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Abstract 

Wastewater contains harmful chemicals and heavy metals that are known to cause various 

environmental and health problems. Therefore, the water quality control using sensitive, simple, 

fast, accurate, and portable tools is of great importance. In this study, an electronic nose (E-

nose) and an electronic voltammetric tongue (E-tongue) combined with chemometric methods 

were used for qualitative analysis of water samples collected from a wastewater treatment plant 

(WWTP) that treats domestic and industrial wastewaters. Quantitative determination of 

pollution parameters of water and wastewater samples were performed in BAM, Berlin. The 

inductively coupled plasma optical emission spectrometry was used for cations determination. 

Analysis of anions was carried out by ion chromatography with a Metrosep A Supp 5 - 100/4.0 

column. Chemometric methods, such as Principal Component Analysis (PCA), Discriminant 

Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster 

Analysis (HCA), were used to process the E-nose and E-tongue data to describe the similarities 

between the samples. In addition, Partial Least Squares Regression (PLSR) model was 

constructed using the E-nose and E-tongue data to simultaneously predict the levels of 

physicochemical parameters. Indeed, the PLSR analysis is performed generating a correlation 

coefficient, for the training and testing sets, higher than 0.91 for the prediction of the 

concentration of all physicochemical parameters, except for iron (Fe) which remains 0.84. 

These results suggest that simple, portable, and inexpensive tools such as electronic noses and 

tongues are suitable for wastewater analysis. 

Keywords: Wastewater, Electronic nose, Voltammetric electronic tongue, Water quality 

control, Chemometric methods. 

  



I. Introduction 

Detecting and controlling chemical pollution in the environment has become a major 

challenge for developed and emerging countries in the modern world. Every year, great quantity 

of organic and inorganic chemical pollutants are released into the air, sea, and soil, posing 

potential health risks to plants, animals, and humans [1,2]. The pollution of natural water 

resources by heavy metals is one of the most worrying issues [3,4]. Environmental pollution 

monitoring is necessary to protect the public and mitigate the many potential negative effects 

on environmental quality and human health. The unpleasant odor of wastewater and its negative 

impact on aquatic ecosystems has even led to strict requirements for wastewater treatment [5]. 

Conventionally, wastewater quality is generally determined by the levels of various 

factors related to the main pollutants, including chemical oxygen demand (COD), biological 

oxygen demand (BOD), ammonium, orthophosphate, nitrate, conductivity, and pH [6-8]. These 

parameters provide essential information on wastewater quality. They are useful for 

demonstrating that wastewater meets discharge requirements [9,10]. Chromatographic 

techniques such as high performance liquid chromatography (HPLC) and gas chromatography-

mass spectrometry (GC-MS) are most commonly used for the determination of compounds in 

wastewater [11]. However, some of these techniques are time consuming and most of them 

require considerable economic resources. Some wastewater parameters, such as BOD, require 

5 to 20 days to obtain measurement results, making these tests unsuitable for automated 

monitoring and control [12]. Thus, operating costs may somewhat limit the applicability of 

these traditional techniques. 

For these reasons, portable, easy-to-use, and inexpensive systems are in high demand to 

monitor and control processes, increase their pollutant removal capacity and achieve consistent 

and stable operation. This would allow meeting the requirements of wastewater treatment at 

minimal cost. Due to the simplicity and portability of E-noses and E-tongues, as well as the 



possibility of implementing them in on-line automated equipment, they can be used as 

complementary systems to analytical methods. According to the definition of the International 

Union of Pure and Applied Chemistry (IUPAC), an E-nose and E-tongue are multi-sensory 

systems, which consist of a number of sensors and use advanced mathematical procedures for 

signal processing, based on multivariate analysis techniques [13-15]. They use semi-selective 

sensors that produce a signal that can be associated either with a specific compound or with a 

qualitative aspect of the samples [16]. Despite the use of non-specific sensors, their combination 

offers enormous potential for information [17]. When these systems are subjected to a sample 

containing different compounds, they generate an output pattern that represents a synthesis of 

all the components contained in the analyte [18]. 

