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a b s t r a c t 

A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether 

the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement- 

MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast 

between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of 

MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this 

task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep 

learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without 

hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly 

available database consists of 150 exams divided into 50 cases without any hyperenhanced area after 
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injection of a contrast agent an  

area on DE-MRI), whatever thei  

characteristics are also provided  

classification of an exam is a r  

automatic segmentation of the  

needs to be improved, mainly  

surrounding structures. 
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Table 1 

List of the challengers. 

Challenger teams Segmentation contest Classification contest 

Brahim et al. (2021) x 

Camarasa et al. (2021) x 

Feng et al. (2021) x 

Girum et al. (2021) x x 

Huellebrand et al. (2021) x 

Ivantsits et al. (2021) x 

Lourenço et al. (2021) x 

Sharma et al. (2021) x 

Shi et al. (2021) x 

Yang and Wang (2021) x 

Zhang (2021) x 

Zhou et al. (2021) x 
. Introduction 

Myocardial infarction (MI) can be defined as myocardial cell 

eath secondary to prolonged ischemia. One crucial parameter to 

stimate the prognosis after myocardial injury and then to evalu- 

te the state of the heart after MI is the viability of the considered

egment, i.e. if the segment recovers its functionality upon revas- 

ularization. 

From cardiac MRI, the viability can be evaluated thanks to 

he assessment of left ventricular end-diastolic wall thickness, the 

valuation of contractile reserve, and the extent and the transmu- 

al nature of the infarction evaluated from delayed-enhancement 

RI (DE-MRI) ( Schinkel et al., 2007; Kim et al., 1999 ). DE-MRI is

 powerful predictor of myocardial viability after coronary artery 

urgery, suggesting an important role for this technique in clinical 

iability assessment ( Selvanayagam et al., 2004 ). 

A preliminary challenge organized in 2012 ( Karim et al., 2016 ) 

as been already dedicated to the automatic processing of DE-MRI. 

his challenge showed promising results, but also indicated that 

ome improvements should be done for potential use in clinical 

ractice. The published dataset was rather small (including fifteen 

uman and fifteen porcine pathological cases), did not target a spe- 

ific disease and no clinical data were associated. Similar challenge 

as performed on DE-MRI for the study of fibrosis at the level of 

he left ventricle ( Xiong et al., 2021 ). 

As part of the Emidec challenge (automatic Evaluation of My- 

cardial Infarction from Delayed-Enhancement Cardiac MRI, http:// 

midec.com/ ) organized during the MICCAI conference in 2020, the 

bjective of our paper is first to compare the latest methodological 

evelopments in image processing, in particular deep learning ap- 

roaches such as convolutional neural network (CNN), to automati- 

ally segment the DE-MRI exams (including non-infarct exams and 

athological cases with myocardial infarction and with or without 

ersistent microvascular obstruction (PMO)), and secondly, thanks 

o the images and associated clinical data, to automatically clas- 

ify the exams as non-infarct or pathological with hyperenhanced 

rea. One of the main strengths of our database is the association 

f clinical data with DE-MRI, simulating the routine workflow in 

mergency departments. 

. Materials and methods 

.1. DE-MRI and clinical information 

The EMIDEC dataset contains patients admitted in cardiac emer- 

ency department with symptoms of a heart attack. This dataset is 

omposed of 150 patients, each of which with a MRI exam and 

he associated clinical characteristics. The exam is a conventional 

ne acquired at the University Hospital of Dijon (France) and done 

o study the left ventricle in case of symptoms of heart attack 

nd is compound of kinetic and DE-MR images. For the DE-MRI, 

he images are acquired roughly 10 min after the injection of a 

adolinium-based contrast agent. A series of short axis slices cover 

he left ventricle from the base to the apex, allowing the accurate 
2 
d 100 cases with myocardial infarction (and then with a hyperenhanced

r inclusion in the cardiac emergency department. Along with MRI, clinical

. The obtained results issued from several works show that the automatic

eachable task (the best method providing an accuracy of 0.92), and the

myocardium is possible. However, the segmentation of the diseased area

due to the small size of these areas and the lack of contrast with the

© 2022 Elsevier B.V. All rights reserved. 

valuation of the extent of myocardial infarction. Then the number 

f acquired slices vary according to the length of the left ventri- 

le. The pixel spacing is between 1 . 25 × 1 . 25 mm 

2 and 2 × 2 mm 

2 

according to the patient), with a slice thickness of 8 mm and an 

mage gap of 10 mm. 

The shift among slices due to the patient’s breath hold was cor- 

ected and all the slices for one exam had been aligned according 

o the gravity centre of the epicardium (indeed, each individual 

lice acquisition requires to the patient to hold his breath, then 

he localisation of the heart inside the image could be shifted). 

long with the MRI, clinical and patient information were also 

ecorded. According to the French law, ethical approval number 

as not needed as data were retrospectively collected and untrace- 

ble. In particular, concerning the images, using the NIfTi format, 

ll the administrative information included in the header was dis- 

arded. Moreover, the clinical information is not specific enough to 

etrieve a patient. The patient features are characterised in Table 2 

 Lalande et al., 2020 ). A patient was considered to be in over-

eight when the body mass index (BMI) is higher than 25. The 

istory of coronary artery disease is positive when there is a previ- 

us acute cardiac event. The study of the electrocardiogram (ECG) 

