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Abstract

This chapter describes model validation, a crucial part of machine learn-
ing whether it is to select the best model or to assess performance of a
given model. We start by detailing the main performance metrics for dif-
ferent tasks (classification, regression), and how they may be interpreted,
including in the face of class imbalance, varying prevalence, or asymmet-
ric cost-benefit trade-offs. We then explain how to estimate these metrics
in a unbiased manner using training, validation, and test sets. We de-
scribe cross-validation procedures –to use a larger part of the data for
both training and testing– and the dangers of data leakage –optimism
bias due to training data contaminating the test set. Finally, we discuss
how to obtain confidence intervals of performance metrics, distinguishing
two situations: internal validation or evaluation of learning algorithms,
and external validation or evaluation of resulting prediction models.
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1. Introduction

A machine learning (ML) model is validated by evaluating its prediction
performance. Ideally, this evaluation should be representative of how
the model would perform when deployed in a real life setting. This is
an ambitious goal, that goes beyond the settings of academic research.
Indeed, a perfect validation would probe robustness to any possible vari-
ation of the input data which may include different acquisition devices
and protocols, different practices that vary from one country to another,
from one hospital to another and even from one physician to another. A
less ambitious goal for validation is to provide an unbiased estimate of
the model performance on new –never before seen– data similar to that
used for training (but not the same data!). By similar, we mean data
that has similar clinical or socio-demographic characteristics and which
has been acquired using similar devices and protocols. To go beyond
such internal validity, external validation would evaluate generalization
to data from different sources (for example another dataset, data from
another hospital).

This chapter addresses the following questions. How to quantify the
performance of the model? This will lead us to present, in Section 2,
different performance metrics that are adequate for different ML tasks
(classification, regression . . . ). How to estimate these performance met-
rics? This will lead to the presentation of different validation strategies
(Section 3). We will also explain how to derive confidence intervals for the
estimated performance metrics, drawing the distinction between evaluat-
ing a learning algorithm or a resulting prediction model. We will present
various caveats that pertain to the use of performance metrics on medical
data as well as to data leakage, which can be particularly insidious.

2. Performance metrics

Metrics allow to quantify the performance of an ML model. In this
section, we describe metrics for classification and regression tasks. Other
tasks (segmentation, generation, detection. . . ) can use some of these but
will often require other metrics which are specific to these tasks. The
reader may refer to Chapter 13 for metrics dedicated to segmentation
and to Section 6 of Chapter 23 for metrics dedicated to segmentation,
classification and detection.

2.1 Metrics for classification
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Figure 1: Confusion matrix The confusion matrix represents the re-
sults of a classification task. In the case of binary classification (two
classes), it divides the test samples into four categories, depending on
their true ( eg disease status, D) and predicted (test output, T ) labels:
true positives (TP), true negatives (TN), false positives (FP), false neg-
atives (FN).

2.1.1. Binary classification

For classification tasks, the results can be summarized in a matrix called
the confusion matrix (Figure 1). For binary classification, the confusion
matrix divides the test samples into four categories, depending on their
true and predicted labels:

• True Positives (TP): samples for which the true and predicted
labels are both 1. Example: the patient has cancer (1) and the
model classifies this sample as cancer (1)

• True Negatives (TN): samples for which the true and predicted
labels are both 0. Example: the patient does not have cancer (0)
and the model classifies this sample as non-cancer (0)

• False Positives (FP): samples for which the true label is 0 and
the predicted label is 1. Example: the patient does not have cancer
(0) and the model classifies this sample as cancer (1)

• False Negatives (FN): samples for which the true label is 1 and
the predicted label is 0. Example: the patient has cancer (1) and
the model classifies this sample as non-cancer (0)

Are false positives and false negatives equally problematic? This de-
pends on the application. For instance, consider the case of detecting
brain tumors. For a screening application, detected positive cases would
then be subsequently reviewed by a human expert, one can thus consider
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that false negatives (missed brain tumor) lead to more dramatic conse-
quences than false positives. One the opposite, if a detected tumor leads
the patient to be sent to brain surgery without complementary exam,
false positives are problematic and brain surgery is not a benign opera-
tion. For automatic volumetry from magnetic resonance images (MRI),
one could argue that false positives and false negatives are equally prob-
lematic.

Multiple performance metrics can be derived from the confusion ma-
trix, all easily computed using sklearn.metrics from scikit-learn [1].
They are summarized in Box 1. One can distinguish between basic met-
rics which only focus on false positives or false negatives and summary
metrics which aim at providing an overview of the performance with a
single metric.

The performance of a classifier is characterized by pairs of basic met-
rics: either sensitivity and specificity, or PPV and NPV, which charac-
terize respectively the probability of the test given the diseased status or
vice versa (see Box 1). Note that each basic metric characterizes only the
behavior of the classifier on the positive class (D+) or the negative class
(D−); thus measuring both sensitivity and specificity, or PPV and NPV
is important. Indeed a classifier always reporting a positive prediction
would have a perfect sensitivity, but a disastrous specificity.

Simple summaries and their pitfalls. It is convenient to use sum-
mary metrics which provide a more global assessment of the performance,
for instance to select a “best” model. However, as we will see, summary
metrics, when used in isolation, can be lead to erroneous conclusions.
The most widely used summary metric is arguably accuracy. Its main
advantage is a natural interpretation: the proportion of correctly clas-
sified samples. However, it is misleading when the data is imbalanced.
Let us for instance consider a dataset with 10 cancer samples and 990
non-cancer samples. A trivial majority classifier which decides that can-
cer does not exist achieves 99% accuracy. Balanced accuracy helps for
imbalanced samples. However, balanced accuracy also comes with its
loopholes. Indeed a high balanced accuracy does not always mean that
individuals classified as diseased are likely to be so. Let us consider a
diagnostic test for a disease which has a sensitivity of 99% and a speci-
ficity of 90% (and thus a balanced accuracy of 94.5%). Suppose that a
given person takes the test and that the test is positive. At this point,
we do not have enough information to compute the probability that the
person actually has the disease.

The probability that the person has the disease is given by the PPV,
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Box 1: Performance metrics for binary classification

Basic metrics
T denotes test : classifier output; D denotes diseased status.

