
HAL Id: hal-03682485
https://hal.science/hal-03682485

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Optimal Activation of Processors for the
Execution of a Single Task with Unknown Size

Jonatha Anselmi, Bruno Gaujal

To cite this version:
Jonatha Anselmi, Bruno Gaujal. Energy Optimal Activation of Processors for the Execution of a Single
Task with Unknown Size. 30th International Symposium on the Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, Oct 2022, Nice, France. �hal-03682485�

https://hal.science/hal-03682485
https://hal.archives-ouvertes.fr

Energy Optimal Activation of Processors for the
Execution of a Single Task with Unknown Size

Jonatha Anselmi
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Grenoble, 38000, France
jonatha.anselmi@inria.fr

Bruno Gaujal
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Grenoble, 38000, France
bruno.gaujal@inria.fr

Abstract—A key objective in the management of modern
computer systems consists in minimizing the electrical energy
consumed by processing resources while satisfying certain target
performance criteria. In this paper, we consider the execution
of a single task with unknown size on top of a service system
that offers a limited number of processing speeds, say N , and
investigate the problem of finding a speed profile that minimizes
the resulting energy consumption subject to a deadline constraint.
Existing works mainly investigated this problem when speed
profiles are continuous functions. In contrast, the novelty of
our work is to consider discontinuous speed profiles, i.e., a case
that arises naturally when the underlying computational platform
offers a finite number of speeds.

In our main result, we show that the computation of an
optimal speed profile boils down to solving a convex optimization
problem. Under mild assumptions, for such convex optimization
we prove some structural results that yield the formulation of an
extremely efficient solution algorithm. Specifically, we show that
the optimal speed profile can be computed by solving O(logN)
one-dimensional equations. Our results hold when the task size
follows a known probability distribution function and the set of
available speeds, if listed in increasing order, forms a sublinear
concave sequence.

Index Terms—Energy minimization, GPU cluster, optimal
speed, convex programming, parallel computing

I. INTRODUCTION

To handle the demand induced by current deep learning
technologies and applications, which affect several aspects
of our daily life, AI companies and cloud providers are
increasingly relying on large-scale GPU clusters. The electrical
energy consumed by such systems has become a dominant
issue because of its enormous financial and environmental
impact [2]–[4]. In this context, a key objective consists in
minimizing the energy consumed by processing resources such
as CPUs or GPUs while satisfying some target user-perceived
performance criteria. In this paper, we consider the execution
of a single task on top of a processing system composed
of N processors and investigate how to design a scheduler that
dynamically activates the optimal number of processors at any
point in time. Here, optimality refers to minimizing the overall
electrical energy consumed by executing the task subject to a
deadline constraint. In cloud and super computing, distributing
a task over multiple processors is a common practice. Within

This work is supported by the French National Research Agency in the
framework of the “Investissements d’avenir” program (ANR-15-IDEX-02) and
the LabEx PERSYVAL (ANR-11-LABX-0025-01).

machine learning tasks like TensorFlow, which are highly
parallel, the number of processors used by a single task can
vary by five orders of magnitude. This has been recently
confirmed in a real trace from Google’s Borg scheduler [12].
We also consider the realistic case where i) the processor
speed-up function is sublinear and concave [14], and ii) the
scheduler does not know in advance the exact size of the task,
though we assume that it knows its probability distribution
function. The N -processors assumption is a mere modeling
abstraction as our framework only requires that the underlying
computational platform offers a finite number of speeds. This
case can be met even within a single CPU provided that it is
compatible with Dynamic Voltage Frequency Scaling (DVFS)
technologies.

A. Relevant Related Work

In the literature, the problem of minimizing the energy
consumption induced by task executions while satisfying real-
time constraints has been investigated in several contexts
depending on the information available to the scheduler and
the type of computing resources. Without being exhaustive,
our goal here is to provide a high-level review of the state of
the art highlighting the difference with respect to our work.

The work closest to our own is [10], which considers
the execution of a single task as we do but when i) the
speeds available to the scheduler form an interval of the real
numbers and ii) the power consumption under speed s is of
the form P (s) = sα with α > 2. Within these assumptions,
the optimal speed profile admits an elegant “closed-form”
expression. The “continuous speeds” assumption is justified by
DVFS technologies as these allow the scheduler to change the
current speed by changing the current CPU voltage. In practice
however, processors may offer only a fixed, limited set of valid
speeds, and in this case the solution in [10] does not extend to
discrete speeds (as also mentioned in that reference). However,
the following sub-optimal heuristic is proposed to handle in
this case: “solve the continuous case and then use the closest
discrete speed available to the scheduler”. Unfortunately, it is
not known how to bound the gap to the optimal solution, as
also specified in [10, Section 8.4]. An additional difference of
our work with respect to [10] is that we put milder assumptions
on the structure of the power consumption as a function of
the processing speed; our framework includes functions of the

form P (s) = sα but also all increasing convex functions such
that P (0) = 0.

