasets using freely available benchmarks,
MTGSetB and ILGDB, simulating the streaming data in two
different application scenarios. Furthermore, we propose a new
evaluation metric for this specific task. Our approach achieves
good performances on the two new datasets and will be a baseline
for future works on this challenging task.

I. INTRODUCTION

From the user-interaction point of view, reactive and natural
interactions with tactile devices are essential for a successful
experience. Gesture interaction allows the user to manipulate
naturally the device, but they are often limited to very ba-
sic functionalities like zooming, rotating and scrolling. The
difficulty of adding new gestures is two folds: recognition
accuracy and system reactivity. Increasing the number of
gestures increases the probability of having gestures with
common beginning. As a consequence, the system cannot pre-
dict the gesture from first traces without potentially executing
undesirable commands. Waiting until the end of gesture is
not an option considering we want a real-time reaction of the
device. To apply a zoomming effect when a user make the
zooming gesture, we need to detect the gesture from the first
instant to produce a direct feedback. To be able to handle such
direct manipulations, we need a system capable to recognize
very early user gestures, just after that the common part
between gestures is passed. Nowadays, it only works for very
few well-designed gestures with hand-crafted basic approach
that can not be generalized.

Another difficulty in user interaction with gesture is ap-
plication contexts when gestures are made one after another,
then the gestures starting and finishing bounds are not always
clear (see figure 1) and can scramble the recognition. This is
particularly true with mono-stroke gestures when the finger
is never removed from the device between gestures, similarly
to a handwritten word but the gestures are completely mixed
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Fig. 1. Example of an untrimmed sequence generated from ILGDB. Each
color represents different gestures. In untrimmed context the gestures are
chained in the same space. (a): along the three dimensions, x, y and the
time. (b): only spatial dimensions.

up spatially. This is also challenging with multi-touch/multi-
stroke gestures due to the intra-gesture breaks (when all fingers
are removed from the device) between two strokes that cannot
be distinguished from an inter-gesture break, so we are not
able to tell where the beginning of the gesture is.

The task of early recognition of untrimmed handwritten
gesture is to recognize the gestures being drawn continuously
as soon as possible and before the gesture is fully finished.
Few works address this challenging problem, most of them
addressed the early recognition of action made by a full human
body, either from RGB videos [1] or 3D skeleton videos [2]–
[4]. Regarding 2D gesture recognition, some work addressed
the early recognition of trimmed gestures [5]–[7], but not in
untrimmed context.

To address this problem, we present an approach based
on a spatio-temporal 3D CNN called OLT-C3D [7] designed
for trimmed gesture recognition. OLT-C3D, coupled with a
temporal reject system, is able to postpone a detection to avoid
misclassified detection, but it can be unstable because the
consistence between frames is not explicitly trained, making
it unreliable in untrimmed context. We extend it to address
the untrimmed context by regularizing the network with the
CTC (Connectionist Temporal Classification) loss [8] which
improves the system stability and robustness. To handle this
task we defined a new evaluation protocol. We created two
artificial datasets to simulate gestures stream, and we propose
a new evaluation metric.

The contributions of this paper are summarized as follows:
• We designed a method for the task of early recognition

of untrimmed gestures using a spatio-temporal 3D CNN
with a temporal reject system. To improve its prediction



stability over time we propose to regularize the network
with the CTC loss.

• We propose two speed-independent gesture representation
strategies for multi-touch and mono-stroke gestures.

• We built two new challenging datasets of gesture se-
quences generated to evaluate our system on applicative
scenarios and we propose a new metric to specifically
evaluate early recognition of untrimmed gestures.