• Sensitivity (also called recall): fraction of positive samples
actually retrieved.
Sensitivity = TP

TP+FN
Estimates P (T+ | D+)

• Specificity: fraction of negative samples actually classified as
negative.
Specificity = TN

TN+FP
Estimates P (T− | D−)

• Positive predictive value (PPV, also called precision): frac-
tion of the positively classified samples which are indeed positive.
PPV = TP

TP+FP
Estimates P (D+ | T+)

• Negative predictive value (NPV): fraction of the negatively
classified samples which are indeed negative.
NPV = TN

TN+FN
Estimates P (D− | T−)

Summary metrics

• Accuracy: fraction of the samples correctly classified.
Accuracy = TP+TN

TP+FP+TN+FN

• Balanced accuracy (BA): accuracy metric that accounts for
unbalanced samples.
BA = Sensitivity+Specificity

2

• F1-score: harmonic mean of PPV (precision) and sensitivity (re-
call).
F1 = 2

1
PPV

+ 1
Sensitivity

= 2TP
2TP+FP+FN

• Matthews correlation coefficient (MCC). MCC=1 for per-
fect classification, MCC=0 for random classification, MCC=-1 for
perfectly wrong classification.
MCC = TP×TN−FP×FN√

(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

• Markedness = TP
TP+FP

− FP
FP+TN

= PPV + NPV− 1

• Area under the receiver operating characteristic curve
(ROC AUC).

• Area under the precision-recall curve (PR AUC, also
called average precision).

Machine Learning for Brain Disorders
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Figure 2: NPV and PPV as functions of prevalence when the sensitivity
and the specificity are fixed (image courtesy of Johann Faouzi).

related to the sensitivity and the specificity by Bayes’ rule:

P (D+ | T+) =
sensitivity× prevalence

(1− specificity)× (1− prevalence) + sensitivity× prevalence
.

Diseased

Test positive

Bayes’ rule thus shows that we must account for the prevalence: the
proportion of the people with the disease in the target population, the
population in which the test is intended to be applied. The target popu-
lation can be the general population for a screening test. It could be the
population of people with memory complaints for a test aiming to diag-
nose Alzheimer’s disease. Now, suppose that the prevalence is low, which
will often be the case for a screening test in the general population. For
instance, prevalence = 0.001. This leads to P (D+ | T+) = 0.0098 ≈ 1%.
So, if the test is positive, there is only 1% chance that the patient has the
disease. Even though our classifier has seemingly good sensitivity, speci-
ficity, and balanced accuracy, it is not very informative on the general
population. The PPV and NPV readily give the information of interest:
P (D+ | T+) and P (D− | T−). However, they are not natural met-
rics to report a classifier’s performance because, unlike sensitivity and
specificity, they are not intrinsic to the test (in other words the trained
ML model) but also depend on the prevalence and thus on the target
population (Figure 2).

Summary metrics for low prevalence. The F1 score is another sum-
mary metric, built as the harmonic mean of the sensitivity (recall) and
PPV (precision). It is popular in machine learning but, as we will see,
it also has substantial drawbacks. Note that it is equal to the Dice co-
efficient used for segmentation. Given that it builds on the PPV rather
than the specificity to characterize retrieval, it accounts slightly better
for prevalence. In our example, the F1 score would have been low. The
F1 score can nevertheless be misleading if the prevalence is high. In such
a case, one can have high values for sensitivity, specificity, PPV, F1 score
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but a low NPV. A solution can be to exchange the two classes. The F1

score becomes informative again. Those shortcomings are fundamental,
as the F1 score is completely blind to the number of true negative, TN.
This is probably one of the reasons why it is a popular metric for segmen-
tation (usually called Dice rather than F1) as in this task TN is almost
meaningless (TN can be made arbitrarily large by just changing the field
of view of the image). In addition this metric has no simple link to the
probabilities of interest, even more so after switching classes.

Another option is to use Matthews Correlation Coefficient (MCC).
The MCC makes full use of the confusion matrix and can remain infor-
mative even when prevalence is very low or very high. However, its in-
terpretation may be less intuitive than that of the other metrics. Finally,
markedness [2] is a seldom known summary metric that deals well with
low-prevalence situations as it is built from the PPV and NPV (Box 1).
Its drawback is that it is as much related to the population under study
as to the classifier.

As we have seen, it is important to distinguish metrics which are
intrinsic characteristics of the classifier (sensitivity, specificity, balanced
accuracy) from those which are dependent on the target population and
in particular of its prevalence (PPV, NPV, MCC, markedness). The
former are independent of the situation in which the model is going to
be used. The latter informs on the probability of the condition (the
output label) given the output of the classifier; but they depend on the
operational situation, and in particular on the prevalence. The prevalence
can be variable (for instance the prevalence of an infectious disease will
be variable across time, the prevalence of a neurodegenerative disease will
depend on the age of the target population) and a given classifier may
be intended to be applied in various situations. This is why the intrinsic
characteristics (sensitivity and specificity) need to be judged according to
the different intended uses of the classifier (e.g. a specificity of 90% may
be considered excellent for some applications while it would be considered
unacceptable if the intended use is in a low prevalence situation).

Metrics for shifts in prevalence. Odds enable designing metrics that
characterize the classifier but are adapted to target populations with a
low prevalence. Odds are defined as the ratio between the probabil-
ity that an event occurs to the probability this event does not occur:
O(a) = P (a)

1−P (a)
. Ratios between odds can be invariant to the sampling

frequency (or prevalence) of a –see appendix A.1 for an introduction to
odds and their important properties. For this reason, they are often used
in epidemiology. A classifier can be characterized by the ratio between
the pre-test and post-test odds, often called the positive likelihood ratio:

Machine Learning for Brain Disorders
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LR+ = O(D+|T+)
O(D+)

= sensitivity
1−specificity

. This quantity depends only on sensitivity
and specificity, properties of the classifier only, and not of the prevalence
on the study population. Yet, given a target population, post-test odds
can easily be obtained by multiplying LR+ by pre-test odds, itself given
by prevalence: O(D+) = prevalence

1−prevalence
. The larger the LR+, the more use-

ful the classifier and a classifier with LR+ = 1 or less brings no additional
information on the likelihood of the disease. An equivalent to LR+ char-
acterizes the negative class: controling on “T-” instead of “T+” gives the
negative likelihood ratio: LR- = 1−sensitivity

specificity
; and low values of LR- (below

1) denote more useful predictions. These metrics, LR+ and LR- are very
useful in a situation common in biomedical settings where the only data
available to learn and evaluate a classifier is a study population with
nearly balanced classes, such as a case-control study, while the target
application –the general population– is one with a different prevalence
(e.g. a very low prevalence) or when the intended use considers variable
prevalences.