Other relevant related scenarios consider the case where
the given task is composed of a stream of sporadic jobs
all with known sizes, arrival times and deadlines. Here, the
problem of designing an algorithm for the optimal speed
profile, or the number of active processors to use at any point
in time, has been solved in a series of papers, with improving
complexity [8], [9], [13]. In this online clairvoyant case, where
the size and deadline of each job are revealed at the arrival
time of the task, the problem can be formulated as a Markov
Decision process and has been solved in [7] resp. [1] when
the deadlines are hard resp. soft.

B. Contribution
Within the framework described above, our main contribu-

tion is to show that optimal speed profiles, or equivalently
the number of processors to use at any point in time, are
given by the solution of a convex optimization problem (see
Theorem 1). This holds true when the task size follows an arbi-
trary probability distribution function and when the processor
speed-up function is sublinear and concave. These speed-up
function assumptions are common and justified because the
process of distributing a single task over multiple processors
usually implies some resource contention phenomena, and this
slows down the computation [14]. When the distribution of
the task size is continuous and power consumption function
is strictly convex, we use this convex optimization problem
to show that optimal speed profiles possess the following
structural properties: i) there exists a unique optimal speed
profile, ii) the optimal speed profile is increasing, which
means that the task execution accelerates over time, and iii)
the optimal speed profile uses a set of consecutive speeds.
Property ii) is intuitive and also holds within the continuous-
speed framework considered in [10]. Property iii) yields the
formulation of an extremely efficient solution algorithm (see
Algorithm 1). Specifically, we show that the optimal speed
profile can be computed by solving O(logN) one-dimensional
equations. The proposed algorithm is particularly useful to
speed up the computation of an optimal profile in the context
of machine learning tasks, as the number of processors used
in this setting, and thus the number of available speeds, can
vary by five orders of magnitude [12], e.g., N ∈ {1, . . . , 105}.

C. Organization
This paper is organized as follows. In Section II, we

describe our framework and define our energy minimization
problem. In Section III, we show that the considered energy
minimization problem belongs to the framework of convex
programming. In Section IV, we propose Algorithm 1 for the
efficient computation of the optimal speed profile. Finally, in
Section VI, we draw the conclusions of our work and discuss
some generalizations of our results.

II. ENERGY MINIMIZATION FRAMEWORK

The energy minimization framework that we investigate in
the following is composed of the following components.

A. Processors

The underlying computational platform is composed of a
finite number of identical processors, say N . Each processor
operates with unitary speed, e.g., one work unit per second.
By scaling work units, this assumption is not a loss of gen-
erality. When active resp. inactive, each processor consumes
power Pon, resp. Poff . In other words, if a processor is active in
a time interval [t, t′], then its energy consumption is (t′−t)Pon.

B. Tasks

A task is a sequence of unitary operations of random size W
(the total amount of work) that arrives at time zero. Only
statistical information are known about the task size W . In
particular, it is known its size probability distribution function
F (w) := P(W ≤ w), the probability that the task size is no
more than w. Let also F c(w) := P(W > w). We allow F
to be discontinuous, though in some of our results we will
require F to be continuous, which implies that W admits
a density function. The continuity assumption will simplify
the numerical computation of an optimal speed profile. We
also assume that the support of W is [Wmin,Wmax], where
Wmin ≥ 0 and Wmax < ∞ are the minimum and maximum
task sizes, respectively. Finally, we impose the following hard
real-time constraint: the task must be completed before a
deadline D. This deadline must satisfy a feasibility constraint
that will be discussed below.

C. Scheduler

The given task can be executed on multiple processors at the
same time. The role of the scheduler is to allocate processors
to the execution of the task at any point in time. The number
of active processors may be changed at any time and we
assume that these changes are immediate and do not incur
any additional energy cost; for instance, ramp-up and/or speed
change effects are neglected. The information available to the
scheduler is:
• The deadline D (the task must be completed before D);
• The task size distribution (with support [Wmin,Wmax]);
• The effective speed sn of execution when n processors

are active, for all n = 1, . . . , N ;
• The power dissipation P (sn) when n processors are

active, for all n = 1, . . . , N ;
• The current executed work w.
The whole process stops as soon as the task is complete

and all processors are put to rest immediately. Of course, the
scheduler does not know when this is going to happen since
it does not know the actual size of the task W .

We denote by sn = dw/dt the overall processing speed
when allocating n processors to the task. The function sn is
often called the speed-up function of the task and measures its
scalability, or degree of parallelism. We assume that (sn)n is
non-decreasing and that sn+1− sn is non-increasing. Thus, at
higher speed, the work performed by unit of energy is lower,
i.e., more energy is required to perform a fixed amount of
work. These “diminishing returns” assumption is natural to
model the overheads induced by parallel computations [14].