llows classifying the heart attack as STEMI (ST-elevation myocar- 

ial infarction) type or not. STEMI-like myocardial infarction is the 

ost serious type of heart attack, which is characterized by a long 

nterruption of blood supply. A troponin test measures the levels of 

roponin T or troponin I proteins in the blood. These proteins are 

eleased during a myocardial infarction. Another biological marker 

s the NT-pro-brain natriuretic peptide (NTProBNP) measured in 

enous blood, and it is an indicator for the diagnosis of heart 

ailure ( Cochet et al., 2004 ). The left ventricular ejection fraction 

LVEF) is calculated in the emergency department from echocar- 

iography during the reception of the patient. Finally, Killip max 

orresponds to the maximum Killip score, which is a classification 

ased on the physical examination of patients with possible acute 

I ( Killip and Kimball, 1967 ). We can remark that the group of pa-

ients with non-pathological exams provides also abnormal values, 

ecause the mean LVEF is lower than 50%, the troponin and NT- 

roBNP levels are higher than normal. Concerning the NTProBNP, 

e can notice that the mean value is higher than for the patholog- 

http://emidec.com/
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Table 2 

Characteristics of the patient features for non-infarct exams and infarct exams. 

Patient feature non-infarct exams ( n = 50 ) infarct exams ( n = 100 ) 

Sex ∗ 38 females and 12 males 23 females and 77 males 

Age ∗ (years) [min-max] 66 ± 14 [27–88] 59 ± 12 [29–89] 

Tobacco (yes, no, former smoker) ∗ 18%, 22%, 60% 44%, 21%, 35% 

Overweight a 62% 53% 

Arterial hypertension ∗ 58% 31% 

Diabetes 20% 10% 

History of coronary artery disease 4% 12% 

ECG (ST elevation) ∗ 30% 80% 

Troponin (ng per mL) ∗ [min-max] 7 . 68 ± 12 . 91 [0–83] 101 . 04 ± 101 . 35 [0.3–420] 

Killip max (1,2,3,4) 76%, 22%, 2%, 0% 83%, 12%, 2%, 3% 

LVEF b (percentage) [min-max] 49 . 62 ± 13 . 49 % [25–70] 47 . 74 ± 13 . 17 % [20–70] 

NTProBNP c (pg per mL) [min-max] 2136 ± 3696 [3–22577] 1314 ± 2109 [14–9970] 

a If BMI > 25 . 
b Left Ventricular Ejection Fraction, calculated from transthoracic echocardiography. 
c N-terminal pro-B-type natriuretic peptide. ∗ p < 0 . 05 between the two groups from an independent t -test (null hypothesis rejected). 

Table 3 

DE-MRI evaluations of non-infarct and infarct exams according to the manual annotations. This table lists the characteristics of different tissues in the DE-MRI 

for the whole dataset. 

Tissue Non-infarct exams ( n = 50 ) Infarct exams ( n = 100 ) 

Volume (mL) a PIM (%) b Presence (%) c Volume (mL) a PIM (%) b Presence (%) c 

Myocardium 96.32 ± 22.07 – – 119.28 ± 32.28 – –

Left ventricular cavity 83.32 ± 25.27 – – 128.87 ± 48.17 – –

Myocardial infarction d 0 0 0 23.55 ± 19.28 18.25 ± 11.52 100 (79.78) 

PMO 0 0 0 2.34 ± 5.14 1.65 ± 3.03 51 (23.27) 

a Absolute tissue volume per case. 
b Percentage of Infarcted Myocardium. This index is reserved for myocardial infarction and PMO. 
c Percentage of cases where tissue is present, while the value in brackets gives the percentage of slices. 
d The PMO is included. 
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cal exams, and the standard deviation is very high, confirming the 

ariability of these cases. 

.2. Dataset and contests 

The overall dataset consists of 150 exams, with 100 cases for 

he training (67 pathological cases (or infarct cases) and 33 non- 

nfarct cases, where ground truths are provided) and 50 cases for 

he testing (33 infarct cases, 17 non-infarct cases). A case is de- 

ned as non-infarct if there is no hyperenhanced signal in any 

lice on the DE-MRI data, knowing that the patient could suffer 

rom another cardiovascular disease than MI and then get abnor- 

al clinical parameters. The dataset does not include any healthy 

olunteers for the non-infarct cases, as all patients were having 

ardiac issues and data were collected at the emergency depart- 

ent of the hospital. Therefore, a case is defined as infarct exam 

f there is an hyperenhanced signal on at least one slice. Alone 

his abnormal signal cannot discriminate between fibrosis and MI 

nd clinical information is required to make this distinction. Each 

xam is divided into two parts, a DE-MRI exam composed of a 

eries of short-axis slices and the associated clinical information 

 Lalande et al., 2020 ). For each image, the contours of the my-

cardium, as well as the contours of the infarcted area and the 

MO areas, if present, are considered as the ground truths, allow- 

ng the calculation of the main clinical metrics considering the 

hole slices for one exam. This contouring was performed firstly 

y an experienced user (a cardiologist with 10 years of experience 

n cardiology and MRI) with the QIR software (CASIS, Quetigny, 

rance) and then corrected if necessary by a second expert (a well- 

rained biophysicist with 20 years of experience). During the con- 

ouring of the endocardial border, the papillary muscles were in- 

luded in the cavity. The experts were requested to draw black 

reas surrounded by a bright area as PMO areas while discarding 
3 
lack signal due to noise or artefacts. Tissue characteristics accord- 

ng to the manual annotations can be found in Table 3 . Along with

RI, the clinical and physiological characteristics are provided. The 

MIDEC challenge contains two independent contests: the segmen- 

ation challenge and the classification challenge. The goal of the 

egmentation contest is to compare the performance of automatic 

ethods on the segmentation of the myocardium for all the DE- 

RI exams, as well as the segmentation of the myocardial infarc- 

ion and PMO areas on exams classified as infarct ones. The goal of 

he classification contest is to classify the exams as non-infarct or 

nfarct, according to the clinical data with or without the DE-MRI 

xams (two sub-challenges). In order to avoid any bias between 

he two contests, the order of the cases is different in the testing 

et, and moreover, new cases were randomly added (and similarly 

ome were removed) for the classification contest. Table 1 summa- 

izes the different participants of the EMIDEC challenge. 

