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Abstract

This paper revisits two classical problems in the theory of voting—viz. the divided
majority problem and the strategic revelation of information—in the light of evolu-
tionarily founded partial Kantian morality. It is shown that, compared to electorates
consisting of purely self-interested voters, such Kantian morality helps voters solve co-
ordination problems and improves the information aggregation properties of equilibria,
even for modest levels of morality.
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1 Introduction

The question of individual cooperation is a puzzle for social theories because cooperation

should be sustained when efficient for the group but might be in contradiction with efficiency

at the individual level. This puzzle appears under various disguises in different disciplines:

Evolutionary Biology (Nowak and Sigmund 2005 [40]), Ethology (de Waal 1996 [50]), Eco-

nomics (Moulin 1995 [36]), Political theory (Ostrom 1998 [41]) or Social Philosophy (Binmore
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1994 [9]). In the light of recent results from the literature on the evolutionary foundations of

human motivation, we use formal game theory to revisit two classic cooperation dilemmas

faced by voters whose ability to communicate with each other is limited: the divided majority

problem and the Condorcet jury theorem.

The divided majority problem. In elections with at least three candidates, it is

sometimes in the interest of supporters of two of the candidates to coordinate their votes on

one of them in order to block the other candidates (Cox 1997 [14]). Instrumentally motivated

voters can be induced to vote strategically if their vote stands a chance of being pivotal. In

large enough electorates, however, pivotality becomes irrelevant. Hence it may be necessary

to resort to other explanations for why and how voters achieve such coordination.

The Condorcet jury theorem. In situations where individuals receive private and

informative signals about the true state of nature, and where the preferences of the voters are

aligned—e.g., a jury that wishes to convict a person only if she is guilty—efficient information

aggregation is typically achieved if voters vote blindly according to the signal they receive

(Condorcet, 1785 [13]). However, as is known since Austen-Smith and Banks (1996 [6]), a

sophisticated voter would realize that, given that the others vote according to the signal

they receive, she should condition her vote on the event that she is pivotal. In some settings

this may lead her to conclude that it is better to vote against the signal she observes. This

surprising result casts doubt on the efficiency of majority (and super-majority) rules as a

procedure to aggregate information.

We contribute to both literatures by modeling voting behaviors based on preferences

that entail a form of universalization. Specifically, we adopt the view that voters have Homo

moralis preferences, which have been shown to be favored by evolution by natural selection

(Alger and Weibull, 2013 [2]). Homo moralis reasons as follows: when contemplating a

course of action, she evaluates what her material payoff would be if— hypothetically—each

other individual of the population she belongs to were to follow the same course of action

with probability κ ∈ [0, 1]. Although one might dispute whether this behavior captures

the whole significance of Immanuel Kant’s morality, it incorporates a key ingredient of this

construct (and, arguably, of most moral theories): the “universalization” principle (Kant

1785 [27], Roemer 2019 [43]). One obtains the standard materialistic Homo oeoconomicus

for κ = 0 and the Kantian model of Laffont (1975 [31]) for κ = 1. Values of κ between 0 and

1 trigger partial Kantian universalization, and the parameter κ can be interpreted as a level

of morality. Hence, Homo moralis preferences reconcile the theory of ethical voting with that

of purely instrumental voters: it encompasses the purely instrumental motive as a special

case, and spans a continuum of degrees of partial universalization, up to and including full
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universalization. So the model also stands on its own feet as a model of ethical behavior,

independently of its evolutionary foundations. In practice, moral judgments and actions are

are often guided by the universalization principle (Levine et al. 2020 [33]) and Homo moralis

can be read as modeling a particular “ethical” behavior based on partial universalization.

Moreover, there is extensive evidence that moral motivations are important for most voters

(Blais 2000 [10]).

Theories with ethically motivated voters are not new. In the literature the most common

formalization of an ethical voter comes in the form of the rule utilitarian (Harsanyi 1980, 1992

[25, 26]) who selects a voting strategy which, if chosen by all other rule-utilitarian voters,

would maximize their aggregate material payoff. The partial Kantian morality captured by

Homo moralis preferences is a less demanding ethical concept than rule utilitarianism in

two respects. First, the Homo moralis player does not take into account the payoffs of the

other players, only her own. Second, Homo moralis preferences induces the voter to ponder

what the outcome would be, if —hypothetically— some fraction (not all) of the other voters

selected the same strategy as her. It will be seen that even small values of the universalization

parameter κ sometimes lead to results that differ significantly from the ones obtained with

instrumentally motivated voters.

Our formalization of ethical voters should not be confused with group-based voting mod-

els (Coate and Conlin 2004 [12], Feddersen and Sandroni 2006 [20]) where, by assumption,

strategic decisions are made at the collective level: in these models an ethical voter chooses

a strategy based on the anticipation that other ethical voters will effectively also choose the

same strategy. Along this line, two recent contributions have examined one of the problems

studied in this paper (the divided majority problem). Li and Pique (2020 [34]) adopt the

view that some voters are rule utilitarians, who select a voting strategy which, when chosen

by all voters in the divided majority, maximizes their utility. Bouton and Ogden (2021 [11])

assume that voting strategies are taken at the level of the group, so that each supporter

of a particular candidate acts in the interest of the group of like-minded supporters (it is

as if they applied were rule utilitarians on behalf of the group). By contrast, in our model

decisions are individually decided.

Since Jean-Jacques Rousseau (1755 [44]), many scholars have expressed the idea that

political psychology should not be cut from its possible biological roots: see for instance

Shubert (1982 [45]), Petersen (2015 [42]), Sidanus and Kurzban (2013 [47]) or Bergner and

Hatemi (2017 [8]). Within this stream of research, Homo moralis is a theoretical model

that does not link to empirical genetics but to the pure theory of evolution and stability of

interactive behavior. As in Economics (Lesourne et al. 2006 [32]) the evolutionary approach
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complements the now-standard but still criticized theory of rational choice (Downs 1957

[16], Green and Shapiro, 1994 [24], Stephenson et al. 2018 [48]), by refining the concept

of Nash equilibrium (which does not contain by itself notions of stability or convergence1).

In this work, we use a distinction between (material) payoff and (subjective) utility, which

is justified by evolutionary considerations (Alger and Weibull 2019 [4]). We therefore alter

the objective function. Still, we do compute the (Nash) equilibria of the games played with

the altered objective. We will here not attempt a full evolutionary study of these games,

but we will make the essential distinction between strict equilibria, where best responses are

well defined and which are known to be robust and stable under most dynamics, and flat

equilibria, in which all strategies are indifferent and that lack stability and robustness.

The paper is organized as follows. In section 2 we formally describe the Homo moralis

model. Then we consider two classical problems in the theory of voting: the divided ma-

jority problem under plurality rule in section 3 and the question of strategic revelation of

information in the Condorcet jury setting in section 4. For each of these questions we study

the implications of the hypothesis of evolutionary Kantian morality. The last section is a

short conclusion and proofs are in the Appendix.

2 Who is Homo moralis?

The evolutionary argument that implies precisely the behavior termed “Homo moralis” rests

on the ideas that at least part of the fitness an individual achieves depends on the material

payoff she achieves in social interactions, that her subjective utility (whose maximization

drives individual behavior) is transmitted to her (biological or cultural) offspring, and that

when a mutant utility function appears in the population its carriers are more exposed

to interaction with other mutants than are non-mutants (because interactions are local).

From these premises, Alger and Weibull 2013 [2] showed that the toolkit of evolutionary

game theory (Maynard Smith 1982 [35]) can be used to prove that evolutionarily stable

preferences are of the Homo moralis type.

Here we provide a formal definition of Homo moralis preferences. We start by the simple

case of a two-player (n = 2) symmetric normal form game. Let X denote the set of pure

strategies and π(x, y) the material payoff for a player playing x in her interaction with a

player playing y. Then a Homo moralis with degree of morality κ ∈ [0, 1] achieves the

1See Van Damme 1997 [15].
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following utility from using strategy x when the opponent uses strategy y:

U (x, y) = (1− κ) · π (x, y) + κ · π (x, x) . (1)

The first term is the individual’s material payoff, given the strategies effectively used. The

second term captures the Kantian moral concern: it induces the individual to ponder what

her material payoff would be if, hypothetically, the other individual were to use the same

strategy as her. A Homo moralis with degree of morality κ thus chooses a strategy that

maximizes the weighted sum of her own material payoffs computed at the actual strategy

profile and at the hypothetical universalized one, the weight attached to the latter term

being κ. In his Grundlegung zür Metaphysik der Sitten (1785), Immanuel Kant wrote “Act

only according to that maxim whereby you can at the same time will that it should become

a universal law.” In this vein, Homo moralis can be said to “act according to that maxim

whereby you can at the same time will that others should do likewise with some probability.”

The probability interpretation is particularly compatible with the logic whereby Homo

moralis preferences have been shown to have a strong evolutionary foundation. The argument

is as follows. Consider a large population where each individual inherits her preferences

from an individual in the preceding generation (be it culturally or biologically), and in each

generation individuals are matched at random to interact in pairs according to the material

game described above. Homo moralis preferences are justified based on the observation

that in essentially all populations, new cultural variants or genetic mutations spread locally.

From this fact it follows that, even if the probability of two similar mutants being matched

is very small, a mutant is still relatively more likely than non-mutants to be matched with a

mutant. Taking into consideration this phenomenon, Alger and Weibull ([2]) show that, for

a value of κ that precisely equals the probability that mutants are matched when mutants

are vanishingly rare, individuals who maximize utility of the Homo moralis form have an

evolutionary advantage over those who would behave differently, when preferences are passed

on from one generation to the next and the number of individuals to whom an individual

passes her preferences is determined by the material payoff she obtains.

We turn now to the more general case of an n-player interaction (n ≥ 2). The material

payoff of a player i depends on her own strategy xi ∈ X and on the strategies y1, . . . , yn−1

used by the other players. Writing (y1, . . . , yn−1) ≡ y−i, the material payoff is denoted

π(xi,y−i). Let the symbol E denote mathematical expectation.

