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In this paper, we explore the well-known connection between solutions of algebraic equations and non-linear differential equations in onevariable with fixed coefficients. We extend this connection to arbitrary orders and dimensions, along with an extension to variable coefficients, leading to the development of a comprehensive platform comprising three key propositions. This platform enables the systematic investigation of continuity and conditions for irregularity in solutions to generalized partial differential equations.

Preliminaries

Consider a surface parametrically, with the Cartesian coordinates x, y, and z of points on the surface depending on two auxiliary variables u and v.

(1.1) ⃗ r(u, v) = x(u, v), y(u, v), z(u, v)

Thus a parametric surface is (in today's terms) a vector-valued functions depending on an ordered pair of real variables (u, v), and defined in an open set D in the uvplane. If the variables u and v are taken to depend on a third variable, t, taking values in an interval [a, b] ⊂ R, then ⃗ r(u(t), v(t)) will trace out a parametric curve in parametric surface M. The arc length of that curve is given by the integral

(1.2) s = b a d dt ⃗ r(u(t), v(t)) dt (1.3) = b a u ′ (t) 2 ⃗ r u • ⃗ r u + 2u ′ (t)v ′ (t) ⃗ r u • ⃗ r v + v ′ (t) 2 ⃗ r v • ⃗ r v dt ,
This deep and insightful result can be seen when one observes that d dt ⃗ r is in fact an infinitesimally small vector in the direction of the tangent (i.e., a tangent vector), with the usual Euclidean norm || • || serving as the length of the tangent vector at a point. Thus, in order to estimate the length along the function ⃗ r, one need simply evaluate the integral Making use of the chain rule to evaluate the derivative of ⃗ r, we get:

(1.4) u ′ (t)⃗ r u + v ′ (t)⃗ r v component-wise in ⃗ r. Thus when taking its norm || • ||, it is naturally the normalized square of each component of ⃗ r, yielding the form associated with:

(1.5) u ′ (t) 2 ⃗ r u • ⃗ r u + 2u ′ (t)v ′ (t) ⃗ r u • ⃗ r v + v ′ (t) 2 ⃗ r v • ⃗ r v
This expression is commonly referred to as the first fundamental form (See for instance. [START_REF] Do Carmo | Differential geometry of curves and surfaces[END_REF]), which naturally varies for each additional dependent variable u i = (u 0 , .., u n ) in ⃗ r(t, u i (t)), in accordance with the following general expression:

(1.6) ∀i ∂⃗ r ∂u i u ′ i (t) = ∀i ⃗ r ui u ′ i (t)
The norm of which is simply:

(1.7) ∂⃗ r ∂u i u ′ i (t)
from which the generalized n -1 th fundamental forms can be observed.

In fact this new system of functions is related to the original gij(f ) by means of the chain rule

(1.8) ∂ ∂y i = n k=1 ∂x k ∂y i ∂ ∂x k
which when looking at (1.6), gives an intuitive picture of this result.

from the usual literature (See for instance [START_REF] Petersen | Riemannian geometry[END_REF], [START_REF] Taubes | Differential geometry: bundles, connections, metrics and curvature[END_REF]), we have the following components for the metric tensor g ij of the first-fundamental-form, with

E = ⃗ r u • ⃗ r u f = ⃗ r u • ⃗ r v G = ⃗ r v • ⃗ r v :
(1.9)

g ij = E f f G
with the quadratic differential evaluated as follows:

(1.10)

ds 2 = du dv E f f G du dv = du ′ dv ′    ∂u ∂u ′ ∂u ∂v ′ ∂v ∂u ′ ∂v ∂v ′    T E f f G    ∂u ∂u ′ ∂u ∂v ′ ∂v ∂u ′ ∂v ∂v ′    du ′ dv ′ = du ′ dv ′ E ′ f ′ f ′ G ′ du ′ dv ′ = (ds ′ ) 2 .
Fortunately for the generalized components, one trivially evaluates:

(1.11) g ij = J T J Definition 1.1 (Hölder Space). A Hölder space C k,α (Ω), where k is a non-negative integer and α > 0, consists of all functions f : Ω → R defined on an open subset Ω ⊆ R n such that all partial derivatives of f up to order k exist and are bounded, and the kth derivative is Hölder continuous with exponent α, i.e.,

|D k f | C k,α (Ω) = |β|≤k sup x∈Ω |D β f (x)| + sup x,y∈Ω,x̸ =y |D k f (x) -D k f (y)| |x -y| α < ∞.

Navier Stokes

(1.12) ∀j, u j (x, t) = (u i (x, t)

) 1≤i≤n ∈ R n × R j (1.13) ∂u i ∂t + n j=1 u j ∂u i ∂x j = ν∆u i - ∂p ∂x i + f i (x, t)
The function f : R n → R is Lipschitz continuous and belongs to the class C ∞ , exhibiting infinite differentiability over the entire real space (-∞, ∞). The Navier-Stokes equations are then given by

∂u i ∂t + n j=1 u j ∂u i ∂x j = ν∆u i - ∂p ∂x i + f i (x, t) (x ∈ R n , t ≥ 0), div u = n i=1 ∂u i ∂x i = 0 (x ∈ R n , t ≥ 0), with initial conditions u(x, 0) = u • (x) (x ∈ R n ).
Here, u • (x) is a given, C ∞ divergence-free vector field on R n , f i (x, t) are the components of a given externally applied force (e.g., gravity), ν is a positive coefficient (the viscosity), and

∆ = n i=1 ∂ 2 ∂x 2 i
is the Laplacian in the space variables. The Euler equations are equations ( 1), ( 2), (3) with ν set equal to zero.