Multi-threshold metrics. Many classification algorithms output a
continuous value which is then thresholded to get a binary label. When
the output is a probability, one often simply uses a threshold of 0.5.
However, there are cases where one is interested to study the performance
for varying thresholds on the output. The two main tools for that purpose
are the receiver operating characteristic (ROC) curve and the precision-
recall (PR) curve. The ROC curve plots the Sensitivity as a function
of 1 − Specificity (Figure 3). It can be again summarized with a single
value: the area under the ROC curve (ROC AUC). The ROC AUC has
a probabilistic interpretation: it is the probability that a positive sample
has a higher classification score (as positive) than a negative sample.

Figure 3: ROC curve for
different classifiers. AUC
denotes the Area Under the
Curve, typically used to ex-
tract a number summariz-
ing the ROC curve.
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Figure 4: Precision-
Recall curve for different
classifiers. AUC denotes
the Area Under the Curve,
often called average preci-
sion here. Note that the
chance level depends on the
class imbalance (or preva-
lence), here 0.57.
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A perfect classification corresponds to a ROC AUC of 1 and a random
classification to a ROC AUC of 0.5. While chance remains 0.5 whatever
the class imbalance, the ROC curve becomes less interesting for highly
imbalanced classes, because a seamingly small difference on specificity or
sensitivity may make a large difference to the application, but not change
much the ROC curve. For this reason, it is often complemented with the
precision-recall (PR) curve which focuses on the minority class. The PR
curve plots the Precision (also called PPV) as a function of Recall (also
called Sensitivity) (Figure 4). It can also be summarized using a single
measure: the PR AUC, also called average precision. As for the ROC
AUC, a perfect classification corresponds to a value of 1. However, unlike
for ROC AUC, a dummy classification does not necessary leads to a value
of 0.5. It depends on the prevalence.

Confidence scores and calibration. It can be useful to interpret a
non-thresholded classifier score as a confidence score or a probability, for
instance to balance cost and benefits when the prediction is used to decide
on an intervention [4]. But a continuous score by itself does not warrant
such interpretation: a classifier may be over-confident, under-confident,
or have uneven scores over the population, even for good binary decisions.
Two types of metrics, detailed in Box 2, are useful to evaluate continu-
ous outputs as probabilities: the Expected calibration error (ECE) and
the Brier score. The ECE measures whether, on samples predicted with
a score s, the error rate is indeed s, in which case the classifier is said
to be calibrated. The Brier score is minimal when the classifier score
is the true probability of the class given the data for an individual, for
instance the probability of presence of a tumor given the image. These
two notions are similar, but it is important to understand that ECE

Machine Learning for Brain Disorders
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Box 2: Assessing confidence scores and calibration

Expected calibration error (ECE): average classifier error
It is computed by considering
K bins of confidence scores and
comparing the observed fraction
of positives to the mean confi-
dence score. The ECE itself is
then the average over the bins:
ECE =

∑K
i=1 P (i) · |fi − si|

where fi is the observed fraction
of positive instances in bin i, si
is the mean of classifier scores for
the instances in bin i, and P(i) is
the fraction of all instances that
fall into bin i [3].
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Metrics on individual probabilities: error on P (y|X)

Brier score =
∑
i

(ŝi − yi)2

Observed (binary) label

Confidence score

Minimal for ŝ = P (y|X)

Brier skill score = 1− Brier(ŝ, y)

Brier(ȳ, y)
Class prevalence

A value of 1 means a perfect predic-
tion while a value of 0 means that the
confidence scores are not more infor-
mative than the class prevalence.

controls average error rates while Brier score controls individual proba-
bilities, which is much more stringent and more useful to the practitioner
[5]. Accurate probabilities of individual predictions can be used for opti-
mal decision making, eg opting for brain surgery only for individuals for
which a diagnostic model predicts cancer with high confidence.

A given value of ECE is easy to interpret, as it qualifies probabili-
ties mostly independently of prediction performance. On the other hand,
the Brier score accounting both for the quality of probabilities and cor-
responding binary decisions as a low Brier score captures the ability to
give good probabilistic prediction of the output. For any classification
problem, there exists many classifiers with 0 expected calibration errors,
including some with very poor predictions. On the other hand, even the
best possible prediction has a non-zero Brier score, unless the output is
a deterministic function of the data. The Brier skill score, a variant of
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the Brier score is often used to assess how far a predictor is from the
best possible prediction, more independent of the intrinsic uncertainty
in the data. The Brier skill score is a rescaled version of the Brier score
taking as a reference a reasonable baseline: 1 is a perfect prediction,
while negative values mean predictions worse than guessing from class
prevalence.

To conclude When assessing a classifier:

• Always look at all the individual metrics: false positives and false
negatives are seldom equivalent. Understand the medical problem
to known the right tradeoff [4]

• Never trust a single summary metric (accuracy, balanced accuracy,
ROC AUC . . . ).

• Consider the prevalence in your target population. It may be that
the prevalence in your testing sample is not representative of that
of the target population. In that case, aside from LR+ and LR-,
performance metrics computed from the testing sample will not be
representative of those in the target population.

2.1.2. Multi-class classification

When there are multiple classes to distinguish, the main difference with
two-class classification is that the problem can no longer be separated
into a positive class (typically individuals with the medical condition of
interest) and a negative class (individuals without). As a consequence,
sensitivity and specificity no longer have a meaning for the whole data,
nor do F1-score, or the ROC or precision recall curves. Accuracy is still
defined and easy to compute, but still suffers from its common drawbacks,
in particular that it may not be straightforward to interpret in the face
of class imbalance.

A classic approach is to aggregate metrics for binary settings consid-
ering successively each class as the positive instances and all the others
as the negatives, in a form of “one versus all”. There are different ap-
proaches to averaging the results for each class. Macro averaging com-
putes the metric, for instance the ROC AUC, for each class, and then
averages the results. One drawback is that it may put too much em-
phasis on classes that are more infrequent. Weighted or micro averaging
combine the results of the different classes weighing by the number of
instance of each class. The difference between the two is that weighted
averaging computes the average of the metric weighted by the number of
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Figure 5: Multi-class confusion ma-
trix, for a 3-class problem, C1, C2, C3.
Each entry gives the number of instances
predicted of a given class, knowing the ac-
tual class. A perfect prediction would give
non-zero entries only on the diagonal.

Predicted
C1 C2 C3

C1 133 0 0

C2 0 107 36

T
ru

e

C3 0 0 92

true instances for each class, while micro averaging computes the metric
by adding the number of TP (resp. TN, FP, FN) across all classes.

