
HAL Id: hal-03682645
https://hal.science/hal-03682645v2

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Network Precision Tuning Using Stochastic
Arithmetic

Quentin Ferro, Stef Graillat, Thibault Hilaire, Fabienne Jézéquel, Basile
Lewandowski

To cite this version:
Quentin Ferro, Stef Graillat, Thibault Hilaire, Fabienne Jézéquel, Basile Lewandowski. Neural Net-
work Precision Tuning Using Stochastic Arithmetic. NSV’22, 15th International Workshop on Nu-
merical Software Verification„ Aug 2022, Haifa, Israel. �hal-03682645v2�

https://hal.science/hal-03682645v2
https://hal.archives-ouvertes.fr


Neural Network Precision Tuning Using
Stochastic Arithmetic

Quentin Ferro1, Stef Graillat1, Thibault Hilaire1, Fabienne Jézéquel1,2, and
Basile Lewandowski1

1 Sorbonne Université, CNRS, LIP6, Paris, F-75005, France
2 Université Paris-Panthéon-Assas, Paris, F-75005, France
{quentin.ferro, stef.graillat, thibault.hilaire,

fabienne.jezequel}@lip6.fr

Abstract. Neural networks can be costly in terms of memory and execu-
tion time. Reducing their cost has become an objective, especially when
integrated in an embedded system with limited resources. A possible
solution consists in reducing the precision of their neurons parameters.
In this article, we present how to use auto-tuning on neural networks to
lower their precision while keeping an accurate output. To do so, we use a
floating-point auto-tuning tool on different kinds of neural networks. We
show that, to some extent, we can lower the precision of several neural
network parameters without compromising the accuracy requirement.

Keywords: Precision, Neural Networks, Auto-Tuning, Floating-Point, Stochas-
tic Arithmetic

1 Introduction

Neural networks are nowadays massively used and are becoming larger and
larger. They often need a lot of resources, which can be a problem, especially
when used in a critical embedded system with limited computing power and
memory. Therefore it can be very beneficial to optimise the numerical formats
used in a neural network. This article describes how to perform precision auto-
tuning of neural networks. From a neural network application and an accuracy
requirement on its results, it is shown how to obtain a mixed precision version
using the PROMISE tool [15]. A particularity of PROMISE is the fact that
it uses stochastic arithmetic [38] to control rounding errors in the programs it
provides.

Minimizing the format of variables in a numerical simulation can offer ad-
vantages in terms of execution time, volume of data exchanged and energy con-
sumption. During the past years several algorithms and tools have been proposed
for precision auto-tuning. On the one hand, tools such as FPTuner [8], Salsa
[10], Rosa/Daisy [12,11], TAFFO [5], POP [2] rely on a static approach and are
not intended to be used on very large code. On the other hand, dynamic tools
such as CRAFT HPC [24], Precimonious [33], HiFPTuner [16], ADAPT [30],



FloatSmith [25], PROMISE [15], have been proposed for precision auto-tuning
in large HPC code. Moreover, tools have been recently developed for precision
auto-tuning on GPUs: AMPT-GA [22], GPUMixer [23], GRAM [18]. A speci-
ficity of PROMISE lies in the fact that it provides mixed precision programs
validated owing to stochastic arithmetic [38], whereas other dynamic tools rely
on a reference result possibly affected by rounding errors. PROMISE has been
used in various applications based on linear algebra kernels, but not yet for
precision auto-tuning in deep neural networks.

While much effort has been devoted to the safety and robustness of deep
learning code (see for instance [13,34,28,27,32]) a few studies have been carried
out on the effects of rounding error propagation on neural networks. Verifiers
such as MIPVerify [36] are designed to check properties of neural networks and
measure their robustness. However, the impact of floating-point arithmetic both
on neural networks and on verifiers is pointed out in [42]. Because of round-
ing errors, the actual robustness and the robustness provided by a verifier may
radically differ. In [9,41] it is shown how to control the robustness of different neu-
ral networks with greater efficiency using interval arithmetic based algorithms.
In [26] a software framework is presented for semi-automatic floating-point error
analysis in the inference phase of deep neural networks. This analysis provides
absolute and relative error bounds owing to interval and affine arithmetics.

Precision tuning of neural networks using fixed-point arithmetic has been
studied in [3]. Owing to the solution of a system of linear contraints, the fixed-
point precision of each neuron is determined, taking into account a certain error
threshold.

In this article, we consider floating-point precision tuning, which is also stud-
ied in [20]. Focusing on interpolator networks, i.e. networks computing mathe-
matical functions, the authors propose an algorithm that takes into account a
given tolerance δ on the relative error between the assumed correctly computed
function and the function computed by the network. The main difference with
the present article is the auto-tuning algorithm: in [20] the precision is optimized
by solving a linear programming problem, while PROMISE uses a hypothesis-
trial-result approach through the Delta-Debug algorithm [40]. Furthermore, the
algorithm in [20] relies on a reference result that may be altered by rounding
errors, while PROMISE uses stochastic arithmetic for the numerical validation
of its results.

Stochastic arithmetic uses for rounding error estimation a random round-
ing mode: the result of each arithmetic operation is rounded up or down with
the same probability. As a remark, another stochastic rounding often used in
neural network training and inference uses a probability that depends on the
position of the exact result with respect to the rounded ones (see for instance
[17,31,39,14,29,35]). This stochastic rounding does not aim at estimating round-
ing errors, it enables the update of small parameters and avoids stagnations that
may be observed with round to nearest.

