How do the soil, the vegetation and the weather affect the water content of a green roof?

Axelle HEGO¹, Floriane COLLIN¹, Hugues GARNIER¹, Rémy CLAVERIE²

¹Université de Lorraine, CRAN, CNRS UMR 7039, ²Cerema Est, Team research group, F-54510, Tomblaine, France

Figure 1 – Green roof located in Tomblaine (France)

 0 mm_{T}

150 mm

100 mm† >>>>

(i) Vegetation

(ii) Substrate

Water content

measurement

(iii) Geotextile

(iv) Drainage layer

(v) Waterproof

membrane

Figure 2 – Profile view of a green roof

Context

Urban imperviousness is a major urban issue during rainfall

Solution → **Green Roofs**

- lower the peak flow rate in water system by 22% to 93%
- delay the peak flow by 0 to 30 min

Collaboration

Cerema: Green Roofs experts CRAN: Model Analysis skills

Collaboration between Cerema and CRAN for a better understanding of the GR behavior

Green Roofs hydrological modeling

- Meteorological data and real water content measured in a green roof of the CEREMA of Nancy
- Simulation of the water infiltration into the layers using Hydrus-1D[©] software where these equations are implemented:
- S(h)water content water infiltration in the soil (1) plant effect (2)
- (1) Richards equation which describes water inflitration in the soil
- (2) combination of Feddes function and Penman-Monteith equation which describe plants effect

Problem statement

- Input: Rainfall;
- Output: Volumetric water content $\theta(t)$ or VWC in the substrate (ii) (Fig. 2);
- 6 soil parameters: θ_s , θ_r , K_s , l, n and α ;
- 5 meteorological variables: temperatures T_{max} , T_{min} , radiation R_n , air moisture, wind speed;
- 4 vegetation parameters: crop height, LAI, albedo and root depth.

 \rightarrow 5 parameters are considered uncertain: θ_s , n, α , LAI and $R_n(t)$

What parameters affect the water content (model output)?

Methods: Generation of uncertain dynamic input for GSA

Aim of Global Sensitivity Analysis (GSA): Better understand the model behavior

Challenge 1: How to generate dynamic input?

(1) Each dynamic param. can be defined as:

$$X_{i_d}(\omega, t) = \overline{X}(t) + \varepsilon(\omega, t)$$

with ω the randomness, $\overline{X}(t)$ the time mean and $\varepsilon(\omega,t)$ a stochastic variable defined by a correlation function $C_{ii}(t,t')$ and a distribution h(t) for each instant.

(2) Extraction of the statistical information from a data set:

(3) Generation of dynamic param. using Iman and Conover procedure (1982):

(4) Results: net radiation for a typical month of June in Fig. 3

Challenge 2: How to compute sensitivity indices?

- For each instant, parameters are independent
- Computation of the indices for each instant
- Method: Sobol' indices estimated using samples permutation
- Results presented in Fig. 5

Conclusion and Prospect

- 2 samples of 5000 samples (LHS) generated and corresponding outputs computed
- Sensitivity indices are consistent with previous results (bootstrap in progress)

Prospects:

- How to generate uncertain dynamic input for non-stationary period ?
- Other estimator for sensitivity indices ?

References

• Goffart J., Mara T. and Wurtz E. Generation os stochastic weather data for uncertainty and sensitivity analysis of a low-energy building, Journal of Building Physics, 41(1): 41–57, 2017.

• Hégo A., Collin F., Garnier H. and Claverie R. Approaches for green roof dynamic model analysis

Results

Figure 3 – Observed net radiation $R_n(t)$ of June 2020 and some generated samples.

Figure 4 – Observed and simulated water content VWC and rainfall of June 2020

Figure 5 – First-order sensitivity indices computed using permutation method.

Access to the poster

using GSA, IFAC-PapersOnLine, 54(7): 613–618, 2021.