Inspecting the confusion matrix extended to multi-class settings gives
a interesting tool to understand errors: it displays how many times a
given true class is predicted as another (Figure 5). A perfect prediction
has non-zero entries only on the diagonal. The confusion matrix may be
interesting to reveal which classes are commonly confused, as its name
suggests. In our example, instances that are actually of class C2 are often
predicted as of class C3.

Multilabel classification. Multilabel settings are when the multiple
classes are not mutually exclusive: for instance if an individual can have
multiple pathologies. The problem is then to detect the presence or
absence of each label for an individual. In terms of evaluation, multilabel
settings can be understood as several binary-classification problems, and
thus the corresponding metrics can be used on each label. As in the
multi-class settings, there are different ways to average the results for
each label –macro, micro...–, which put more or less emphasis on the
rare labels.

2.2 Metrics for regression

In regression settings, the outcome to predict y is continuous, for instance
an individual’s age, cognitive scores, or glucose level. Corresponding error
metrics gauge how far the prediction ŷ is from the observed y.

R2 score The go-to metric here is typically the R2 score, sometimes
called explained variance –however, the term R2 score should be pre-
ferred, as some authors define explained variance as ignoring bias. Math-
ematically, the R2 score is the fraction of variance of the outcome y ex-
plained by the prediction ŷ, relative to the variance explained by the
mean y on the test set:

R2 = 1− SS(y − ŷ)

SS(y − y)

Machine Learning for Brain Disorders
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where SS is the sum of squares on the test data. A strong benefit of
this metric is that it comes with a natural scale: an R2 of 1 implies
perfect prediction, while an R2 of zero implies a trivial and not very
useful prediction. Note that chance-level predictions (as obtained for
instance by learning on permuted y) yield slightly negative predictions:
indeed even when the data does not support a prediction of y –as in
chance settings–, it is impossible to estimate the mean y perfectly and
predictions will be worse than the actual mean. In this respect, the
R2 score has a different behavior in machine learning settings compared
to inferential statistics settings not focused on prediction: in sample (for
inferential statistics) versus out of sample settings (for machine learning).
Indeed, when the mean of y is computed on the same data as the model,
the R2 score is positive and is the square of the correlation between y
and ŷ. This is not the case in predictive settings, and the correlation
between y and ŷ should not be used to judge the quality of a prediction
[6], because it discards errors on the mean and the scale of the prediction,
which are important in practice.

Absolute error measures. Reporting only the R2 score is not suf-
ficient to characterize well a predictive model. Indeed, the R2 score
depends on the variance of the outcome y in the study population, and
thus does not enable comparing predictive models on different samples.
For this purpose, it is important to report also an absolute error measure.
The root mean square error (RMSE) and the mean absolute error (MAE)
are two of such measures that give an error in the scale of the outcome:
if the outcome y is an age in years, the error is also in years. The mean
absolute error is easier to interpret. Compared to the root mean square
error, the mean absolute error will put much less weight on some rare
large deviations. For instance, consider the following prediction error (on
11 observations):

error = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100]

MAE = 10 RMSE ≈ 30.17

Note that if the error was uniformly equal to the same value (10, for
instance), both measures would give the same result.

Assessing the distribution of errors. The difference between the
mean absolute error and the root mean square error arises from the fact
that both measures account differently for the tails of the distribution
of errors. It is often useful to visualize these errors, to understand how
they are structured. Figure 6 shows such visualization: predicted y as a
function of observed y. It reveals that for large values of y, the predictive
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model has a larger prediction error, but also that it tends to undershoot:
predict a value that underestimates the observed value. This aspect of
the prediction error is not well captured by the summary metrics because
there are comparatively much less observations with large y.

Concluding remarks on performance metrics. Whether it is in
regression or in classification, a single metric is not enough to capture all
aspects of prediction performance that are important for applications.
Heterogeneity of the error, as we have just seen in our last example,
can be present not only as a function of prediction target, but of any
aspect of the problem, for instance the sex of the individuals. Problems
related to fairness, where some groups (e.g. demographic, geographic,
socio-economic groups) suffer more errors than others, can lead to loss
of trust or amplification of inequalities [7]. For these reasons it may be
important to also report error metrics on relevant subgroups, following
common medical-research practice of stratification.

3. Evaluation strategies

The previous section detailed metrics for assessing the performance of a
ML model. We now focus on how to estimate the expected prediction
performance of the model with these metrics. Importantly, we draw
the difference between evaluating a learning procedure, or learner, and
a learned model. While these two questions are often conflated in the
literature, the first one must account for uncontrolled fluctuations in the
learning procedure, while the second one controls a given model on a
target external population. The first question is typically of interest to
the methods researcher, to conclude on learning procedures, while the
second is central to the medical research, to conclude on the clinical
application of a model.

Figure 6: Visualizing prediction
errors – plotting the predicted outcome
as a function of the observed one en-
ables to detect structure in the error be-
yond summary metric. Here the error
increases for large values of y, for which
there is also a systematic undershoot.
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Additional information on validation strategies, seen from the per-
spective of regulatory science, can be found in Section 3 of Chapter 23.
We focus here on an accessible discussion of the main concepts to have
in mind concerning model-evaluation strategies, Raschka [8] gives a more
mathematically detailed coverage of related topics.

3.1 Evaluating a learning procedure

We first focus on assessing the expected performance of a learning
procedure on data drawn from a given population. Here, the model is
validated on data with similar characteristics to the one used for
training, a validation sometimes called internal validation. Most
importantly performance should not be evaluated using the same data
that was used for training [6]. Therefore, the first step is to split the
data into a training set and a testing set. This should be done before
starting any work on the data, be it training a ML model or even doing
simple statistics for identifying interesting features. Splitting the data
can be done using sklearn.model selection.train test split or
sklearn.model selection.ShuffleSplit(n splits=1) from
scikit-learn. When one simply performs a single split of the data into
training and testing set, the validation method is called “hold-out”.
One should nevertheless check that the training and testing
sets have similar characteristics. More precisely, we want the
output variable distribution to be approximately the same in the
training and testing sets. This is called stratification. For instance,
for classification, the proportion of diseased individuals should
approximately be the same in the two sets. To that purpose, use
StratifiedShuffleSplit(n splits=1). In medical applications, it is
recommended to control not only for the disease status but also for
other variables, such as sociodemographic information (age, sex, . . . ) or
some relevant clinical variables. It will often be difficult (and it is not
even necessary) to obtain almost identical distributions between
training and testing sets. In practice, it is often sufficient to have
similar means and variances for continuous variables and similar
proportions for categorical variables. The first two rows of Figure 7
illustrate the concepts of “hold-out” and stratification.