In this work, we consider tuning the precision of an already trained neural
network. One of our contributions is a methodology for tuning the precision of a



neural network using PROMISE in order to obtain the lowest precision for each
of its parameters, while keeping a certain accuracy on its results. We present and
compare the results obtained for different neural networks: an approximation of
the sine function, an image classifier processing the MNIST dataset (2D pictures
of handwritten digits), another image classifier using this time convolutional
layers and processing the CIFAR10 dataset (3D images of different classes), and
the last one introduced in [4] and used in [26] that aims at approximating a
Lyapunov function of a nonlinear controller for an inverted pendulum.

After a preliminary reminder on deep neural networks and stochastic arith-
metic in Section 2, Section 3 describes our methodology and Section 4 presents
our results considering the different neural networks previously mentioned.

2 Preliminary

2.1 Neural Networks

An artificial neural network is a computing system defined by several neurons
distributed on different layers. Generally, we consider dense layers that take as
an input a vector and in which the main computation is a matrix-vector product.
In this case, from one layer to another, a vector of neurons x(k) ∈ Rnk with k ∈ N
is transformed into a vector x(k+1) ∈ Rnk+1 by the following equation

x(k+1) = g(k)(W (k)x(k) + b(k)) (1)

where W (k) ∈ Rnk+1×nk is a weight matrix, b(k) ∈ Rnk+1 a bias vector and
g(k) an activation function. The activation function is a non-linear and often
monotonous function. Most common activation functions are described below.

– Sigmoid: computes σ(x) = 1/(1 + e−x) ∀x ∈ R
– Hyperbolic Tangent: applies tanh(x) ∀x ∈ R
– Rectified Linear Unit: ReLU(x) = max(x, 0) ∀x ∈ R
– Softmax: normalizes an input vector x into a probability distribution over

the output classes. For each element xi in x, softmax(xi) = exi/
∑
exj

Figure 1 shows a graphical representation of a neural network with two layers.
Dense layers are sometimes generalized to multidimensional arrays and in-

volve tensor products. Other layers exist such as convolution layers often used on
multi-dimensional arrays to extract features out of the data. To do so, a convo-
lution kernel is applied to the input data to produce the output. Different kinds
of layers, for instance pooling layers and flatten layers, do not require weight
nor bias. Pooling layers reduce the size of the input data by summarizing it by
zones given a function such as the maximum or the average. Flatten layers are
intended to change the shape of data, from a 3D tensor to a vector for example
and can be used to pass from a convolutional layer to a dense layer.



x
(1)
1

x
(1)
2

x
(1)
3

Input

x
(2)
1

x
(2)
2

x
(2)
3

Layer 1

x
(3)
1

Layer 2

Fig. 1: Neural network with two layers

2.2 Floating-Point Arithmetic

A floating-point number x in base β is defined by :

x = (−1)s ×m× βe (2)

with s its sign being either 1 or 0, m its significand being an integer and e its
exponent being also an integer. In this paper, we consider binary floating-point
numbers, i.e. numbers in base β=2 that adhere to the IEEE 754 Standard [1].
The IEEE 754 Standard defines different formats with a fixed number of bits for
the significand and the exponent. The number of bits for the significand is the
precision p, hence the significand can take values ranging from 0 to βp − 1. The
exponent e ranges from emin to emax with emin = 1−emax and emax = 2len(e)−1−
1, with len(e) the exponent length in bits. The sizes of the three different formats
used in this paper, commonly named half, single (or float), and double, are sum
up in Table 1. As a remark, another 16-bit format called bfloat16 exists, for
example on ARM NEON CPUs. Owing to their 8-bit-large exponent, bfloat16
numbers benefit from a wider range, but have a lower significand precision (8
bits instead of 11).

Name Format Length Sign Significand length3 Exponent length

Half binary16 16 bits 1 bit 11 bits 5 bits
Single binary32 32 bits 1 bit 24 bits 8 bits
Double binary64 64 bits 1 bit 53 bits 11 bits

Table 1: Basic binary IEEE 754 formats

2.3 Discrete Stochastic Arithmetic (DSA)

Discrete Stochastic Arithmetic (DSA) is a method for rounding error analysis
based on the CESTAC method [37,7]. The CESTAC method allows the estima-

3 Including the implicit bit (which always equals 1 for normal numbers, and 0 for
subnormal numbers). The implicit bit is not stored in memory.



tion of round-off error propagation that occurs when computing with floating-
point numbers. Based on a probabilistic approach, it uses a random rounding
mode: at each operation, the result is either rounded up or down with the same
probability. Using this rounding mode, the same program is run N times giv-
ing us N samples R1, . . . , RN of the computed result R. The accuracy of the
computed result (i.e. its number of exact significant digits) can be estimated
using Student’s law with the confidence level 95%. In practice the sample size
is N = 3. Indeed, it has been shown that N = 3 is in some reasonable sense
the optimal value. The estimation with N = 3 is more reliable than with N = 2
and increasing the sample size does not improve the quality of the estimation.
Theoretical elements can be found in [6,37].

The CADNA [21,37,6] (Control of Accuracy and Debugging for Numerical
Applications) software4 implements DSA in code written in C, C++ or Fortran.
It introduces new variable types, the stochastic types. Each stochastic variable
contains three floating-point values and one integer being the exact number
of correct digits. CADNA can print each computed value with only its exact
significant digits. In practice, owing to operator overloading, the use of CADNA
only requires to change declaration of variables and input/output statements.

