How do the soil, the vegetation and the weather affect the water content of a green roof?
Axelle Hego, Floriane Collin, Hugues Garnier, Rémy Claverie

To cite this version:
Axelle Hego, Floriane Collin, Hugues Garnier, Rémy Claverie. How do the soil, the vegetation and the weather affect the water content of a green roof?. Annual meeting of the GdR MASCOT-NUM 2022, Jun 2022, Clermont Ferrand, France. hal-03682794

HAL Id: hal-03682794
https://hal.science/hal-03682794
Submitted on 31 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
How do the soil, the vegetation and the weather affect the water content of a green roof?

Axelle HEGO1, Floriane COLLIN1, Hugues GARNIER1, Rémy CLAVERIE2

1Université de Lorraine, CRAN, CNRS UMR 7039, 2Cerema Est, Team research group, F-54510, Tomblaine, France

Urban imperviousness is a major urban issue during rainfall

Solution → Green Roofs

- lower the peak flow rate in water system by 22\% to 93\%
- delay the peak flow by 0 to 30 min

Green Roofs hydrological modeling

- Meteorological data and real water content measured in a green roof of the CEREMA of Nancy
- Simulation of the water infiltration into the layers using Hydrus-1D5 software
 where these equations are implemented:
 \begin{align*}
 \frac{\partial h(t)}{\partial t} &= \frac{\partial}{\partial x} \left(K(\theta) \frac{\partial h(t)}{\partial x} - S(h) \right)
 \end{align*}

(1) Richards equation which describes water infiltration in the soil
(2) combination of Feddes function and Penman-Monteith equation which describe plants effect

Problem statement

- Input: Rainfall;
- Output: Volumetric water content \(\theta(t)\) or VWC in the substrate (ii) (Fig. 2);
- 6 soil parameters: \(\theta_i, \theta_s, K_i, l, n\) and \(\alpha\);
- 5 meteorological variables: temperatures \(T_{\text{max}}, T_{\text{min}}\), radiation \(R_n\), air moisture, wind speed;
- 4 vegetation parameters: crop height, LAI, albedo and root depth.

→ 5 parameters are considered uncertain: \(\theta_s, \alpha, \text{LAI and } R_n(t)\)

What parameters affect the water content (model output)?

Methods: Generation of uncertain dynamic input for GSA

Aim of Global Sensitivity Analysis (GSA) : Better understand the model behavior

<table>
<thead>
<tr>
<th>Definition of the uncertain parameters (X_i)</th>
<th>Generation of (N) samples</th>
<th>Computation of the output (Y_{\theta(t)}) (Fig. 4)</th>
<th>Computation of the sensitivity index (S_i(t)) (Fig. 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_i(\omega)) (i=1,\ldots, N)</td>
<td>(\omega, t) ((N \times T))</td>
<td>(\omega, t) ((N \times T))</td>
<td>(\omega, t) ((N \times T))</td>
</tr>
</tbody>
</table>

Challenge 1: How to generate dynamic input?

(1) Each dynamic param. can be defined as:

\[X_i(\omega, t) = \overline{X}(t) + \varepsilon(\omega, t) \]

with \(\omega\) the randomness, \(\overline{X}(t)\) the time mean and \(\varepsilon(\omega, t)\) a stochastic variable defined by a correlation function \(C_{\varepsilon}(t, \ell)\) and a distribution \(\varepsilon(t)\) for each instant.

(2) Extraction of the statistical information from a data set:

\[
\text{Observed data (N_{\text{obs}} \times T)} = \begin{bmatrix}
\text{Time mean } \overline{X}(t) (1 \times T) \\
\text{Time variation } (N_{\text{obs}} \times T) \\
\text{Time correlation } C_{\varepsilon}(t, \ell) (T \times T)
\end{bmatrix}
\]

(3) Generation of dynamic param. using Iman and Conover procedure (1982):

\[
\begin{bmatrix}
\text{Time correlation } C_{\varepsilon}(t, \ell) (T \times T) \\
\text{Cholesky decomp.} \\
\text{Transformation matrix } P (T \times T)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{Independant samples following } \varepsilon(t) (N_{\text{obs}} \times T) \\
\text{Time correlated samples } \varepsilon (N_{\text{corr}} \times T)
\end{bmatrix}
\]

(4) Results: net radiation for a typical month of June in Fig. 3

Challenge 2: How to compute sensitivity indices?

- For each instant, parameters are independent
- Computation of the indices for each instant
- Method: Sobol' indices estimated using samples permutation
- Results presented in Fig. 5

Conclusion and Prospect

- 2 samples of 5000 samples (LHS) generated and corresponding outputs computed
- Sensitivity indices are consistent with previous results (bootstrap in progress)

 Prospects:
 - How to generate uncertain dynamic input for non-stationary period?
 - Other estimator for sensitivity indices?

References

Access to the poster

- Collaboration
 - CRAN: Model Analysis skills
 - Collaboration between Cerema and CRAN for a better understanding of the GR behavior

Figure 1 – Green roof located in Tomblaine (France)

Figure 2 – Profile view of a green roof

Figure 3 – Observed net radiation \(R_n(t)\) of June 2020 and some generated samples.

Figure 4 – Observed and simulated water content VWC and rainfall of June 2020.

Figure 5 – First-order sensitivity indices computed using permutation method.