We assume that the (instantaneous) power consumption
when operating at speed sn, for n = 1, . . . , N , is

P (sn) := nPon+(N−n)Pidle = n(Pon−Pidle)+NPidle, (1)

where Pon is the (instantaneous) power consumption of a
processor turned on and Pidle is the power consumption
when the node is idle. We let Pidle ≤ Pon, and thus P (sn)
is increasing in n. We also assume P (0) = 0, which is
equivalent to assume that the system is at complete rest when
no processor is active.

Let also P∆ = Pon − Pidle and Poff = NPidle. Given that
the speed-up sequence (sn)n has non-increasing increments,
P (s) is convex as long as s2(P∆ + Poff) ≤ s1(2P∆ + Poff),
with strict inequality holding as long as P (s) is strictly convex.
The latter inequality, which will be implicitly assumed in the
following, holds true as long as Poff is not too large and/or
the speed-up is low enough.

Since the scheduler does not know the size of the task in
advance, it is natural to take decisions as a function of w (the
work already executed) instead of as a function of time, as
done in [10]. To see this, let us consider Figure 1, where speed
s1 is used for the first w1 cycles, s2 from w1 to w2 cycles and
so forth. The first curve shows the cumulative amount of work

t
• • • ••

D

w

•

•

•

•

•Wmax

•

•

•

•

•
w(t)

w
• • • • •

w1 w2 w3Wmax

t

•

•
•
••D

•

•
•
• •
τ(w)

Figure 1. The function w(t) is the cumulative work executed by time t under
a given schedule (left) and τ(w) is the time needed to execute work w under
the same schedule (right). The speed is the slope in the left figure and the
inverse of the slope in the right one.

w(t) executed by this schedule up to time t while the second
curve shows τ(w), the time needed to execute w amount of
work under the same schedule. The slope of the first curve
is the current speed while the slope of the second one is the
inverse of the current speed (as a function of w).

D. Objective Function

Let us define the following quantities:

• w := w(t), the amount of work executed at time t;
• s := s(w) ∈ {s1, . . . , sN}, the speed used once exactly w

work units have been executed, w ∈ [0,Wmax];
• Q(s), the power consumption per unit of work when

operating at speed s.

We have

Q(s) := P (s)
dt

dw
=
P (s)

s
, (2)

where derivatives are always intended as right derivatives.
Since P (0) = 0 and P is convex, we notice that Q is non-
decreasing.

Our objective is to find a speed profile s : [0,Wmax] →
{s1, . . . , sN} that minimizes the mean energy consumption
to execute the given job constrained by the deadline D. The
mean energy consumption under speed profile s is defined by
the following formula. By conditioning on the size (W = w)
of the task, we get

E(s) :=

∫ Wmax

0

(∫ w

0

Q(s(x)) dx

)
dPW (w) (3)

=

∫ Wmax

0

Q(s(x))

(∫ Wmax

x

dPW (w)

)
dx (4)

=

∫ Wmax

0

F c(x)Q(s(x)) dx (5)

where the second equality follows by changing the order of
integration. Therefore, our objective is to solve the following
infinite-dimensional optimization problem:

min
s:[0,Wmax]→{s1,...,sN}

∫ Wmax

0

Q(s(w))F c(w) dw (6)

subject to:
∫ Wmax

0

dw

s(w)
≤ D. (7)

Note that the constraint in (7) simply states that the job has
to be completed before the deadline D. To see this, let τ(w)
denote the time to execute the first w epochs, as in Figure 1.
Then,

dτ(w)

dw
=

1

s(w)
(8)

and integrating both sides and using that τ(0) = 0 and that
τ(Wmax) ≤ D, we obtain (7).

The constraint (7) can be replaced by an equality without
any loss of generality because a schedule that finishes before
time t can always be delayed and start at time t0 > 0 to
reach D exactly; see Figure 2. This shows that such a schedule

t
• • • •• •

D

w

•

•

•

•

•Wmax

•

•

•

•

•
w(t)

t
• • • ••

Dt0

w

•

•

•

•

•Wmax

•

•

•

•

•
w′(t)

Figure 2. Shifting the starting time to reach D.

is suboptimal, as an optimal schedule will always start with
active processors from time zero.

The problem (6)-(7) is feasible if

D ≥ Wmax

sN
. (9)

Indeed, when the scheduler uses its maximal speed from the
start, it must be able to complete the largest possible job before
the deadline D. This condition is assumed to be true in the
rest of the paper. As a side remark, notice that if the processor
has no slack (DsN = Wmax), then the solution is trivial:
use all processors from the start, as long as the probability
P(W ≥ Wmax − ε) > 0 , for all ε > 0. Dually, if D is so
large that using a single processor is enough to always satisfy
the constraint (D > Wmax/s1), then the solution is also trivial:
use a single processor from the start. Thus, we also assume
that D ≤Wmax/s1 to make sure the constraint (7) is satisfied
as an equality under the optimal solution.