.3. Evaluation metrics 

For the segmentation contest, the clinical metrics are the most 

idely used in cardiac clinical practice, i.e. the average errors for 

he volume of the myocardium of the left ventricle (mL), the vol- 

me (mL) and the percentages of MI and PMO. The geometrical 

etrics are the average Dice index for the different areas and the 

ausdorff distance (in 3D) for the myocardium. For each metric, a 

anking is done, and the final ranking consists of the sum of the 

anking for each metric. To better evaluate the segmentation re- 

ults of the PMO, the case-wise and slice-wise accuracies are ad- 

itionally calculated, but were not taken into account for the chal- 

enge ranking. For the classification contest, only classification ac- 

uracy was used. 
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. Evaluated architectures 

.1. Segmentation contest 

The main objective of the segmentation contest is to automati- 

ally provide the contours of the myocardium on each slice, as well 

s the delineation of the diseased areas. 

.1.1. Image preprocessing and data augmentation 

To ensure that semantic information in DE-MRI can be effi- 

iently interpreted by the segmentation models, some challengers 

mployed adaptive image preprocessings on the raw MR images. 

or example, image normalization aims at correcting the hetero- 

eneous intensity between cases. Yang and Wang and Feng et al. 

pplied the Z -score normalization on each slice with the following 

ormula: 

 = 

x − μ

σ
(1) 

here z is the pixel intensity after the Z -score normalization, μ the 

ean intensity at the level of the MR slice and σ the standard de- 

iation of the slice intensity. Normalized images have a grey level 

istribution with zero mean and unit standard deviation so that 

he inter-case intensity distribution is uniform. 

Exams have some slight inconsistencies in the plane dimen- 

ions. In order to ensure a uniform input shape of the predictive 

odels, challengers processed the plane dimensions of the input 

ata differently. The first type of method is cropping, e.g. Feng 

t al. cropped a fixed size in the centre of each slice. In addition

o the cropping, a linear interpolation was also performed to resize 

he images to a uniform shape (Camarasa et al.). Besides the pro- 

essing on the slice shape, some challengers also interpolated the 

mage to have a consistent pixel spacing. Thanks to the alignment 

f the slices according to the gravity center of the epicardium, no 

dditional preprocessing concerning the relative inter-slice position 

s needed if a 3D predictive model is employed by the challengers. 

The amount of training data directly affects the performance of 

upervised models. A reasonable data augmentation method can 

quivalently expand the size of the training set. Camarasa et al. 

erformed rotations, elastic deformations, and flips on slices to 

andomly produce supplementary training data while Feng et al. 

orced the model to ignore the specificity for different orienta- 

ion features by the rotations only. Lourenço et al. adjusted the 

riginal semantic information by adding stochastic noise, apply- 

ng k-space corruption, small image rotations, intensity scalings, 

nd smooth non-rigid deformations. Zhou et al. proposed another 

ata augmentation method that was based on the mix-up strategy 

 Zhang et al., 2018 ). The mix-up strategy constructs virtual training 

xamples as follows: 

˜ 
 = λx i + (1 − λ) x j (2) 

˜ 
 = λy i + (1 − λ) y j (3) 

here x i and x j are raw input vectors, y i and y j are one-hot la-

el encodings, ˜ x and ˜ y is the pair of artificially created data. λ
s a coefficient belonging to [0,1]. Based on this approach, Zhou 

t al. made a targeted improvement to make the generated images 

loser to a blend of two adjacent images. The proposed mix-up for- 

ula for the MRI augmentation is: 

˜ 
 = λx i + (1 − λ) T x j (4) 

here T denotes an affine transformation, and accordingly the 

imilar formula for the mask data augmentation. Given the greater 

ocus on the ROI (Region Of Interest corresponding to the my- 

cardium), the affine transformation T tries to fit the transforma- 

ion from the foreground area (LV+Myocardium) in a randomly 
4 
hosen slice x i to the foreground area in another randomly cho- 

en slice x j . In the affine transformation, the scaling factor, i.e. 

he linear map is [ s, s ] � where s = l i /l j , l i and l j are the average

istance from the foreground pixels to the foreground center for 

he slice i and the slice j, respectively. The translation offset is 

 c i x − c 
j 
x , c 

i 
y − c 

j 
y ] 

� where c x and c y denote the coordinates of the

oreground area centre. Thus, the matrix of T is: 
 

 

s 0 c i x − s · c j x 
0 s c i y − s · c j y 
0 0 1 

⎞ 

⎠ (5) 

.1.2. Segmentation frameworks 

Challengers employed segmentation frameworks with a differ- 

nt number of stages. Most of the challengers first delineated the 

yocardium (endocardial and epicardial borders) and then seg- 

ented the different myocardial tissues in the ROI corresponding 

o the myocardium with another model in a second step. Other 

hallengers proposed one-stage models to obtain an end-to-end 

egmentation of all the target tissues. Zhang proposed the cas- 

aded 2D–3D framework where the 2D-model’s receptive field was 

imited to intra-slice for preliminary segmentation, then the cas- 

aded 3D-model took the 2D preliminary segmentation mask and 

he whole volume for the fine segmentation. This conception aims 

t restricting the impact of intra-slice heterogeneity and taking 

nto account the volumetric information for the more accurate 

egmentation. The network configurations are inspired by nnUnet 

 Isensee et al., 2021 ). Fig. 1 shows the architecture of the cas- 

aded two-stage framework. Camarasa et al. also employed a usual 

wo-stage segmentation pipeline but the scar segmentation was 

ncertainty-based: the ROI segmented by the first model passed 

hrough a probabilistic Auto-Encoder using Monte–Carlo dropout. 

he generated uncertainty map corresponding to the segmented 

OI by the Auto-Encoder was then fed into the second model 

or the scar segmentation. This proposal was intended to assess 

hether the method could increase the attention on rare examples 

hat are otherwise poorly segmented. 