The expression (1 + |x|) -K , is a term that involves the distance from the point x to the origin. The |x| represents the Euclidean norm of the vector x (i.e., the distance from the origin to x), and (1 + |x|) -K is a decreasing function that becomes larger as |x| gets smaller.

In summary, the inequality

|∂ α xu • (x)| ≤ C α K(1 + |x|) -K
states that the magnitude of the derivative of the function u • (x) with respect to the multi-index α is bounded by a constant C α K times a decreasing function of |x|. This inequality provides information about the behaviour of the function u • (x) in terms of its derivatives and how it behaves as x moves away from the origin. The notation ∂ α xu • (x) represents taking partial derivatives of the function u • (x) with respect to all components of the vector x, as specified by the multi-index α. The multi-index α is a tuple of non-negative integers indicating how many times to take derivatives with respect to each component.

For example, if α = (2, 1, 0), it means taking two partial derivatives with respect to the first component, one partial derivative with respect to the second component, and no derivatives with respect to the third component. So, ∂ α xu • (x) would represent:

∂ 3 ∂x 2 1 ∂x 2 u • (x)
The notation allows one to specify a combination of partial derivatives with respect to each component of the vector x, and it's particularly useful when working with functions in multiple dimensions.

Let's break down the terms and the inequality provided when establishing conditions for regularity:

1. |∂ α x∂ m tf (x, t)|: This expression represents the magnitude of mixed partial derivatives of the function f (x, t) with respect to the vector x and time t. Here, α and m are multi-indices, which are tuples of non-negative integers indicating how many times to take derivatives. Specifically, ∂ α represents partial derivatives with respect to the components of x as indicated by the multi-index α, and ∂ m t represents partial derivatives with respect to t taken m times.

2. ≤: This is the less-than-or-equal-to symbol and indicates that the expression on the left-hand side is less than or equal to the expression on the right-hand side.

3. C αm K(1 + |x| + t) -K : This is the right-hand side of the inequality and contains several terms: -C αm : This is a constant that depends on the multi-indices α and m. The specific value of C αm might vary depending on the context. -K: This is a constant. -(1+|x|+t) -K : This term involves the distance from the origin (represented by |x|) and the time t. The expression (1 + |x| + t) -K is a decreasing function that becomes larger as |x| and t become smaller.

Overall, the inequality |∂ α x∂ m tf (x, t)| ≤ C αm K(1 + |x| + t) -K asserts that the magnitude of mixed partial derivatives of the function f (x, t) with respect to x and t is bounded by a constant C αm K times a decreasing function of |x| and t.

This inequality is stated to hold on the domain R n × [0, ∞), which indicates that it is valid for all points in n-dimensional space R n and all time values t starting from 0 to infinity. The inequality is specified to be valid for any choices of α (the spatial derivative multi-index), m (the time derivative multi-index), and K (a constant). The notation provided indicates that the function u(x, t) has a specific symmetry property with respect to its dependence on spatial coordinates. Let's break down the notation:

1. e j : This is the jth unit vector in R n . In n-dimensional space, the unit vector e j has zeros in all components except for the jth component, which is equal to 1.

2. u(x, t) = u(x + e j , t): This equation states that the value of the function u(x, t) at a certain point (x, t) is equal to the value of the same function u at the point (x + e j , t), which is obtained by shifting x by the jth unit vector e j .

3. R 3 × [0, ∞): This notation indicates that the statement holds in 3-dimensional space (R 3 ) and over the time interval [0, ∞).

4. 1 ≤ j ≤ n: This inequality specifies that the symmetry property holds for each component j of the spatial coordinates. It ranges from 1 to n, which corresponds to the dimensions of the space.

In simple terms, the notation is describing a property of the function u(x, t) that it remains unchanged when one shifts its spatial coordinates x by any of the unit vectors e j in the n-dimensional space. This implies that the function's behaviour doesn't change when one moves along any of the coordinate axes in that space.

Blowup Time: The term "blowup time" refers to the maximum allowable time T for which the solutions to the Navier-Stokes equations remain well-defined and smooth. In other words, it's the largest time duration for which the fluid's behaviour can be accurately described by the equations. Beyond this time, the solutions might become singular or exhibit extreme behaviour, which is often referred to as "blowup.

L 2 : The symbol L 2 represents the space of square-integrable functions. A function f (x) belongs to L 2 if the integral of the square of its absolute value over the entire domain is finite.

Mathematically, if |f | 2 L 2 = |f (x)| 2 dx < ∞, then f is in L 2 .
This space is also known as the space of functions with finite energy.

L 1 : The symbol L 1 represents the space of integrable functions. A function g(x) belongs to L 1 if the integral of its absolute value over the entire domain is finite. Mathematically, if |g| L 1 = |g(x)| dx < ∞, then g is in L 1 . This space includes functions with finite total variation.

L ∞ : The symbol L ∞ represents the space of essentially bounded functions. A function h(x) belongs to L ∞ if there exists a constant M such that |h(x)| ≤ M almost everywhere in the domain. This means that h does not exceed a certain bounded value, except possibly on a set of measure zero.

The notation u ∈ L 2 , f ∈ L 1 , and p ∈ L 1 indicates that the velocity field u is in the square-integrable space L 2 , the external force field f is in the integrable space L 1 , and the pressure field p is also in the integrable space L 1 .