III. A CONVEX PROGRAMMING SOLUTION

Since the scheduler has a finite set of possibilities at each w,
its decisions split [0,Wmax] into a set of intervals such that
in each interval, the speed is constant. In general, the same
number n of processors can be used in several intervals, but
we will show in Proposition 2 that the optimal schedule uses
an increasing number of processors with w. Therefore, an
optimal schedule can be seen as a set of N − 1 decisions
points x0 = 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN−1 ≤ xN = Wmax

such that n processors are used in the interval [xn−1, xn].
With this property, the optimization of interest in (6)-(7) can
be transformed into the following optimization problem:

min
xi, i=1,...,N−1

N∑
i=1

Q(si)

∫ xi

xi−1

F c(w)dw (10a)

subject to:
N∑
i=1

xi − xi−1

si
≤ D (10b)

xi ≤ xi+1, ∀i = 0, . . . , N − 1.
(10c)

where x0 = 0 and xN = Wmax. This optimization yields
speed profiles where at most N − 1 changes of speed are
allowed. Specifically, the i-th change is performed when the
amount of executed work reaches xi, and within the interval
[xi−1, xi), the speed is si. Thus, if xi−1 = xi, then speed si
is never used.

Proposition 1. The optimization problem (10) is convex, with
a differentiable objective function when F is continuous. In
addition, if F is strictly increasing, then it is strictly convex.

Proof. Let F̄ :=
∫
F c(w)dw. Note that the objective in (10a)

can be written as

Q(sN)F̄ (xN)−Q(s1)F̄ (x0) +

N−1∑
i=1

(Q(si)−Q(si+1))F̄ (xi)

(11)

Here, we note that F̄ (w) is concave because F c(w) is
positive non-increasing. Within the assumptions on the sn’s,
Q(si) < Q(si+1), and given that the sum of convex functions
is convex, the optimization (10a)-(10c) is convex. In addition,
if F is strictly increasing, then F̄ (w) is strictly concave and
the optimization (10a)-(10c) is strictly convex. Finally, the

differentiability of the objective function follows by the fact
that F is continuous.

Therefore, an optimizer of (10) can be computed efficiently
by using existing algorithms from optimization theory such as
the interior point method, which are guaranteed to converge
to an optimal solution; see, e.g., [5].

The next theorem, our main result, connects the optimiza-
tion (10) with the original optimization (6)-(7). It shows that
any speed profile induced by the former also solves the latter.

Theorem 1. Let s∗ be a speed profile such that

s∗(w) = si if and only if w ∈ [x∗i−1, x
∗
i) (12)

where x∗ solves (10), for all i = 1, . . . , N . Then, E(s∗) is an
optimal schedule.

Proof. First, we show in the following proposition that we can
restrict to non-decreasing speed profiles, i.e., s∗(w) is non-
decreasing.

Proposition 2. Any optimizer s of (6)-(7) is non-decreasing.

Proof. We show that we can always improve a profile that
is not non-decreasing. This means that, if we denote by s a
feasible speed profile which is not non-decreasing, we can
always find another feasible speed profile s′ different from s
such that E(s′) ≤ E(s).

Let s be a feasible speed profile such that s(w) = sk when
w ∈ [wa, wb) and s(w) = sh when w ∈ [wb, wc), for some
wa, wb and wc such that 0 ≤ wa < wb < wc ≤ Wmax

and for some k ∈ {2, . . . , N} and h < k. Now, consider a
new feasible speed profile s′ that is identical to s outside the
interval [wa, wc) and such that s′(w) = sh when w ∈ [wa, w

′
b)

and s′(w) = sk when w ∈ [w′b, wc), for some w′b. Note that
there exists a unique choice for w′b and necessarily w′b < wb;
see Figure III.

•
wa

•
wb

•
w′b

•
wc w

t

•

1
sh

•

1
sk •

τ ′(w)

• 1
sk

•

1
sh

•

τ(w)

Figure 3. Execution time functions τ(w) and τ ′(w) corresponding to
schedules s and s′ respectively.

Let

E(s) :=

∫ W

0

Q(s(w)) dw (13)

be the random variable denoting the energy consumption under
speed profile s for a task of size W . We have the following
cases
• If W < wa, then E(s) = E(s′);
• If W ∈ [wa, w

′
b), then Q(sk) > Q(sh) implies

E(s) =

∫ wa

0

Q(s(w)) dw +Q(sk)(W − wa)

>

∫ wa

0

Q(s(w)) dw +Q(sh)(W − wa)

= E(s′)

• If W ∈ [w′b, wb), then Q(sk) > Q(sh) implies

E(s) =

∫ wa

0

Q(s(w)) dw +Q(sk)(W − wa)

>

∫ wa

0

Q(s(w)) dw +Q(sh)(w′b − wa)

+Q(sk)(W − w′b)
= E(s′).