.1.3. U-Net-based encoding-decoding models 

The semantic image segmentation task can be usually treated 

ith encoding-decoding models. Most challengers employed U- 

et-based models ( Ronneberger et al., 2015 ) motivated by its suc- 

ess in many medical image segmentation work. In this subsection, 

he details of all the employed U-Net-based models will be intro- 

uced. 

Building blocks. The vanilla U-Net employs the conventional 

onvolution-pooling architecture as the basic encoding block. To 

etter interpret the semantic information, challengers attempted 

ith more recent blocks of CNNs. In the encoding branch, Yang 

nd Wang and Girum et al. applied the Squeeze-and-Excitation 

SE) block ( Hu et al., 2018 ) to better model the interdependencies 

etween channels of the convolutional features. 

On the decoding side, Inverted Residual Blocks (IRB) were em- 

loyed by Brahim et al. Selective Kernel (SK) ( Li et al., 2019 ) was

nother block employed in the decoding side by Yang and Wang. 

In addition to the above-featured building blocks, challengers 

lso tried other relatively more common blocks such as the resid- 

al block of the ResNet ( He et al., 2016 ) and its aggregated vari-

nt ResNeXt ( Xie et al., 2017 ), as well as the Inception module 

here convolutions of different receptive field interpret input fea- 

ures at the same time ( Szegedy et al., 2017 ). The attention block 

 Oktay et al., 2018 ) was also mentioned by several challengers to 

ocus on valuable features at the skip connections and the bottle- 

eck. The illustration of the featured building blocks can be found 

n Fig. 2 and more information is given about them in the supple- 

entary material. 
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Fig. 1. Cascaded 2D-3D framework of Zhang for the myocardial tissue segmentation. The 2D network on the left performs a preliminary segmentation focusing on intra-slice 

information. The 3D network on the right then takes the MRI and the obtained segmentation mask as its input. 

Fig. 2. Featured building blocks for the segmentation networks. The conceptions come from the original papers of the challengers or are slightly modified to better adapt 

the contest. a. SE-ResNet: the residual SE block, b. MobileNet V2: the IRB from MobileNet V2, c. SK Net: the SK module can be deployed in the encoding or decoding phases, 

d. Attention Gate: the attention gating from Attention U-Net should be deployed at the skip connection. The Gating signal comes from the encoding side and the input signal 

denotes the up-sampled features from the decoding side. The first two conv 1 × 1 ensure the same number of channels for the two signals of the Attention Gate. 
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Challengers also reported the use of a variety of activation func- 

ions. Like in most of the current deep learning models, the ac- 

ivation functions themselves are all non-linear equations, their 

ore functionality is to ensure that nontrivial problems can be fit- 

ed by deep neural networks. Therefore, sigmoid, rectifier (ReLU) 

 Glorot et al., 2011 ) and its leaky variant, exponential linear (ELU) 

 Clevert et al., 2016 ), Swish ( Ramachandran et al., 2017 ), etc. ac-

ivation functions were employed. Fig. 3 illustrates the deployed 

ctivation functions by challengers. 

Loss functions and penalizations. The category imbalance is sig- 

ificant in the challenge dataset, that is, the myocardial infarction 

nd the PMO have few instances in terms of the number of pixels 

s shown in Table 3 . To address this issue, challengers investigated 

ifferent loss functions such as cross entropy loss, weighted cross 

ntropy loss and Dice loss (see supplementary material for more 

etails). It can be observed that for the scar segmentation, the cat- 

gorical cross entropy loss was weighted (Zhang, Yang and Wang, 

hou et al.) while the multi-class Dice loss was not weighted 

Camarasa et al., Yang and Wang, Zhang). To leverage the cross 

ntropy loss and Dice loss, their combination termed Comboloss 

 Taghanaki et al., 2019 ) was also practiced by many challengers 

Girum et al., Yang and Wang, Zhang) for the ROI or the whole 

issues segmentation. 

Apart from the loss functions that penalize the difference be- 

ween the target and the prediction, other prior information-based 

enalizations were investigated by challengers. Brahim et al. ap- 

lied the 3D auto-encoder as a part of the loss to refine the mask 

ontours. The employment of the auto-encoder with the cardiac 

RI was first proposed by Yue et al. (2019) for the myocardium 

egmentation. In the original work, the auto-encoder learns the 2D 
5 
hape prior of the myocardium since the short-axis view of the 

eft ventricle should be a closed circle except for the extreme api- 

al and basal slices. The auto-encoder can be thought as an annex 

etwork following the segmentation network so that the loss of 

he auto-encoder takes part of the backpropagation. Similarly, with 

eference to the prior anatomical knowledge, Zhou et al. proposed 

he neighborhood penalty as a weak constraint strategy. Given the 

act that the PMO should be in contact with the infarction and the 

hole scar area inside the myocardium, this penalty encourages 

uch correlated tissues to stick together. 