2.4 The PROMISE Software

The PROMISE software5 aims at reducing the precision of the variables in a
given program. From an initial code and a required accuracy, it returns a mixed
precision code, lowering the precision of the different variables while keeping a
result that satisfies the accuracy constraint. To do so, some variables are de-
clared as custom typed variables that PROMISE recognizes. PROMISE will
consider tweaking their precisions. Different variables can be forced to have the
same precision by giving them the same custom type. It may be useful to avoid
compilation errors or casts of variables.

PROMISE computes a reference result using CADNA and relies on the
Delta-Debug algorithm [40] to test different type configurations, until a suitable
one lowering the precision while satisfying the accuracy requirement is found.
PROMISE provides a transformed program that can mix half, single and double
precision. Half precision can be either native on CPUs that support it or em-
ulated using a library developed by C. Rau6. PROMISE dataflow is presented
in Figure 2. After computing the reference result, PROMISE tries to lower the
precision of the variables from double to single, then from single to half, using
twice the Delta-Debug algorithm. The accuracy requirement may concern one
or several variables (e.g. in an array). PROMISE checks that the number of
common digits between the computed result(s) and the reference result(s) is at
least the required accuracy. In the case of several variables, the requirement has
to be fulfilled by all of them.

4 http://cadna.lip6.fr
5 http://promise.lip6.fr
6 http://half.sourceforge.net

http://cadna.lip6.fr
http://promise.lip6.fr
http://half.sourceforge.net


PROMISE

initial code

instrumented
code

CADNA

reference

double

double float

comparison

double float

double float half

comparison mixed-precision
code

Delta Debug Delta Debug

step 1 step 2

Fig. 2: PROMISE dataflow

3 Methodology

For neural network management, we use Python language with either Keras7

or PyTorch8. Keras and Pytorch are two open-source Python libraries that im-
plement structures and functions to create and train neural network models.
Both of them also allow us to save our model in HDF5 (Hierarchical Data For-
mat)9, a file format designed to store and organize large data. HDF5 uses only
two types of objects: datasets that are multidimensional arrays of homogeneous
type, and groups, which contain datasets or other groups. HDF5 files can be
read by Python programs using the h5py package. The associated data can be
manipulated with Pandas10, a Python library that proposes data structures and
operations to manage large amount of data.

Keras is used to develop, train and save our neural network models, except
in the case of the inverted pendulum which uses PyTorch. As already mentioned
in the introduction, precision tuning is performed on trained models, hence in
the inference stage. The process path is summarized in Figure 3. For each neural
network, we first convert the HDF file to CSV files using a Python script. The
script loads the HDF file, stores the parameters in Pandas DataFrames, and then
saves the parameters in CSV files using the Pandas DataFrame to csv function.
For each layer that needs it, we create a CSV file with the weights of the layer
and a CSV file with the bias of the layer. Indeed, some layers do not need weights
nor bias, for example flattening layers that only change the data shape (from 2
dimensions to 1 dimension for example). Secondly, we use the data in the CSV
files to create a C++ program, once again using a Python script that reads the
CSV files and creates the necessary variables and computation. The translation
scripts are based on the work done in the keras2c11library. Once the C++ version
created, we apply PROMISE on it.

7 https://keras.io
8 https://pytorch.org
9 https://www.hdfgroup.org

10 https://pandas.pydata.org
11 https://f0uriest.github.io/keras2c/

https://keras.io
https://pytorch.org
https://www.hdfgroup.org
https://pandas.pydata.org
https://f0uriest.github.io/keras2c/


Neural network Python file

Model saved in HDF file

Model parameters in CSV files

C++ code with PROMISE variables

Fig. 3: Flowchart of the translation from a Python neural network to a C++
program with PROMISE variables

4 Experimental Results

Results obtained for four different neural networks are presented in this section.
For the neural networks using a database, test data[i] refers to (i+1)th test input
provided by the database. PROMISE is applied to each neural network consid-
ering one type by neuron (half, single or double), then one type per layer, i.e. all
the parameters of a layer have the same precision. In our analysis, the difference
between the two approaches lies in the number of different type declarations in
the code. However, it must be pointed out that, in dense layers, having one type
per neuron implies independent dot products, whereas having one type per layer
would enable one to compute matrix-vector products that could perform better.

In our experiments, the input is in double precision. In accordance with
Figure 2, for any neural network, the reference value is the value computed at
the very first step of PROMISE. All the results presented in this section have
been obtained on a 2.80 GHz Intel Core i5-8400 CPU having 6 cores with 16GB
RAM except indicated otherwise.

4.1 Sine Neural Network

To approximate the sine function, we use a classical densely-connected neural
network with 3 layers. It is a toy problem, since using a neural network to com-
pute sine is not necessary. However, this simple example validates our approach.
The tanh activation function is used in the 3 different dense layers. The layers
have respectively 20, 6 and 1 neuron(s) and the input is a scalar value x. Fig-
ure 4 presents the computation carried out by the neural network, considering
one type per neuron. Colored variables are PROMISE variables, the precision of
which can be tweaked. Variables with the same color have the same precision.
The parameters of a neuron (weight(s) and bias) have the same color, hence
the same type. The output type of each layer is also tuned. In this example, we
assign types to 27 neurons and 3 outputs.



w
(1)
1

w
(1)
2

...

w
(1)
20

x

b
(1)
1

b
(1)
2

...

b
(1)
20

x
(2)
1

x
(2)
2

...

x
(2)
20

tanh × + =

InputWeights Bias Output L1

scalar input

w
(2)
1,1

... w
(2)
1,20

w
(2)
2,1

... w
(2)
2,20

... ... ...

