

How do the soil, the vegetation and the weather affect the water content of a green roof?

Axelle Hego, Floriane Collin, Hugues Garnier, Rémy Claverie

▶ To cite this version:

Axelle Hego, Floriane Collin, Hugues Garnier, Rémy Claverie. How do the soil, the vegetation and the weather affect the water content of a green roof?. Annual meeting of the GdR MASCOT-NUM 2022, Jun 2022, Clermont Ferrand, France. hal-03682794

HAL Id: hal-03682794 https://hal.science/hal-03682794

Submitted on 31 May 2022 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GdR MASCOTNum 2022

How do the soil, the vegetation and the weather affect the water content of a green roof ?

Axelle HEGO¹, Floriane COLLIN¹, Hugues GARNIER¹, Rémy CLAVERIE²

¹Université de Lorraine, CRAN, CNRS UMR 7039, ²Cerema Est, Team research group, F-54510, Tomblaine, France

Figure 1 – Green roof located in Tomblaine (France)

Context

Urban imperviousness is a major urban issue during rainfall

Solution \rightarrow Green Roofs

- lower the peak flow rate in water system by 22% to 93%
- delay the peak flow by 0 to 30 min

Collaboration

Cerema: Green Roofs experts CRAN: Model Analysis skills

Collaboration between Cerema and CRAN for a better understanding of the GR behavior

Green Roofs hydrological modeling

• Meteorological data and real water content measured in a green roof of the CEREMA of Nancy

Figure 2 – Profile view of a green roof

 Simulation of the water infiltration into the layers using Hydrus-1D[©] software where these equations are implemented:

(1) Richards equation which describes water inflitration in the soil
 (2) combination of Feddes function and Penman-Monteith equation which describe plants effect

Problem statement

- Input: Rainfall;
- Output: Volumetric water content $\theta(t)$ or VWC in the substrate (ii) (Fig. 2);
- 6 soil parameters: θ_s , θ_r , K_s , l, n and α ;
- 5 meteorological variables: temperatures T_{max} , T_{min} , radiation R_n , air moisture, wind speed;
- 4 vegetation parameters: crop height, LAI, albedo and root depth.

 \rightarrow 5 parameters are considered uncertain: θ_s , n, α , LAI and $R_n(t)$ What parameters affect the water content (model output) ?

Methods: Generation of uncertain dynamic input for GSA

Results

Aim of Global Sensitivity Analysis (GSA) : Better understand the model behavior

Definition of the uncertain paramaters X_i X_i Generation of N samples

Computation of the $\langle \\ \rangle$ Computation of the $\langle \\ \rangle$ sensitivity index S_i(t) (Fig. 5)

Challenge 1: How to generate dynamic input ? (1) Each dynamic param. can be defined as:

 $X_{i_d}(\omega, t) = \overline{X}(t) + \varepsilon(\omega, t)$

with ω the randomness, $\overline{X}(t)$ the time mean and $\varepsilon(\omega, t)$ a stochastic variable defined by a correlation function $C_{ii}(t, t')$ and a distribution h(t) for each instant.

(2) Extraction of the statistical information from a data set:

Challenge 2: How to compute sensitivity indices ?

- For each instant, parameters are independant
- Computation of the indices for each instant
- Method: Sobol' indices estimated using samples permutation
- Results presented in Fig. 5

Figure 3 – Observed net radiation $R_n(t)$ of June 2020 and some generated samples.

(3) Generation of dynamic param. using Iman and Conover procedure (1982):

Time correlation	Cholesky	Tranformation			
$C_{ii}(t,t')$ (T×T)	decomp.	matrix P (T $ imes$ T)			
Independant samples				Time	correlated
following $h(t)$ (N×T)			→	sample	s ε (N×T)

- (4) Results: net radiation for a typical month of June in Fig. 3
- References

Access to the poster

Goffart J., Mara T. and Wurtz E. Generation os stochastic weather data for uncertainty and sensitivity analysis of a low-energy building, Journal of Building Physics, 41(1): 41–57, 2017.
Hégo A., Collin F., Garnier H. and Claverie R. Approaches for green roof dynamic model analysis using GSA, IFAC-PapersOnLine, 54(7): 613–618, 2021.

- 2 samples of 5000 samples (LHS) generated and corresponding outputs computed
- Sensitivity indices are consistent with previous results (bootstrap in progress)
 Prospects:
- How to generate uncertain dynamic input for non-stationary period ?
- Other estimator for sensitivity indices ?

Time [h] Figure 4 – Observed and simulated water content VWC and rainfall

of June 2020

Figure 5 – First-order sensitivity indices computed using permutation method.