Considerable research efforts have been devoted to the development of E-noses and E-

tongues as well as their application in various fields, including the environment, agriculture, 

biomedicine, cosmetics, food, military, pharmaceuticals, and various areas of scientific research 

[19-22]. There are several potential applications of E-noses in environmental pollution 

monitoring. They are used to detect fires in chemical storage facilities, to identify 

environmental pollutants in diesel and gasoline exhaust [23], to monitor odors in and around 

livestock farms [24], to assess odor nuisance from landfills [25], to characterize odors emitted 

from various stages of a wastewater treatment plant [26], to survey industrial odors and gaseous 

emissions [27], and to analyze odors from poultry farms [28]. The main application of E-

tongues in the environmental field is the detection of physicochemical parameters in wastewater 

[29]. However, the ability of E-noses to predict the concentrations of physicochemical 

parameters in wastewater has never been investigated. 

In this study, the capability of an E-nose based on six semiconductor gas sensors, and an 

E-tongue configured as five working electrodes for qualitative analysis of wastewater is 

verified. The highlight and novelty of this work is to verify for the first time the capability of a 



fabricated E-nose and E-tongue to study the physicochemical parameters of wastewater and to 

compare the results obtained by each measurement system. The wastewater measurement data 

are processed qualitatively by chemometric techniques, such as Principal Component Analysis 

(PCA), Discriminant Function Analysis (DFA), Hierarchical Cluster Analysis (HCA), and 

Support Vector Machines (SVMs). In the case of quantitative analysis, Partial Least Squares 

Regression (PLSR) was performed to predict the concentration of physicochemical parameters 

of the wastewater using the data collected from the E-nose and E-tongue against their actual 

concentrations. 

2. Materials and methods  

2.1. Wastewater sampling and analytical methods 

 To study the composition of wastewater, 30 samples were collected from a WWTP in 

the city of Meknes in Morocco at different treatment points (Fig. 1). The collected samples are 

P1: wastewater samples collected at a location where solids and grit are removed, P2: wastewater 

samples collected at a location where oil and grease are removed, P3: wastewater samples 

collected in the bioreactor, and P4: distilled water. All collected samples were kept in the dark 

and brought refrigerated (4°C) to the laboratory for electronic sensing analysis. 

 Parallel analytical tests were carried out to determine the pH, the conductivity, the 

contents of total organic carbon (TOC), calcium (Ca), magnesium (Mg), Iron (Fe), manganese 

(Mn), potassium (K), sodium (Na), silicon (Si), phosphate (PO4), sulfate (SO4), nitrate (NO3), 

chloride (Cl), fluoride (F), and bromide (Br).  

2.2. Techniques used for physicochemical parameters analysis 

The wastewater was sampled with 20 mL amber glass bottles. After sampling, no 

stabilization with inhibitors took place. The samples were diluted 1:10 with distilled water for 

further analysis. The cations were determined by inductively coupled plasma optical emission 



spectrometry (ICP-OES) (iCAP 6000, Thermo-Fisher). The anions were analyzed by ion 

chromatography (883 Basic IC plus, Metrohm) with a Metrosep A Supp 5 - 100/4.0 column 

(Metrohm). In addition to the analysis of the anions and cations, the pH value and the 

conductivity were determined with a portable pH meter (HQ Series Portable Meters, Hach) and 

the total organic carbon (TOC) with a TOC cuvette test (Hach). 

2.3. Electronic setups and signals acquiring 

2.3.1. E-nose setup and signal acquisition 

The electronic nose used in this work was equipped with an array of six metal oxide 

semiconductor (MOS) gas sensors. An overview of the system is presented in the 

supplementary information (Fig. S1). The sampling section consisted of a 2 L Tedlar® bag 

connected to a micro air pump with a flow rate of 250 mL/min. Gas sensors model MQ were 

chosen based on their sensitivity to most VOCs that can be found in the environment. These 

gas sensors and their target gases are MQ-3 (alcohols, benzene, CH4, hexane, LPG, Co), MQ-

4 (CH4, LPG, H2, alcohol), MQ-5 (LPG, CH4, H2, alcohol), MQ-8 (H2, alcohol, LPG, CH4, 

CO), MQ-9 (CO, LPG, CH4), and MQ-135 (NH3, NOx, Alcohol, Benzene, smoke, CO2). It also 

contains a relative humidity sensor and a temperature sensor to monitor the environmental 

conditions during each measurement. All sensors were installed in a 270 cm3 Teflon chamber. 

A data acquisition unit, consisting of a hardware data acquisition card, namely NI-USB 6212 

from National Instruments, and a software application in the form of a graphical user interface 

(GUI) running in a computer, was used.  