II. RELATED WORKS

Some works addressed the task of early recognition of
2D gestures. Uchida et al. [5] built a system based on
multiple frame classifiers, one weak classifier is built per
frame. At each current frame, the system combines results
from previous and current frame classifiers to determine the
current classification. Another classifier combination approach
is also used in the work of Chen et al. [6], they designed
length-dependent classifiers and a reject system based on the
confidence scores and repetition of prediction. Yamagata et
al. [9] designed an approach explicitly modeling the trajectory
bifurcations between handwritten digits, an LSTM network
is used to predict class and the future trajectory. Recently, a
new approach based on a 3D Convolutional Neural Network
(CNN) called OLT-C3D (for Online Long-Term Convolutional
3D) [7] has been designed to handle long-term visibility
without the need of any recurrence layer thanks to temporal
dilated convolutions. This approach has a reject system to
avoid classification errors in early stages. All these approaches
were made for a trimmed context with one gesture at a time,
and do not consider the untrimmed context.

Early 3D gesture recognition from a full 3D human body
has more been considered in previous works. Regarding
trimmed early recognition of 3D gestures, early works used
template-based methods to try matching partial gesture se-
quence [10], [11]. More recently, Wang et al. [12] designed
a model trained with teacher-student scheme, two networks
are trained to have a close internal representation. The first
network (teacher) is able to see the whole sequence while the
second network (student) can only see an early part of the
sequence. Wang et al. [13] built a network able to predict
multiple plausible actions, this is particularly useful in the
early stages when the action cannot be clearly identifiable.
Also, the model is trained with a weakly supervised strategy by
predicting future postures, this helps the network to generalize
well. Another way to handle early stages is to define a reject
option strategy related to the confidence like some other
approaches [6], [7], [14].

Regarding the untrimmed case, action prediction of 3D
gestures in an untrimmed stream has been addressed by
Escalante et al. [15] and Liu et al. [16]. Their networks are
able to predict the class based on partial observation, but no
strategy to handle early stages are used. The architecture of
Liu et al. is inspired by WaveNet [17], using a stack of causal
and dilated 1D convolutional layers. SSNet is able to handle a
stream in real time, giving a new response to each new frame.

Weber et al. [2] addressed the early recognition problem
with a recurrent network. An LSTM network is trained with
an additional blank class to represent the inter-gesture frames.
Molchanov et al. [1] proposed a convolutional recurrent net-
work (CRNN), the input stream was split into short clips
before feature extraction by a CNN. Then, the features are
fed into a RNN to extract long-term temporal information. A
reject system based on the classifier score is used to handle
early stages of gestures. Boulahia et al. [4] used a combination
of SVMs trained with a set of hand-crafted features, a complex
reject system based on confidence scores has been designed.

From these works, we can notice that the task of early
recognition of 2D gesture has not been addressed in the context
of untrimmed gestures stream. In the 3D gesture context, most
of these methods are trained with a per frame strategy, which
can lead to unstable predictions results between consecutive
frames, making the method unusable in an application context.
Moreover this instability is rarely taken into account in the
final evaluation metric since it is often a frame-based metric.
In our work, we propose a training strategy which explicitly
considers time stability with a CTC (Connectionist Temporal
Classification) regularization. Furthermore we present a new
metric which hardly penalize unstable predictions over time.

III. METHOD

In an application context where a gesture is associated with
one command, each misclassified detection will lead to an
undesirable command execution. To avoid detecting something
in the early stages where the gesture is not clearly identifiable
we first need an efficient reject mechanism. Secondly, we
need to ensure the stability of the predictions to be consistent
between consecutive frames.

Our method extends the Online Long-Term Convolutional
3D (OLT-C3D) [7] network to address the early recognition
of untrimmed gestures task. First, the online signal of the
trace of fingers on the device has to be translated into an
image sequence. We designed two new strategies to model
the gesture completion in time, inspired by previous ones. The
representation is used as the input of the OLT-C3D network
trained to handle an untrimmed stream of gestures. A reject
option system is used to postpone the detection in early stages.
To address the consistency of the detected gesture between
frames, an additional output is added to be trained with the
CTC loss.