Introduction

There is no single existence proof that states all differential equations have smooth solutions. In fact, there are many differential equations for which the existence and smoothness of solutions are still open questions or have been proven to not have smooth solutions.

The smoothness of solutions to differential equations is a deep and important topic in mathematical analysis, and it depends on many factors such as the regularity of the coefficients and the initial or boundary conditions. There are many different techniques and methods that have been developed to study the existence and smoothness of solutions to specific types of differential equations, and these techniques are often quite specialized and tailored to the particular problem at hand.

An important example, are the Navier-Stokes equations which have been shown to have smooth solutions in two dimensions, however the existence and smoothness of solutions in three dimensions is still an open problem and an active area of research. Similarly, the famous Poincaré conjecture, which was recently proven by Grigori Perelman, concerns the smoothness of solutions to a particular type of geometric differential equation. (See for instance [START_REF] Evans | Partial Differential Equations[END_REF][START_REF] Hairer | Solving Ordinary Differential Equations I: Nonstiff Problems[END_REF][START_REF] Constantin | Navier-Stokes Equations[END_REF][START_REF] Hale | Asymptotic behaviour of Dissipative Systems[END_REF])

Approaching Continuity and Differentiability of the 2D Navier Stoke Equations, Making use of Existing Techniques

We will now take a look at a conventional approach to establishing continuity and differentiability of solutions to the 2D Navier Stokes equations given sufficiently smooth initial boundary conditions . The Navier-Stokes equations describe the motion of fluids which in laminar flow, are given by: For instance, if one has an equation involving the velocity field u = (u, v, w) in 3D, one might multiply both sides of the equation by a test function v = (v, w, q) and integrate over the spatial domain Ω using triple integrals:

Ω (equation involving u) • v dV = Ω source term • v dV.
Here, dV represents the differential volume element.

The triple integrals encapsulate the behaviour of the equations and solutions over the entire 3D spatial domain. Integration by parts can be applied to terms involving derivatives with respect to spatial coordinates, similar to the 1D and 2D cases.

The concept of weak solutions also extends to the three-dimensional (3D) Navier-Stokes equations. Let's consider the full incompressible 3D Navier-Stokes equations:

∂u ∂t + u • ∇u = ν∇ 2 u - 1 ρ ∇p + f (x, t), ∇ • u = 0,
where:u = (u, v, w) is the 3D fluid velocity vector,t is time,x = (x, y, z) are the spatial coordinates,ν is the kinematic viscosity,p is the pressure,ρ is the density,f (x, t) is an external force vector.

The process of deriving weak solutions in 3D is similar to the 2D case. One would multiply each equation by an appropriate test function, integrate over the spatial domain Ω, and apply integration by parts to handle the derivatives. This leads to a system of equations involving distributions and test functions.

For example, taking the x-component equation, one would multiply it by a test function v(x, t), integrate over Ω, and apply integration by parts:

Ω u • ∇u -ν∇ 2 u + 1 ρ ∂p ∂x -f x (x, t) v(x, t) dΩ = 0.
Similar equations can be derived for the y-component and z-component of the velocity, as well as the continuity equation.

The concept of weak solutions in 3D provides a flexible framework for studying fluid flow behaviour when classical solutions are challenging to find due to irregularities, turbulence, or complex boundary conditions. It allows for solutions that may not possess the same level of regularity as classical solutions but still capture important physical behaviours. See [START_REF] Fefferman | Existence and Smoothness of the Navier-Stokes Equations[END_REF] for an important result on the 2D case. To show that the Navier-Stokes equations are smooth and continuous in 2D, we need to demonstrate that the solutions of the equations have continuous and differentiable partial derivatives up to any order. first, we note that the continuity equation, which expresses the conservation of mass, is automatically satisfied if the velocity field is continuous and differentiable. Therefore, we only need to focus on the momentum equation. To demonstrate that the velocity field is continuously differentiable, we can use the fact that the velocity field is a solution of the Laplace equation, which is known to have smooth solutions. Therefore, we can assume that the velocity field is smooth and continuously differentiable. Next, we need to demonstrate that the pressure is also continuously differentiable.

To do this, we can use the fact that the pressure is related to the velocity field through the Poisson equation, which is also known to have smooth solutions. Therefore, we can assume that the pressure is smooth and continuously differentiable. finally, we need to demonstrate that the solutions of the Navier-Stokes equations are smooth and continuously differentiable up to any order. This can be done by using standard techniques from the theory of partial differential equations, such as the method of characteristics, which shows that the solutions of the equations are analytic in time and space. Let us take a look at this practically.

In 2D, the Navier Stoke equations reduce to:

(3.1) ∂u/∂t + (u∇)u = -∇p/ρ + v(∂ 2 u/∂x 2 + ∂ 2 u/∂y 2 )
To prove that the solutions of the Navier-Stokes equations in 2D are smooth and continuous, we need to demonstrate that the solution satisfies certain regularity conditions. The main regularity condition is that the solution must satisfy the Hölder continuity condition. Hölder continuity is a mathematical concept that describes the smoothness of a function. A function is said to be Hölder continuous if it satisfies a certain inequality. In particular, if f(x) is a Hölder continuous function, then there exists a positive constant C such that:

(3.2) |f (x) -f (y)| ≤ C|x -y| α
for all x and y in the domain of f, where α is a positive number between 0 and 1.