w
(2)
6,1

... w
(2)
6,20

x
(2)
1

x
(2)
2

...

x
(2)
20

b
(2)
1

b
(2)
2

...

b
(2)
6

x
(3)
1

x
(3)
2

...

x
(3)
6

tanh × + =

Input L2Weights Bias Output L2

w
(3)
1,1

... w
(3)
1,6

x
(3)
1

x
(3)
2

...

x
(3)
6

b
(3)
1

ytanh × + =

Input L3

Weights Bias

Output

scalar output

Fig. 4: Computation carried out in the sine neural network



Figure 5 displays the distribution of the different types with input value 0.5
considering one type per neuron. The x-axis presents the required accuracy on
the results, i.e. the number of significant digts in common with the reference
result computed using CADNA. We can notice the evolution of the distribution
depending on the number of exact significant digits required on the result. As
expected, first we only have half precision variables, then some of them start
to be in single, then in double precision, until eventually all of them are in
double precision. Therefore, requiring the highest accuracy is not compatible
with lowering the precision in this neural network. But still, a good compromise
can be found, since we only have single and half precision variables for a required
accuracy up to 7 digits, and still have 1/3 of single precision variables for a
required accuracy up to 9 digits.

Figure 5 also presents the computation time of PROMISE in seconds for
each required accuracy. It consists of the time to compute the reference result,
and the time to apply the Delta-Debug algorithm twice (from double to single
precision then from single to half precision), compiling and executing the tested
distribution each time. It can be noticed that the computation time (less than
2 minutes) remains reasonable given the 330 possibilities.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

8

21

27
28

29 29
30 30

1

4

22

29 29

22

9

3
2

1 1

30 30
29

26

8

1 1

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

0

10

20

30

40

50

60

70

80

90

100

ti
m

e
(s

)

half

single

double

time

Fig. 5: Number of variables of each type and computation time for the sine neural
network with input value 0.5

Figure 6 shows the type distribution considering one precision per layer. This
approach per layer enables one to decrease the execution time of PROMISE, but
it does not really help lowering the precision of the network parameters. Indeed,
each time a parameter in a layer requires a higher precision, all the parameters of
the same layer pass in higher precision. But still, it can be noticed that the first



layer (that represents 2/3 of the neurons) stays in half precision for a required
accuracy up to 4 digits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1

L2

L3

required accuracy (nb of digits)

L
ay

er
s

6

8

10

12

ti
m

e
(s

)

half

single

double

time

Fig. 6: Precision of each layer for the sine neural network with input value 0.5

Figures in Appendix A.1 and Appendix A.2 show that the input value can
have a slight impact on the type distribution. We compare the results for two
input values randomly chosen: 0.5 and 2.37. From Figure 5, with input value 0.5,
PROMISE provides a type distribution with 8 half precision neurons and 22
single precision neurons for a required accuracy of 5 digits. From Appendix A.1,
with input value 2.37, only 4 half precision neurons are obtained for a required
accuracy of 5 digits. Actually, if 3, 4, or 5 digits are required, less neurons are
in half precision than with input 0.5. But if 8 digits are required, one neuron
remains in half precision with input 2.37, while no neuron is in half precision
with input 0.5. Nevertheless, the type distribution with respect to the required
accuracy remains globally the same, parameters all starting as half precision
variables, then passing to higher precision.

4.2 MNIST Neural Network

Experiments have been carried out with an image classification neural network
processing MNIST data of handwritten digits12. This neural network also uses
classical dense layers. The main difference in this case is that the entry is a vector
of size 784 (flatten image) and the output is a vector of size 10. This neural
network consists of two layers: the first one with 64 neurons and the activation
function ReLU, and the second one with 10 neurons and the activation function
softmax which provides the probability distribution for the 10 different classes.
Considering as previously one type per neuron, plus one type for the output
of each layer, 76 different types have to be set either to half, single, or double
precision.

12 http://yann.lecun.com/exdb/mnist

http://yann.lecun.com/exdb/mnist


Figure 7 shows the type distribution considering one type per neuron with
the input image test data[61]: the 62nd test data out of the 10,000 provided by
MNIST. The x-axis represents the required accuracy on the output consisting
in a vector of size 10. The maximum accuracy on the output is 13 digits, higher
expectation could not be matched. Such high accuracy is nonetheless not real-
istic because not necessary for a classifier. However, exhaustive tests have been
performed: all possible accuracies in double precision have been successively re-
quired.

The main difference with the sine neural network lies in the fact that a signif-
icant number of neurons stay in half precision no matters the required accuracy.
Depending on the input, around 50% of neurons can stay in half precision and
sometimes nearly 60% as shown in Appendix B.2. Thus, applying PROMISE to
this neural network, even when requiring the highest accuracy, can help lower-
ing the precision of its parameters. Neurons that keep the lowest precision are
not the same depending on the input, but they always belong to the first layer.
Hence, the first layer seems to have less impact on the output accuracy than the
second one.

The computation times also reported in Figure 7 are much higher than for
the sine approximation network. For the majority of the accuracy requirements,
more than 15 minutes are necessary to obtain a mixed precision version of the
neural network. The MNIST neural network has one layer less than the sine
approximation network, but more neurons. Since we consider one precision per
neuron, the number of possible type configurations (376) is much higher, hence
the computation time difference. However, the execution time of PROMISE re-
mains reasonable and performing such a tuning by hand would have been much
more time consuming.