The Normalized conductance ratio (G-G0/G0) was chosen as the sensor response signal 

for the E-nose. In this expression, G represents the conductance of the sensor when exposed to 

the gas sample and G0 represents the conductance when the sensor is exposed to synthetic air. 

Before and after each E-nose measurement, synthetic air is injected into the sensor chamber for 

5 minutes to clean the sensors’ surface so that the signal is at baseline. During the E-nose 



analysis, the headspace of the wastewater sample was pumped for 5 minutes into the sensor 

chamber at a flow rate of 250 mL/min. A total of 40 water and wastewater samples were used 

in this study. For each sample, 60 ml aliquots were measured to assess reproducibility. Four 

features were extracted from the E-nose responses, which are: 

• The conductance difference ∆G = (Gs- G0). Here, Gs is the average conductance value 

during the last sixty seconds of the measurement and G0 is the average conductance value 

during the first sixty seconds of the measurement.  

• The area under the curve (AUC) calculated between the first sixty and the last sixty seconds 

of the measurement. It was estimated based on the trapezoidal rule. 

2.3.2. E-tongue setup and data acquisition  

The E-tongue system consists of five working electrodes, a counter electrode (platinum), 

and a reference electrode (Ag/ AgCl, diameter 2 mm, saturated in 3 M KCl). The five working 

electrodes are made of gold (Au), glassy carbon (GC), platinum (Pt) from CH Instruments, 

Texas, USA (diameter of 2 mm and length of 5 mm), copper (Cu), and palladium (Pd) from 

BAS Inc, Tokyo, Japan (diameter of 1.6 mm and length of 6 mm). These working electrodes 

respond in the form of voltammograms related to the electrochemical properties of the samples. 

Detailed information on the E-tongue system are provided in the additional information (Fig. 

S2). For E-tongue measurements, a potential is first applied to the working electrodes. Then, 

electro-active species in solution are reduced or oxidized at the electrodes’ surfaces and the 

resulting current is measured. 

For analysis with the E-tongue, the electrodes were immersed in a beaker of wastewater 

samples and interfaced with a portable potentiostat (PalmSens BV, the Netherlands) using a 

relay box. In effect, a constant potential is applied to the reference electrodes and a variable 

potential is measured on the working electrode. In addition, the current between the counter 

electrode and the working electrode is measured. The cyclic voltammetry technique was applied 



for electrochemical measurements over a potential range of -0.2 to 0.6 V and a scan rate of 50 

mV/s. Forty water and wastewater samples were used in this study. For each sample, ten 

aliquots of 60 mL were measured to assess reproducibility. Two features were extracted from 

the E-tongue responses, which are: 

• The change in current Δ𝐼 = (𝐼max - 𝐼min) calculated as the difference between the maximum 

and minimum current values.  

• The area (A) between the oxidation and reduction phases in the voltammograms. This area 

is estimated by the trapezoidal method. 

2.4. Multivariate analysis techniques  

Data processing is carried out using multivariate analysis techniques, such as 

unsupervised (PCA, HCA) and supervised (DFA, SVMs) methods. 

PCA is an unsupervised linear method often used to analyze data obtained from 

multisensory systems. It is used for dimension reduction and allows a clear visualization of the 

dataset and simplifies its interpretation. The mechanism of PCA is based on the representation 

of the data in a new orthogonal coordinate system. Indeed, the axes are organized according to 

the variance of the data, keeping as much information as possible in the first axes [30]. 

DFA is a statistical method that determines Discriminant Functions (DF) using one or 

overall independent variables that maximize distance between groups and minimize distance 

within groups. The DFA is performed to check whether the variables used are enough to obtain 

a clear discrimination between the studied clusters [31]. 

HCA is a statistical procedure, providing a better alternative of accurate representation 

and classification of high-dimensional data, and it used the full dimensionality of the data to 

create a classification dendrogram. The aim of performing HCA is to separate data into specific 

groups based on similarity or distances between different observations. HCA results can be 



presented as a dendrogram, in which distances between observations are determined in different 

observations [32].  

Multi-class SVMs is a non-linear supervised learning technique. It can be built using two 

strategies. The first one is by using "one-vs.-one" or "one-vs.-all" approaches. In the second, all 

the data are considered. In this study, the "one-vs.-one" method is applied to differentiate 

between water and wastewater samples [33]. 