Definition 1 In a symmetric n-player game π, an individual is a Homo moralis with

degree of morality κ if her utility function U satisfies U (x,y) ≡ E [π (x, ỹ)] where ỹ =
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(ỹ1, ..., ỹn−1) is a random strategy profile for the other players, with each component ỹi being

the actual strategy used by opponent i (yi) with probability 1 − κ and the individual’s own

strategy (x) with probability κ.

For instance, in an interaction between three individuals the utility of a Homo moralis with

degree of morality κ ∈ [0, 1] from using strategy x when the others use strategies y1 and y2

is:

U (x, y1, y2) = (1− κ)2 · π (x, y1, y2) + κ(1− κ) · [π (x, x, y2) + π (x, y1, x)] + κ2 · π (x, x, x) .

The two voting problems which will be studied in this article are cases of many-player

interactions (the population of voters) who have access to the same strategies (the possible

ballots to cast). A key feature of voting games is that they are aggregative, in the sense

that (a) any individual’s payoff depends only on how he/she votes and the vector of voting

strategies played by the other individuals, and (b) the individual’s payoff would not be

affected if other individuals swapped their strategies. For instance the outcome of the vote

only depends on the total number of votes obtained by each candidate. In the study of

equilibrium, it will be sufficient for our purposes to state the utility that a Homo moralis

with degree of morality κ achieves from playing strategy x when all the others use the same

strategy, say y. In an aggregative game, this simplifies the writing of the general κ-moral

utility function specified in Definition 1 to the following expression:

U
(
x,y(n−1)) =

n∑
m=1

(
n− 1

m− 1

)
κm−1 (1− κ)n−m π

(
x,x(m−1),y(n−m)

)
, (2)

where y(`) is the `-dimensional vector whose components all equal y and x(`) the `-dimensional

vector whose components all equal x. When all the other individuals use strategy y, the ran-

dom strategy profile ỹ = (ỹ1, ..., ỹn−1) in the general definition is such that each component

other than the first one (which is the individual’s own strategy) is a random variable that

follows a binomial distribution, taking the value y with probability 1 − κ and the value x

with probability κ. Since the game is aggregative, one needs only keep track of the number

of times that exactly m out of the n− 1 components in ỹ take the value x.

In one of the models below we will consider infinitely large populations, modeled as a

continuum. To study equilibria in this setting we will take the utility of Homo moralis who

plays strategy x in a population where all others play strategy y to be the material payoff

should a share κ of the population (hypothetically) play x instead of y. We rely on the de

Moivre-Laplace theorem to argue that this is a good approximation of the expression in (2)
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when n tends to infinity. Indeed, this theorem says that the probability mass function of

the random number of times that y is replaced by x in n independent trials converges to the

probability density function of the normal distribution with mean nκ and standard deviation√
nκ(1− κ) as n→∞.

Throughout the paper we use the Nash equilibrum concept: the originality of the Homo

moralis model is to introduce a distinction between material payoff and utility, but it is

amenable to application of the standard Nash notion. A Nash equilibrium strategy profile is

a vector of strategies such that each player uses a strategy that maximizes her utility, given

the strategies used by the others. We will say that a Nash equilibrium is strict if each player

would obtain a strictly lower utility by any deviation from her strategy, partially strict if at

least some players would obtain a strictly lower utility by some deviation from their strategy,

and flat if all players are indifferent between deviating or not.

3 Does Homo moralis vote strategically in the divided

majority model?

We first tackle the question of strategic voting in the divided majority setting. This is a

coordination game between players that form a majority but lose the election if they split

their votes among two candidates of their camp.

3.1 The divided majority model

Consider an infinite population (a continuum of mass one) of voters who are to elect one

candidate. There are two political parties, A and B, and three candidates: one from party

B, whom we simply call B and two from party A, whom we call A1 and A2. Some electors

of party A rank candidate A1 over A2 while others rank A2 over A1. Letting nA1, nA2, nB

denote the respective shares of supporters, we adopt the following assumption:

0 < nA2 < nA1 < nB < nA1 + nA2 < 1. (3)

This implies

1/3 < nB < 1/2 (4)

and nB can take any value within these bounds. In other words, candidate B is supported

by a minority of size nB < 1/2, while a majority of size nA1 + nA2 > 1/2 would be better
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Figure 1: Each cell shows the material payoff that a supporter of the candidate in the first
column obtains when the candidate in the top row wins.

off with a candidate from party A. However, the majority is divided into two groups, each

of them smaller than the minority. We are therefore studying the situation where, if voters

vote sincerely, B is elected.2

The table in Figure 3.1 shows the (material) payoff that a voter gets depending on which

candidate is elected, where ε ∈ (0, 1) is a parameter that measures the disagreement between

A1- and A2-supporters.

We examine whether voters may be expected to vote sincerely—i.e., for the candidate they

would like to win given the material payoffs—or strategically—i.e., for another candidate.

We concentrate on supporters of party A, who face a coordination problem, and assume that

B-supporters vote for candidate B. Under plurality voting, if A-supporters vote sincerely,

the minority wins (B is elected); however, the majority can win by coordinating their votes

on either A1 or A2, a coordination that requires some voters to vote strategically. Myerson

and co-authors [21, 37, 38] use this game to show that Approval Voting can help solve this

dilemma between strategic and sincere voting, and Myerson and Weibull (2015 [39]) take

a similar game as a case-study in their theory of coordination. Here we will show how

Kantian morality in the form of Homo moralis preferences can help “solve” the dilemma

under plurality voting in the sense that sincere voting is sometimes not an equilibrium, and

coordination sometimes is a strict equilibrium. In some cases the resolution is partial because

multiplicity of equilibria remains, and in some cases a high enough degree of morality leads

to selecting the best equilibrium, a full resolution of the dilemma.

Recall that Homo moralis can be said to “act according to that maxim whereby you can

at the same time will that others should do likewise with some probability.”Defining Homo

moralis preferences precisely thus requires defining who the “others” are. We distinguish

2This contrasts with research on the divided majority problem under “aggregate uncertainty” (Li and
Pique 2020 [34], Bouton and Ogden 2021 [11]) that make the assumption that if voters vote sincerely all of
A1,A2, and B can be elected.
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between two scenarios, the ex post and the ex ante one. In the ex ante scenario the voter

does not know yet if her preferred candidate is A1 or A2, and the reference population is the

whole population of A-voters; in the ex post scenario, the piece of information is known and

the reference population is the group of A1-supporters for an A1-supporter, and the group

of A2-supporters for an A2-supporter. The model that would take as the reference group the

whole population, including B-supporters would be interesting, too, but is out of the scope

of this study, which concentrates on the divided majority dilemma.

In all cases, in this section we consider a large population (a continuum of voters) so that

the result of the election is deterministic, defined by the fractions of the population that

vote for each candidate. Our goal being to characterize symmetric equilibria, we rely on

the approximation of the utility in (2) described in Section 2 for infinitely large populations.

Here the material payoff of a voter is 1 + ε, 1 − ε, or 0, depending on whether it is her

preferred A-candidate, the other A-candidate, or candidate B who wins. Hence, for a given

strategy played by all others in her reference population, a Homo moralis voter with degree of

morality κ evaluates each strategy by pondering what her payoff would be if, hypothetically,

a share κ of the voters in the reference population would also use this strategy.

3.2 The divided majority: the ex post scenario

In the ex post scenario, all the A-supporters first learn their payoffs from candidates A1 and

A2, and if they have Homo moralis preferences with some positive degree of morality κ they

use the group of voters who have the same payoffs as reference group. Thus, for an A1-voter

(resp. A2-voter), the reference group has nA1 (resp. nA2) voters.

We first examine whether sincere voting is an equilibrium. By sincere voting we mean

the situation in which all voters vote for their preferred candidate. Sincere voting leads to

the election of B. For κ = 0, this is a flat equilibrium, because each voter only considers how

her action impacts her material payoff, the material payoff only depends on who is elected,

and, with a continuum of voters none of them is pivotal. Turning now to Homo moralis

preferences with a positive degree of morality κ, this conclusion does not necessarily hold,

as shown in the following proposition.3

Proposition 1 (Ex post sincere voting) Suppose that all the voters are Homo moralis

3For expositional simplicity, throughout we disregard any knife-edge case where κ exactly equals the
threshold value at hand. Clearly, the set of equilibria for such knife-edge cases would depend on the assump-
tion we would then have to make about tie-breaking rules, and this is not related to our argument.
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with degree of morality κ ∈ [0, 1]. Let κ∗ = nB−nA1

nA2
. Then 0 < κ∗ < 1 and in the ex post

scenario sincere voting (A1-supporters vote for A1 and A2-supporters for A2) is:

• a flat Nash equilibrium if κ < κ∗;

• not a Nash equilibrium if κ > κ∗.

When the degree of morality is high enough, sincere voting is not sustainable because either

some or all voters from the divided majority then prefer to vote strategically. Although such

a deviation has no effect on the actual outcome, it brings satisfaction to a sufficiently moral

Homo moralis to know that candidate B would be beaten, should a share κ of the voters

in her reference group also vote strategically. Because A1-voters are more numerous than

A2-voters, for any given degree of morality the deviation to strategic voting by an A2-voter is

more effective than a deviation to strategic voting by an A1-voter, because B’s advantage is

the smallest when A1-voters vote sincerely. The threshold value κ∗ is the degree of morality

above which A2-voters strictly prefer to vote strategically vote for A1 rather than voting for

their preferred candidate A2, given that A1-voters cast their ballots for candidate A1.

A strong enough Kantian moral concern further makes coordination of the divided ma-

jority sustainable as a strict Nash equilibrium, as shown next. Notice that, in this ex post

scenario, strict coordination occurs either on A1 or on A2, with the same threshold value for

κ.