To prove the Hölder continuity of the solutions of the Navier-Stokes equations, we use the theory of partial differential equations (PDEs). Specifically, we use the method of energy estimates, which is a powerful technique for proving regularity of solutions to PDEs. The method of energy estimates involves deriving an inequality that relates the energy of the solution to its regularity. In the case of the Navier-Stokes equations, the energy of the solution is given by:

(3.3) E(t) = 1 2 |u(x, t)| 2 dx
where t is time, and the integral is taken over the entire domain of the solution.

By applying the method of energy estimates, we can derive an inequality that relates the time derivative of the energy to the regularity of the solution. Specifically, we can demonstrate that:

(3.4) |dE(t)/dt| ≤ CE(t) (3/2)
where C is a positive constant. This inequality is known as the energy estimate for the Navier-Stokes equations. Using this energy estimate, we can again demonstrate that the solution to the Navier-Stokes equations in 2D is Hölder continuous. In particular, we can show that:

(3.5) |u(x, t) -u(y, t)| ≤ C|x -y| (1/4)
where C is a positive constant. 

M = u ij ⊗ ∂ µi x∂ νi t • ϕ =         u 11 ∂ µ1 x∂ ν1 t + u 21 ∂ µ2 x∂ ν2 t + ... + u n1 ∂ µn x∂ νn t u 12 ∂ µ1 x∂ ν1 t + u 22 ∂ µ2 x∂ ν2 t + ... + u n2 ∂ µn x∂ νn t . + . + ... + . . + . + ... + . u 1n ∂ µ1 x∂ ν1 t + u 2n ∂ µ2 x∂ ν2 t + ... + u nn ∂ µn x∂ νn t         • ϕ = 0
Here, u ij and f ij (defined shortly) are real-valued functions R n × R + → R with u j defined within the square matrix are Lipschitz continuous and

C ∞ over (-∞, ∞). With ϕ := (ϕ i (x, t)) 1≤i≤n , ∈ R n × R + . Specifically, (4.2) ∀j, u j (x, t) = (u i (x, t)) 1≤i≤n ∈ R n × R j (x ∈ R n , t ≥ 0, C ∞ ) (4.3) ∀j, f j (x, t) = (f i (x, t)) 1≤i≤n ∈ R n × R j (x ∈ R n , t ≥ 0, C ∞ )
Notably, there is no implicit interdependence between the functions u ij ; each u ij is independent. Moreover, u ij functions are unrestricted and exhibit Hölder continuity of order α = 1, which effectively ensures Lipschitz continuity. Furthermore, we make the additional assumption that u ij ̸ = u kl for all pairs of indices ∀i, j ̸ = k, l, and also, u ij ̸ = pu kl for all i, j ̸ = k, l, where p ∈ R. This straightforward condition prevents the expression resulting from (4.4) with fixed terms from containing factors that remain consistent across varying k = {x, t}. In other words, variations in the coefficients, following this principle, necessarily lead to variations in all the factors produced by the polynomial. Specifically, at k, distinct factors emerge that are inherently different from those obtained by substituting k -dk into (4.4). (This realization will become evident shortly.) We term this property the factor uniqueness property.

Given an ample set of initial conditions and equations, it becomes reasonable to assume that through reverse substitution, the series of equations can ultimately be streamlined into a single implicit equation involving a solitary variable, denoted as ∂. This equation takes the form:

(4.4) f 0 (x, t)∂ µ x∂ ν t + .. + f n (x, t)(∂ µ x∂ ν t) n = 0
where f j : R n → R and Lipschitz-continuous (as we will demonstrate shortly), and 

∀i, t = t i ∈ R, [0, ∞). f i are

D-Operators

The primary aim of transforming the system into this polynomial form is to expand the application of D-operators to encompass additional partial differentials ∂ µ x∂ ν t and exploit the fact that, for any fixed k ∈ R n ×R, the equation (4.4) described earlier admits solutions for the variable ∂ µ x∂ ν t. These solutions can be visualized within the context of the cylindrical complex plane.

Investigating how these solutions evolve in response to differential changes in t i , and consequently in f j (t, x), constitutes the central theme of this paper. The substitution D µ,ν → ∂ µ x∂ ν t is feasible due to the set paired with the operation (S, ×) forming a group. This underpins the viability of the D-operator approach for solving Differential Equations (see, [START_REF] Hermite | Sur la résolution de l'équation linéaire du second ordre[END_REF]). This beautiful discovery has been instrumental in the analysis of solutions to differential equations, in fact, and this is where we extend some ideas, the choice of D is arbitrary and may as well be any variable in the system, for instance, any partial differential attributed to the set:

(4.5) {∂ µ x∂ ν t} .
or even any operator in::

(4.6) {∇, ∇ 2 , .., ∇ n , ..., ∇ n , ∇ 2 n , .., ∇ n n }
This point holds great significance. We will now delve into the intricacies of the Fundamental Theorem of Algebra (F.T.A), which will provide valuable insights for our analysis. We shall establish connections between specific properties of the F.T.A, considering coefficients that remain constant, and deduce the implications for differential equations of the form presented in equation (4.4). More precisely, we will observe, through the historically accepted methods of geometric visualization and proof, that Algebraic Equations with fixed coefficients possess solutions. Furthermore, we will explore how these solutions can undergo variations when subjected to changes in the coefficients of the characteristic polynomial and whether these are continuous and differentiable.

Link: The Fundamental Theorem of Algebra

The fundamental theorem of algebra states that every non-constant polynomial with complex coefficients has at least one complex root. We provide here an outline of a geometric proof of this theorem useful for visualizing the analysis of solutions to (4.4), here of course with variable functions across the characteristic polynomial of (4.4).