Inter-slice and intra-slice information. The cardiac MR images can 

e considered as pseudo 3D data, i.e. the voxel spacing is in- 

onsistent between the in-plane and between planes. Challengers 

dopted different strategies to deal with the inter- and intra-slice 

nformation. The first one omits the inter-slice correlation, i.e. all 

he tissues are segmented from single slices whether the frame- 

ork is one-stage or two-stage (Feng et al., Girum et al., Huelle- 

rand et al., Zhou et al.). The second one only takes 3D inputs 

hile the data format organization is different. Camarasa et al. em- 

loyed a 3D CNN where the convolution kernel was 3D. Yang and 

ang treated multi-slice data as different channels, i.e. at the in- 

ut layer each channel stocked one slice and the following con- 

olutions were 2D. The major difference of the 3D data interpreta- 

ion between the 3D convolution and the 2D convolution with RGB 

hannels-like inputs is the relative positional information between 

he slices. The 2D convolution cannot distinct the slice order while 

he 3D convolution retains the inter-slice information as local vec- 

or data. The last strategy is a compromise approach (Brahim et al., 

hang): the ROI or preliminary segmentation only refers to the 

ntra-slice information and the scar or final segmentation consid- 
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Fig. 3. Deployed non-linear activation functions in the neural networks for the segmentation task. 
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rs both the intra- and inter-slice information. The purpose is to 

void the potential inter-slice heterogeneity for the myocardium or 

reliminary segmentation, and take the advantage of the inter-slice 

nformation for the scar since the recognition of different myocar- 

ial tissues relies more on their neighbouring slices. 

.1.4. Mixture model for the scar segmentation 

Apart from the U-Net-based models that most challengers 

mployed, a mixture model was proposed by Huellebrand 

t al. for the scar segmentation. The application of the mix- 

ure model on the cardiac MRI was inspired by the work of 

ennemuth et al. (2013) . The mixture model differs the scar tis- 

ues only according to the intensity distribution. The challengers 

rialed the mixture of a Rician and a Gaussian distribution and the 

ixture of Rayleigh and Gaussian distribution, and then adopted 

he latter which was proved better fitted to the scar tissues in the 

E-MRI. Finally, inspired by Hennemuth et al. (2008) , a watershed 

egmentation in high-intensity voxels was used at the inner part 

f the myocardium to get the segmented contours. 

.1.5. Post-processing 

According to prior information, challengers employed simple 

ost-processing methods. Huellebrand et al. proposed a threshold- 

ng for the segmented PMO: assuming that the PMO should be in 

ontact with the cavity or the infarction, the contours detected by 

orphological closing were removed from the raw segmentation of 

he PMO. Zhang adopted another simple treatment that removed 

ll the scattered pixels from the segmentation. 

.2. Classification contest 

The objective of the classification contest is to classify each 

xam as non-infarct or infarct, whatever the extent of the myocar- 

ial infarction. 

.2.1. Basic data interpretation algorithms 

Challengers employed a variety of machine learning-based al- 

orithms to interpret the DE-MRI and the clinical features. Pro- 

ided with the MRI, a simple down-sampling CNN as AlexNet 
6 
 Krizhevsky et al., 2012 ) encodes the images to regression or clas- 

ification outputs (Lourenço et al., Sharma et al., Shi et al.), or op- 

ionally U-Net based down-sampling up-sampling models yield the 

egmentation of different myocardial tissues so that the volume of 

ach tissue can be quantified (Girum et al., Lourenço et al.). 

To interpret the textual data of the clinical and physiologi- 

al information, the choice of predictive models is more diverse. 

he common functionality is its ability to solve non-linearly sep- 

rable problems. For example, the MultiLayer Perceptron (MLP) 

 Hinton et al., 2006 ) is a feedforward artificial neural network. In- 

uts are passed through multiple layers in which data are mapped 

ith non-linear activation functions in the forward stage (Ivantsits 

t al., Sharla et al.). The decision tree ( Quinlan, 1987 ) and the

andom forest ( Ho, 1995 ) are flow-chart-like decision models that 

onsist of nodes (Ivantsits et al., Sharma et al., Shi et al.). The ran- 

om forest corrects the overfitting habit of the decision trees by 

raining uncorrelated trees and the final decision is made by in- 

ividual trees. Boosting methods are the ensemble of sequentially 

onnected weak learners ( Breiman, 1996 ). In the context of deci- 

ion trees, the gradient boosting decision trees build a series of 

rees, which are the weak learners in this boosting method. Er- 

ors are passed between trees, with each tree attempting to re- 

uce the errors passed from the previous tree ( Friedman, 2001 ) 

Ivantsits et al.). Moreover, usual statistical models such as Sup- 

ort Vector Machine with non-linear kernel ( Scholkopf, 2001 ), k- 

earest Neighbors ( Fix and Hodges, 1989 ), the logistic regression 

 Peng et al., 2002 ) were investigated by challengers (Girum et al., 

vantsits et al., Sharma et al.). 