• If W ∈ [wb, wc), then

E(s) =

∫ wa

0

Q(s(w)) dw +Q(sk)(w′b − wa)

+Q(sk)(wb − w′b) +Q(sh)(W − wb)

>

∫ wa

0

Q(s(w)) dw +Q(sh)(w′b − wa)

+Q(sk)(wb − w′b) +Q(sk)(W − wb)
= E(s′)

where the inequality follows because w′b − wa = wc −
wb > W − wb.

• If W > wc, then E(s) = E(s′) because the time to
execute the first wc epochs is identical within s and s′,
and because s(w) = s′(w) when w ≥ wc.

Since E(s) ≥ E(s′), then s cannot optimize (6)-(7).

The main consequence of Proposition 2 is that we can
restrict to speed profiles that change speed at most N − 1
times. Thus, let xi ∈ [0,Wmax] for all i = 1, . . . , N − 1
be the points of the task size where the speed is allowed to
change, with xi ≤ xi+1. Let also x0 := 0 and xN := Wmax.
The interpretation is that the work in the interval [xi−1, xi)
is performed with speed si, for all i = 1, . . . , N . Within this
setting, s(w) is a cadlag piece-wise constant function and

E(s) =

N∑
i=1

Q(si)

∫ xi

xi−1

F c(w) dw (14)

and the constraint (7) can be written as
N∑
i=1

xi − xi−1

si
= D. (15)

Therefore, the optimization in (6)-(7) boils down to the opti-
mization problem (10). As mentioned before, in (10b), equality
has been replaced by “≤” as this does not change the set of
optimizers.

IV. EFFICIENT COMPUTATION

Theorem 1 shows that solving (6)-(7) amounts to solving
the finite dimensional (N − 1 variables) convex optimization
problem in (10), and this can be done using existing algorithms
from optimization theory. We notice that if the task size
distribution F is continuous, then the objective function is
differentiable and an optimizer can be computed by using,
e.g., interior point methods [5]. However, if the task size dis-
tribution F is discontinuous, then the objective function is not
differentiable. In this case, one can always use a linear or non-
linear interpolation to obtain a continuous version of F that
approximates the given F arbitrarily well. Otherwise, one can
rely on existing algorithms from derivative-free optimization
theory [6].

A. Structural Properties and Algorithm

We now investigate structural properties possessed by an
optimal speed profile when the objective is strictly convex
and regular. These will lead to the design of a low complexity
algorithm for the computation of the optimal solution.

The first result says that only consecutive speeds are used.
Specifically, if the job starts under speed, e.g., s2 and then
moves to speed s3, either it runs with speed s3 until it
terminates or it moves to s4, but there is no possibility to
move directly from s3 to any si with i ≥ 5.

Proposition 3. Assume that F is continuous and P is strictly
convex. Let s∗ be an optimal schedule. Then, s∗ uses a
consecutive set of speeds.

Proof. We assume that x∗i−2 < x∗i−1 = x∗i < xi+1 for some
i ∈ {2, . . . , N}, i.e., speed si is never used while speeds
si−1 and si+1 are both used, and show that we can improve
the objective function. Let x coincide with x∗ except on
coordinates i and i − 1 where we let xi−1 = x∗i − ε and
xi = x∗i + q(ε). Here, ε > 0 is such that x∗i − ε > x∗i−2,
x∗i + q(ε) < x∗i+1 and another condition to be set later
(see (16)), and q(ε) ensures that times needed to complete
x∗i + q(ε) units of work under the speed profiles induced by x
and x∗ are identical. A simple computation yields (see Figure
4).

q(ε) = ε

(
si
si−1

si+1 − si−1

si+1 − si
− 1

)
.

Outside the interval [x∗i−ε, x∗i +q(ε)], the objective function
(10a) is identical in both x and x∗. When restricted to [x∗i −
ε, x∗i + q(ε)], the objective (10a) under x resp. x∗ is

Ox :=Q(si)

∫ x∗i +q(ε)

x∗i−ε
F c(w)dw

Ox∗ :=Q(si−1)

∫ x∗i

x∗i−ε
F c(w)dw

+Q(si+1)

∫ x∗i +q(ε)

x∗i

F c(w)dw.

• •
ε q(ε)

•
w

t

•

1
si−1

•

1
si+1 •

τ(x∗)

1
si

τ(x)

Figure 4. Construction of x and q(ε), starting from x∗ and ε.

By continuity of F c,∫ x∗i +q(ε)

x∗i−ε
F c(w)dw = (ε+ q(ε))F c(x∗i) + r0(ε)∫ x∗i

x∗i−ε
F c(w)dw = εF c(x∗i) + r1(ε)∫ x∗i +q(ε)

x∗i

F c(w)dw = q(ε)F c(x∗i) + r2(ε),

where r1(ε), r2(ε) and r0(ε) are all negligible w.r.t. ε, meaning
ra(ε)/ε goes to 0 when ε goes to 0, for a ∈ {0, 1, 2}.