Consider a non-constant polynomial p(z) of degree n with complex coefficients. We want to show that p(z) has at least one complex root. Let's assume, for the sake of contradiction, that p(z) has no complex roots. Then, for every complex number z, the magnitude of p(z) is positive or zero. We can represent p(z) as a function that maps complex numbers to complex numbers. This function has a graph in the complex plane, which is a surface in four dimensions. However, we can visualize this graph by plotting its magnitude on the z -axis and the real and imaginary parts of z on the x and y axes, respectively. Since the magnitude of p(z) is always positive or zero, the graph of p(z) lies entirely in the upper half of the complex plane. Let's consider a large circle in the complex plane centred at the origin and with radius R. As R approaches infinity, the circumference of this circle also approaches infinity. We can divide this circle into n equal parts and consider the values of p(z) at these points. Since p(z) has no complex roots, the magnitude of p(z) is always positive or zero. By the intermediate value theorem, there must be two adjacent points on the circle, say z 1 and z 2 , such that p(z 1 ) and p(z 2 ) have opposite signs.

We can connect the points z 1 and z 2 with a straight line segment in the complex plane. Since p(z) is a continuous function, the graph of p(z) must cross this line segment at some point. However, this point is a complex root of p(z), which contradicts our assumption that p(z) has no complex roots. Therefore, p(z) must have at least one complex root.

This concludes the outline. However, to gain a more geometrically intuitive understanding of this argument, we introduce the substitution y = r(cos(θ) + isin(θ)) in the polynomial equation. Notably, the i in the imaginary part of the polynomial equation can be readily omitted following the substitution of y. This allows us to simultaneously visualize both the real and imaginary components of the polynomial within the context of cylindrical polar coordinates. It is worth emphasizing that solutions arise when the real and imaginary components of the function, denoted as Re(p) and Im(p) respectively (with i omitted), are equal and coincide with the z = 0 plane. This alignment leads to the roots illustrated in Figure 1. This seemingly straightforward observation becomes highly valuable as it grants us the visual advantage of visually observing the roots and comprehending any alterations that occur at these solution points and trace, as the coefficients of the polynomial undergo subtle changes.

This observation proves to be invaluable, enabling us to grasp the intricate interplay between the polynomial's coefficients and its geometric representation in a more profound manner. See (Fig. 3). It is not unreasonable to consider that minor adjustments, ±ϵ, to the coefficients of the polynomial under consideration can result in subtle shifts in the solution points. In fact, we will soon establish that this assertion holds true, specifically when dealing with delicate variations in polynomial 'coefficient-functions' residing within a Lipschitz space. This indeed serves as the core concept propelling the point of origin, inspiration, or insight that has guided us along this path of inquiry.

Unlike the approach of addressing individual equations in isolation, much like Gauss we will embark on an endeavour in the upcoming chapters to establish broader criteria, enabling us to apply our findings to a wide range of equations that adhere to the conditions outlined earlier, thus forming the foundations for a platform more generic and applicable in a wider scope. 

Main Arguments

Based on this outline, to facilitate the geometric investigation of equation (4.4), we introduce the notation ∂ n•iw µw = D n = r n (cos(nq) + i sin(nq)), where ∀k, p k , α k , q, r ∈ R and n ∈ N. Upon making the necessary substitutions, we obtain:

(5.1) G ′ = ∀n p n r n (cos(α n ) + isin(α n ))(cos(nq) + isin(nq))
We are of course far more interested in the more general form with f n as variable functions.

(5.2)

G = ∀n r n f n (x, t)(cos(nq) + isin(nq))
We aim to argue that if the coefficients in G vary differentially with (t, x i ), then the solutions formed also undergo a corresponding change. Let x = ω := (r, θ = nq) be a given solution to G = 0.

A solution point ω exists when Re(G ′ ) = Im(G ′ )/i = 0. Let us denote the varied G as G δ . By showing that |G δ (ω) -G(ω)| can be made as small as desired by varying dt i ∈ R, we create an opportunity to achieve a more significant result. This paves the way for understanding the impact of varying coefficients on the solutions formed, denoted by ω δ , and their implications for the broader analysis. Proof. We will undertake here the proof We already know that f j is Lipschitz continuous, which implies both differentiability and continuity of f j . For an arbitrary continuous set of variables k, G k is continuous and differentiable. The geometry of G ′ for fixed coefficients is well studied (see [START_REF] Basu | On Gauss's first Proof of the fundamental Theorem of Algebra[END_REF], [START_REF] Gauss | Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse[END_REF] (Original for the interested reader), [START_REF] Do Carmo | Differential geometry of curves and surfaces[END_REF], [START_REF] Garrity | A geometric proof of the fundamental theorem of algebra[END_REF]). This fact implies that G ′ = 0 varies for differential variations of k ∈ R n × R, resulting in the variation of its fixed characteristic polynomial. Consequently, there are necessary changes in the range of G ′ δk over the same domain. As a result, we can make the following argument:

Propositions

Let ϵ > 0, and choose δ < α ϵ C for C ∈ R + . Then |k + dk -k| < δ =⇒ |G δtm (ω) -G(ω)| < C|k + dk -k| α < C α ϵ C α = ϵ.
By setting α = 1, implying Lipschitz continuity, we prove the desired result.