3. Results and discussion  

3.1. Physicochemical parameters determination of water and wastewater samples 

The concentrations determination of pollution parameters of some influent wastewater 

samples were illustrated in Table 1. It can be seen from this table that the measured parameters 

do not exceed the concentration limit mentioned by the World Health Organization (WHO), 

which confirms that the Meknes wastewater treatment plant respects the standard concentration 

for the different components [34-39].  

The pH refers to the measurement of hydrogen ion activity in the solution. Determination 

of pH plays an important role in the wastewater treatment process. Acidic (low pH) or basic 

(high pH) conditions alter the rate of microbial growth, the function of metabolic enzymes, and 

can stop the growth of most microorganisms that require a pH between 6.5 and 8.5. As seen in 

the table, the pH values measured for all the studied samples are acceptable except for P3. 

Conductivity is the ability of water to carry an electric current. The increase in 

conductivity of water samples is due to the increased mobility of ions. In fact, a higher 

conductivity value indicates that there are more chemicals dissolved in the water. From the 

table, it is noticed that the water samples have a low conductivity value compared to the 

wastewater samples. This is due to the low concentration of physicochemical parameters found 

in the water samples compared to the wastewater samples. 



Total Organic Carbon (TOC) refers to the amount of carbon present in any organic 

compound. TOC measurement is a mandatory requirement for wastewater treatment companies 

in many countries around the world. The TOC concentration of water is a basic indication of 

the extent of organic contamination and the purity of the water. High organic content means 

increased growth of microorganisms, which contribute to the depletion of oxygen reserves. In 

this study, the TOC of the wastewater is over 300 mg/l but the water is only 10.2 mg/l. 

To clearly see the differences in the physicochemical parameters of the analyzed samples, 

Fig. 2 shows a plot of the data as a histogram graph. It can be seen from this figure that the 

wastewater samples have high concentration for all physicochemical parameters compared to 

water sample (control). As remarked, the compound, which is present at highest concentration 

in the three wastewater samples is chloride. Indeed, it is also remarked that there are different 

concentrations of each physicochemical parameter from site to site.  

3.2. E-nose and E-tongue responses 

Figure 3 shows the normalized conductance of the sensor array of the E-nose exposed to 

the headspace of water and wastewater samples. Indeed, Figures 3(a, b, c) show the plot of 

conductance change of sensor responses of wastewater influent collected from P1, P2, and P3, 

respectively. However, Fig. 3(d) shows typical responses of the six-sensor array of distilled 

water collected from P4. According to Fig. 3, the normalized conductance increases with the 

exposure time. This can be explained by the presence of reducing chemicals on the sensing 

surface of n-type semiconductor gas sensors. As seen, distilled water (control) has the lowest 

response compared to the wastewater samples. In addition, it is noted that the MQ-9 gas sensor 

has the highest response for all analyzed samples.  

Figure 4 shows the electrochemical responses of the E-tongue system towards 

wastewater samples of P3. As can be seen, the amplitudes of the oxidation and reduction 



currents differ according to the analyzed samples. It should be noted that the intensity of the 

voltammogram corresponding to copper electrode (Cu) is higher than the others. 

3.3. Data analysis results 

3.3.1. Qualitative analysis results 

PCA was conducted on the E-nose and E-tongue database  (Fig. 5). Figure 5(a) reports, 

in a two-dimensional plot (PC1-PC2), the electronic nose data coming from the measurements 

corresponding to the analyzed samples. As one can see, the variances explained by the first and 

the second principal components were 73.88% and 19.78%, respectively. In this plot, the 

analysed samples appear to be well separated. As well as electronic nose results, PCA 

performed on E- tongue data points out the existence of four clusters based on their collection 

point in the WWTP (Fig. 5(b)). The variance explained by the first two principal components 

were 72.91% and 14.32%, respectively. 

DFA is one of the best classification methods, as this procedure maximizes the variance 

between categories and minimizes the variance within categories to optimize resolution. To 

confirm the PCA results, DFA was applied to the same database gathered from the E-nose and 

E-tongue. Figure 6 (a,b) shows the DFA plot corresponding to the E-nose and E-tongue 

database with a score of 98.1%, and 99.9% of the data variance, respectively. The first two 

discriminant functions (DF1 and DF2) show a very satisfactory classification of the wastewater 

samples, without overlap of the four groups. 