With both the sine neural network and MNIST neural network, PROMISE
execution time tends to increase with the accuracy requirement. This can be
explained by the Delta-Debug algorithm in PROMISE. As previously described,
PROMISE firstly checks whether the accuracy requirement can be satisfied with
double precision. Then, owing to the Delta-Debug algorithm, PROMISE tries
to lower the precision of most variables from double to single, and this can be
very fast if single precision is enough to match the required accuracy. Finally,
PROMISE tries to transform the single precision declarations into half precision
ones, and this can be fast if half precision is suitable for all these declarations.
The number of programs compiled and executed by PROMISE tends to increase
with the required accuracy on the results. For instance, in the case of MNIST
neural network, if 1 or 2 digits are required, 18 type configurations are tested by
PROMISE, whereas if 7 digits are required, 260 configurations are tested.

Results obtained considering one precision per layer are presented in Ap-
pendix B.1. The analysis is similar to the one previously given for the sine neural
network. With the approach per layer, the execution time of PROMISE is lower
than with the approach per neuron. But this approach forces some variables to
be declared in higher precision. It can be noticed that with the approach per
layer, both layers have the same precision. All the network parameters share the



1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

76 1

9

29
33 34 34 34 34

2
7

34 34 34 33

25

5
1

74
69

42 42 42 42 42 42 42 42 42 42 42

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

800

850

900

950

1,000

1,050

1,100

1,150

1,200

1,250

1,300

1,350

1,400

ti
m

e
(s

)

half

single

double

time

Fig. 7: Number of variables of each type and computation time for MNIST neural
network with test data[61] input

same type. Appendix B.2 and Appendix B.3 present the results obtained with
another input. Like with the sine neural network, changing the input induces
slight changes in the type configurations provided by PROMISE. However, the
same trend can be observed.

4.3 CIFAR Neural Network

The neural network considered here is also an image classifier, but this time
processing the CIFAR10 dataset. CIFAR13 is a dataset having 100 classes of
colored images and the CIFAR10 dataset is reduced to 10 classes. Because images
are of size 32 × 32 × 3 (32 pixels width, 32 pixels height, 3 color channels), the
network input is a 3D tensor of shape (32, 32, 3). The neural network consists
of 5 layers: a convolutional layer having 32 neurons with activation function
ReLU, followed by a max pooling of size 2x2, a convolutional layer having 64
neurons with activation function ReLU, a flatten layer, and finally a dense layer
of 10 neurons with activation function softmax. Taking into account one type
per neuron and one type for each layer output, 111 types can be set.

Results presented here have been obtained on a 2.80 GHz Intel Core i9-10900
CPU having 20 cores and 64GB RAM. The maximum possible accuracy on the
results is 13 digits. Although such a high accuracy is not necessary in a classi-
fier network, exhaustive tests have been performed, like for the MNIST neural
network. Results reported here refer to two input images out of the 10,000 pro-
vided by CIFAR10. Figure 8 and Appendix C.2 present the type configurations

13 https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html


given by PROMISE with respectively test data[386] and test data[731], consid-
ering one type per neuron. Appendix C.1 and Appendix C.3 show the results
obtained with the same input images considering one type per layer.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

111 1 2

24

75

86 89 89 89 89

3
11

81
88 88 87

65

14

3

108
100

30
23 22 22 22 22 22 22 22 22 22

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

0

0.2

0.4

0.6

0.8

1

1.2
·104

ti
m

e
(s

)

half

single

double

time

Fig. 8: Number of variables of each type and computation time for CIFAR neural
network with test data[386] input

PROMISE computation time tends to increase with the required accuracy. As
already mentioned in 4.2, this can be explained by the Delta Debug algorithm.
As previously observed, considering one type per layer results in lower PROMISE
computation times, but often in uniform precision programs. Again, the input
image slightly impacts the type configurations provided by PROMISE and the
same trend can be observed.

Experiments have been carried out with neural networks also processing CI-
FAR10, but with more layers (up to 8 layers). Again, PROMISE could provide
suitable type configurations taking into account accuracy requirements. How-
ever, PROMISE execution (that includes the compilation and execution of vari-
ous programs) makes exhaustive tests more difficult with such neural networks.
Possible PROMISE improvements described in Section 5 would enable precision
tuning in larger neural networks that are themselves time consuming.

4.4 Inverted Pendulum

We present here results obtained with a neural network introduced in [4] in
the context of reinforcement learning for autonomous control. In [4] methods
are proposed for certified approximation of neural controllers and this neural



network, related to an inverted pendulum, is used in a program that provides an
approximation of a Lyapunov function. This neural network consists of 2 dense
layers and uses the tanh activation function. The input is a state vector x ∈ R2

and the output, a scalar value in R is an approximated value of the Lyapunov
function for the state vector input. The first layer has 6 neurons and the second
layer only one. Given the proximity between the two neural network models,
results are expected to be close to the ones obtained for the sine approximation.

Figure 9 presents both the distribution of the different precisions and the
execution time of PROMISE with respect to the accuracy requirement for in-
put (0.5, 0.5). We consider here one type per neuron. As expected, the trend
observed for the type configurations is the same as with the sine approximation.
As the required accuracy increases, the precision of the network parameters also
increases. If one digit is required, all the parameters can be declared in half pre-
cision, and if at least 11 digits are required all the parameters must be in double
precision. The computation time remains reasonable whatever the required ac-
curacy. As previously observed, the computation time tends to increase with
the required accuracy because of the number of type configurations tested by
PROMISE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

9
1

5

8 8

9 9 9 9 9

1

3

6

9 9

8

4

1 1

9

8

6

3

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

0

5

10

15

20

25

30

ti
m

e
(s

)

half

single

double

time

Fig. 9: Number of variables of each type and computation time for the pendulum
neural network with input (0.5,0.5)

Appendix D.1 presents the results obtained considering one type per layer.
Again, with this approach, the execution time of PROMISE is lower, but most
configurations are actually in uniform precision. Results in Appendix D.2 and
Appendix D.3 refer to an input consisting of two negative values (-3,-6). As
previously observed, changing the input induces no significant difference.