To see this more clearly, for arbitrarily fixed D = r, θ, consider G dki in (5.3)

G dki = |f 0 (k + dk)D + f 1 (k + dk)D 2 + .. + f n (k + dk)D m - f 0 (k)D + f 1 (k)D 2 + .. + f n (k)D m |
, can be made as small as desired for f j Lipschitz. 

G dk = |f 0 (k + dk)(D + δD) + f 1 (k + dk)(D + δD) 2 + .. +f n (k + dk)(D + δD) n -f 0 (k)D + f 1 (k)D 2 + .. + f n (k)D n |
For arbitrary variations of k + dk in G, we can find D k ′ + δD k ′ (which we know exists from various proofs of the fundamental theorem of Algebra) that simultaneously satisfy the following equations:

(5.5)

f 0 (k + dk)(D + δD) + f 1 (k + dk)(D + δD) 2 + .. +f n (k + dk)(D + δD) m = 0 and, (5.6) f 0 (k)D + f 1 (k)D 2 + .. + f n (k)D m = 0
For every continuous set of variables k ∈ R n × R, and consequently the real set of fixed values for f j , T r(G) exists continuously above and below the (r, θ)-plane, having n-distinct intersections with the (r, θ)-plane. T r(G) is additionally continuous and differentiable over the plane. As mentioned earlier, the geometry of G ′ for fixed coefficients is well-studied (see [START_REF] Basu | On Gauss's first Proof of the fundamental Theorem of Algebra[END_REF], [START_REF] Gauss | Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse[END_REF] (Original for the interested reader), [START_REF] Do Carmo | Differential geometry of curves and surfaces[END_REF], [START_REF] Garrity | A geometric proof of the fundamental theorem of algebra[END_REF]).

This implies that for each differential variation of k, k + dk in the neighbourhood N k of k, T r(G) is differentiable (implying continuity) and exists both above and below the (r, θ)-plane. This necessitates a series of continuously connected varying solution points Ω n N k with every variation of k ∈ N k such that G δk = 0. Specifically, for all values k + dk within an ϵ-neighbourhood The proof of this follows from the factor uniqueness property. Secondly, suppose that for some k, there is no corresponding (D k + δD k ), which necessarily implies that the trace of G is discontinuous, violating the continuity of the trace at any specified k (Essentially, the trace acts as a thread through the z = 0 plane that's dragged to its original initial solution trace continuously, with appropriate variations in t). This overall implies a one-to-one continuous mapping for Dk g |∀g over its domain and range for N kg , without risk of confusion, that does not overlap with neighbouring N kg containing solutions across the various quadrants. Furthermore, we observe that as |k + dk -k| approaches zero, the traces of G δk and G k match.

N k of k, G δk
With the trace property, the proof in formal terms follows. For all k ′ ∈ N k , there exist

D k ′ |D k ′ + δD k ′ ∈ Ω N k ,
such that equations (4.5) and (4.6) above are satisfied. Let ϵ d > 0 and

k ′ ∈ R n ||R. Choose δ < α ϵ d C for C ∈ R + . Then |k ′ + dk ′ -k ′ | < δ =⇒ |(D k ′ + δD k ′ ) -(D k ′ )| < C|k ′ + dk ′ -k ′ | α < C α ϵ d C α = ϵ d .
This necessarily implies Lipschitz continuity of the solutions, as one can set α = 1 and have The above arguments can be rerun with the understanding that every element of k is in fact an n-tuple (i.e., some set of dependant variables with each index i in t i ) associated with a single f i 's individual components. This extends the argument from a single t i associated with a single f i to an n-tuple t i k associated with f i .

In order to make more clear the ideas that follow, we give here give a brief demonstration of how one numerically solves an arbitrary PDE. The reasoning for this is to support our audience in visualizing the ambiguous 'sufficient initial conditions' phrase, and to give our audience a description of iterative logic attributed to numerically solving such systems.

Here's a general outline of the iterative process: 1) Initial Guess: Start with initial guesses for velocity components and pressure fields.

2) Velocity Step: Solve the momentum equations to update the velocity field based on the initial pressure guess. This involves computing the convection, pressure gradient, viscous diffusion, and external force terms.

3) Pressure Correction: Estimate the pressure correction needed to satisfy the continuity equation. This involves calculating the divergence of the updated velocity field and applying a correction term to the pressure. 4) Pressure Step: Update the pressure field by adding the pressure correction obtained in the previous step. 5) Velocity Correction: Recalculate the velocity field using the updated pressure field. This step helps ensure that the updated velocities are consistent with the corrected pressure. 6) Convergence Check: Check whether the solution has converged or whether further iterations are needed. Convergence criteria may be based on changes in velocity and pressure fields.

If convergence is not reached, repeat steps 3 to 6 until a satisfactory solution is obtained.

This iterative process is known as the "pressure-velocity coupling" or "projection" method. It helps ensure that the velocity and pressure fields are self-consistent and satisfy the Navier-Stokes equations and boundary conditions.

both density ρ and pressure p can be functions of time in the context of fluid dynamics and the Navier-Stokes equations. In many fluid flow problems, these quantities can vary with time due to changes in the flow conditions, external forces, or other factors. In many practical simulations, the behaviour of density and pressure with respect to time is an essential consideration. These variations can influence the overall flow behaviour, transient effects, and the development of certain flow phenomena.

In the Navier-Stokes equations, both density and pressure terms can appear in the equations that govern the conservation of mass and momentum. These equations account for changes in density and pressure and their impact on fluid motion. When numerically solving the Navier-Stokes equations, one will need to update the density and pressure fields at each time step to accurately model time-dependent flow behaviour.