Non-independent samples Prediction may be performed across non-
independent data points, for instance different points in a time series, or
repeated measures of the same individual. In such case, it is important
that samples in the train and the test set are independent, which may re-
quire selecting separated time windows. Also, the cross-validation should
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mimic the intended usage of the predictor. For instance, a diagnostic
model intended to be applied to new individuals should be evaluated
making sure that there are no shared individuals between the train and
the test set.

3.1.1. Cross-validation

The split between train and test set is arbitrary. With the same machine-
learning algorithm, two different data splits will lead to two different
observed performances, both of which are noisy estimates of the ex-
pected generalization performance of prediction models built with this
learning procedure. A common strategy to obtain better estimates con-
sists in performing multiple splits of the whole dataset into training
and testing set: a so called cross-validation loop. For each split, a
model is trained using the training set and the performances are com-
puted using the testing set. The performances over all the testing sets
are then aggregated. Figure 7 displays different cross-validation meth-
ods. k-fold cross-validation consists in splitting the data into k sets
(called folds) of approximately equal size. It ensures that each sam-
ple in the data set is used exactly once for testing. For classification,
sklearn.model selection.StratifiedKFold performs stratified k-fold
cross-validation.

In each split, ideally, one would want to have a large training set,
because it usually allows training better performing models, and a large
testing set, because it allows a more accurate estimation of the perfor-
mance. But the dataset size is not infinite. Splitting out 10 to 20%
for the test set is a good trade off [9]; which amounts to k=5 or 10 in
a k-fold. With small datasets, to maximize the amount of train data,
it may be tempting to leave out only one observation, in a so-called
leave-one-out cross-validation. However, such depletion of the test set
gives overall worse estimates of the generalization performance. Increas-
ing the number of splits is however useful, thus another strategy con-
sists in performing a large number of random splits of the data, break-
ing from the regularity of the k-fold. If the number of splits is suf-
ficiently large, all samples will be approximately used the same num-
ber of times for training and testing. This strategy can be done using
sklearn.model selection.StratifiedSuffleSplit(n splits) and is
called “Repeated hold-out” or “Monte-Carlo cross-validation”. Beyond
giving a good estimate of the generalization performance, an important
benefit of this strategy is that it enables to study the variability of the
performances. However, running many splits may be computationally
expensive with models that are slow to train.
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Figure 7: Different validation methods, from top to bottom. The first
method, called “hold-out”, involves a single split of the dataset into train-
ing and testing sets. It is thus not a cross-validation method. Stratifica-
tion is the procedure which controls that the output variable (for instance
disease vs healthy) has approximately the same distribution in the train-
ing and testing set. k-fold cross-validation consists in splitting the data
into k sets (called folds) of approximately equal size. Repeated hold-out
consists in performing a large number of random splits of the data.
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3.1.2. The need of an additional validation set

Often, it is useful to make choices on the model to maximize prediction
performance: make changes on the architecture, tune hyper-parameters,
perform early stopping. . . As the test-set performance is our best estimate
of prediction performance, it would be be natural to run cross-validation
and pick the best model. However, in such a situation, the performances
reported on the testing set will have an optimistic bias: a data-dependent
choice has been made on this test set. There are two main solutions to
this issue. The first one is usually applied when the model training is
fast and the dataset is of small size. It is called nested cross-validation.
It consists in running two loops of cross-validation, one nested into the
other. The inner loop serves for hyperparameter tuning or model se-
lection while the outer loop is used to evaluate the performance. The
second solution is to separate from the whole dataset the test set, which
will only be used to evaluate the performances. Then, the remainder of
the dataset can be further split into training data and data used to make

Figure 8: A standard approach consists in splitting the whole dataset
into training, validation and test sets. The test set must be isolated from
the very beginning, left untouched until the end of the study and only be
used to evaluate the performance. The training and validation sets are
often used in a cross-validation manner. They can be used to experiment
with different architectures and tune parameters.
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modeling choices, called the validation set1. Such a procedure is illus-
trated on Figure 8. Commonly, the training and validation sets will be
used in a cross-validation manner. They can then be used to experiment
with different models, tune parameters . . . . It is absolutely crucial that
the test set is isolated at the very beginning, before any experiment is
done. It should be left untouched and used only at the end of the study
to report the performances. As for the split between training and valida-
tion set, it is desirable that stratification is done when isolating the test
set.

If the dataset is very small, nested cross-validation should be preferred
as it gives better testing power than hold-out: all the data are used
alternatively for model testing. If the dataset feels too small to split
in train, validation, test, it may be too small to conduct a trustworthy
machine-learning study [10].

3.1.3. Various sources of data leakage

Data leakage denotes cases where some information from the training set
has “leaked” into the test set. As a consequence, the estimation of the
performances is likely to be optimistic. Data leakage can be introduced in
many ways, some of which are particularly insidious and may not be ob-
vious to a researcher that is not familiar with a specific application field.
Below, we describe some common causes of data leakage. A summary
can be found in Box 3.

A first basic cause of data leakage is to use the whole dataset for
performing various operations on the data. A very common example
is to perform feature selection using the whole dataset and then to use
the selected features for model training. A similar situation is when
dimensionality reduction is performed on the whole dataset. If this is
done in an unsupervised manner (for example using principal component
analysis), it is likely to introduce less bias in the performance estimation
because the target is not used. It nevertheless remains, in principle, a
bad practice. A common practice in deep learning is to perform early
stopping, i.e. use the validation set to determine when to stop training.
If this is the case, the validation performances can be overoptimistic and
a separate test dataset should be used to report performance. Another
cause of data leakage is when there are multiple longitudinal visits (i.e.
the patient is evaluated at several time-points) or multiple modalities

1In Chapter 23, the validation set is called the tuning set, as it is the standard
practice in regulatory science and because it insists on the fact that it should not be
used to evaluate the final performance, which should be done on an independent test
set. In the present chapter, we use the term validation set as it is the most common
in the academic setting.
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for a given patient. In such as case, one should never put data from
the same patient in both the training and validation sets. For instance,
one should not, for a given patient, put the visit at month 0 in the
training set and the visit at month 6 in the validation set. Similarly,
one should not use the magnetic resonance imaging (MRI) data of a
given patient for training and the positron emission tomography (PET)
image for validation. A similar situation arises when dealing with 3D
medical image. It is absolutely mandatory to avoid putting some of the
2D slices of a given patient in the training set and the rest of the slices
in the validation set. More generally, in medical applications, the split
between training and test set should always be done at the patient level.
Unfortunately, data leakage is still prevalent in many machine learning
studies on brain disorders. For instance, a literature review identified
that up to 40% of studies on convolutional neural networks for automatic
classification of Alzheimer’s disease from T1-weighted MRI potentially
suffered from data leakage [11].