5 Conclusion and Perspectives

We have shown with different kinds of neural networks having different types
of layers how to lower the precision of their parameters while still satisfying a
desired accuracy. Considering one type per neuron, mixed precision programs
can be provided by PROMISE. Considering one type per layer enables one to
reduce PROMISE execution time, however this approach often leads to uniform
precision programs. It has been observed that with both approaches input values
have actually a low impact on the type configurations obtained.

We plan to analyse the execution time of the mixed precision programs ob-
tained with PROMISE on a processor with native half precision. Other perspec-
tives consist in improving PROMISE. Another accuracy test more adapted to
image classification networks could be proposed. We could improve the Delta-
Debug algorithm used in PROMISE. Optimizations of the Delta-Debug algo-
rithm are described in [19], including the parallelization potential. We could
also consider the parallelization of PROMISE itself, i.e. applying PROMISE to
different parts of a code in parallel. The extension of PROMISE and CADNA
to other floating-point formats such as bfloat16 is another perspective. Taking
benefit from the GPU version of CADNA, PROMISE could also be extended to
GPUs. Floating-point auto-tuning in arbitrary precision is also a possible per-
spective that would enable the automatic generation of programs with a suitable
type configuration for architectures such as FPGAs.

Acknowledgements

This work was supported by the InterFLOP (ANR-20-CE46-0009) project of the
French National Agency for Research (ANR).



Appendices

Appendix A Sine Neural Network

Appendix A.1 Type Distribution for Sine Approximation with
Input Value 2.37 Considering One Type per Neuron

1 2 3 4 5 6 7 8 9 101112131415
0

10

20

30

14

20

26

30 30 30 30

2

9

26

29 29 29

16

10

4

30 30
28

21

4

1 1 1

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

0

10

20

30

40

50

60

70

80

90

100

ti
m

e
(s

)

half

single

double

time

Fig. 10: Number of variables of each type and computation time for the sine
neural network with input value 2.37

Appendix A.2 Type Distribution for Sine Approximation with
Input Value 2.37 Considering One Type per Layer

1 2 3 4 5 6 7 8 9 101112131415

L1

L2

L3

required accuracy (nb of digits)

L
ay

er
s

6

8

10

12

14

ti
m

e
(s

)

half

single

double

time

Fig. 11: Precision of each layer for the sine neural network with input value 2.37



Appendix B MNIST Neural Network

Appendix B.1 Type Distribution for MNIST with Test data[61]
Input Considering One Type per Layer

1 2 3 4 5 6 7 8 9 10 11 12 13

L1

L2

required accuracy (nb of digits)

L
ay

er
s

750

760

770

780

790

800

ti
m

e
(s

)

half

single

double

time

Fig. 12: Precision of each layer for MNIST neural network with test data[61]
input

Appendix B.2 Type Distribution for MNIST with Test data[91]
Input Considering one type per neuron

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

76 2

30 31 31 31 31 31

2

16

31 31 31 29
25

1

74

60

45 45 45 45 45 45 45 45 45 45 45

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

800

850

900

950

1,000

1,050

1,100

1,150

1,200

1,250

1,300

ti
m

e
(s

)

half

single

double

time

Fig. 13: Number of variables of each type and computation time for MNIST
neural network with test data[91] input



Appendix B.3 Type Distribution for MNIST with Test data[91]
Input Considering One Type per Layer

1 2 3 4 5 6 7 8 9 10 11 12 13

L1

L2

required accuracy (nb of digits)

L
ay

er
s

750

760

770

780

790

800

ti
m

e
(s

)

half

single

double

time

Fig. 14: Precision of each layer for MNIST neural network with test data[91]
input

Appendix C CIFAR Neural Network

Appendix C.1 Type Distribution for CIFAR with Test data[386]
Input Considering One Type per Layer

1 2 3 4 5 6 7 8 9 10 11 12 13

L1

L2

L3

L4

L5

required accuracy (nb of digits)

L
ay

er
s

0

100

200

300

400

ti
m

e
(s

)

half

single

double

time

Fig. 15: Precision of each layer for CIFAR neural network with test data[386]
input



Appendix C.2 Type Distribution for CIFAR with Test data[731]
Input Considering One Type per Neuron

1 2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

111 2

17

72

88 90 90 90 90

2
9

81
90 90 88

73

18

2

109
102

30
21 21 21 21 21 21 21 21 21 21

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

0

0.2

0.4

0.6

0.8

0.1

1.2

1.4
·104

ti
m

e
(s

)

half

single

double

time

Fig. 16: Number of variables of each type and computation time for CIFAR
neural network with test data[731] input

Appendix C.3 Type Distribution for CIFAR with Test data[731]
Input Considering One Type per Layer

1 2 3 4 5 6 7 8 9 10 11 12 13

L1

L2

L3

L4

L5

required accuracy (nb of digits)

L
ay

er
s

500

600

700

800

900

1,000

ti
m

e
(s

)

half

single

double

time

Fig. 17: Precision of each layer for CIFAR neural network with test data[731]
input



Appendix D Inverted pendulum

Appendix D.1 Type Distribution for the Inverted Pendulum with
Input (0.5,0.5) Considering One Type per Layer