Proposition 2 (Ex post coordination) Suppose that all the voters are Homo moralis

with degree of morality κ ∈ [0, 1]. Let κ∗∗1 = nA−nB

nA1
and κ∗∗2 = nA−nB

nA2
. Then 0 < κ∗∗1 < κ∗∗2 < 1

and, in the ex post scenario, coordination on candidate either A1 and A2, is:

• a flat Nash equilibrium if κ < κ∗∗1 ;

• a partially strict Nash equilibrium if κ∗∗1 < κ < κ∗∗2 ;

• a strict Nash equilibrium if κ > κ∗∗2 .

With a continuum population of voters, each individual voter has no real effect on the elec-

tion outcome and derives no utility from expressing their opinion. Intuition thus suggests

that each voter might as well vote on a random candidate. Remarkably, this is not true un-

der Homo moralis preferences. As shown in the proposition, sufficiently pronounced Kantian

moral concerns break the indifference and induce a strict preference to vote for one of the

majority candidates, should all other majority supporters do the same. Homo moralis pref-

erences thus allow the divided majority to sustain coordination on one of the A-candidates
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and win the election against B. However, they they do not indicate on which candidate

such coordination should occur; mechanisms outside of the model, e.g., focal points, would

be necessary to solve this issue.

3.3 The divided majority: the ex ante scenario

Here we consider the ex ante situation, where each A-voter knows that she prefers party

A over party B, that there are three candidates B,A1, A2 with respective supports nA1,

nA2, and nB as well as the associated payoffs, but does not yet know if she will rank A1

above A2 or vice versa. Unlike in the ex post setting, the reference population for an A-

voter is the whole population of A-voters. This is not an artificial situation: it models,

for instance, the reasoning of a citizen who wonders whether it is better to vote according

to her ideas (voting sincerely, or naively for the candidate she will happen to prefer) or to

(strategically) coordinate her vote with voters of the same camp. This is not an artificial

situation: it models, for instance, the reasoning of a citizen who wonders whether it is better

to vote (sincerely) for the candidate that would give her the highest material payoff or to

(strategically) coordinate her vote with voters of the same camp.

For a supporter of party A, a (behavior) strategy specifies the candidate to vote for,

depending on her ranking of A1 and A2. We will write such a strategy α = (α1, α2); for

instance

αsi = (A1, A2)

is the “sincere” strategy and

α(1) = (A1, A1)

is the strategy which dictates to vote A1 in any case. In what follows we will not consider

the reversed strategy (α1, α2).
4 Hence, there are three strategies: α(1), α(2) and αsi.

Let C∗(α) denote the candidate that wins given that all A-voters use strategy α. Then,

the following expression shows the expected material payoff of a A-voter when all other

A-voters use α.

πA(α) =


1 + ε · (nA1 − nA2)/(nA1 + nA2) if C∗(α) = A1

1− ε · (nA1 − nA2)/(nA1 + nA2) if C∗(α) = A2

0 if C∗(α) = B.

(5)

4The reader will easily check that adding this possibility does not alter the results.
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In words, from behind the veil of ignorance as to her ranking of candidates A1 and A2, an

A-supporter gets a material payoff that is sometimes slightly above 1 and sometimes slightly

below 1 if an A-candidate wins. Since she is more likely to rank A1 over A2 (i.e., nA1 > nA2)

she would prefer A1 to win from an ex ante perspective. Such a voter is, moreover, certain

to get material payoff 0 if B wins. Note that since there is a continuum of voters the winning

candidate does not depend on the strategy used by the individual voter at hand.

Using C(κ)(α′, α) to denote the candidate that would win if—hypothetically—a share κ

of the other A-voters used the same strategy as her (α′) instead of the strategy that they

are actually using (α), the utility of a Homo moralis with degree of morality κ is:

U
(κ)
A (α′, α) =


1 + ε · (nA1 − nA2)/(nA1 + nA2) if C(κ)(α′, α) = A1

1− ε · (nA1 − nA2)/(nA1 + nA2) if C(κ)(α′, α) = A2

0 if C(κ)(α′, α) = B.

(6)

A Homo moralis would derive satisfaction from knowing that a candidate that gives her a

high expected material payoff would win, in the hypothetical scenario that a share κ of the

other A-supporters follow her lead. Note, however, that this satisfaction is independent of

whether there actually are other voters with Homo moralis preferences, who would reason

in a similar fashion.5

As a benchmark, consider first briefly the (standard) case in which voters care only

about their material payoffs (i.e., they have Homo moralis preferences with κ = 0). Since

each individual vote has no impact on the outcome, any strategy profile—both sincere and

strategic voting—is a Nash equilibrium. Indeed, given that all other voters play a certain

strategy, any given voter is indifferent between all the available strategies. Turning next to

Homo moralis preferences, we will see how these eliminate certain equilibria when the degree

of morality is pronounced enough.

Turning now to Homo moralis preferences, we first show that sincere voting is not nec-

essarily a Nash equilibrium.

Proposition 3 (Ex ante sincere voting) Suppose that all the voters are Homo moralis

with degree of morality κ ∈ [0, 1]. For the same κ∗ = nB−nA1

nA2
as in the ex post scenario (see

Proposition 1), in the ex ante scenario, sincere voting (the strategy profile αsi = (A1, A2))

5This contrasts with group-based voting models considered by Coate and Conlin 2004 [12], Feddersen
and Sandroni 2006 [20], Li and Pique (2020 [34]), and Bouton and Ogden (2021 [11]), in which each ethical
voter selects a strategy based on the anticipation that other ethical voters will effectively also use the same
strategy.
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is:

• a flat Nash equilibrium if κ < κ∗;

• not a Nash equilibrium if κ > κ∗.

As the reader can see, with respect to sincere voting the result in the ex ante case is strictly

identical to the one in the ex post case (see Proposition 1). The reason is clear: like in

the ex post scenario B’s advantage is the smallest when A1-voters vote sincerely; hence, the

threshold value κ∗ is (again) the degree of morality above which the A-voters can make A1

win by way of voting strategically for A1 independent of their ranking over candidates A1

and A2.

Secondly, we show that strategic voting whereby A-voters coordinate on candidate A1

is sustainable in a strict sense as a Nash equilibrium when A-voters have Homo moralis

preferences with a sufficiently high degree of morality.

Proposition 4 (Ex ante coordination on A1) Suppose that all the voters are Homo moralis

with degree of morality κ ∈ [0, 1]. For the same κ∗∗2 = nA−nB

nA2
as in Proposition 2, in the ex

ante scenario coordination on candidate A1 (the strategy profile α1 = (A1, A1)) is:

• a flat Nash equilibrium if κ < κ∗∗2 ;

• a strict Nash equilibrium if κ > κ∗∗2 .

Comparing this proposition to Proposition 2, we see that coordination on A1, the strongest

A-candidate, obtains for the same degrees of morality in the two scenarios. Such is not the

case for coordination on A2, the weak A-candidate, as shown next.

Proposition 5 (Ex ante coordination on A2) Suppose that all the voters are Homo moralis

with degree of morality κ ∈ [0, 1]. Let κ∗∗∗ = nA−nB

nA
and κ∗∗∗∗ = nB

nA
. Then 0 < κ∗∗∗ < 1/2 <

κ∗∗∗∗ < 1 and, in the ex ante scenario, coordination on the candidate A2 (the strategy profile

α2 = (A2, A2)) is:

• a flat Nash equilibrium if κ < κ∗∗∗;

• a strict or partially strict Nash equilibrium if κ∗∗∗ < κ < κ∗∗∗∗ and κ < κ∗∗2 ;

• not a Nash equilibrium if κ > κ∗∗∗∗ or κ > κ∗∗2 .

13



It is more challenging to obtain coordination on A2 than on A1, because an A-supporter is

more likely to end up being an A1- than an A2-supporter. Hence, an ex ante commitment

to vote for A2 entails a sacrifice in terms of expected utility, which is not sustainable for

degrees of morality so large that a deviation to a commitment to vote for A1 instead entails

a hypothetical victory for candidate A1.

The last two propositions show how Kantian morality in the form of Homo moralis

preferences sometimes leads to a full resolution of the divided majority dilemma in the ex ante

scenario, in the sense that a high enough degree of morality implies that the best equilibrium

is selected: indeed, for degrees of morality κ above max{κ∗, κ∗∗2 , κ∗∗∗∗} there exists a unique

Nash equilibrium, in which A-supporters coordinate on the stronger candidate A1.

3.4 Concluding remarks on the divided majority problem

Summing up the insights generated by the analysis above, for low degrees of morality κ

any strategy profile is a non-strict equilibrium, following the “ocean of voters” logic: what

I do personally does not matter and the same remains true if I have only a small number

of (hypothetical) followers. Hence, for low degrees of morality no theoretical prediction

arises. By contrast, for κ large enough, Kantian morality solves the coordination problem

in the divided majority setting: sincere voting (which means non-coordination) is no longer

an equilibrium, but coordination becomes a strict equilibrium. In the ex post scenario,

coordination is sustained in the same way on any one of the two A-candidates, while in

the ex ante scenario, coordination on the strongest of the two A-candidates is more readily

obtained, and for some values of κ it is the only equilibrium.

Notice that in the analysis above we assumed symmetric material payoffs, in the sense

that both A1- and A2-supporters gain 2ε from seeing their preferred rather than their sec-

ond preferred candidate win (see Table 3.1). The proofs of the results derived under this

assumption, however, reveal that they are robust to variations in the values of the payoffs,

in the sense that the conditions on κ stated in the propositions are necessary to sustain the

relevant equilibria, whether the voters wish to sustain them or not. Indeed, these conditions

depend solely on the sizes of the groups supporting the three candidates, nA1, nA2 and nB.

Varying the payoffs (for instance by having four different values of ε in the table) will, how-

ever, affect the utilities attached to each strategy, and hence, voters’ wish to vote sincerely

or strategically.

In a similar fashion, our results are robust to the introduction of an intrinsic value

attached to expressive voting; the conditions for a change in the result of the election still
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only depend on κ and on nA1, nA2 and nB. Changing the payoff may only affect the fact

that these deviations are desirable or not.