A. Gesture Representation

To choose our gesture representation we need to consider
the two different application scenarios which require early
recognition in an untrimmed context. In the first scenario, we
consider multi-touch gestures made the ones after the others.
Between two strokes, all the fingers can be removed from the
device, and this is also the case between two gestures. In the
second scenario, the finger is never removed from the device,
making only mono-stroke gestures, like when we are writing
a word with letters.



Like the representation in [7], we choose to represent the
gesture being drawn on images to be usable with the OLT-
C3D network, at each significant new information we create
a new frame representing the gesture at this stage.

We get from the device the online signal, i.e., a list of points,
with the timestamp and the positions of the fingers, and we
need to convert it into a sequence of images. First, to obtain
a speed-independent representation, we resample the gesture
using quantity of displacement instead of using the time. Be-
tween each new image, the same quantity of displacement (that
we called θ) has been drawn on the device, if multiple strokes
are done at the same time (multi-touch gesture), then the
displacement of all strokes are taken into account to compute
the quantity of displacement. We can get the new set of points
S from the set of points P not already drawn and ordered by

time as following: S =

{
pt ∈ P

∣∣∣∣∑pt=1
∥pt−1 − pt∥ < θ

}
.

Note that this resampling strategy is applicable in the online
case and if the fingers are not moving, then no processing is
required and no new result is given.

Another difficulty is that we cannot guess in advance which
size the gesture would be, the user can make the gesture at
any scale, but our image has a finite spatial resolution. To
address this difficulty, we predefined a scale by advance and
if the gesture reaches the border of the image, then we shift
the image to the opposite direction to let some space.

To represent the dynamic in the fixed image, we add a
second channel on the image to notify the presence of a finger
on the device. This second channel is very sparse and contains
only ones in positions where the fingers are at, in each image.
With this channel, the network can deduce in which direction
the stroke is being drawn.

In the previous approach, the gesture was translated into
an image sequence where each new image contains the new
positions of the fingers with all its previous trajectories,
making appear some patterns. In untrimmed context, this is not
possible since we don’t know when the gesture does start, and
we cannot keep all the trajectory of all gestures because the
trace will overlap with previous gestures trajectories. Instead,
we need a representation strategy compatible with a gesture
sequence. This strategy must depend on the context of the
scenario described above. We can address differently the multi-
touch gestures representation strategy and the mono-stroke
gestures one.

1) Multi-Touch Representation Strategy: For multi-touch
gestures representation, the trajectory will be completely reset
when all fingers have been removed from the device during
a very short instant, this can be an inter-stroke moment, or
an inter-gesture one. In this way, the trajectory of the gesture
is accumulated until strokes done simultaneously are finished.
We can add a black image when it happens to notify this event
more explicitly to the network. Moreover it allows the network
to predict something on this black frame while being sure that
the stroke is finished, which is very important for detecting
gestures which are subpart of other gestures.

This strategy is not applicable to mono-stroke gestures if
the finger is never removed from the device.

2) Mono-stroke representation strategy: For mono-stroke
gestures, as there is no identifiable break points, the gesture
trajectory is accumulated into an overlapping sliding win-
dow ψ. Each image will contain ψ × θ quantity of displace-
ment. A big sliding window will lead to noisy images, with
pieces of previous gestures, and a too short one will not make
appear any pattern on the spatial dimensions. An example of
the representation is shown in Figure 2.

Fig. 2. Example of the representation of a sequence of three gestures. A
sliding window ψ of two displacement units is used in this example: each
image contains a new piece of information with the previous one.

B. OLT-C3D Architecture with Temporal Reject System and
CTC Regularization

The OLT-C3D [7] (Online Long-Term Convolutional 3D)
network is composed of a stack of 3D convolution layers.
The convolutions are causal: to compute the output of each
frame, the future is completely disregarded. This ensures
the usability for online applications. The convolutions are
temporally dilated in order to increase the receptive field
in the time dimension. With two blocks of 5 convolutional
layers with increasing dilatation rate, the network can make a
prediction while seeing up to 64 previous frames. 64 frames
are enough to see at least one full gesture completion. See [7]
for more details about the network architecture.