.2.2. Data fusion and decision about the presence of myocardial 

nfarction 

The classification contest allows challengers to take advantages 

f both the DE-MRI and the clinical and physiological data to make 

he automatic decision. However, the different format and dimen- 

ion between the images and the textual data constrain the de- 

ision with a single predictive model. Data fusion is therefore a 

hallenging issue to achieve the maximum semantic information. 

irum et al., Lourenço et al. and Shi et al. deployed the same strat- 

gy of predicting the volumes of different tissues as additional 

extual features alongside the 12 clinical and physiological fea- 
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Fig. 4. Proposed multi-input classification pipelines by challengers for the classification contest. 
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ures. Nevertheless, the volume estimation and the decision mak- 

ng models are different among these approaches. Lourenço et al. 

nd Girum et al. employed U-Net-based models to get the segmen- 

ation, while Shi et al. performed an encoding CNN to directly get 

he surface regression. Apart from the surface regression methods, 

he concatenation of the surface information to other textual fea- 

ures was also variable. Lourenço et al. added the volumes of all 

yocardial tissues as four additional textual features. Girum et al. 

nly considered if the case is an infarct exam as one additional 

oolean feature and Shi et al. referred to the infarction volume as 

ne additional numerical feature. Ivantsits et al. tried to interpret 

he DE-MRI as textual information as well. However, the obtained 

extual information was radiomic features ( Cetin et al., 2018 ) in- 

tead of the volume of the tissues. The radiomic features inter- 

reted from the DE-MRI were intended to model the myocardial 
Table 4 

Principal concepts of the methods for the segmentation contest. 

Challenger(s) Framework Methods 

Brahim et al. Two-stages Myocardium: 2D U-Net with Attention and IRB

Infarct: 3D U-Net variant 

Camarasa et al. Two-stages Myocardium: 3D U-Net variant 

Infarct: 3D U-Net variant 

Feng et al. One-stage 2D U-Net with dilated convolution 

Girum et al. Two-stages Myocardium: 2D U-Net with SE block 

Infarct: 2D U-Net with SE block 

Huellebrand et al. Two-stages Myocardium: 2D U-Net variant 

Infarct: mixture model 

Yang et al. One-stage 2D U-Net with SE and SK blocks 

Zhang Two-stages Preliminary: 2D U-Net variant 

Definitive: 3D U-Net variant 

Zhou et al. One-stage 2D U-Net with Attention 

7 
eatures such as the intensity, shape, and spatial characteristics. 

n practice, Ivantsits et al. investigated the shape and the Gray 

evel Co-occurrence Matrix (GLCM) that described the second- 

rder joint probability function of an image region as the exper- 

mental radiomic features. Sharma et al. proposed a stacked multi- 

odal approach without obtaining intermediate data such as the 

nfarct volume or the radiomics features. The classifications were 

rst achieved by a series of statistical models and a multi-modal 

NN. Then the individual classifications were fed into an MLP to 

et the final decision. The application of the series of classification 

odels could be thought as a boosting method and the models in- 

ide played the role of weak classifiers since their decisions would 

e judged together with the CNN’s output by the MLP at the end 

f the proposal. All the diagrams of the classification pipelines can 

e found in Fig. 4 . 
Highlights 

 3D Auto-encoder to perfect myocardium shape 

Uncertainty myocardial area generated by probabilistic auto-encoder for 

infarct segmentation 

Data augmentation with additional scar tissues 

Independent myocardium and infarct segmentation from non-cropped 

MRI 

Transfer learning with cine-MRI 

Post-processing with thresholding and morphological closing 

RGB channel-like adjacent slices input 

Two decoder branches supervised by myocardium and infarct masks 

3D MRI with cascaded 2D segmentation as 3D input 

Data augmentation with mix-up strategy Neighborhood penalty as 

neighboring loss 
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Table 6 

Segmentation of the MI considering the different coronary arteries. The differ- 

ence of the PIM between the prediction and the ground truth is evaluated ac- 

cording to LAD, RCA and LCX. Best results in bold. There is no statistical differ- 

ence between the arteries whatever the challenger(s) (ANOVA test). 

Challenger(s) Difference in the PIM (%) 

LAD RCA LCX 

Zhang 3.31 1.90 2.02 

Feng et al. 3.59 3.34 2.74 

Yang et al. 5.56 3.62 2.64 

Huellebrand et al. 4.37 4.69 5.14 

Camarasa et al. 5.81 3.15 4.60 

Zhou et al. 4.28 5.26 3.12 

Brahim et al. 8.86 5.83 5.82 

Girum et al. 12.00 7.51 5.93 
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8 
. Results 

The results were obtained on the datasets used during the test- 

ng phase of the final challenge session. 

.1. Segmentation contest 

Table 4 shows the key conception details of the segmentation 

ontest challengers. In Table 5 the evaluation results of each target 

issue are provided. Results reveal that the myocardium segmen- 

ation is globally satisfying while the infarction is relatively chal- 

enging to be correctly predicted. The metrics of Dice and volumes 

sed during the challenge for the PMO segmentation may not be 

onsistent since the PMO only represents a very small volume of 

he data. Indeed, a total absence of PMO on all the images seem- 

ngly provides correct results with Dice index or volumes. In con- 

rast, the accuracy highlights the efficiency of the different meth- 

ds to detect PMO areas. Moreover, segmentation results by slice 

osition can be found in the supplementary material for all the 

articipants. Apart from the evaluation by tissue for the whole my- 

cardium, the impact of myocardium infarction by coronary artery 

re also assessed to better take into account the cardiac anatomy. 

able 6 shows the difference of the percentage of infarcted my- 

cardium between the predictions and the ground truth, according 

o the myocardial areas supplied by the Left Anterior Descending 

rtery (LAD), the Right Coronary Artery (RCA) and the Left Cir- 

umfleX artery (LCX), considering the initial 17 segments’ model 

f Cerqueira et al. (2002) . One can notice that the worst results 

re generally obtained for the LAD and there is not a large differ- 

nce between the results obtained for the RCA and LCX. To verify 

hether there is a statistical difference between the groups, a one- 

ay ANOVA test was used and a p -value less than 0.05 was con- 

idered significant. The differences between the 3 groups are not 

ignificant, although there is a trend for Yang and Wang ( p = 0 . 06 )

nd Girum et al. ( p = 0 . 08 ). 