Having thus examined the coordination problem, we turn to the information aggregation

problem.

4 Should Homo Moralis sit in the jury ?

4.1 The jury model

Consider a group or jury of n = 2m + 1 members. These persons have to take a binary

decision, say 0 or 1, according to a simple majority rule. There are two states of Nature,

also labeled 0 and 1. All jurors agree that the right decision in each state ω ∈ {0, 1} equals

ω, but they do not know the state of Nature. For the sake of simplicity we suppose that the

material payoff of a juror is 1 if the decision is correct and 0 if not. Each juror’s expected

material payoff is thus the probability of a correct decision.6

The jurors share the common prior belief that the state is ω with probability µω ∈ (0, 1),

where µ0 +µ1 = 1. Each jury member i also receives a private “signal” si ∈ {0, 1}, a random

variable that is positively correlated with ω:{
Pr [si = 0 | ω = 0] = p0 = 1− q0 > 1/2

Pr [si = 1 | ω = 1] = p1 = 1− q1 > 1/2.

A player’s pure strategy specifies her vote as a function of her signal si. The set of strategies

X thus consists of the following four strategies:

ξinf :

{
0 7→ 0

1 7→ 1
; ξ0 :

{
0 7→ 0

1 7→ 0
; ξ1 :

{
0 7→ 1

1 7→ 1
; ξinv :

{
0 7→ 1

1 7→ 0

The classical Condorcet jury theorem concludes that the majority decision is informatively

efficient in a large jury. This conclusion is reached under the assumption that all jurors

truthfully report their signals, that is they all use the informative strategy ξinf . However,

such a strategy profile is not necessarily a (Bayesian) Nash equilibrium. As a juror, if I

believe that all the other jurors vote informatively, correct Bayesian reasoning makes me

6Notice incidentally that this assumption has a straightforward interpretation in term of fitness as survival
probability: If the group decision is correct, all members will survive with probability one, if not they all
die. Think of honeybees that “vote” to choose where to locate their new hive.
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condition my vote on the event that the other jurors’ vote are in a tie and makes my vote

decisive. This is true even in a large jury, where the condition for the (improbable) event

that the other votes are exactly in a tie becomes more informative than my own signal, which

I should therefore neglect. This surprising result casts doubt on the efficiency of majority

(and super-majority) rules as a procedure to aggregate information. It initiated an important

literature, dealing with political elections, criminal juries, or board decisions (Feddersen and

Pesendorfer, 1997, 1998 [18, 19], Gerardi and Yariv 2008 [22], Gersbach and Hann 2008 [23]).

Because the voter is conditioning on an event of low probability, the non-equilibrium

conclusion is not robust to small variations of the model (Laslier and Weibull 2013 [30]).

Moreover, careful analysis shows that the collective inefficiency resulting from individual

rational Bayesian behavior is not that strong (Koriyama and Szentes 2009 [28]). Still, these

game-theoretical analyses fall short of a justification of informative voting behavior in the

jury setting. In this section we compare a jury whose jurors have Homo moralis preferences

with a jury whose jurors have Homo oeconomicus preferences. We ask whether informative

voting is a Bayesian Nash equilibrium for a larger set of parameter constellations in the

former than in the latter jury. We will further examine whether this set coincides with that

in which informative voting by all jury members is efficient in the sense that it maximizes

the probability that a correct decision is made.

4.2 A jury with three members

For a single decision-maker (a “jury of n = 1 member”) who holds a very dissymmetrical

prior and/or receives signals of very low quality, it may well be rational to always vote for

the most probable state ω, without taking into account the received signal. By Bayes’ law:

Pr[ω = 0|si = 0] =
p0µ0

p0µ0 + (1− p1)µ1

and Pr[ω = 1|si = 0] =
(1− p1)µ1

p0µ0 + (1− p1)µ1

,

so that deciding for ω = 0 upon receiving signal 0 is optimal if and only if p0µ0 is larger

than(1− p1)µ1. When this condition and the symmetric one for state 1 are met, informative

voting is efficient for the single decision-maker. This happens for moderate values of the

prior odds ratio:
1− p1
p0

<
µ0

µ1

<
p1

1− p0
. (7)

Likewise, in a jury with three members, the symmetric strategy profile according to which

all jury members vote informatively, ξinf ≡ (ξinf , ξinf , ξinf), yields a higher probability of a

correct decision than the symmetric strategy profiles according to which all jury members

16



vote 0 or all vote 1, if and only if

(1− p1)2

p20
· 1 + 2p1

3− 2p0
<
µ0

µ1

<
p21

(1− p0)2
· 3− 2p1

1 + 2p0
. (8)

These inequalities are obtained by comparing the probability of a correct decision under the

three alternative symmetric strategy profiles, which is equal to µ0 if all jurors play ξ0, to µ1

if all jurors play ξ1, and

µ0[p
3
0 + 3p20(1− p0)] + µ1[p

3
1 + 3p21(1− p1)]

if all jurors play ξinf .

Having dealt with the normative properties of informative voting, we turn to the following

positive question: under what condition is ξinf a Bayesian Nash equilibrium in a jury with

three jurors? For comparison, and to prepare the ground for analysis of a jury composed of

individuals with Homo moralis, we examine this question under the assumption that all the

jurors are Homo oeconomicus, i.e., their utility coincides with their material payoff.

As is known since Austen-Smith and Banks (1996 [6]), to check whether ξinf is a best

response for a Homo oeconomicus individual i to (ξinf , ξinf), it is necessary and sufficient to

examine how a deviation to another strategy would affect i’s material utility in states of the

world where i is pivotal, since these are the only states where the deviation would affect the

outcome of the vote. Since the other two jury members—call them j and k—play ξinf , it

is thus sufficient to compare the expected costs and expected benefits of deviating in states

where j and k received different signals, sj 6= sk. In this subsection we will without loss of

generality assume that ω = 0 is the least likely state, i.e., that µ0 < 1/2.

Consider first a deviation by i from ξinf to ξ1. Such a deviation alters the vote outcome

from 0 to 1 if sj 6= sk and si = 0. The change in the vote outcome raises the material utility

if the state of Nature is ω = 1 but lowers it if the state of Nature is ω = 0. Hence, i strictly

prefers not to deviate to ξ1 if and only if the probability that sj 6= sk, si = 0, and ω = 0,

exceeds the probability that sj 6= sk, si = 0, and ω = 1:7

µ0 · p0 · 2p0(1− p0) > µ1 · (1− p1) · 2p1(1− p1).

Likewise, a deviation by i from ξinf to ξ0 alters the outcome from 1 to 0 if sj 6= sk and si = 1,

7Like Austen-Smith and Banks (1996 [6]) we disregard parameter constellations where jurors are indif-
ferent between strategies and thus focus on strict inequalities.
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and this raises the material utility if the state of Nature is ω = 0 but lowers it if the state of

Nature is ω = 1. Hence, the condition for the deviation to ξ0 to be unviable boils down to:

µ1 · p1 · 2p1(1− p1) > µ0 · (1− p0) · 2p0(1− p0).

In sum, ξinf is a strict Bayesian Nash equilibrium in a jury composed of three Homo oeco-

nomicus, if and only if

(1− p1)2

p20
· p1

1− p0
<
µ0

µ1

<
p21

(1− p0)2
· 1− p1

p0
. (9)

In view of this equation, we see that the individual rationality of informative voting in a

group of three is neither implied by rationality of informative voting for a single individual

(compare with equation (7)) nor by its efficiency for the group (compare with equation (8)).

We turn now to a jury composed of jurors with Homo moralis preferences with some

degree of morality κ ∈ [0, 1]. The reasoning is similar to the one above, in the sense that it is

necessary and sufficient to consider situations in which the deviation affects the outcome of

the vote. Thus, like above, a juror who ponders a certain deviation evaluates her expected

material payoff if the deviation affects the outcome of the vote because she is pivotal. How-

ever, in addition, a Homo moralis also evaluates how the deviating strategy would affect her

expected material payoff if, hypothetically, with probability κ each other juror were also to

play this strategy instead of the one she is actually playing. We will say that jury member i

is κ-pivotal if a deviation by i from strategy ξ to some strategy ξ′ would affect the outcome

of the vote in the hypothetical scenarios envisaged by Homo moralis in which at least one

of the other jury members also play ξ′.

Like above, consider again juror i, and assume that j and k play ξinf . Table 1 lists

the signal combinations (si, sj, sk) for which i is either pivotal or κ-pivotal. The first three

columns show the signals received by the three jury members. The fourth column shows

the vote outcome if i plays ξinf . The last four columns display the outcome of the vote if

i were to deviate to ξ1, and each of these columns corresponds to a different scenario that

Homo moralis envisages. Thus, the column labeled (a) is the outcome when i deviates to

ξ1 while j and k play ξinf . In columns (b) (resp. (c)), i ponders what the outcome would

be if, hypothetically, j but not k (resp. k but not j) played ξ1 instead of ξinf , a scenario

to which a Homo moralis with degree of morality κ attaches weight κ(1 − κ). Finally, in

the last column i ponders what the outcome would be if, hypothetically, both of the other

jurors played ξ1 instead of ξinf , a scenario to which a Homo moralis with degree of morality

κ attaches weight κ2. The signal realizations (si, sj, sk) not listed in this table are irrelevant,
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because for all of them the outcome of the vote is 1, whether or not i deviates to ξ1.