HCA is an unsupervised technique and was used in this study to confirm the results 

obtained by PCA and DFA. Figure 7 shows the HCA results of the studied samples by using 

the E-nose and E-tongue database, respectively. From Fig. 7(a), at a distance d = 7000, it 

appears an overlap between all samples except for those of P2. Indeed, at a distance d = 4000, 

good separation between headspace of samples of P1, P3, and P4 was achieved. Furthermore, 

from Fig. 7(b), at a distance d = 190, the dendrogram illustrates that the samples from P3 and 



P4 are clearly separated from the other samples. Furthermore, samples corresponding to P1 and 

P2 were overlapped. Moreover, at a distance d = 87, the samples from P1 and P2 were also 

separated to each other except of one sample from P1 which overlapped with P2. Therefore, by 

using various grouping hypothesis, it can be concluded that water and wastewater samples are 

well discriminated using the E-nose and E-tongue systems. 

Table 2 shows the SVMs confusion matrixes of the recognition of water and wastewater 

samples using the E-nose and E-tongue systems. Therefore, the SVMs model provided 100% 

and 97.5% success rate in the recognition and classification of analyzed samples using E-nose 

and E-tongue, respectively. It can be noticed that the E-nose system is able to distinguish all 

samples according to their collection point, without any overlapping.  By using the E-tongue, 

only one error is reported for the recognition of the samples studied. Therefore, the SVMs 

results confirm the previous results obtained using the PCA, DFA, and HCA methods. Based 

on these results, it is argued that the E-nose and E-tongue systems are very promising and 

capable of discriminating water and wastewater samples. 

3.3.2. Quantitative prediction for the contents of physicochemical parameters 

3.3.2.1. Partial least squares regression based on E-nose and E-tongue data 

The PLSR model was evaluated by comparing the values of Root Mean Squared Error of 

Calibration (RMSEC) and Root Mean Square Error of Cross-Validation (RMSECV) that 

represent model and cross-validation errors, respectively [40]. If they are similar, the model 

could be selected as having good prediction ability [41]. PLS regression was performed to 

model the relationship between the physicochemical parameters with different concentrations 

versus the E-nose and E-tongue data, respectively. One latent variable and a leave-one-out 

cross-validation method were used to build these models. The calibration curve shown in Fig. 

8(a) represents the concentration of phosphate predicted by the E-nose versus the real 

concentration of phosphate found in each sample. Besides, the calibration curve shown in Fig. 



8(b) represents the concentration of phosphate predicted by E-tongue versus the real 

concentration of phosphate found in each sample. The PLS regression yielded a calibration 

model with good correlation between experimental and estimated concentrations of phosphate 

using E-nose and E-tongue with correlation coefficients of about 0.99 for training and testing 

sets. These results prove that the proposed E-nose and E-tongue systems can predict the 

concentration of phosphate in water and wastewater samples.  

The same behavior was observed for the prediction of the concentration of the other 

physicochemical parameters with good correlation coefficients R by using both systems. The 

calculation of correlation coefficient (R), as well as Root Mean Square Error of Calibration 

(RMSEC), and Root Mean Square Error of Cross Validation (RMSECV) for training and testing 

sets were described in Table 3 for E-nose and E-tongue.  

The results depicted in this table show that the correlation coefficient R is higher than 

0.91 for all parameters, except for iron (Fe) which remains 0.84. Furthermore, the RMSEC and 

RMSECV values are lower than 9.34 and 11.29, respectively. These results demonstrate that 

there is a good calibration between the predicted and real concentration of physicochemical 

parameters using E-nose and E-tongue signals.   

In addition, the R-values obtained by the E-tongue are higher compared to those obtained 

by the E-nose for all parameters (except for calcium (Ca), manganese (Mn) and fluoride (F) in 

the testing set). Furthermore, the RMSEC values obtained by E-tongue are lower than the ones 

obtained by E-nose for all parameters with the exception of calcium (Ca) and silicon (Si) in the 

testing set. Moreover, the RMSECV values obtained by E-tongue are lower compared to those 

obtained by E-nose for all parameters with the exception of calcium (Ca), Magnesium (Mg), 

Iron (Fe), Manganese (Mn), Silicon (Si), Phosphate (PO4) and Fluoride (F) in the testing set. 

Based on these outcomes, it can be said that the results obtained by E-tongue are better than E-

nose for the prediction of physicochemical parameters. 