Using the value of q(ε) and setting r(ε) := r0(ε)− r1(ε)−
r2(ε),

1

F c(x∗i)
(Ox −Ox∗ − r(ε))

= ε(Q(si)−Q(si−1))− q(ε)(Q(si+1)−Q(si)),

= ε

(
P (si)

si−1

(
1 +

si − si−1

si+1 − si

)
− P (si−1)

si−1

− P (si+1)

si−1

si − si−1

si+1 − si

)
=

ε

si−1(si+1 − si)

(
(si+1 − si−1)P (si)

− (si+1 − si)P (si−1)− (si − si−1)P (si+1)

)
.

Since P is strictly convex, (si+1 − si−1)P (si) −
(si+1 − si)P (si−1) − (si − si−1P (si+1)) < 0. Therefore,
Ox−Ox∗ = −εγ+ r(ε), where γ > 0 does not depend on ε.

As mentioned before, r(ε)/ε goes to 0 when ε goes to 0.
Therefore, as soon as ε is small enough so that

r0(ε)− r1(ε)− r2(ε) < εγ, (16)

then Ox −Ox∗ < 0.

Proposition 4. Assume that F is continuous and P is strictly
convex. Then, the optimal schedule always uses the maximal
speed vN .

Proof. By contradiction, assume that the last speed used in
the optimal schedule is sN−1, over the interval [xN−1,Wmax].
Now, let us consider an alternative schedule that only changes
the speed in [xN−1,Wmax] and uses speed sN−2 over
[xN−1, z1], speed sN−1 over [z1, z2] and speed sN−2 over
[z2,Wmax] and achieves the same total work. This is always
possible if z1 is close enough to xN−1, since sN−2 < sN−1 <
sN . Using the fact that (by the deadline constraint)

z1 − xN−1

s1
+
z1 − xN−1

s1
+
z1 − xN−1

s1
=
Wmax − xN−1

s2
,

z2 = Wmax − xN−1 − sN (sN−1−sN−2)
sN−2(sN−sN−1)z1.

Now, the average cost over the interval [xN−1,Wmax] of
the new schedule is

Q(sN−1)

∫ z1

xN−1

F c(w)dw +Q(sN−1)

∫ z1

xN−1

F c(w)dw

+Q(sN−1)

∫ z1

xN−1

F c(w)dw.

Since F c is continuous, then the average cost is differentiable.
Its derivative with respect to z1 is

F c(z1)(Q(vN−2)−Q(vN−1)

+ F c(z2)(Q(sN)−Q(vN−1)
sN (sN−1 − sN−2)

sN−2(sN − sN−1)
.

When z1 = 0, the derivative is non-positive because F c(z2) =
0 and strictly negative when P is strictly convex, because this
implies that Q is strictly increasing. In turn, this implies that
the average cost is not minimal at z1 = 0 and that the new
schedule is better than the original one for some z1 > 0, also
implying that speed sN is used by the optimal schedule.

Now, given m ∈ {1, . . . , N}, let us construct the speed
profile v := vm : [0,Wmax]→ {sm, . . . , sN} as follows:

v(w) = si if and only if w ∈ [yi−1, yi) (17)

for all i = m, . . . , N where y0 = · · · = ym−1 = 0, yN =
Wmax and the speed change vector point (ym, . . . , yN−1) ∈
[0,Wmax]N−m satisfies

yi = (F c)−1

(
Γm
Γi
F c(ym)

)
, i = m+ 1, . . . , N − 1 (18)

where (F c)−1(y) := sup{z : F c(z) = y},

Γi :=
siP (si+1)− si+1P (si)

si+1 − si
(19)

and
N∑
i=m

yi − yi−1

si
= D. (20)

The next proposition gives a property on v.

Proposition 5. Assume that F is continuous and P is
strictly convex. Then, there exists a unique optimizer that
solves (6)-(7). In addition, if such optimizer uses all the
speeds s1, . . . , sN , then it is given by v with m = 1.

Proof. Uniqueness is trivial because (6)-(7) is a strictly convex
optimization problem. The proof is a direct application of the
KKT conditions to our optimization problem. By introducing
the multipliers ν ∈ RM+ and λ ∈ R+, for all i = 1, . . . , N −1,
the Lagrangian function associated to (6)-(7) is

L(x, λ, ν) :=

N∑
i=1

Q(si)

∫ xi

xi−1

F c(w)dw

+ λ

(
N∑
i=1

xi − xi−1

si
−D

)

+

N−1∑
i=0

νi(xi − xi+1).

Now, we obtain ∂L
∂xi

= 0 if and only if

(Q(si)−Q(si+1))F c(xi) + λ

(
1

si
− 1

si+1

)
+ νi − νi−1 = 0.