Table 1: Signal realizations (si, sj, sk) for which a deviation by i from ξinf to ξ1 would alter
the vote outcome, if: (a) j and k play ξinf , (b) hypothetically, j were also to play ξ1 instead
of ξinf , (c) hypothetically, k were also to play ξ1 instead of ξinf , (d) hypothetically, both j
and k were also to play ξ1 instead of ξinf

(a) (b) (c) (d)
si sj sk (ξinf , ξinf , ξinf) (ξ1, ξinf , ξinf) (ξ1, ξ1, ξinf) (ξ1, ξinf , ξ1) (ξ1, ξ1, ξ1)

0 0 0 0 0 1 1 1

0 0 1 0 1 1 1 1

0 1 0 0 1 1 1 1

1 0 0 0 0 1 1 1

Since a switch in the vote outcome from 0 to 1 is costly in state ω = 0 and beneficial in

state ω = 1, a juror i with Homo moralis preferences and degree of morality κ strictly prefers

strategy ξinf to ξ1 if and only if the probability that i would either be pivotal or κ-pivotal

when the state is ω = 0 exceeds the probability of the same event when the state is ω = 1.

Counting in Table 1 the pivotal cells with their associated probabilities in states ω = 0 and

1, as well as the weight attached to them by Homo moralis, one finds the following necessary

and sufficient condition for the deviation to ξ1 to be unappealing:

µ0 · [ 2p20 (1− p0) + p20 [2κ(1− κ) + κ2] ]

> µ1 · [ 2p1 (1− p1)2 + (1− p1)2[2κ(1− κ) + κ2] ].
(10)

In a similar manner, Table 2 lists the signal combinations (si, sj, sk) for which i is either

pivotal or κ-pivotal if she deviates from ξinf to ξ0. Since a switch in the vote outcome from

1 to 0 is costly in state ω = 1 and beneficial in state ω = 0, i strictly prefers strategy ξinf to

ξ0 if and only if the probability that i would either be pivotal or κ-pivotal when the state is

ω = 1 exceeds the probability of the same event when the state is ω = 0:

µ1 · [ 2p21(1− p1) + p21[2κ(1− κ) + κ2] ]

> µ0 · [ 2p0(1− p0)2 + (1− p0)2[2κ(1− κ) + κ2] ].
(11)
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Table 2: Signal realizations (si, sj, sk) for which a deviation by i from ξinf to ξ0 would alter
the vote outcome, if: (a) j and k play ξinf , (b) hypothetically, j were also to play ξ0 instead
of ξinf , (c) hypothetically, k were also to play ξ0 instead of ξinf , (d) hypothetically, both j
and k were also to play ξ0 instead of ξinf

(a) (b) (c) (d)
si sj sk (ξinf , ξinf , ξinf) (ξ0, ξinf , ξinf) (ξ0, ξ0, ξinf) (ξ0, ξinf , ξ0) (ξ0, ξ0, ξ0)

1 1 1 1 1 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 1 0 0 0

Defining the two threshold values

λ̄(κ) ≡ p21
(1− p0)2

· κ(2− κ) + 2(1− p1)
κ(2− κ) + 2p0

(12)

and

λ(κ) ≡ (1− p1)2

p20
· κ(2− κ) + 2p1
κ(2− κ) + 2(1− p0)

, (13)

we note that the condition derived above for ξinf to be a Nash equilibrium in a jury of Homo

oeconomicus (see (9)) can be written λ(0) < µ0/µ1 < λ̄(0), and that the condition for ξinf to

be efficient (see (8)) can be written λ(1) < µ0/µ1 < λ̄(1).

The reasoning above, together with the observation that a deviation to the reverse strat-

egy ξinv is clearly dominated by a deviation to both ξ1 and ξ2, allows us to state necessary

and sufficient conditions for informative voting to be an equilibrium.

Proposition 6 In a jury consisting of three jurors with Homo moralis preferences with

degree of morality κ, for any µ0 ∈ (0, 1/2):

1. ξinf is a strict Bayesian Nash equilibrium if and only if λ(κ) < µ0
1−µ0 < λ̄(κ);

2. λ(κ) is strictly decreasing and λ̄(κ) is strictly increasing in κ, for all κ ∈ [0, 1];

3. if κ = 1, ξinf is a strict Bayesian Nash equilibrium if and only if ξinf is efficient.

This result is illustrated in Figure 2, which shows the values of µ0/µ1 for which ξinf is

a strict Bayesian Nash equilibrium, both for a jury composed of three Homo oeconomicus,
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0 λ(1) λ(κ) λ(0) 1λ̄(0) λ̄(κ) λ̄(1)

µ0
1−µ0

ξinf is a BNE for a jury of Homo oeconomicus

ξinf is a BNE for a jury of Homo moralis

ξinf is efficient

Figure 2: Values of µ0 for which ξinf is a strict Bayesian Nash equilibrium

and for a jury composed of three Homo moralis with a positive degree of morality κ ∈ [0, 1].

It also shows the values of µ0/µ1 for which ξinf is efficient.

In sum, then, Homo moralis preferences unambiguously render a small jury more efficient,

in the sense that they render informative voting individually rational in settings where such

voting is efficient but not individually rational for Homo oeconomicus.

The intuition for this result is clear. Homo oeconomicus deviates from the informative

strategy if this improves the odds that the correct decision is reached, conditional on her

vote being pivotal. Homo moralis follows a similar reasoning, but conditional on her vote

being κ-pivotal, meaning that the outcome would change if not only she but also each other

juror were to deviate with probability κ: this exaggerates the impact of the deviation, thus

making it less appealing.

It will now be shown that this intuition takes its full force when the size of the jury is

large, for in that case the probability κ approximates a fraction κ of the population.

4.3 A large jury

We restrict attention to the case of an odd number n = 2m+ 1 of voters and check whether

the strategy profile ξinf whereby all n voters use the informative strategy ξinf is a (Bayesian)

Nash equilibrium for large n.

Proposition 7 For any fixed values of the parameters µ0, µ1, p0, p1, κ ∈ (0, 1) such that

p1 ≥ p0 > 1/2, there exists an integer N such that for any jury of size n = 2m+ 1 ≥ N :

• if κ > 1−p0/p1, the informative voting strategy profile ξinf is a strict Nash equilibrium;
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• if κ < 1− p0/p1 the informative voting strategy profile ξinf is not a Nash equilibrium;

• if κ = 1− p0/p1 the informative voting strategy profile ξinf is a strict Nash equilibrium

if p0µ0 < µ1 and is not a Nash equilibrium if p0µ0 > µ1.

Having thus shown that Homo moralis preferences pave the way for informative voting to

be sustained as a Nash equilibrium in large juries, as (implicitly) posited by Condorcet,

we next ask whether such preferences would also help large juries escape from the use of

non-informative voting strategies.

Thus, consider now the situation in which all jurors use a non-informative strategy, for

instance ξ0. Then the decision is 0 independently of the signals received by the jurors. When

the jury is large this is clearly a (flat) Nash equilibrium in a jury composed of jurors with

Homo oeconomicus preferences, since the outcome would then be unaffected by the deviation

of a single juror. The expected payoff at this strategy profile is simply µ0, the prior probability

that the state of nature is 0. We now prove that in a jury composed of jurors with Homo

moralis preferences, for any strictly positive value of the morality parameter κ each juror

strictly prefers to deviate to the informative strategy. While it is still the case that such

a deviation by a single juror has no effect on the actual outcome, Homo moralis evaluates

the outcome under the informative strategy, should a share κ of the other jurors also use

it. For a large enough jury, this makes the individual voter κ-pivotal, thus inducing a strict

preference ranking over the strategies.

Proposition 8 For any fixed values of the parameters µ0, µ1, p0, p1, κ ∈ (0, 1) there exists

an integer N such that if n = 2m + 1 ≥ N , a strategy profile in which each juror always

votes for the same option (0 or 1) independently of her signal, is not a Nash equilibrium.

Note that the result holds for any κ: even if the value of κ is small, for n large enough,

uninformative voting is not an equilibrium. This contrasts with Proposition 7, in which the

constraint κ > 1− p0/p1 appears.

4.4 Conclusion on the large jury problem

It follows from the results reported in Propositions 7 and 8 that the Condorcet Jury Theorem

(asymptotic efficient revelation of information) holds for large juries composed of jurors with

Homo moralis preferences, when the degree of morality κ is large enough. The following

theorem sums up these results by characterizing the equilibrium properties of all symmetric
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strategy profiles (the first two points are taken from the two previous propositions, and we

leave to the reader the proof of the third point, which can follow the same lines).

Theorem 1 For any fixed values of the parameters µ0 ∈ [0, 1] and p1 ≥ p0 > 1/2, for any

κ ∈ (0, 1], if the size of the jury n = 2m+ 1 is large enough:

• informative voting, whereby each juror casts a vote for the decision that was suggested to

him/her through the private signal (i.e., all jurors use the informative strategy ξinf), is a

strict Nash equilibrium if κ > 1−p0/p1, and is not a Nash equilibrium if κ < 1−p0/p1;

• uninformative voting, whereby all jurors always vote for the same decision (i.e., all

jurors either use strategy ξ0 or strategy ξ1)), is not a Nash equilibrium;

• all players using the reversed strategy ξinv is not a Nash equilibrium.

5 Conclusion

In this paper we take the evolutionary foundations of Homo moralis preferences as our

starting point and study the consequences of these preferences in two distinct settings: first

when voters face a pure coordination problem, and second when voters face an information

aggregation problem.8 Interest in these questions is warranted for many reasons, in particular

because answers to these questions are necessary to properly evaluate voting rules from a

normative point of view. But the theory of voting, on top of being of political relevance per

se, contains the study of several archetypal situations of interaction, or “games” that are of

broad interest. For instance the political game of coordination of a divided majority can be

seen as a toy model of social coordination in general.9 The two problems we studied can

both be seen as instances of “social dilemmas” but they are different.

The first example—the divided majority problem—is a pure multi-person coordination

problem. It provides a simple but non-trivial exercise to illustrate how Homo moralis pref-

erences can help solve, at least partially, coordination problems (see also Alger and Weibull

2017 [3]). Our study of the divided majority problem highlighted the fact that the Homo

8The question of participation when the electorate is large and voting is costly is tackled in a companion
paper [1].