3.3.2.2. HCA results 

Figure 9 shows the results of the HCA as a dendrogram obtained by processing the data 

corresponding to the calibration of the E-nose (Fig. 9(a)) and the E-tongue (Fig. 9(b)) versus 

the concentrations of physicochemical parameters. As shown in the dendrogram in Fig. 9(a), at 

d = 53, the headspace of wastewater samples (P4) is clearly separated from the others. Similarly, 

at d = 28, the P2 samples are also separated. However, the samples from P1 overlapped with 

those from P3. In the case of the dendrogram in Fig 9(b), at d = 25, the wastewater samples of 

P3 and P4 are clearly separated from each other but the samples of P1 and P2 overlapped. 

Interestingly, at d = 15, the P1 and P2 samples are well separated from each other. These results 

reveal that the calibration results obtained by the E-tongue are better than those obtained by the 

E-nose. 

4. Conclusion 

Wastewater is known to have many negative impacts on the environment and human 

health. In general, sensing systems that are easy to handle, on-site, affordable and capable of 

analyzing wastewater are rare in the literature. In the present study, the use of detection systems, 

such as an E-nose and an E-tongue that meet these requirements was highlighted. The 

effectiveness of the developed E-nose, consisting of six tin dioxide (SnO2) sensors, and an E-

tongue, consisting of five working electrodes made of noble and non-noble metals, in 

distinguishing samples from different stages of wastewater treatment was therefore 

investigated. Their ability to distinguish between water and wastewater samples was the main 

objective of this study. The second was to differentiate wastewater at different points in a 

WWTP. Thus, the prediction of some physicochemical parameters of the studied samples was 

carried out using both systems. Furthermore, the ability of the proposed E-nose and E-tongue 

to classify water and wastewater samples was proven by applying multivariate analysis 

techniques, such as PCA, DFA, HCA, and SVMs. A strong agreement was found between the 



satisfactory discrimination obtained by the two systems and the different concentrations of 

physicochemical parameters found in each sample. Furthermore, using PLS regression, a good 

calibration between the E-nose and E-tongue as a function of the concentrations of the 

physicochemical parameters was obtained with a correlation coefficient higher than 0.91 for 

both systems. The results obtained by HCA when applied to the calibration of the data reveal 

that the E-tongue is better than the E-nose in predicting the concentrations of the 

physicochemical parameters. These results indicate that the E-nose and E-tongue systems can 

be used as inexpensive, portable, easy-to-use tools for wastewater analysis. 
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Supplementary information 

Fig. S1: Electronic nose developed for headspace analysis of water and wastewater samples. 

 

  



Fig. S2: Voltammetric electronic tongue set-up used for the analysis of water and wastewater 

samples. 

 

 

 

 

  



Tables 

Table 1: Results of physicochemical parameters determination of water and wastewater 

samples. 

Component (mg/L) P1 P2 P3 P4 

Maximum limit for 

potable water (WHO) 

pH 8.29 8.48 8.68 8.08 6.5-9.5 [34] 

Conductivity (µS/cm) 1390 1169 1497 120.1 500 [35] 

Total organic carbon (TOC) (mg/L) > 300 > 300 > 300 10.2 2 to 200  [36] 

Calcium (Ca)  (mg/L) 80.43 57.90 88.09 22.56 75 [37] 

Magnesium (Mg)  (mg/L) 42.87 54.99 54.80 7.94 50 [37] 

Iron (Fe)  (mg/L) 1.51 0.62 0.35 0.04 0.1 [37] 

Manganese (Mn)  (mg/L) 0.02 0.28 0.22 0.03 0.1 [34] 

Potassium (K) (mg/L) 16.47 12.53 22.13 2.65 Not available 

Sodium (Na) (mg/L) 74.93 72.07 105.20 1.98 200 [38] 

Silicon (Si) (mg/L) 9.42 3.78 8.78 1.77 Not available 

Phosphate (PO4) (mg/L) 13.57 7.19 15.69 0.22 Not available 

Sulfate (SO4) (mg/L) 49.24 45.25 71.53 0.57 200 [34] 

Nitrate (NO3) (mg/L) 1.56 0.64 0.49 0.3 50 [37] 

Chloride (Cl) (mg/L) 132.27 124.53 157.89 4.76 200 [37] 

Fluoride (F) (mg/L) 0.31 0.22 0.21 0.21 1.5 [37] 

Bromide (Br) (mg/L) 0.11 0.12 0.11 0 0.025 [39] 

 

  



Table 2: SVMs classification results of water and wastewater samples carried out using E-

nose and E-tongue signals with a success rate of 100% and 97.5%, respectively. 