To intuitively present the state-of-the-art segmentation results 

nd the challenges to be overcome, segmentation masks from dif- 

erent challengers on five typical slices are selected. Fig. 5 covers 

he selected MRI slices and theirs ground truth masks, showing for 

ach slice two well-performed segmentations and two segmenta- 

ions to optimize. Here are the details: 

1. Slice A is close to the apex. Therefore only a small part of 

the right ventricle appears in this slice (blue arrow). Methods 

on rows 1 and 2 successfully delineated the junction between 

the left and the right ventricles, while method on row 3 over- 

estimated the right ventricle and method on row 4 wrongly 

segmented the right ventricle as a small infarct (yellow arrows). 
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Fig. 5. Segmentation results on five challenging slices. Rows 1 and 2 denote satisfying segmentation results, rows 3 and 4 denote segmentations to be optimized. Columns 

A-E denote five slices from different testing cases. The masks in each row may come from different challengers. Blue arrows highlight difficult areas to detect (low contrast, 

presence of artifact, etc.). Yellow arrows show differences between challengers for specific segments. Cardiac cavity in red, normal myocardium in green, myocardial infarction 

in blue and PMO in yellow. See details in the text. 
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2. Slice B involves an infarct that connects the cavity (blue arrow). 

Methods on rows 3 and 4 failed due to the low contrast and 

narrow width of the infarct. 

3. Scar tissues in slice C have a broken shape: On the upper 

side, the scar tissues and the normal myocardium intersperses. 

The interspersed area was wrongly segmented as normal my- 

ocardium on rows 3 and 4 (yellow arrows). 

4. Slice D involves an important PMO area. Although the best 

adaptive approaches recognized the existence of the PMO, a 

part of the PMO area was segmented as the normal my- 

ocardium (row 1) or the infarct was over-estimated (row 2). 

Most of the other challengers wrongly segmented the infarct 

wrapping the PMO as the adipose tissue on the lateral segment 

of the myocardium (yellow arrows in rows 3 and 4). 

5. Slice E involves an artifact (blue arrow). Reassuringly, for most 

challengers, the presence of this artifact on the myocardium did 

not interfere the segmentation while some challengers made 

atypical errors on this slice. 

In addition, the segmentations of all challengers on all the slices 

f one entire exam are provided in the supplementary material. 
9 
.2. Classification contest 

The classification contest results are listed in Table 7 . The best 

esults were achieved on the merged textual and graphical data. 

ourenço et al., Girum et al. and Shi et al. also submitted their 

lassification results relying on sole textual data. The achieved ac- 

uracy on the textual data were 70%, 78%, and 74% respectively, 

hich were significantly outperformed by their model with data 

usion in Table 7 (82%, 82%, and 92% respectively). The best method 

ailed only on 3 cases among 50, which we can consider as an ex- 

ellent result. 

. Discussion 

.1. Challenge results 

The overall challenge results were satisfactory. For the segmen- 

ation task, the best method obtained a Dice score of 0.879 for the 

yocardium and of 0.712 for the infarction area. However, com- 

ared to the myocardium, scar tissue segmentation still proved to 

e a daunting task. Methods incorporating complex pipelines or 
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Table 7 

Results of the classification contest. Best results in bold. 

Challengers Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) 

Lourenço et al. 87.88 70.59 85.29 82 

Ivantsits et al. 72.73 82.35 88.89 76 

Sharma et al. 72.73 41.18 70.59 62 

Girum et al. a 78.79 88.24 92.86 82 

Shi et al. a 90.91 94.12 96.77 92 

a Co-authors come from the challenge organization team. Do not participate in rankings. 
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a

n important amount of parameters did not always show supe- 

iority in the results. The best segmentation approach employed 

wo conventional U-Net variants and the configurations of nnU- 

et ( Isensee et al., 2021 ) where the first was in 2D and the sec-

nd was in 3D (Zhang). All the challengers employed U-Net-based 

odels (in 2D or 3D), and V-Net ( Milletari et al., 2016 ) architec-

ure could also be considered in order to exploit the 3D nature 

f the data. We can notice that the segmentation of the MI is a 

ittle bit different according to the considered coronary artery. In- 

eed, it seems that most of the proposed approaches get more 

ifficulties to segment MI at the level of the LAD, maybe due to 

 more complex pathway of this artery. However, the difference 

etween the results according to the three main coronary arter- 

es are not significant. The best pathology classification accuracy 

s of 92%. This method employed an encoding CNN to predict the 

car volume from the MRI, then concatenated the intermediate vol- 

me prediction to other textual features for the final classification. 

onsidering Table 3 , we could make the hypothesis that obtaining 

olely the volumes of the myocardium and of the cavity from a ro- 

ust segmentation process is sufficient for the classification task. 

ut there is an important overlap of the values between the two 

roups, rendering this approach not robust. Therefore, it could be 

ssumed that an adaptive approach works more efficiently than 

ttempting heavy networks. The depth of MRI and patient fea- 

ures’ semantic information is much less than the data dedicated 

or human environment applications such as MS COCO and KITTI 

atasets ( Lin et al., 2014; Geiger et al., 2013 ). Unless the appear-

nce of a revolutionary new approach, a better adaptation incor- 

orating the adequate architecture, preprocessing, training and in- 

erence etc. should be a more robust and generalized solution in 

he domain of medical data. 