Assuming that all speeds are used in the optimal solution,
necessarily νi = 0 for all i by complementary slackness and
the unique optimizer must satisfy

(Q(si+1)−Q(si))F
c(xi) = λ

(
1

si
− 1

si+1

)
. (21)

We obtain that the optimizer of (10a)-(10b)-(10c) is given by
(18) and (20), as desired.

By combining the previous propositions, we can design an
algorithm that computes the optimal schedule even when some
speeds are not used in the optimal solution; see Algorithm 1.
Specifically, we have the following result.

Algorithm 1: Dichotomy over the set of speeds for the
computation of the optimal schedule.

Input: The set of speeds s1, . . . , sN , the power
function P , the deadline D and the probability
distribution of the task size F .

Output: The optimal subset of speeds sU , . . . , sN , and
schedule yU , . . . yN .

1 U := N ;L := 1;
2 while U > L do
3 m := b(U + L)/2c;
4 Solve (20) for ym using speeds sm, . . . , sN , where

ym+1, . . . , yN are given by (18);
5 if ym ≤ 0 then
6 L := m;
7 else
8 U := m;
9 end

10 end

Theorem 2. Assume that F is continuous and P is strictly
convex. Then, Algorithm 1 computes the (unique) optimal
schedule. The complexity of this algorithm is log2(N) times
the complexity of solving the one-dimensional equation (20).

Proof. One of the technical difficulties with (18) is that it
is not defined when y1 < 0 or y1 > Wmax. To deal with
this, let us extend F c by any continuous strictly decreasing
function on R and let us consider the solution of (18)-(20)
using speeds sm, . . . , sN . Now, let us notice that since Γi are
strictly increasing in i and (F c)−1(x) ≥ {z : F c(z) ≤ x},
then if 0 < ym < Wmax, then 0 < ym < ym+1 < · · · <
yN < Wmax. Therefore, if 0 < ym < Wmax, then the optimal
schedule with speeds sm, . . . , sN is the solution ym, . . . , yN .
In this case, adding lower speeds can lead to a better schedule
in terms of energy. In Algorithm 1, this case is treated in
Lines 7–8: the lowest speed is lowered from ym to ym′ with
m′ := b(L+m)/2c. If ym > Wmax then Wmax/sm < D. This
implies that using the current smallest speed ym is enough to
complete the task before its deadline and this is obviously the
optimal solution with the current set of speeds. In this case as
well, adding lower speeds can also lead to a better schedule
in terms of energy. In Algorithm 1, this case is also treated in
Lines 7–8.

Finally, if ym ≤ 0, there does not exist an optimal solution
where the speeds sm . . . sN are all used. Since speed sN is
always used in the optimal solution (Proposition 4), one must
remove the low speeds to get a feasible schedule and change
m to m′ = b(U +m)/2c (Lines 5–6 in Algorithm 1).

Let us comment on the computational complexity of Al-
gorithm 1. First, it is clear that it halts after no more than
log2N iterations. Then, for each iteration, a one-dimensional
equation needs to be solved, i.e., (20). Rearranging terms and
using (18), this equation can be rewritten as

D =
Wmax

sN
+

N−1∑
i=m

yiSi

=
Wmax

sN
+

N−1∑
i=m

(F c)−1

(
Γm
Γi
F c(ym)

)
Si (22)

where Si := 1
si
− 1

si+1
. We notice that (22) admits a unique

solution and that F is differentiable almost everywhere be-
cause it is increasing. If derivatives can be computed, one can
solve (22) by using (efficient) standard root finding algorithms
such as the Newton–Raphson or the secant methods.

B. Explicit Calculation of Speed Change Points

Within specific choices of the task size distribution F , an
expression for the solution of (18)-(20), and thus of an optimal
speed profile, can be constructed explicitly. For illustration
purposes, let us consider the case where F takes the form

F (w) = 1−K
(

1− w

Wmax

)q
, q ∈ R

where K :=
(

1− Wmin

Wmax

)−q
is a normalizing constant. If

q = 1, we notice that W is uniformly distributed over
[Wmin,Wmax]. Then,

(F c)−1(y) = Wmax −Wmax

(y
K

)1/q

and substituting in (18), we obtain, for i = m+ 1, . . . , N − 1

yi = Wmax −Wmax

(
1

K

Γm
Γi
F c(ym)

)1/q

= Wmax −Wmax

(
Γm
Γi

)1/q (
1− ym

Wmax

)
.

Thus, the dependence among the yi’s is linear, and an explicit
formula for ym can be obtained by using (20), which in
this case boils down to a linear equation with one unknown.
Using (22)

D = Wmax

N−1∑
i=m

(
1−

(
Γm
Γi

)1/q (
1− ym

Wmax

))
Si +

Wmax

sN

which gives

ym = Wmax −Wmax

1
sN
− D

Wmax
+
∑N−1
i=m Si∑N−1

i=m Si

(
Γ1

Γi

)1/q
.