We modify the network to have four outputs: the confidence
score (1 output neuron, called g), the classification scores (f ),
the combination of a blank and the class scores (outctc) and the
auxiliary output (h). These outputs are represented in Figure 3.
Three losses are used to train the network.

blank

Fig. 3. The network is composed of four outputs. The class prediction output
is shared with the CTC output to train a common internal representation.



1) Temporal Reject System: The OLT-C3D network is
trained with a per frame loss, originally inspired by the Selec-
tiveNet loss [18], incorporating a confidence output training.

This loss is computed as follows:

L(f,g) =
1

m

m∑
i=1

ℓ (f (xi) , yi) g (xi) + λΨ
(
c− ϕ̂ (g)

)
(1)

where Ψ(a) = max(0, a)2, λ is a hyperparameter relative to
the importance of the coverage constraint (we set it to λ = 32
like the previous approach). c is the targeted coverage. ϕ̂ (g)
is the empirical coverage, i.e. the average value of g(x), and
ℓ is the cross entropy loss.

During the inference, we will consider that the prediction
frame is accepted if g is over a threshold γ, set to 0.5.

The auxiliary output h consists of class predictions like f ,
but is trained by a traditional per-frame cross-entropy loss Lh.

The temporal reject loss and the auxiliary loss are per-frame
losses, and no consideration is given to consistency between
consecutive frames. We address this problem with the CTC
regularization.

2) Regularization with the Connectionist Temporal Classifi-
cation (CTC) Loss: The outctc output of the network is trained
with the CTC loss Lctc. Note that the class scores which is
part of outctc is shared with the temporal reject loss.

The CTC loss [8] is used to optimize the alignment between
a sequence-level label (i.e., the classes happening during the
sequence, without the start/end segmentation bounds) and a
per-frame output. The per-frame output is processed in the
CTC loss to remove consecutive identical prediction. A blank
is also used as a reject to predict none of the available classes.

The use of CTC loss is not necessary for training the
network since we have the temporal segmentation of the
gestures, we could have trained our network only with the
per-frame loss. But CTC brings temporal prediction stability
to the network because it requires a good alignment between
the sequence-level label and the predicted sequence, and this
is very useful for our task. We can notice that the role of
the blank in the CTC is relatively close to the one of the
confidence score of the temporal reject system. The main
advantage of the confidence score compared to the blank is
that we can easily tweak it using different parameters (targeted
coverage c, λ, confidence threshold γ).

For the final detection, we use the class prediction output
f with the confidence score g. The CTC loss is just used
to train the internal representation of the network and to
smooth the class prediction along the time, we can see it as a
regularization strategy.

3) Final optimized loss: The final optimized loss is com-
puted as

L = αL(f,g) + (1− α)Lh + ωLctc (2)

where we fixed α = 0.5 and ω = 0.01 to make the CTC
loss magnitude close to the one of the other losses.

IV. EXPERIMENTS

A. Network details

The images generated by our representation are 40 by 40
pixels, with a quantity displacement θ equals to 4.4 for ILGDB
and 1.5 for MTGSetB (once scaled by 0.2 for ILGDB and 0.03
for MTGSetB). The sliding window ψ for the representation
of ILGDB is set to 2. Dropout is used in all convolutional
and dense layers, with a rate of 0.1 for convolutional and 0.2
for dense layers. Each convolutional layer learns 30 filters.
One dense layer of 100 units is used after the convolutional
layers, all outputs shared this layer. One additional dense layer,
with the same number of units, is used just before the final
confidence output layer. During the training, random rotation
(following normal distribution with µ = 0 and σ = 15◦) is
applied to sequence (the same rotation for all images in a
sequence) to improve the generalization. Coverage c of the
temporal reject loss is fixed to 0.7 for MTGSetB and 0.3 for
ILGDB. The training is done with a batch size of 5 sequences.