Box 3: Some common causes of data leakage

• Perform feature selection using the whole dataset

• Perform dimensionality reduction using the whole dataset

• Perform parameter selection using the whole dataset or the
test set

• Perform model or architecture search using the whole dataset
or the test set

• Report the performance obtained on the validation set that
was used to decide when to stop training (in deep learning)

• For a given patient, put some of its visits in the training set
and some in the validation set

• For a given 3D medical image, put some 2D slices in the train-
ing set and some in the validation set

3.1.4. Statistical testing

Sources of variance. Train-test splits, cross-validation, and the like
seek to estimate the expected generalization performance of a learning
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procedure. Keeping test data rigorously independent from algorithm
development minimizes the bias of this estimation. However, the are
multiple sources of arbitrary variations in these estimates. The most
obvious one is the intrinsic randomness of certain aspects of learning
procedures, such as the random initial weights in deep learning. Indeed,
while fixing the seed of the random number generator may remove the
randomness on a given train data, this stability is misleading given this
choice is arbitrary and not representative of the overall behavior of the
machine-learning algorithm on the data distribution of interest [12]. A
systematic study of machine-learning benchmarks [13] shows that their
most important sources of variance are:

Choice of test data / split. A given test set is an arbitrary sample
of the actual population that we are trying to generalize to. As a
result, the corresponding measure of performance is an imperfect
estimate of the actual expected performance. Section 3.2, below,
gives the resulting confidence intervals for a fixed test set. Using
multiple splits, and thus multiple test sets, improves the estimation
[13], though it makes computing confidence intervals hard [14].

Hyper-parameter optimization. The choice of hyper-parameters is
imperfect, for instance because of limited resources to tune these
hyper-parameters. Another attempt to tune hyper-parameter
would lead to slightly different choice. Thus benchmarks do not
give an absolute characterization of a learning procedure, but are
muddied by imperfect hyper-parameters.

Random seeds. As mentioned above, random choices in a learning pro-
cedure –initial weights, random drop-out for neural networks or
bootstraps in bagging– lead to uncontrolled fluctuations in bench-
marking results that do not characterize the procedure’s ability to
generalize to new data.

Conclusions must account for benchmarking variance With all
these sources of arbitrary variance, the question is: given benchmarks of a
learning procedure performance, or improvement, is it likely to generalize
reliably to new data or rather to be due to benchmarking fluctuations.
Considering for instance the performance metrics in Table 1, it seems a
safe bet to say that the convolutional neural network outperforms the
two others but what about the difference between the two other models?
From an application perspective, the question is whether this observed
difference is likely to generalize to new data.
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Table 1: Accuracies obtained by different ML models on a binary classi-
fication task. Which model performs best? While it is quite likely that the
convolutional neural network outperforms the two other models, it is less
clear for the two other models. It seems that the support vector machine
results in a slightly higher accuracy but is it due to random fluctuations
in the benchmarks? Will the difference carry over to new data?

Model Accuracy
Logistic regression 0.72
Support vector machine 0.75
Convolutional neural network 0.95

To answer this question, we must account for estimation error for
the expected generalization performance from the different sources of
uncontrolled variance in the benchmarks, as listed above. The first source
of error comes from the limited sample size to test the predictions of the
different learning procedures. Indeed, suppose that the testing set was
composed of 100 samples. In that case, if only 3 more samples had
been misclassified by the support vector machine, the two models would
have had the same performance. A difference of 3 out of 100 could be
easily due having drawn 3 samples not representative of the population.
Other sources of variance are due to how stable the learning pipeline is:
sensitivity to hyperparameters, random initialization...

A simple statistical testing procedure Training and testing a pre-
diction pipeline multiple times is needed to estimate the variability of the
performance measure. The simplest solution is to do this several times
while varying the arbitrary factors, such as split between the train and
the test or random initialization (see Box 4). The resulting set of per-
formance measures is similar to bootstrap samples and can be used to
draw conclusions on the distribution of performances in a test set. Con-
fidence intervals can be computed using percentiles of this distribution.
Two learning procedures can be compared by counting the number of
times that one outperforms the other: outperforming 75% of the times
is typically considered as a reliable improvement [13]. If the available
computing power enables training learning procedures only a few times,
empirical standard deviations should be used, as they require less runs to
estimate. The improvements brought by a learning procedure can then
be compared to these standard deviations.

Note these procedures do not perform classic null-hypothesis signif-
icance testing, which is difficult here. In particular the standard error
across the various runs should not be used instead of the standard devia-
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Box 4: Statistical procedure to characterize a learner

1. Perform k runs of:

(a) randomly splitting out a test set,

(b) training the learning procedure on the train set,

(c) and measuring the performance p on the test set.

Choose different values of arbitrary parameters (such as ran-
dom seeds) on each run, and if enough computing power, run
hyper-parameter optimization each time. This results a set of
performance measure M = {m1, ...,mk}.

2. Use all the values {m1, ...,mk} to conclude on the performance
of the learner:

Confidence intervals are given by percentiles of M
Standard deviation ofM can be used to gauge typical vari-

ance of performance, as it requires performing a smaller
number of runs k than percentiles. Standard error should
not be used (see text)

Learner comparison can be done by comparing two such set
of values M and M′, typically counting the fractions of
values in M that outperform M′ (without any pairing).
Statistical procedures such as t-test should not be used
(see text)

tion: the standard error is the standard deviation divided by the number
of runs. The number of runs can be made arbitrarily large given enough
compute power, thus making the standard error arbitrarily small. But
in no way does the uncertainty due to the limited test data vanish. This
uncertainty can be quantified for a fixed test set –see 3.2, but in repeated
splits or cross-validation it is difficult to derive confidence intervals be-
cause the runs are not independent [15, 14]. In particular, it is invalid
to use a standard hypothesis test –such as a T-test– across the different
folds of a cross-validation. There are some valid options to perform hy-
pothesis testing in a cross-validation setting [16, 14], but they must be
implemented with care.