V. GENERALIZATIONS

We discuss some possible generalizations of our model and
results, though a detailed analysis is left as future work:
• Delayed Processor Activation. It may be the case that

the activation of a processor requires some setup time.
Thus, if the decision of activating a processor is taken
at time t, then that processor can actually be used from
time t+ δ, where we may suppose that the setup time δ
is deterministic. In this case, a possible solution would
consist in considering the speed profile s∗ proposed in
Theorem 1 and activating a processor at time t∗i − δ,
where t∗i is the time corresponding to the task size
decision point x∗i , i.e., t∗i =

∑i
j=1

1
sj

(x∗j − x∗j−1). This
is not optimal because the processor consumes energy in
[t∗i − δ, t∗i) but we claim that this heuristic should work
reasonably well.

• Containers. Within applications that run on top of Ku-
bernetes, processors (or servers) run in “containers”. In
this setting, the activation of a single processor may
trigger the activation of a number of other processors,
which may remain idle but ready to use. In Proposition 3,
we have shown that the optimal speed profile s∗ uses
a consecutive set of speeds. Thus, upon activation of a
new container, only one extra processor should be used
if the idle processors in the container do not consume
energy. However, this latter assumption may not hold in
practice [11], and in this case it may be convenient to
use additional processors.

VI. CONCLUDING REMARKS

We have examined the execution of a single task of un-
known size on top of a multi-processor system and inves-
tigated the problem of dynamically activating the number
of processors that minimizes the overall electrical energy
consumed by executing the task subject to a hard deadline
constraint. We have shown that this problem can be formulated

as a convex optimization problem and we have identified key
structural properties that allowed us to design an extremely
efficient algorithm for the computation of the optimal dynamic
allocation of processors.

Our work is in close relationship with [10]; see Section I-A.
In this reference, we stress that the speeds available to the
scheduler form an interval of the real numbers, while we
consider a finite number of speeds, i.e., N . Under appropriate
conditions, it would be interesting to investigate whether the
proposed optimal speed profile converges to the optimal speed
profile proposed in [10] in the limit where N → ∞, and
if convergence occurs, then at what rate. Also, our results
facilitate the design of heuristics to handle the case where
a stream of tasks of unknown duration join the system of
over time. This case is much more difficult to deal with:
the hard deadline constraint makes non-trivial even just the
problem of finding a feasible schedule. We leave these natural
continuations of our work for future research.

REFERENCES

[1] Jonatha Anselmi, Bruno Gaujal, and Louis Sébastien Rebuffi. Optimal
Speed Profile of a DVFS Processor under Soft Deadlines. Performance
Evaluation, 152, December 2021.

[2] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data centers.
Concurrency and Computation: Practice and Experience, 24(13):1397–
1420, 2012.

[3] Josep Ll. Berral, Íñigo Goiri, Ramón Nou, Ferran Julià, Jordi Guitart,
Ricard Gavaldà, and Jordi Torres. Towards energy-aware scheduling
in data centers using machine learning. In Proceedings of the 1st In-
ternational Conference on Energy-Efficient Computing and Networking,
e-Energy ’10, page 215–224, New York, NY, USA, 2010. ACM.

[4] Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc
Pierson. Energy-aware service allocation. Future Gener. Comput. Syst.,
28(5):769–779, may 2012.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, March 2004.

[6] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction
to Derivative-Free Optimization. SIAM, Philadelphia, PA, USA, 2009.

[7] Bruno Gaujal, Alain Girault, and Stéphan Plassart. Dynamic Speed Scal-
ing Minimizing Expected Energy Consumption for Real-Time Tasks.
Journal of Scheduling, pages 1–25, July 2020.

[8] Bruno Gaujal, Alain Girault, and Stéphan Plassart. A Pseudo-Linear
Time Algorithm for the Optimal Discrete Speed Minimizing Energy
Consumption. Discrete Event Dynamic Systems, 31:163–184, 2021.

[9] Minming Li, Frances F. Yao, and Hao Yuan. An O(n2) algorithm for
computing optimal continuous voltage schedules. In TAMC’17, volume
10185 of LNCS, pages 389–400, Bern, Switzerland, April 2017.

[10] Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage scaling
algorithms with PACE. In ACM SIGMETRICS 2001, pages 50–61, 2001.

[11] N. Mahmoudi and H. Khazaei. Performance modeling of serverless
computing platforms. IEEE Transactions on Cloud Computing, pages
1–1, 2020.

[12] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
Borg: The next generation. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[13] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
CPU energy. In Proceedings of IEEE Annual Foundations of Computer
Science, pages 374–382, 1995.

[14] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. Par-
sec3.0: A multicore benchmark suite with network stacks and splash-2x.
SIGARCH Comput. Archit. News, 44(5):1–16, feb 2017.