9Interestingly, the literature on animal behavior describes several collective phenomena similar to voting,
from Honeybees to African wild dogs, relying on the interpretation of various techniques of social communi-
cation. See Walker et al. 2017 [51], Seeley 2010 [46], Sumpter 2010 [49].
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moralis template can be used with various reference groups (akin to various places where

the “veil of ignorance” is placed). Whoever wants to use the Homo moralis model for an

application should wonder what is the appropriate reference identification group. The evo-

lutionary justification provides a hint on this point: the reference group is the one among

which interactions have taken place over evolutionary time. However, this is ultimately an

empirical question.

The second example—the rational approach to the Condorcet jury theorem—adds a

question of information processing to the coordination issue. This raises the same kind of

difficulties that appear in the evolutionary theory of language (Laslier 2003 [29], Demichelis

and Weibull 2008 [17], Benz et al. 2011 [7]), and analyzing these issues require the use of

Bayesian equilibrium. We find that Homo moralis preferences help improve the information

aggregation that the jurors can achieve by voting based solely on their private information,

without communicating with each other.

In the two problems we studied, the partial morality built into Homo moralis preferences

impacts the predictions. Importantly, these predictions remove or lessen the phenomena

often described as “paradoxes” or “curses” that typically appear in the standard model

with materially self-interested individual. This observation is an invitation to add the Homo

moralis model to the toolkit of political economy for descriptive purposes, and also to deepen

the evolutionary analysis of political games.

Appendix

Proof of Proposition 1

If everyone votes sincerely, candidate B wins, and A-supporters achieve utility 0.

1. Consider now an A2-supporter who ponders deviating to a vote for A1. As a Homo

moralis with the population of A2-supporters as her reference group, when computing

her utility for this deviation she evaluates what the outcome would be if, hypothetically,

a fraction κ of the nA2 supporters of candidate A2 would also vote for A1. She thus

considers what the outcome would be if the number of votes in favor of A2 went down

from nA2 to (1− κ)nA2, the number of votes for A1 went up from nA1 to nA1 + κnA2,

and the number of votes for B remained at nB. This voter would benefit in utility

terms from this deviation if and only if the candidate that would win was A1 instead

of B. The condition for this deviation to be favorable is thus nA1 + κnA2 > nB, or
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κ > κ∗.

2. In a similar manner, an A1-supporter would strictly prefer to deviate and vote for A2

rather than voting sincerely for A1 if and only if nA2 + κnA1 > nB. Since nA2 < nA1,

we have nA2 + κnA1 < nA1 + κnA2; in other words, an A1-supporter strictly prefers to

deviate only if an A2-supporter also prefers to deviate.

3. In sum, if all other A-supporters vote sincerely, both A1- and A2-supporters are indif-

ferent between voting sincerely and deviating to some other strategy if κ < κ∗, while

A2-supporters strictly prefer to deviate if κ > κ∗.

Proof of Proposition 2

Suppose that all A-supporters vote for the same candidate Ak, k ∈ {1, 2}. Then candidate

Ak gets the score nA1 + nA2 > nB and thus wins. Now note that:

1. In the ex post scenario an A1-supporter who considers some deviation, evaluates what

the outcome of the vote would be should a proportion κ of her fellow A1-supporters

also play the deviating strategy. In this hypothetical scenario candidate Ak would get

the score (1−κ)nA1+nA2. The deviation entails a drop in utility if in this hypothetical

scenario candidate B wins, i.e., if the score (1−κ)nA1 +nA2 falls short of nB, the score

of candidate B, i.e., if κ > nA−nB

nA1
. The deviation has no effect on the deviator’s utility

if Ak still wins in this hypothetical scenario, i.e., if κ < nA−nB

nA1
.

2. Likewise: in the ex post scenario an A2-supporter who considers some deviation, eval-

uates what the outcome of the vote would be should a proportion κ of her fellow

A2-supporters also play the deviating strategy. In this hypothetical scenario candidate

Ak would get the score nA1 + (1− κ)nA2. The deviation entails a drop in utility if in

this hypothetical scenario candidate B wins, i.e., if the score nA1 + (1 − κ)nA2 falls

short of nB, the score of candidate B, i.e., if κ > nA−nB

nA2
. The deviation has no effect

on the deviator’s utility if Ak still wins in this hypothetical scenario, i.e., if κ < nA−nB

nA2
.

3. These observations imply the statement in the proposition, since nA−nB

nA2
> nA−nB

nA1
.

Proof of Proposition 3

If everyone votes sincerely, candidate B wins, and A-supporters achieve utility 0.
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1. Consider now an A-supporter who ponders deviating to strategy α(1). In the ex ante

scenario, this voter evaluates what her expected utility would be if, hypothetically, a

share κ of other A-supporters would also use strategy α(1). The score of candidate

A1 would in this hypothetical scenario be nA1 + κnA2, that of candidate A2 would

be (1 − κ)nA2, and that of candidate B would be nB. Since nA2 < nB, it follows

that C(κ)(α(1), αsi) 6= B if and only if C(κ)(α(1), αsi) = A1, which is true iff κ >

(nB − nA1)/nA2. The expected utility of the deviating A-voter is thus (see (6))

U
(κ)
A (α(1), αsi) =

{
1 + ε · (nA1 − nA2)/(nA1 + nA2) if κ > (nB − nA1)/nA2
0 otherwise.

(14)

Hence, U (κ)(α(1), αsi) > U (κ)(αsi, αsi) if κ > (nB − nA1)/nA2, while U (κ)(α(1), αsi) =

U (κ)(αsi, αsi) otherwise.

2. Consider now an A-supporter who ponders deviating to strategy α(2). In the ex ante

scenario, this voter evaluates what her expected utility would be if, hypothetically, a

share κ of other A-supporters would also use strategy α(2). The score of candidate

A1 would in this hypothetical scenario be (1 − κ)nA1, that of candidate A2 would

be κnA1 + nA2, and that of candidate B would be nB. Since nA1 < nB, it follows

that C(κ)(α(2), αsi) 6= B if and only if C(κ)(α(2), αsi) = A2, which is true iff κ >

(nB − nA2)/nA1. The expected utility of the deviating A-voter is thus (see (6))

U
(κ)
A (α(2), αsi) =

{
1− ε · (nA1 − nA2)/(nA1 + nA2) if κ > (nB − nA2)/nA1
0 otherwise.

(15)

Hence, U (κ)(α(2), αsi) > U (κ)(αsi, αsi) if κ > (nB − nA2)/nA1, while U (κ)(α(2), αsi) =

U (κ)(αsi, αsi) otherwise. But the assumptions in (3) imply (nB − nA2)/nA1 > (nB −
nA1)/nA2, and hence the deviation to strategy α(2) is beneficial only if the deviation to

strategy α(1) is beneficial.

3. Combining the two previous paragraphs, this proves that there exists a utility-enhancing

deviation if and only if κ > (nB − nA1)/nA2.

Proof of Proposition 4

Suppose that all A-supporters use strategy α(1). Then candidate A1 wins and A-voters have

expected utility 1 + ε · (nA1 − nA2)/(nA1 + nA2). In the ex ante scenario an A-supporter

who considers some deviation, evaluates what the outcome of the vote would be should a
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proportion κ of all A-supporters also play the deviating strategy.

1. Consider first a deviation to strategy αsi. The hypothetical scores that would obtain

should a share κ of other A-voters also use strategy αsi instead of α(1) are nA1 + (1−
κ) · nA2 for candidate A1, κ · nA2 for candidate A2, and nB for candidate B. Since

κnA2 < nA1+(1−κ)nA2, the deviation leads to the election of B if nB > nA1+(1−κ)·nA2
or of A1 in the opposite case. That is a drop in expected utility if nB > nA1+(1−κ)·nA2,
i.e., if κ > nA−nB

nA2
, and no change in expected utility otherwise.

2. Consider now a deviation from strategy α(1) to strategy α(2). This deviation leads to

the hypothetical scores (1− κ)nA for candidate A1, κnA for candidate A2, and nB for

candidate B. The effect on the voter’s utility depends on the value of κ:

• if κ > 1/2, the deviation implies C(κ)(α(2), α(1)) ∈ {A2, B} and thus a drop in

utility (see (6));

• if κ < 1/2, there are two cases:

– if κ > nA−nB

nA
, the deviation implies C(κ)(α(2), α(1)) = B and thus entails a

drop in utility;

– if κ < nA−nB

nA
, the deviation implies C(κ)(α(2), α(1)) = A1, leaving the utility

unaffected.

3. Noting that nA−nB

nA2
> nA−nB

nA
, and that nA−nB

nA
< 1/2 is equivalent to nA < 2nB (which is

true by assumption (see (3))), we conclude that, if all other A-supporters use strategy

α(1), an A-supporter:

• is indifferent between the strategies α(1), αsi, and α(2) if κ < nA−nB

nA
;

• is indifferent between the strategies α(1) and αsi, but strictly prefers not to deviate

to α(2) if nA−nB

nA
< κ < nA−nB

n2
;

• strictly prefers not to deviate from α(1) if κ > nA−nB

nA2
.

Proof of Proposition 5

Suppose that all A-supporters use strategy α(2). Then candidate A2 wins and A-supporters

have expected utility 1− ε · (nA1−nA2)/(nA1 +nA2). In the ex ante scenario an A-supporter

who considers some deviation, evaluates what the outcome of the vote would be should a

proportion κ of all A-supporters also play the deviating strategy. A deviation is strictly

profitable if it leads to the election of A1, indifferent if it leads to the election of A2, and

strictly unfavorable if it leads to the election of B.
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1. Consider first a deviation to strategy αsi. The hypothetical scores that would obtain

should a share κ of other A-voters also use strategy αsi instead of α(2) are κ · nA1 for

candidate A1, (1−κ) ·nA1 +nA2 for candidate A2, and nB for candidate B. Note that,

by assumption, nA1 < nB, hence the winner is either B if nB > (1 − κ) · nA1 + nA2

or A2 in the opposite case. Thus, the deviation leads to a drop in expected utility

if nB > nA1 + (1 − κ) · nA2, i.e., if κ > nA−nB

nA2
, and to no change in expected utility

otherwise.