.2. Inter-slice correlation 

As discussed by many challengers in the segmentation contest 

Feng et al., Yang and Wang, Zhang), the inter-slice information is 

eaningful but tricky. Anatomical facts confirm the correlation be- 

ween slices, but the cardiac MRI acquisition involves anisotropic 

oxel size and variable numbers of slices. Such facts require chal- 

engers to weigh up the pros and cons about the use of the inter- 

lice correlation. The winner (Zhang) justified his trade-off such as 

he preliminary segmentation relied only on the intra-slice infor- 

ation and the final segmentation extends the receptive field to 

he inter-slice information. This approach reproduces the clinical 

ractice: for most of the cases, considering a single slice is suffi- 

ient, but to distinguish the infarction and especially the PMO, the 

eighboring slices should be referred by physicians in case of am- 

iguity. 

.3. Gating and attention mechanism 

The attention mechanism ( Vaswani et al., 2017 ) has become 

 popular topic from serial data as Natural Language Processing 

NLP) to computer vision tasks. The attention in neural networks 

imics cognitive attention: valuable information should be en- 

anced and redundant information will be faded out. The attention 
10 
an be applied to relatively concrete data such as the skip connec- 

ions ( Oktay et al., 2018 ), or inside a convolutional block for more 

bstract gating such as SE block and IRB (cf. Section 3.1.3 ). Unfor- 

unately, according to the challenge results, the approaches em- 

loying the attention mechanism did not prove to outperform the 

anilla U-Net or U-Net with conventional building blocks, although 

ome challengers reported its advantage on their split validation 

et. An ablation study of the attention-based blocks on the state- 

f-the-art pipeline for the segmentation contest should be worth- 

hile in future work. 

.4. False segmentation and loss functions 

Challengers, especially of the segmentation contest, have taken 

ote on the class imbalance issue. The scar tissues represent a 

mall number of instances in the dataset. The majority of chal- 

engers employed basically the weighted cross entropy loss, and 

ptionally the Dice loss or generalized Dice loss ( Sudre et al., 2017 ).

he Dice loss solves the pixel-wise class imbalance problem. How- 

ver, the vanilla Dice loss does not address the image-wise or the 

atch-wise imbalance, namely the scar tissues only exist in few 

mages, especially the PMO. Without the weighting, the Dice loss 

ould still suffer from the image-wise imbalance issue: the pre- 

ictive model would easily assume that such targets do not exist at 

ll, as they do in most batches. It could explain the fact that some 

hallengers under-estimated the scar tissues if they employed the 

on-weighted multi-class Dice loss, in other words, the generalized 

ice loss with equal class weight. 

.5. Data variance 

Challengers investigated a variety of data augmentation meth- 

ds. Such methods have been widely approved for the applications 

n short of training data. Nevertheless, the generated data should 

ollow the distribution of the original data, thus completely new 

eatures should not be produced. According to this hypothesis, data 

ugmentations such as elastic deformation and mix-up should be 

pplied with caution. Overall, the generated features represent a 

uzzy concept, only experiments can determinate if the features 

re bias or not. Besides the data augmentation, another approach 

hat may increase the data variance of the training data is trans- 

er learning. Some challengers reported the employment of trans- 

er learning with cine MRI from the ACDC dataset ( Bernard et al., 

018 ). The cine MRI and the DE-MRI are different acquisition tech- 

iques, but both in short axis orientation of the left ventricle. Al- 

hough the challengers limited the transfer learning on only the 

yocardium delineation, any approach that may significantly al- 

er the learning characteristics of the model should be undertaken 

ith caution. 

.6. Clinical implications 

Artificial intelligence can help make cardiovascular MRI more 

ccessible (for both the segmentation of areas of interest and the 
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lassification of the exams), since every clinical center has the ex- 

ertise to analysis cardiovascular MRI. Specialized department re- 

ies on highly trained cardiologist to analyse and produce reports 

f these exams. However, these are usually limited to high vol- 

me tertiary centers. Evaluation of the presence and the extent 

f the myocardial infarction (with or without PMO) stays crucial 

n the evaluation of the myocardial viability. The visual estimation 

y physicians remains the routine approach, although an accurate 

utomatic prediction of the exams as an objective evaluation of 

he volume and the percentage of diseased myocardium would im- 

rove the diagnosis and prognosis steps. Automatic classification 

llows reducing the time used to do the diagnosis and reduce the 

nter-expert variability. However, classification software considered 

s “black box” must be validated on a large and diverse dataset 

n order to be accepted in clinical use. Moreover, the segmenta- 

ion of the different areas must be done with high accuracy and 

obustness. Results suggest that automatic myocardial segmenta- 

ion is now a possible task, but the segmentation of diseased areas 

eeds further development before being integrated into software 

olutions used in clinical practice. Moreover, in this work, only 

yocardial infarction is considered, and the proposed approaches 

ust also be tested on other pathologies that involve an abnormal 

ignal in DE-MRI, such as myocarditis or hypertrophic cardiomy- 

pathy. 

. Conclusion 

DE-MRI is a non-invasive technique providing the assessment of 

yocardial viability, but it still requires an automatic processing to 

et objective values of the presence and extent of the disease. In 

his paper, we have shown that the automatic classification of an 

xam between non-infarct or infarct exam is possible. Moreover, 

he best U-Net based methods provide an accurate delineation of 

he myocardium. However, the segmentation of the myocardial in- 

arction and particularly that of the PMO area remains challenging, 

equiring further development to provide the extent of the infarc- 

ion in a robust manner. These limitations are certainly due to the 

mall size of the disease areas (and then due to the imbalance is- 

ue) as the lack of contrast with the surrounding structures. 
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