B. Synthetic Datasets Generation

To evaluate our approach on the task we generated two
datasets from ILGDB [19] and MTGSetB [20]. ILGDB is
a mono-stroke gesture dataset containing 21 gesture classes
performed by 38 users. These 21 classes are divided into 7
groups of 3 classes, where these 3 classes shared a common
begin, making nearly impossible early detection before the
bifurcation of these 3 gestures. We generate sequences with
between 4 and 8 randomly selected gestures per sequence.
The sequence is generated in order that the last point of a
gesture is the same point as the first point of the following
gesture. Following the original train/test split, 119 sequences
are used for training and 210 are used for testing. This dataset
is particularly challenging because sequence does not have
any breaks so it’s very hard to determine the starting and the
ending of gestures. Moreover it has few training examples. To
tackle the few amounts of data, we generated an augmented
dataset using size scaling (5 different scales) and using the
same gesture into multiple sequences (each gesture put into
5 sequences). At the end, each training gesture is used 25
times in the sequences, leading to 2621 training sequences.
An example of a generated sequence is given in figure 1.

MTGSetB is a multi-touch gesture dataset containing 31
different classes made by 33 users. We built sequences of 4-
8 random gestures in order to being unable to differentiate
an inter-stroke blank and an inter-gesture blank, each gesture
is re-centered according to the previous gesture into the
sequence, making impossible a spatial segmentation between
gestures. According to the original user-separated train/test
split, it leads to 607 gestures sequences for training, and 672
for testing. We also generated an augmented version of the
dataset with size-scaling (3 different scales) and using each
gesture into 2 sequences. This led to 3076 training sequences.

These two datasets are freely available1.

1Datasets available at:
https://www-intuidoc.irisa.fr/en/mtgsetb-and-ilgdb-untrimmed/

https://www-intuidoc.irisa.fr/en/mtgsetb-and-ilgdb-untrimmed/


C. Bounded Online Detection (BOD) Metric

We propose a new metric we called ”Bounded Online De-
tection (BOD) Metric”, inspired by computer vision detection
metrics. The main idea of this metric is to allow only one
detection per ground truth bound, conditioning the detection
to a certain amount of overlap between the ground truth
bound and the detection bound. Any noisy detection will
be considered as a false positive. The algorithm allowing to
compute the metric is the Algorithm 1.

Algorithm 1 The algorithm to compute the proposed metric.
Inputs: Predictions bounds, Labels bounds ; Parameters : canCorrect, ∆.
Sort Predictions and Labels by starting bound.
for all pred in Predictions do
GT ∗ ← argmax

GT∈Labels
IoUst(pred,GT )

if flag(GT ∗) = 0 and class(GT ∗) = class(pred)
and IoUst(pred,GT ∗) > ∆ then

Add a True Positive ; flag(GT ∗) ← 1
earliness ← start(pred)−start(GT∗)+1

end(GT∗)−start(GT∗)+1
else

Add a False Positive
if not canCorrect then flag(GT ∗) ← 1 end if

end if
end for
Precision ← TP

TP+FP
; Recall ← TP

length(Labels)
NDToD ← average(earliness)

Note that to compute this metric we need the bounds of
the predictions. If we have a per frame classification output,
we will need a strategy to transform it into a bounded output.
This strategy should be compatible with the online context i.e.,
we should not use future predictions to estimate a starting
and ending bound. In our case, the first accepted frame is
considered as the start of the gesture, and the next rejection
or different class prediction is the end of this gesture.

We designed the IoUst which is a variant of the In-
tersection Over Union measure for online context. Because
we don’t want to penalize late prediction on this criterion,
we compute the overlap from the prediction start bound:
IoUst =

Intersection
Unionst

where the Unionst is computed from the
starting bound of the prediction. A high IoUst characterizes
detection which well matches the ground truth bound from the
prediction starting bound.