2. Consider now a deviation from strategy α(2) to strategy α(1). The hypothetical scores

that would obtain with this deviation are κnA for candidate A1, (1−κ)nA for candidate

A2, and nB for candidate B. The effect on the voter’s expected utility depends on the

value of κ as follows.

• If κ < min{1/2, nA−nB

nA
}, the deviation implies C(κ)(α(1), α(2)) = A2 and thus no

change in expected utility. Because nB > nA/2, the condition κ < min{1/2, nA−nB

nA
}

simplifies to: κ < nA−nB

nA
.

• If min{1/2, nA−nB

nA
} < κ < max{1/2, nB

nA
}, the deviation implies C(κ)(α(1), α(2)) =

B and thus a drop in expected utility. Since nB > 1/3, and therefore 2nB > nA,

the condition for this case simply writes: nA−nB

nA
< κ < nB

nA
.

• If κ > max{1/2, nB

nA
}, i.e., if κ > nB

nA
, the deviation implies C(κ)(α(1), α(2)) = A1

and thus an increase in expected utility.

3. Note that nA−nB

nA2
is larger than nA−nB

nA
, but can be either larger or smaller than nB

nA
.

Thus the two previous analyses of the two deviations from α(2) lead to the following

conclusion. From the α(2)-situation,

• if κ < nA−nB

nA
, the voter is indifferent between α(2), α(1), and αsi;

• if nA−nB

nA
< κ < nB

nA
and κ < nA−nB

nA2
, the voter strictly prefers not to deviate to

α(1), but is indifferent between α(2) and αsi;

• if nB

nA
< κ < nA−nB

nA2
, the voter strictly prefers to deviate to α(1), but is indifferent

between α(2) and αsi;

• if κ > nB

nA
and κ > nA−nB

nA2
, the voter strictly prefers to deviate to α(1) and to αsi.

The proposition follows directly from these cases.
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Proof of Proposition 7

Let π(ξi, ξ−i) denote i’s expected material payoff if i plays strategy ξi and the other jurors

play strategy profile ξ−i ∈ X2m. Writing Aω(ξi, ξ−i) for the probability that the decision is

correct in state ω, we thus have:

π(ξi, ξ−i) = µ0A0(ξi, ξ−i) + µ1A1(ξi, ξ−i). (16)

Now, under majority rule the probability that the right decision is taken in state ω equals

the probability that at least m + 1 jurors vote ω when the state is ω. Using the following

notation for the binomial probability of t or more successes out of T :

B+(p, t, T ) =
T∑
k=t

Ck
Tp

k (1− p)T−k, (17)

we immediately obtain that if all the jurors vote informatively, i.e., if (ξi, ξ−i) = (ξinf , ξinf ),

the probability that the decision is correct in state ω equals the probability that at least

m+ 1 jurors receive the signal ω. In other words,

π(ξinf , ξinf ) = µ0A0(ξ
inf , ξinf ) + µ1A1(ξ

inf , ξinf ), (18)

where

A0(ξ
inf , ξinf ) = B+(p0,m+ 1, 2m+ 1) (19)

and

A1(ξ
inf , ξinf ) = B+(p1,m+ 1, 2m+ 1). (20)

We now derive conditions required for a juror, say i, to prefer playing ξinf to deviating

to strategy ξ0. If this juror has Homo moralis preferences with degree of morality κ ∈ [0, 1],

she evaluates the consequences of the deviation on her expected material payoff, should each

other juror play ξinf with probability 1 − κ and ξ0 with probability κ. Taking into account

this reasoning, let v
(κ)
0 be the number of votes 0 and v

(κ)
1 be the number of votes 1 that

Homo moralis envisages. Because i votes 0, the probability of a correct decision, based on

the reasoning of Homo moralis with degree of morality κ, is:

π(κ)(ξ0, ξinf ) = Pr[v
(κ)
0 ≥ m and ω = 0] + Pr[v

(κ)
1 ≥ m+ 1 and ω = 1] (21)

= µ0A
(κ)
0 (ξ0, ξinf ) + µ1A

(κ)
1 (ξ0, ξinf ),
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where A
(κ)
ω (ξ0, ξinf ) is the probability that at least m + 1 jurors vote ω in state ω, taking

into account the hypothetical scenario that each other juror play ξinf with probability 1− κ
and ξ0 with probability κ. Formally:

A
(κ)
0 (ξ0, ξinf ) = Pr [v0 ≥ m | ω = 0] = B+(p′0,m, 2m) (22)

A
(κ)
1 (ξ0, ξinf ) = Pr [v1 ≥ m+ 1 | ω = 1] = B+(p′1,m+ 1, 2m), (23)

where

p′0 = (1− κ)p0 + κ (24)

and

p′1 = (1− κ)p1. (25)

Now, note that as m→∞, both B+(p,m+ 1, 2m+ 1) and B+(p,m, 2m+ 1) tend either

to 0 or to 1 depending on whether p is smaller or greater than 1/2. Specifically:

• both A0(ξ
inf , ξinf ) and A1(ξ

inf , ξinf ) are increasing in m and tend to 1 as m→∞, since

(by assumption) both p0 > 1/2 and p1 > 1/2;

• A(κ)
0 (ξ0, ξinf ) is increasing in m and tends to 1 as m→∞, since p′0 = (1− κ)p0 + κ >

p0 > 1/2;

• A(κ)
1 (ξ0, ξinf ) is increasing in m and tends to 1 as m→∞ if p′1 = (1− κ)p1 > 1/2, but

is is decreasing in m and tends to 0 as m→∞ if p′1 = (1− κ)p1 < 1/2.

Taken together, these observations imply the following:

• π(ξinf , ξinf ) (see (18)) is increasing in m and tends to µ0 + µ1 as m→∞;

• π(ξ0, ξinf ) is increasing in m and tends to µ0 + µ1 as m→∞ if (1− κ)p1 > 1/2;

• π(ξ0, ξinf ) tends to µ0 as m→∞ if (1− κ)p1 < 1/2.

Clearly, the deviation to ξ0 is thus not viable if (1− κ)p1 < 1/2 and m is large enough. We

take note of this result:

Lemma 1 Suppose that κ > 1− 1/(2p1). If m is large enough, each juror strictly prefers to

play ξinf than to deviate to ξ0.
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By contrast, if κ < 1 − 1/(2p1), both π(ξinf , ξinf ) and π(ξ0, ξinf ) tend to 1 as m → ∞,

hence it is a priori impossible to determine whether a deviation to ξ0 is viable. In order to

go further, we remark that the kind of binomial sums that appear in the calculations can

be approximated using the large deviation theory for binomial laws; see for instance Arratia

and Gordon (1989 [5]).

Let xn and yn, n ∈ N be two sequences of real numbers. We say that x and y are

equivalent, and we write x ∼ y, when limn→∞ xn/yn = 1. Likewise, we use the notation

x� y when limn→∞ xn/yn = 0.

Lemma 2 Let a and q be two real numbers such that 0 < q < a < 1, and

H = H(q, a) = a log
a

q
+ (1− a) log

1− a
1− q

,

r = r(q, a) =
q

1− q
/

a

1− a
=
q(1− a)

a(1− q)
,

ρ = ρ(q, a) =
1

(1− r)
√

2πa(1− a)
.

Then, when n tends to infinity:

B+(q, an, n) ∼ ρe−Hn.

We apply these formula to the expressions above, in order to check whether the deviation

is profitable. Recall that we defined A0(ξ
inf , ξinf ) = B+(p0,m + 1, 2m + 1), so that 1 −

A0(ξ
inf , ξinf ) = B+(q0,m+ 1, 2m+ 1), where q0 = 1− p0. We likewise re-write:

1− A0(ξ
inf , ξinf ) = B+(q0,m+ 1, 2m+ 1)

1− A1(ξ
inf , ξinf ) = B+(q1,m+ 1, 2m+ 1)

1− A(κ)
0 (ξ0, ξinf ) = B+(q′0,m, 2m)

1− A(κ)
1 (ξ0, ξinf ) = B+(q′1,m+ 1, 2m),

where
q0 = 1− p0
q1 = 1− p1
q′0 = (1− κ)q0

q′1 = (1− κ)q1 + κ.
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Writing the expected utility gain from deviating in the form:

∆0 = π(κ)(ξ0, ξinf )− π(ξinf , ξinf ),

we have

∆0 = µ0A
(κ)
0 (ξ0, ξinf ) + µ1A

(κ)
1 (ξ0, ξinf )− µ0A0(ξ

inf , ξinf )− µ1A1(ξ
inf , ξinf ), (26)

which can also be written

∆0 = µ0 ·
[
B+(q0,m+ 1, 2m+ 1)−B+(q′0,m, 2m)

]
(27)

+µ1 ·
[
B+(q1,m+ 1, 2m+ 1)−B+(q′1,m+ 1, 2m)

]
.

Let us now apply Lemma 2 to the first of these four binomial sums. Let n = 2m+ 1 and

a = 1/2, then an = m + 1/2 so that having an or more Bernouilli successes means having

m + 1 or more. Because q0 < 1/2 the lemma applies and writes: B+(q0,m + 1, 2m + 1) ∼
ρ(q0, 1/2)e−H(q0,1/2)n. Note that H(q0, 1/2) = (1/2) log[4q0(1 − q0)] so that e−H(q0,1/2)n =

[4q0(1− q0)]−n/2 and we obtain:

B+(q0,m+ 1, 2m+ 1) ∼ ρ(q0, 1/2)[4q0(1− q0)]−(2m+1)/2.

The same reasoning works for the other sums in (27), because q0, q
′
0, q1, and q′1 are all

strictly smaller than 1/2. In each case, i.e., for q ∈ {q0, q1, q′0, q′1}, the same short computation

gives the same form for H:

H(q, 1/2) = −(1/2) log[4(1− q)q]

and we obtain:

B+(q0,m+ 1, 2m+ 1) ∼ ρ(q0, 1/2) [4q0(1− q0)](2m+1)/2

B+(q1,m+ 1, 2m+ 1) ∼ ρ(q1, 1/2) [4q1(1− q1)](2m+1)/2 .