1 2 3 4 5 6 7 8 9 101112131415

L1

L2

required accuracy (nb of digits)

L
ay

er
s

0

2

4

6

8

10

ti
m

e
(s

)

half

single

double

time

Fig. 18: Precision of each layer for the pendulum neural network with input
(0.5,0.5)

Appendix D.2 Type Distribution for the Inverted Pendulum with
Input (-3,-6) Considering One Type per Neuron

1 2 3 4 5 6 7 8 9 1011121314
0

2

4

6

8

9

2

4

6

7

8 8

9 9 9

3

5

7

8

6

4

3

2

1 1

9

6

4

2

1 1 1

required accuracy (nb of digits)

n
u
m

b
er

o
f

g
iv

en
ty

p
e

0

5

10

15

20

25

30

ti
m

e
(s

)

half

single

double

time

Fig. 19: Number of variables of each type and computation time for the pendulum
neural network with input (-3,-6)



Appendix D.3 Type Distribution for the Inverted Pendulum with
Input (-3,-6) Considering One Type per Layer

1 2 3 4 5 6 7 8 9 1011121314

L1

L2

required accuracy (nb of digits)

L
ay

er
s

0

2

4

6

8

10

ti
m

e
(s

)

half

single

double

time

Fig. 20: Precision of each layer for the pendulum neural network with input
(-3,-6)

References

1. IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revision of
IEEE 754-2008), (2019), pp. 1–84.

2. A. Adjé, D. B. Khalifa, and M. Martel, Fast and Efficient Bit-Level Precision
Tuning, arXiv:2103.05241 [cs], (2021). arXiv: 2103.05241.

3. H. Benmaghnia, M. Martel, and Y. Seladji, Fixed-Point Code Synthesis For
Neural Networks, Artificial Intelligence, Soft Computing and Applications, (2022),
pp. 11–30. arXiv: 2202.02095.

4. Y.-C. Chang, N. Roohi, and S. Gao, Neural Lyapunov Control, 33rd Confer-
ence on Neural Information Processing Systems (NeurIPS 2019), (2020). arXiv:
2005.00611.

5. S. Cherubin, D. Cattaneo, M. Chiari, A. D. Bello, and G. Agosta, TAFFO:
Tuning Assistant for Floating to Fixed Point Optimization, IEEE Embedded Sys-
tems Letters, 12 (2020), pp. 5–8.

6. J.-M. Chesneaux, L’arithmétique stochastique et le logiciel CADNA, Habilitation
à diriger des recherches, Université Pierre et Marie Curie, Paris, France, 1995.

7. J.-M. Chesneaux, S. Graillat, and F. Jezequel, Numerical Validation and
Assessment of Numerical Accuracy, Oxford e-Research Center, (2009).

8. W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrish-
nan, and Z. Rakamarić, Rigorous Floating-Point Mixed-Precision Tuning, in
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2017, New York, NY, USA, 2017, ACM, pp. 300–315.

9. T. Csendes, Adversarial Example Free Zones for Specific Inputs and Neural Net-
works, Proc. ICAI, (2020), pp. 76–84.

10. N. Damouche and M. Martel, Mixed Precision Tuning with Salsa, in Pro-
ceedings of the 8th International Joint Conference on Pervasive and Embedded



Computing and Communication Systems, Porto, Portugal, 2018, SCITEPRESS -
Science and Technology Publications, pp. 47–56.

11. E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and R. Bas-
tian, Daisy - Framework for Analysis and Optimization of Numerical Programs
(Tool Paper), in 24th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), vol. 10805 LNCS, Thessaloniki,
Greece, 2018, pp. 270–287.

12. E. Darulova and V. Kuncak, Towards a Compiler for Reals, ACM Transactions
on Programming Languages and Systems (TOPLAS), 39 (2017), pp. 8:1–8:28.

13. S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, Output Range Anal-
ysis for Deep Feedforward Neural Networks, in NASA Formal Methods, A. Dutle,
C. Muñoz, and A. Narkawicz, eds., vol. 10811, Springer International Publishing,
Cham, 2018, pp. 121–138. Series Title: Lecture Notes in Computer Science.

14. M. Essam, T. B. Tang, E. T. W. Ho, and H. Chen, Dynamic Point Stochas-
tic Rounding Algorithm for Limited Precision Arithmetic in Deep Belief Network
Training, in 2017 8th International IEEE/EMBS Conference on Neural Engineer-
ing (NER), Shanghai, China, May 2017, IEEE, pp. 629–632.

15. S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière, Auto-
Tuning for Floating-Point Precision with Discrete Stochastic Arithmetic, Journal
of Computational Science, 36 (2019), p. 101017.

16. H. Guo and C. Rubio-González, Exploiting Community Structure for Floating-
Point Precision Tuning, in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Amsterdam Netherlands, July 2018,
ACM, pp. 333–343.

17. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep Learn-
ing with Limited Numerical Precision, Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15,
(2015). arXiv: 1502.02551.

18. N.-M. Ho, H. D. silva, and W.-F. Wong, GRAM: A Framework for Dynamically
Mixing Precisions in GPU Applications, ACM Transactions on Architecture and
Code Optimization, 18 (2021), pp. 1–24.

19. R. Hodován and Á. Kiss, Practical Improvements to the Minimizing Delta De-
bugging Algorithm:, in Proceedings of the 11th International Joint Conference on
Software Technologies, Lisbon, Portugal, 2016, SCITEPRESS - Science and Tech-
nology Publications, pp. 241–248.