Another reason not to rely on null-hypothesis testing is that their
statistical significance only asserts that the expected performance –or
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improvement– is non zero over a test population of infinite size. From
a practical perspective, we care about meaningful improvements on test
sets of finite size, which is related to the notion of acceptance tests –as
opposed to significance– in the Neyman-Pearson framework of statisti-
cal testing [17]. Unlike null-hypothesis significance testing, it requires
choosing a non-zero difference considered as acceptable, for instance as
implicitly set by considering that a new learning procedure should im-
prove upon an existing one 75% of the times –far from chance, which lies
at 50%.

3.2 Generalization to an external population

The importance of external validation The procedures describe
above characterize the expected error of a learning procedure applied on
a given population. A related, but different, question is that of char-
acterizing the error of a given predictive model, typically output by a
training machine-learning procedure on a study population. That sec-
ond question, related to the notion of external validity, is important for
two reasons. First, it characterizes the specific predictive model that
will be used in practice, “in production”. Indeed, variance in the learn-
ing procedure will lead to arbitrary variation in model performance as
large as typical improvements achieved by developing better models [13].
Second, characterizing the model on the target population may be impor-
tant, as it may differ markedly from the study population. Indeed, the
techniques in the previous section rely on splitting the initial dataset in
training and testing (or validation) set; hence these different sets are by
construction drawn from the same population, and have similar charac-
teristics (data coming from the same hospital/centers/countries, similar
age/sex . . . ). They only demonstrate the ability of the model to general-
ize to new but similar data. To better assess model utility, guidelines on
evaluating clinical prediction models, insist on external validation using
data collected later in time, or in a different geographical area [18].

Testing whether a prediction model can generalize to dissimilar data
is important as it is all too frequent that the study sample, on which the
model was developed, does not represent the target population [19]. The
target data may for instance come from different hospitals and different
countries, be acquired with different acquisition devices and protocols
or with different sociodemographic or clinical characteristics than those
of the training data. For instance, it has been shown that the type of
MRI scanner can have a substantial impact on the generalization ability
of ML models. To assess such generalization ability, a common practice
is to use one or several additional datasets for testing, these datasets

Machine Learning for Brain Disorders



Machine-Learning Evaluation 25

being acquired using different protocols and at different sites (Figure 9).
Most often, these datasets come from other research studies (different
from the one used for training). However, research studies do not usu-
ally reflect well clinical routine data. Indeed, in research studies, the
acquisition protocols are often standardized and rigorous data quality
control is applied. Moreover, participants may not be representative of
the target population. This can be due to inclusion/exclusion criteria
(for instance excluding patients with vascular abnormalities in a study
on Alzheimer’s disease) or due to uncontrolled biases. For instance, par-
ticipants to research studies tend to have a higher socioeconomic status
than the general population. Therefore, it is highly valuable to also per-
form validation on clinical routine data, whenever possible, as it is more
likely to reflect “real-life” situations. One should nevertheless be aware
that a given clinical routine dataset may come with specificities that may
not generalize to all settings. For instance data collected within a spe-
cialized center of a university hospital may substantially differ from that
seen by a general practitioner.

Testing procedures for external validation External validation
of a predictive model relies on an independent test set and not cross-
validation. Statistical testing thus amount to derive confidence intervals
or null-hypothesis significance testing for the metric of interest on this
test set, exactly as when characterizing a diagnostic test [20].

For simple metrics that rely on counting successes, such as accu-
racy, sensitivity, PPV, NPV, the sampling distribution can be deduced

Figure 9: In order to assess the generalization ability of a model
under different conditions (such as data coming from different hospi-
tals/countries, acquired with different devices and protocols. . . ), a com-
mon practice is to use one or several additional datasets that come from
other studies than the one used for training.
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Table 2: Binomial confidence intervals on accuracy (95% CI)
for different values of ground-truth accuracy.

N 65% 80% 90% 95%

100 [-9.0% 9.0%] [-8.0% 8.0%] [-6.0% 5.0%] [-5.0% 4.0%]
1000 [-3.0% 2.9%] [-2.5% 2.4%] [-1.9% 1.8%] [-1.4% 1.3%]

10000 [-0.9% 0.9%] [-0.8% 0.8%] [-0.6% 0.6%] [-0.4% 0.4%]
100000 [-0.3% 0.3%] [-0.2% 0.2%] [-0.2% 0.2%] [-0.1% 0.1%]

from a binomial law. Table 2 gives such confidence intervals for dif-
ferent set of the test set and different values of the ground-truth accu-
racy. These can be easily adapted to other counts of errors as follows:

Accuracy N is the size of the test set
Sensitivity N is the number of negative samples in the test set
Specificity N is the number of positive samples in the test set

PPV N is the number of positively classified test samples
NPV N is the number of negatively classified test samples

We believe it is very important to have in mind the typical orders
of magnitude reported in Table 2. It is not uncommon to find medical
classification studies where the test set size is about a hundred or less.
In such a situation, the uncertainty on the estimation of the performance
is very high.

These parametric confidence intervals are easy to compute and re-
fer to. But actual confidence intervals may be wider if the samples are
not i.i.d. In addition, some interesting metrics, such as AUC ROC, do
not come with such parametric confidence interval. A general and good
option, applicable to all situations, is to approximate the sampling dis-
tribution of the metric of interest by bootstrapping the test set [8].

Finally, note that all these confidence intervals assume that the avail-
able labels are the ground truth. In practice, medical truth is difficult to
establish, and label error may bias the estimation of error rates.

When comparing two classifiers, a McNemar’s test is useful to test
whether the observed difference in errors can be explained solely by sam-
pling noise [21, 22]. The test is based on the number of samples misclas-
sified by one classifier and not the other, n01 and vice versa n10. The test
statistics is then written (|n01 − n10| − 1)2/(n01 + n10); it is distributed
under the null as a χ2 with 1 degree of freedom. To compare classifiers’
scanning the tradeoff between specificity and sensitivity without choosing
a specific threshold on their score one option is to compare areas under
the curve of the ROC, using the DeLong test [23] or a permutation scheme
to define the null [24].
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4. Conclusion

Evaluating machine learning models is crucial. Can we claim that a new
model outperforms an existing one? Is a given model trustworthy enough
to be “deployed”, making decisions in actual clinical settings? A good
answer to these questions requires model-evaluation experiments adapted
to the application settings. There is no one-size-fits-all solution. Mul-
tiple performance metrics are often important, chosen to reflect target
population and cost-benefit trade-offs of decisions, as discussed in sec-
tion 2. The prediction model must always be evaluated on unseen “test”
data but different evaluation goals lead to procedures to choose this test
data. Evaluating a “learner” –a model-construction algorithm– leads to
cross-validation, while evaluating the fitness of a given prediction rule
–as output by model fitting– calls for left-out data representative of the
target population. In all settings, accounting for uncertainty or variance
of the performance estimate is important, for instance to avoid investing
in models that bring no reliable improvements.
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A. Appendix

A.1 Odds ratio and diagnostic-tests evaluation

Odds and odds ratio are frequently used in biostatistics and epidemiology,
but less in machine learning. Here we give a quick introduction to these
topics.