B+(q′0,m, 2m) ∼ ρ(q′0, 1/2) [4q′0(1− q′0)]
m

B+(q′1,m+ 1, 2m) ∼ ρ(q′0, 1/2) [4q′1(1− q′1)]
m
.

Having in mind the shape of the function x 7→ x(1 − x), one can see that, because

q′0 = (1− κ)q0 < q0 < 1/2, q′0(1− q′0) < q0(1− q0), so that the term 1− A(κ)
0 (ξ0, ξinf ) tends
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to zero faster than the term 1− A0(ξ
inf , ξinf ). Hence, when m tends to infinity:

B+(q′0,m, 2m)� B+(q0,m+ 1, 2m+ 1).

We thus reach the following conclusion for the first term in (27): for m large enough,

µ0 · [B+(q0,m+ 1, 2m+ 1)−B+(q′0,m, 2m)] ∼ µ0 ·B+(q0,m+ 1, 2m+ 1).

Turning now to the second term in (27), note that q1 < q′1 < 1/2, so that q′1(1 − q′1) >

q1(1− q1). It follows that

B+(q1,m+ 1, 2m+ 1)� B+(q′1,m+ 1, 2m).

We thus reach the following conclusion for the second term in (27):

µ1 · [B+(q1,m+ 1, 2m+ 1)−B+(q′1,m+ 1, 2m)] ∼ −µ1 ·B+(q′1,m+ 1, 2m).

Taken together, these observations imply that when m tends to infinity,

∆0 ∼ µ0 ·B+(q0,m+ 1, 2m+ 1)− µ1 ·B+(q′1,m+ 1, 2m). (28)

Recalling that q0 < 1/2 and q′1 < 1/2, we have

q0(1− q0) < q′1(1− q′1) ⇐⇒ q′1 > q0 ⇐⇒ p0 > p1(1− κ).

Hence:

• p0 > p1(1− κ) =⇒ B+(q0,m+ 1, 2m+ 1)� B+(q′1,m+ 1, 2m),

• p0 < p1(1− κ) =⇒ B+(q′1,m+ 1, 2m)� B+(q0,m+ 1, 2m+ 1),

and it follows that:

• If κ > 1− p0/p1, then ∆0 ∼ −µ1 ·B+(q′1,m+ 1, 2m).

• If κ < 1− p0/p1, then ∆0 ∼ µ0 ·B+(q0,m+ 1, 2m+ 1).

From this we can infer the sign of ∆0 when m is large: for instance in the first case, because

the ratio ∆0/(µ1 · B+(q′1,m + 1, 2m)) tends to −1 when m tends to infinity, there exists m̄

such that for all m ≥ m̄, ∆0 < 0. With this reasoning we complement in a unique statement

Lemma 1 and conclude:
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• If κ > 1−p0/p1, then ∆0 < 0 for m large, in which case deviating to ξ0 is not profitable;

• If κ < 1− p0/p1, then ∆0 > 0 for m large, in which case deviating to ξ0 is profitable.

In the knife-edge case κ = 1− p0/p1,that is q0 = q′1, equation (28) writes:

∆0 ∼ µ0B
+(q0,m+ 1, 2m+ 1)− µ1B

+(q0,m+ 1, 2m).

Decomposing the binomial sums and re-arranging the terms, one obtains:

∆0 ∼ µ0

2m+1∑
k=m+1

Ck
2m+1q

k
0(1− q0)2m+1−k − µ1

2m∑
k=m+1

Ck
2m+1q

k
0(1− q0)2m−k

=
2m∑

k=m+1

[µ0(1− q0)− µ1]C
k
2m+1q

k
0(1− q0)2m−k + µ0q

2m+1
0

= [µ0(1− q0)− µ1]B
+(q0,m+ 1, 2m) + µ0q

2m+1
0 .

Because B+(q0,m + 1, 2m) decreases at rate [4q0(1 − q0)]
−m, the last term (µ0q

2m+1
0 ) is

negligible, so that

∆0 ∼ [µ0(1− q0)− µ1]B
+(q0,m+ 1, 2m),

implying that ∆0 has the same sign as µ0(1− q0)− µ1. We conclude that in the knife-edge

case, ξ0 destabilizes informative voting if and only if µ0(1 − q0) > µ1 (when m tends to

infinity).

The symmetric conclusions are reached for a deviation from ξinf to ξ1, the threshold value

for κ being equal to 1 − p1/p0 instead of 1 − p0/p1. Since κ is positive only one of these

threshold values is relevant, however:

• if p0 ≥ p1, then 1− p0/p1 ≤ 0, and a deviation to ξ0 is not profitable for any κ ∈ [0, 1];

but if p0 > p1 the threshold value 1− p1/p0 is positive, implying that a deviation to ξ1

is profitable if κ ∈ [0, 1− p1/p0);

• as shown above, the opposite conclusion holds if p1 ≥ p0.

Putting all this together we find the statement in the proposition, where for simplicity and

without loss of generality, we only treat the case p1 ≥ p0.
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Proof of Proposition 8

Suppose that all jurors use strategy ξ0. The probability that the decision is correct is then:

π(ξ0, ξ0) = µ0. (29)

Note that this is also the utility of a Homo moralis with any degree of morality κ who uses

strategy ξ0 given that all other jurors do so as well.

We now derive conditions required for a Homo moralis juror i to prefer to deviate from

ξ0 to the informative strategy ξinf . Such a juror evaluates the consequences of the deviation

on her expected material payoff, should each other juror play ξ0 with probability 1− κ and

ξinf with probability κ. As above, let v
(κ)
0 be the number of votes 0 and v

(κ)
1 be the number

of votes 1 that Homo moralis envisages. Because i votes informatively, the probability of a

correct decision, based on the reasoning of Homo moralis with degree of morality κ, is:

π(κ)(ξinf , ξ0) = µ0 ·
[
p0B

+(1− κq0,m, 2m) + q0B
+(1− κq0,m+ 1, 2m)

]
(30)

+ µ1 ·
[
p1B

+(κp1,m, 2m) + q1B
+(κp1,m+ 1, 2m)

]
. (31)

In this expression line (30) corresponds to the probability of a correct decision in state of

Nature ω = 0. The decision is correct in this state if either i receives signal 0 and at least m

other voters vote 0, or i receives the wrong signal 1 and at least m + 1 others vote 0. Any

other voter votes 0 either if she uses strategy ξ0 (a scenario to which Homo moralis attaches

weight 1 − κ), or when she uses strategy ξinf (a scenario to which Homo moralis attaches

weight κ), and receives signal 0; so in state ω = 0 Homo moralis ponders a hypothetical

world in which each other voter has probability 1 − κ + κp0 = 1− κq0 to vote 0. Line (31)

likewise counts the votes 1 in state ω1, given that Homo moralis ponders a hypothetical

world in which each other voter uses strategy ξ0 with probability 1−κ and strategy ξinf with

probability κ), and thus votes 1 with probability κp1.

Since q0 < 1/2 (by assumption), we have 1−κq0 > 1/2, which implies that both binomial

sums in line (30) tend to 1. Hence, line (30) tends to µ0.

In line (31), as m→∞ both binomial sums tend to 1 if κp1 > 1/2 and to 0 if κp1 < 1/2.

There are thus two cases:

• If κp1 > 1/2: the expected utility of the deviation to ξinf tends to µ0 + µ1, and since

this strictly exceeds µ0 the deviation is strictly profitable (for m large enough).

• If κp1 < 1/2: the expected utility of the deviation tends to µ0, so the benefit from
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deviating tends to 0. In order to check its sign we write the expected benefit as follows:

∆ = π(κ)(ξinf , ξ0)− π(κ)(ξ0, ξ0)

= µ0 ·
[
p0(B

+(1− κq0,m, 2m)− 1) + q0(B
+(1− κq0,m+ 1, 2m)− 1)

]
+ µ1 ·

[
p1B

+(κp1,m, 2m) + q1B
+(κp1,m+ 1, 2m)

]
.

Since B+(p, t, T )− 1 = −B+(1− p, t, T ), this can in turn be written as follows:

∆ = − µ0 ·
[
p0B

+(κq0,m+ 1, 2m) + q0B
+(κq0,m, 2m)

]
+ µ1 ·

[
p1B

+(κp1,m, 2m) + q1B
+(κp1,m+ 1, 2m)

]
.

Recalling that q0 < 1/2 < p1, so that κq0 < κp1 < 1/2, we note that the term in the

first square brackets goes to 0 faster than the second one (see Lemma 2 in the proof

of Proposition 7). Hence, for m large enough, ∆ is positive and deviating is strictly

profitable.

The knife-edge case κp1 = 1/2 is easily solved by writing the term in square brackets in line

(31) as follows:

p1B
+(κp1,m, 2m) + q1B

+(κp1,m+ 1, 2m)

= p1B
+(1/2,m, 2m) + q1B

+(1/2,m+ 1, 2m)

> q1 [B+(1/2,m, 2m) +B+(1/2,m+ 1, 2m)]

= q1,

which proves that, in this case, π(κ)(ξinf , ξ0) > µ0 + q1µ1 > µ0, making the deviation prof-

itable.

The same reasoning can be applied to show that, for m large enough, a deviation from

ξ1 to ξinf is profitable for any κ > 0. This completes the proof.
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[10] André Blais (2000) To Vote or Not to Vote? The Limits and Merits of Rational Choice
Theory. Pittsburgh, PA: University of Pittsburgh Press.

[11] Laurent Bouton and Benjamin Ogden (2021) “Group-based voting in multicandidate
elections” Journal of Politics 83: 468—482

[12] Stephen Coate and Michael Conlin (2004) “A group ruleutilitarian approach to voter
turnout: theory and evidence” American Economic Review 94: 1476—1504.

[13] Condorcet (1785) Essai sur l’application de l’analyse à la probabilité des décisions ren-
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