20. A. Ioualalen and M. Martel, Neural Network Precision Tuning, in Quanti-
tative Evaluation of Systems, D. Parker and V. Wolf, eds., vol. 11785, Springer
International Publishing, Cham, 2019, pp. 129–143. Series Title: Lecture Notes in
Computer Science.

21. F. Jézéquel, S. s. Hoseininasab, and T. Hilaire, Numerical Validation of
Half Precision Simulations, in Trends and Applications in Information Systems
and Technologies, Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, and A. M. Ra-
malho Correia, eds., vol. 1368, Springer International Publishing, Cham, 2021,
pp. 298–307. Series Title: Advances in Intelligent Systems and Computing.

22. P. V. Kotipalli, R. Singh, P. Wood, I. Laguna, and S. Bagchi, AMPT-
GA: Automatic Mixed Precision Floating Point Tuning for GPU Applications, in
Proceedings of the ACM International Conference on Supercomputing, Phoenix
Arizona, June 2019, ACM, pp. 160–170.

23. I. Laguna, P. C. Wood, S. Ranvijay, and S. Bagchi, GPUMixer:
Performance-Driven Floating-Point Tuning for GPU Scientific Applications,



vol. 11501, Springer, 2019, pp. 227–246. M. Weiland, G. Juckeland, C. Trinitis,
and P. Sadayappan.

24. M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legen-
dre, Automatically Adapting Programs for Mixed-Precision Floating-Point Com-
putation, in Proceedings of the 27th International ACM Conference on Interna-
tional Conference on Supercomputing, ICS ’13, New York, NY, USA, 2013, ACM,
pp. 369–378.

25. M. O. Lam, T. Vanderbruggen, H. Menon, and M. Schordan, Tool Integra-
tion for Source-Level Mixed Precision, in 2019 IEEE/ACM 3rd International Work-
shop on Software Correctness for HPC Applications (Correctness), 2019, pp. 27–35.

26. C. Lauter and A. Volkova, A Framework for Semi-Automatic Precision and
Accuracy Analysis for Fast and Rigorous Deep Learning, arXiv:2002.03869 [cs],
(2020). arXiv: 2002.03869.

27. W. Lin, Z. Yang, X. Chen, Q. Zhao, X. Li, Z. Liu, and J. He, Robustness
Verification of Classification Deep Neural Networks via Linear Programming, Con-
ference on Computer Vision and Pattern Recognition, (2019).

28. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards
Deep Learning Models Resistant to Adversarial Attacks, 6th International Confer-
ence on Learning Representations, ICLR, (2019). arXiv: 1706.06083.

29. N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, Mixed Precision Training
with 8-bit Floating Point, arXiv:1905.12334 [cs, stat], (2019). arXiv: 1905.12334.

30. H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd,
K. Mohror, and J. Hittinger, ADAPT: Algorithmic Differentiation Applied
to Floating-Point Precision Tuning, in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA,
Nov. 2018, IEEE, pp. 614–626.

31. T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay, On-Chip Training of Re-
current Neural Networks with Limited Numerical Precision, in 2017 International
Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, May 2017,
IEEE, pp. 3716–3723.

32. A. S. Rakin, L. Yang, J. Li, F. Yao, C. Chakrabarti, Y. Cao, J.-s. Seo,
and D. Fan, RA-BNN: Constructing Robust & Accurate Binary Neural Net-
work to Simultaneously Defend Adversarial Bit-Flip Attack and Improve Accuracy,
arXiv:2103.13813 [cs, eess], (2021). arXiv: 2103.13813.

33. C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, Precimonious: Tuning Assis-
tant for Floating-Point Precision, in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC’13, New
York, NY, USA, 2013, ACM, pp. 27:1–27:12.

34. G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, Fast and Ef-
fective Robustness Certification, Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems, NeurIPS,
(2018), pp. 10825–10836.

35. C. Su, S. Zhou, L. Feng, and W. Zhang, Towards High Performance Low
Bitwidth Training for Deep Neural Networks, Journal of Semiconductors, 41 (2020),
p. 022404. https://iopscience.iop.org/article/10.1088/1674-4926/41/2/022404.

36. V. Tjeng, K. Xiao, and R. Tedrake, Evaluating Robustness of Neural Networks
with Mixed Integer Programming, arXiv:1711.07356 [cs], (2019). arXiv: 1711.07356.

37. J. Vignes, A Stochastic Arithmetic for Reliable Scientific Computation, Mathe-
matics and Computers in Simulation, 35 (1993), pp. 233–261.



38. , Discrete Stochastic Arithmetic for Validating Results of Numerical Software,
Numerical Algorithms, 37 (2004), pp. 377–390.

39. N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, Train-
ing Deep Neural Networks with 8-bit Floating Point Numbers, Advances in Neu-
ral Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, eds., Curran Associates, Inc., (2018),
pp. 7686–7695. arXiv: 1812.08011, http://papers.nips.cc/ paper/7994-training-
deep-neural-networks-with-8-bit-floating-point-numbers.pdf.

40. A. Zeller and R. Hildebrandt, Simplifying and Isolating Failure-Inducing In-
put, IEEE Trans. Softw. Eng., 28 (2002), pp. 183–200.

41. D. Zombori, Verification of Artificial Neural Networks via MIPVerify and SCIP,
SCAN, (2020).

42. , Fooling a Complete Neural Network Verifier, The 9th International Confer-
ence on Learning Representations (ICLR), (2021).


	Neural Network Precision Tuning Using Stochastic Arithmetic
	Appendices