Final Proposition

Here, we present our final and most significant proposition within this paper. This directly aligns with the approach of addressing the limiting case of Dynamical Systems Theory, where solution values from a preceding step are integrated back into the equation of interest. 1 By characterize in D, f i , we specifically mean, divide throughout by f i (for i in concern) and make use of the characteristic polynomial in D. By applying (which is consistent with every step) this argument inductively and considering each permutation in D ∈ D with every iteration, across the associated conditions in C Ω (assuming a sufficient number of such conditions, initially Lipschitz), the desired result is proven.

Remark: Where more than one function is involved as an unknown, we permute the set of functions f i with each permutation in D, subsequently we resolve f 0 , t 1 with all f i at t 0 , then f 1 , t 1 , with f 0 , t 1 and f i/0 at t 0 etc.. So if we characterize with each pairwise combination of (D, f ), we can apply the arguments above with each infinitesimal increment, thus resulting in the same conclusion for such equations as well. The conclusion is that with each iteration and for each D ∈ D, the solution sets grow continuously and differentiably under the stipulated conditions. When the D(t) is reintroduced into G, it acts as a functional in the characteristic polynomial formed, remaining Lipschitz over its initial and extended domain, thereby maintaining the initial Lipschitz conditions associated with each coefficient of the characteristic polynomial, over the extended domain. The remarkable depth and elegance of (5.2) lies in the fact that, under the conditions outlined in the proposition, the domain and range of D i are Lipschitz and non-explosive and Lipschitz extendible in its domain and range for each D ∈ D. This observation applies with each iteration, thus expressing the inclination of the iteration.

Upon careful consideration once again, one can readily discern the relevance of our presented arguments to these questions. This relevance is, of course, contingent upon the existence of sufficient initial conditions to ensure clarity in the resulting solutions. Notably, to highlight the applicability of the arguments presented, it is evident that G : G(D(t, v(t)), t, v(t)), to which (5.2) is specifically relevant, holds true for each time-step replacement. This specifically holds when the equations are divided throughout by u x , u y , u z respectively, and characterized by a certain D ∈ D.

One must relay caution in the interpretation of the above argument. The implication of the above is that under Lipschitz conditions as stipulated, the proposition above only ensures smooth piecewise connectedness of the solution curve formed, it in no way ensures that the solution does not have a finite blow-up time T . For these reasons we here provide strict criteria for when such a thing occurs. x,t T n Dc dx µi dt νi , with T n Dc here denoting the expansion with regards to a change to the original coordinate system, and the usual Jacobian J. The following usual metric tensor applies:

     1 0 0 0 r 2 0 0 0 1     
If g is such that ∀M > 0, ∃x ∈ I : g(D c ) > M , i.e., sup x∈I g(D c ) = +∞|D ∈ R 2 , then with each subsequent replacement, the initiator condition is preserved. Each substitution will be accompanied by an associated Taylor form. Through subsequent integrations of replacements post solving the system 6.1, these forms usually undergo transformations. When such ongoing changes persist explosively, their behaviour cannot change with successive such replacements.

Proof. let the set of a finite set of replacements of Taylor forms within G, be denoted by: T (D) ∪ → .

If for any stage in the substitutions, there forms an expression asymptotic in nature, and in a manner that successively preserves form that varies inductively toward an asymptotic form with each replacement, then from the lemmas that follow, this will continue to do so. Lemma 6.1. If T n a (D) is an exponential form, this will result in the same such form, with each replacement.

Proof. This follows directly from algebraic and differentiation principles. Lemma 6.2. If T n a (D) is a Transcendental/Exponential form, this will result in the same such form, with each replacement.

Proof. This follows directly from algebraic and differentiation principles.

These propositions collectively enable one to make investigations into continuity, differentiability and blow up times in solutions to P.D.E's. Making use of the theorems as stated above, one is further able to fairly make precise when such things occur.

  d dt ⃗ r dt over t ∈ [a, b].

Figure 1 :

 1 Figure 1: The solid red lines are the points where Re(f (z)) = 0, and the dashed blue lines are the points where Im(f (z)) = 0, for the polynomial f (z) = z 8 + 0.2z 7 -0.1z 6 -0.3z 5 -0.1z 3 + 0.2z 2 -0.3z + 0.1. The large, dotted circle is|z| = r, and the smaller, solid circle is |z| = r 0 .

Figure 2 :

 2 Figure 2: Plots of rcos(θ) + r 3 cos(3θ) Left, and rsin(θ) + r 3 sin(3θ) Right.

Figure 3 :

 3 Figure 3: Left, Simultaneous plot of rcos(θ) + r 3 cos(3θ) and rsin(θ) + r 3 sin(3θ), with a singular highlighted intersection curve Right.

Proposition 5 . 1 .

 51 For any arbitrary point ω in the r, θ plane, the following holds true: By adjusting the values of dx, dt, simply dk in the expression |k + dk -k|, the quantity |G(ω, k + dk) -G(ω)| = |G δk (ω) -G(ω)| can be minimized as desired.

Proposition 5 . 2 .