The metric has two parameters: ”canCorrect” and ∆. can-
Correct is a boolean, if it is true, it allows the model to correct
itself if it has made a detection error on a given gesture. ∆
is a value between 0 and 1, and correspond to the minimum
IoUst value allowed to consider the gesture as a true positive
(TP). For application context which does not require to keep
the prediction during the gesture (just a peak), ∆ can be set
to 0. A value of 1 would mean that the prediction end bound
should match exactly the ground truth end bound to be a TP.

Detection is considered as a TP if the ground truth with the
maximum IoUst has not been already correctly detected (or
falsely detected if canCorrect = False), if it is the correct
class prediction, and if the IoUst is strictly over ∆. Otherwise
it is considered as a false positive (FP). An example of the
application of the metric is shown in figure 4.

98%> 13%< 65%>

FN

IoUst

TP
TP if canCorrect

FP   otherwise

Results FP

Miss Miss

FN

Ground truth

Detections

Fig. 4. Example of an application of the Bounded Online Detection (BOD)
Metric with ∆=50 %.

Once Precision and Recall are computed, we can compute
the final global micro-averaged FMeasure using the traditional
computation: FMeasure = 2∗Recall∗Precision

Precision+Recall . We also com-
pute the Normalized Distance To Detection (NDToD) used
in previous works [6], [7], which measure the earliness of
the detection. The NDToD metric is counted only for TP
detections.

D. Results

1) Trimmed Early Recognition Results: To compare our
approach with previous works, we evaluated our approach in
a trimmed context. In this context, only the first detection is
used because an application would know that only one gesture
is being drawn. The comparison with the MTGSetB dataset
is shown in table I. Detections happen a little later than [7]
but it is well balanced with a significant improvement of the
TAR (True Acceptance Rate) and the FAR (False Acceptance
Rate) values. Also, almost no gesture is rejected (RR: Reject
Rate). This shows particularly the good impact of the CTC
regularization, even in trimmed context.

TABLE I
COMPARISON WITH PREVIOUS APPROACHES ON MTGSETB FOR A CLOSE

EARLINESS VALUE (NDTOD), TRIMMED EVALUATION.

Method TAR FAR RR NDtoD
Chen et al. [6] 81.89 % 14.56 % 3.54 % 37.04 %
OLT-C3D [7] 89.25 % 7.24 % 3.51 % 30.77 %

This work 93.5 % 6.44 % 0.1 % 33.1 %

The figure 5a shows the behaviour of the system according
to the normalized gesture completion. 50 % of the gestures
were detected before 27 % of their completion. Among them,
95.4 % were correctly classified. As shown in figure 5b, the
earliness can vary drastically between gesture categories, from
near 100 % for A 02 to less than 15 % for B 04. This
depends on the length of the common begins between gestures.
Regarding accuracy without earliness, taking the prediction at

(a) Behaviour regarding the TAR, FAR
and RR according to the gesture com-
pletion ratio.

(b) Earliness per class.

Fig. 5. Performance of the system on MTGSetB (trimmed evaluation).



the last frame for each gesture, we obtain a score of 97.33 %
versus 94.45 % for [7].

2) Untrimmed Early Recognition Results: We evaluated
our approach in the untrimmed context on the two datasets
previously described with the BOD Metric. The results are
shown in table II for MTGSetB and ILGDB. The method has
been evaluated with different metric parameters combination.
For MTGSetB we obtained a FMeasure from 83.6 % to 76.1 %
depending on the ∆ value, without the possibility to correct
the error, and from 88.2 % to 86.8 % if the model can correct
itself. These results show that the network is able to predict
well until the end of the gesture for this dataset. For ILGDB,
the results vary much more depending on ∆, this means that
the network is not able to identify correctly when the gesture
finishes, this is consistent with the difficulty of this dataset
because the gestures are totally chained, and the transitions
between gestures are not easily identifiable.