A.1.1. Odds

Odds are a measure of likelihood of an outcome: the ratio of the number
of events that produce that outcome to the number that do not. The
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odds O(a) of an outcome a are simply related to the probability P (a) of
this outcome:

Odds of a O(a) =
P (a)

1− P (a)
(1)

In other words, O(a) is the number of times the event a would occur
for each occurrence of the opposite event. This intuitive explanation
has led odds to be often used for sports gambling. For instance, if the
odds are 3 (or more specifically in gambling terminology 3 : 1) for FC
Barcelona vs Real Madrid, it means that FC Barcelona has a probability
of winning against Real Madrid of 75% (P (a) = O(a)

O(a)+1
). Coming back

to diseases, supposing that only a minority of the population is affected,
if the odds of the disease are 1%, which can be written as 1 : 100, this
means that for every diseased person in the population, there are 100
persons without it. The prevalence is thus 1

101
= 0.99% ≈ 1%. One

can see that when the prevalence is low, it is close to the odds, which
is not the case when prevalence gets higher. This is true in general of
probabilities and odds: when the probability is low, it is close to the
odds.

A.1.2. Odds ratio and invariance to class sampling

The odds ratio measures the association between two events, a and b,
which we can arbitrarily call respectively outcome and property. The
odds ratio is defined as the ratio of the odds of the outcome in the group
where the property holds to that in the group where the property does
not hold:

Odds ratio between a and b OR(a, b) =
O(a|b = +)

O(a|b = −)
(2)

To compute the odds ratio, the problem is fully specified by the counts
in the following contingency table:

Outcome a
a+ a−

P
ro
p
er
ty
b

b+ n++ n−+

b− n+− n−−

(3)

The odds are written: O(a|b = +) = n++

n−+
and O(a|b = −) = n+−

n−−
hence

the odds ratio reads

OR(a, b) =
n++

n−+

n−−
n+−

. (4)
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Note that this expression is unchanged swapping the role of a and b; the
odds ratio is symmetric, OR(a, b) = OR(b, a)

Invariance to class sampling Suppose we have sampled the popu-
lation selecting with a frequency f on the outcome a+, for instance to
over-sample the positive outcome or the positive property 2. In eq. 4, n++

is replaced by f n++ and n+− by f n+−; however, the factor f cancels
out and the overall expression of the odds ratio is unchanged. This is a
central property of the odds ratio:

The odds ratio is unchanged by sample selection bias
on one of the variables (a or b).

This property is one reason why odds and odds ratio are so central
to biostatistics and epidemiology: sampling or recruitment bias are an
important concern in these fields. For instance, a case-control study has
a very different prevalence as the target population, where the frequency
of the disease is typically very low.

Confusion with risk ratio The odds ratio is often wrongly inter-
preted as a risk ratio –or relative risk–, which is more easily understood.

The risk ratio is the ratio of the probability of an outcome in a group
where the property holds to the probability of this outcome in a group
where this property does not hold. The risk ratio thus differs from the
odds ratio in that it is expressed for probabilities and not odds. Even
though the values for odds ratio and risk ratio are often close because, in
most diseases being diseased in much less likely than not, they are fun-
damentally different because the odds ratio does not depend on sampling
whereas the risk ratio does.

A.1.3. Likelihood ratio of diagnostic tests or classifiers

The likelihood ratio used to characterize diagnostic tests or classifiers
is strongly related to the odds ratio introduced above, though it is not
strictly speaking an odds ratio. It is defined as:

LR+ =
P (T+ |D+)

P (T+ |D−)
(5)

2Indeed, thankfully, many diseases have a prevalence much lower than 50%, e.g. 1%
which is already considered a frequent disease. Therefore, in order to have a sufficient
number of diseased individuals in the sample without dramatically increasing the
cost of the study, diseased participants will be oversampled. One extreme example,
but very common in medical research, is a case-control study where the number of
diseased and healthy individuals is equal.
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Using the expressions in Box 1 and the fact that P (T+ |D+) = 1−P (T−
|D+), the LR+ can be written as:

LR+ =
Sensitivity

1− Specificity
(6)

Link to pre-test and post-test odds We can write this in terms of
the contingency table in eq. 3 (the link to the confusion matrix in Figure 1
is given by a = D, b = T and thus n++ = TP , n−+ = FP , n+− = FN ,
n−− = TN):

LR+ =
n++

n++ + n+−

n−+ + n−−
n−+

(7)

=
n++

n−+︸︷︷︸
P (D+|T+)
P (D−|T+)

=O(D+|T+)

n−+ + n−−
n++ + n+−︸ ︷︷ ︸
P (D−)
P (D+)

= 1
O(D+)

(8)

LR+ =
O(D + |T+)

O(D+)
(9)

Indeed, O(D + |T+) = P (D+|T+)
1−P (D+|T+)

= P (D+|T+)
P (D−|T+)

and O(D+) = P (D+)
1−P (D+)

=
P (D+)
P (D−)

.

O(D+) is called the pre-test odds (the odds of having the disease in
the absence of test information). O(D+ |T+) is called the post-test odds
(the odds of having the disease once the test result is known).

Equation 9 shows how the LR+ relates pre- and post-test odds, an
important aspect of its practical interpretation.

Invariance to prevalence If the prevalence of the population changes,
the quantities are changed as follows: n++ → f n++, n+− → f n+−,
n−+ → (1− f)n−+, n−− → (1− f)n−−, affecting LR+ as follows:

LR+ =
f n++

(1− f)n−+

(1− f)n−+ + (1− f)n−−
f n++ + f n+−

. (10)

The factors f and (1− f) cancel out, and thus the expression of LR+ is
unchanged for a change of the pre-test frequency of the label (prevalence
of the test population). This is alike odds ratios, though the likelihood
ratio is not an odds ratio (and does not share all properties; for instance
it is not symmetric).
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