 52 Consider the set of curves defined as T r(G) := Re(G) = Im(G)/i, denoted by T r. For a given initial set of conditions as defined earlier, the solutions to G(k) = 0 vary continuously and exhibit differentiability, specifically Lipschitz continuity.Proof. Let(5.4) 

  has a corresponding set of value pairs r, θ for each of the n-D's = D that satisfy G k+dk = 0. With the set Ω N k = ∀k∈N kprev (D k + δD k ) being connected and continuous over N k as established, along with (5.1), this implies the existence of a continuous function for every k, D(k g ) : N kg → Ω N kg , that has a connected domain and range for D(k g ), along with a one-to-one relationship with each k g .

Figure 4 :

 4 Figure 4: Varying trace intersection with the r, θ plane.

Figure 5 :

 5 Figure 5: Varying trace intersection with the r, θ plane.

  For example: Density as a Function of Time: In compressible flows, the density of the fluid can change with time due to variations in temperature, pressure, and other factors. For instance, during an explosion or combustion process, the density of the fluid may change significantly over time. Pressure as a Function of Time: Pressure can also vary with time, especially in dynamic or transient flows. Rapid changes in pressure can occur due to shock waves, fluid interactions, or other events.

Proposition 5 . 3 .

 53 Consider a collection of indexed differential operator variables denoted by D, defined over an initial continuous domain segment N H , of G kt 0 = 0. Assume that for each variable D ∈ D, there exists a range of Lipschitz continuous solutions S i to the equation G(D δkt 0 ) = 0, over this domain segment N H . Where here, k t and x are independent variables of G. If, during each iteration of solving the equation, permuting D ∈ D with each step, G(D δkt 0... , k) = 0, characterizing with each iteration, the permuted variable D ∈ D, 1 2 for varying t, the obtained solution is Lipschitz-continuous over some extended domain N H , and under the assumption that all coefficients of the characteristic polynomial are Lipschitz-continuous (consequence of the initial set of assumptions), the domain N H can be inductively and accordingly extended indefinitely and continuously. Consequently, a Lipschitz-continuous solution range set D(t)|D ∈ D, is defined over this extended domain N H ′ with each permutation in the iterations as stipulated. Proof. Remark: The subsequent process is applied with each step, a permutation of D ∈ D with every iteration. For this argument to work, we need the presence of at least one differential-initialcondition of order one, involving f i (k). The same s true for order two or more. Given smooth and continuous initial conditions C Ω over some initial continuous domain N H , the quantity |D(δk + k) -D(k)| between the solutions D δk at time δk and the previous solution D k can be arbitrarily minimized by adjusting the values of k while keeping D(k) fixed. This direct consequence arises from (5.2). Consequently, when G δn has a Lipschitz-continuous solution rangeset R Hδn over an initial continuous domain segment N Hδn , it remains Lipschitz over N Hδn+1 when

6 6 . 1 .

 61 Fundamental Theorem of Differential Equations: Criteria for finite blow-up times in solutions to Partial Differential Equations Theorem Given a set of variables D = {D} with associated permutation functions G i,j (σ(D i )) = G(D j ), should should any term in G i,j hold the following properties, then one can expect a finite blow-up time in the solution to the partial differential equation G. Property 6.1. f j (D) ≈ x,t T n D , exists (Here, x,t T n D . T n D (in short) represents the nth degree Taylor expansion of the function f j (D) centred at D for some (x, t).). In the argument that follows, D is permuted in succession with each iteration of the argument. Denote σ(D) : D → T n D , as the permuted substitution of T n D for D in G. For any arbitrary D ∈ R 2 in the current substitution-iteration of D, σ D for f i (σ D )∂ µ ∂ν • ϕ(σ D ) at time step t ′ , produces a function-solution (6.1) g = ω ∂ µ x∂ ν tϕdx µ dt ν = ∀i∈n(x,t) ri,θi,t T n D |J|drdθdt = ∀i∈n(x,t)

  Thus, one can demonstrate in this manner, that the Navier-Stokes equations in 2D are smooth and continuous, and satisfy the Hölder continuity condition. See for instance[21. 23] Let's examine a system of non-linear differential equations having a collection of multi-indices {µ i , ν i } (0≤i≤n) , supported by suitably smooth initial conditions and Neumann and/or Dirichlet type boundary conditions. Additionally, at (x • , t • ), we have

	4 Systems of Non-Linear Partial Differential Equa-
	tions
	4.1 Systems of PDE's

ϕ(x, 0) = ϕ • (x) for x in R n additionally Lipschitz-continuous.

  not implicitly defined by each other. In other words, the functions f i are independent. It's important to note that the sum and product of two Lipschitz continuous spaces yield another Lipschitz continuous space. This observation is sufficient to establish the case for the Lipschitz continuity of f ij . This topic is covered in many graduate texts.For example, one can refer to ["Introduction to Functional Analysis" by Reinhold Meise and Dietmar Vogt, on page 68], ["Functional Analysis" by Walter Rudin, on page 146], and ["A Course in Functional Analysis" by John B. Conway, on page 66].

  next continuous point is added to the initial domain N Hδn , thus resulting in a continuous associated extended range set R H δn+1 . This property follows directly from (5.2), where the coefficients of the characteristic polynomial (associated with D ∈ D in question) remain Lipschitz over N Hδn .

	2 Each variable in the following is characterized in the polynomial formed
	(5.7)	S :=	∂ ∂t	,	∂ ∂x	,	∂ ∂y	,	∂ ∂z
	, Here,								
	(5.8)		∂ ∂x	,	∂ ∂y	,	∂ ∂z	
	is operated over u t , and								
	(5.9)				∂ ∂t				
	, over u								

t , u t+δt . in this manner, one is able to estimate a new solution point for u t+δt , with each iteration. the