 

E-nose signals E-tongue signals 

P1 P2 P3 P4 P1 P2 P3 P4 

P1 10    10    

P2  10   1 9   

P3   10    10  

P4    10    10 

 

  



Table 3: Correlation coefficient (R), as well as Root Mean Square Error of Calibration 

(RMSEC) and Root Mean Square Error of Cross Validation (RMSECV) for training and testing 

sets using the data from both systems.  

C
o
m

p
o
n

en
ts 

E-nose signals E-tongue signals 

Training set Testing set Training set Testing set 

R 
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S
E
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R
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M

S
E
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V

 

Ca 0.95 3.84 4.81 0.99 1.78 2.70 0.99 1.15 1.75 0.97 2.81 8.64 

Mg 0.95 2.45 3.05 0.98 1.44 2.29 0.98 1.42 1.56 0.98 1.14 5.99 

Fe 0.84 0.23 0.27 0.96 0.11 0.16 0.96 0.11 0.11 0.96 0.11 0.37 

Mn 0.93 0.03 0.05 0.98 0.02 0.03 0.97 0.02 0.03 0.97 0.02 0.09 

K 0.97 1.45 1.98 0.99 1.01 1,60 0.99 0.4 0.41 0.99 0.45 1.38 

Na 0.98 6.21 9.23 0.99 5.08 8,07 0.99 0.59 0.66 0.99 0.75 1.27 

Si 0.98 0.65 0.88 0.99 0.16 0,35 0.99 0.34 0.5 0.99 0.46 1.94 

PO4 0.99 0.68 1.07 0.99 0.65 1,02 0.99 0.32 0.48 0.99 0.45 2.12 

SO4 0.96 5.49 7.07 0.98 3.47 5,47 0.99 0.64 0.74 0.99 0.7 1.09 

NO3 0.99 0.51 0.63 0.99 0.35 0,55 0.99 0.14 0.16 0.99 0.21 0.42 

Cl 0.98 9.34 11.29 0.99 5.76 9,35 0.99 1.75 2.06 0.99 0.84 3.08 

F 0.91 0.02 0.02 0.99 0.01 0.01 0.98 0.01 0.01 0.97 0.01 0.04 

 

  

 

  



Figure captions 

Fig. 1: Sampling points in a wastewater treatment plant of Meknes city. 

Fig. 2: Histogram of the physicochemical parameters determined in the water and wastewater 

samples. 

Fig. 3: Normalized conductance evolution of sensors array exposed to headspace of water and 

wastewater samples from: (a) P1 (wastewater samples collected at a location where solids and 

grit are removed), (b) P2 (wastewater samples collected at a location where oil and grease are 

removed), (c) P3 (wastewater samples collected in the bioreactor), and (d) P4 (distilled water). 

Fig. 4: Cyclic voltammograms corresponding to wastewater samples collected from bioreactor 

(P4). 

Fig. 5: PCA plot performed for visualization of water and wastewater samples distribution 

based on: (a) E-nose signals, and (b) E-tongue signals. 

Fig. 6: DFA plot displaying patterns of water and wastewater samples based on: (a) E-nose 

signals, and (b) E-tongue signals. 

Fig. 7: HCA dendrogram results of water and wastewater samples measured using: (a) E-nose 

signals, and (b) E-tongue signals. 

Fig. 8: PLS prediction models of phosphate from the water and wastewater samples performed 

by means of real concentration versus database from: (a) E-nose signals, and (b) E-tongue 

signals. 

Fig. 9: Dendrogram obtained by HCA of water and wastewater samples performed by the 

correlation of the concentrations of physicochemical parameters versus database from: (a) E-

nose signals, and (b) E-tongue signals. 

  



Highlights 

• E-nose and E-tongue were used for qualitative analysis of water and wastewater. 

• ICP-OES and ion chromatography were used for quantitative analysis of the samples 

• Good discrimination of wastewater samples was obtained using chemometric techniques. 

• PLSR was used to determine the relationships between parameters and systems responses. 

• E-nose and E-tongue were able to predict the levels of wastewater parameters.  

 

  



Graphical abstract 

 

 

 

 

 

 

 

 