TABLE II
UNTRIMMED EVALUATION ON MTGSETB AND ILGDB (UNTRIMMED

VERSIONS) WITH DIFFERENT PARAMETERS OF THE BOD METRIC.

MTGSetB ILGDB
canCorrect ∆ FMeasure NDToD FMeasure NDToD

False
0.0 83.6 % 32.7 % 61.1 % 68.7 %
0.5 77.1 % 32.5 % 45.1 % 68.2 %
0.95 76.1 % 32.4 % 24.3 % 71.9 %

True
0.0 88.2 % 34.0 % 68.0 % 69.3 %
0.5 87.7 % 35.8 % 54.3 % 70.4 %
0.95 86.8 % 36.1 % 30.9 % 75.4 %

3) Impact of CTC Regularization: To show the importance
of the CTC regularization we evaluated the system with and
without this regularization, the results are shown in table III.
On both datasets, the CTC regularization has a significative
impact on the results, especially on ILGDB. Because of the
CTC loss which encourages the predictions to be consistent
between frames, the precision and the earliness is particularly
impacted: +1.6 % of precision for MTGSetB and +8.8 % for
ILGDB. However, it has a negative impact on the earliness,
+0.4 % and +2.7 %, the gestures are detected slightly later.
We can deduce that the network preferred to postpone more
its detection to avoid detection instability, which is consistent
with an application scenario.

A example of detection of the network trained with and
without the CTC regularization is shown in figure 6. We
can see on the last gesture that the detection switch between
three gestures, this is the kind of behaviour which is hardly
penalized by the CTC loss.

TABLE III
IMPACT OF THE CTC REGULARIZATION, UNTRIMMED CONTEXT, BOD

METRIC WITH canCorrect = False,∆ = 0.25

Dataset Variant Precision Recall FMeasure NDtoD

MTGSetB CTC 70.7 % 87.0 % 78.0 % 32.7 %
No CTC 69.1 % 85.2 % 76.3 % 32.3 %

ILGDB CTC 56.4 % 55.6 % 56.0 % 69.2 %
No CTC 47.6 % 54.2 % 50.7 % 66.5 %

Ground truth

Final detections
with CTC

Final detections 
without CTC

Fig. 6. Example of detections on MTGSetB with the network trained with
CTC (second line) and without CTC (third line). We see that the last gesture is
detected differently with the two versions, the final detection is more unstable
without CTC.

4) Qualitative Results: Figure 7 (top) shows an example of
a sequence of MTGSetB with the predictions and detections
of the network. For the first gesture, we see that the network
rejects predictions (i.e., confidence below 0.5) until the begin-
ning of the second stroke of the ”X” gesture to be sure not
to confuse with the ”W” gesture which is also contained in
the dataset. For the next two gestures, it also waits until the
common parts with other gestures are passed. We observe a
similar behaviour on ILGDB (figure 7, bottom), but due to the
difficulty of this dataset, it has difficulties to keep a consistent
confidence score, which can produce false positive and missed
detection.

Fig. 7. Example of detections on MTGSetB (top) and ILGDB (bottom). a.
Ground truth, b. Class predictions, c. Confidence, d. Final detections. The
network waits until decisive instants to get a high confidence. Note that some
intermediate frames have been removed for the visibility.

V. CONCLUSION

We presented an approach to address the challenging task of
early recognition of untrimmed gestures. First, new represen-
tation strategies are designed to consider sequences of multi-
stroke or mono-stroke gestures. We proposed to regularize the
spatio-temporal CNN using the CTC loss to bring predictions
stability. Moreover, we propose a new evaluation protocol with
a new metric, and two artificial datasets. Our method obtained
superior results when compared with other approaches in
trimmed context. Good results are obtained in untrimmed
context, which will be a strong baseline for future works.

Applying the CTC loss can be an open door to weakly-
supervised training, using only the sequence-level annotation,
this will be explored in future works. We will also address the
task of early action recognition of a full 3D human body.
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