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MICROSCOPIC TRIDOMAIN MODEL OF ELECTRICAL ACTIVITY IN THE

HEART WITH DYNAMICAL GAP JUNCTIONS. PART 1- MODELING AND

WELL-POSEDNESS

FAKHRIELDDINE BADER∗, MOSTAFA BENDAHMANE, MAZEN SAAD, AND RAAFAT TALHOUK

Abstract. We present a novel microscopic tridomain model describing the electrical activity in

cardiac tissue with dynamical gap junctions. The microscopic tridomain system consists of three

PDEs modeling the tissue electrical conduction in the intra- and extra-cellular domains, supple-
mented by a nonlinear ODE system for the dynamics of the ion channels and the gap junctions.

We establish the global existence and uniqueness of the weak solutions to our microscopic trido-

main model. The global existence of solution, which constitutes the main result of this paper, is
proved by means of an approximate non-degenerate system, the Faedo-Galerkin method, and an

appropriate compactness argument.
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1. Introduction

The heart study started since more than two millennia back. This organ, about the size of its
owner’s clenched fist, contracts rhythmically to circulate blood throughout the body, while other
organs like the brain and lungs, were thought to exist to cool the blood. Until this day the heart
keeps the position of one of the most important and the most studied organs in the human body.
Especially, cardiovascular disease (CVD) leading to heart attack, is the top cause of death in the
worldwide as announced by the ”World Health Organization” in 2019. Given the large number
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of related pathologies, there is an important need for understanding the chemical and electrical
phenomena taking place in the cardiac tissue.

In fact, the heart is a muscular organ can be viewed as double pump consisting of four chambers:
upper left and right atria, and lower left and right ventricles. These four chambers are surrounded
by a cardiac tissue that is organized into muscle fibers. These fibers form a network of cardiac
muscle cells called ”cardiomyocytes” connected end-to-end by junctions called intercalated discs.
Intercalated discs contain gap junctions and desmosomes. Gap junctions transverse of contiguous
cells and connect the cytoplasm of one cell to the cytoplasm of the adjacent cell. Cardiac tissue use
gap junctions to spread action potential to nearby cells. This allows the heart to generate a single
continuous and forceful contraction that pumps the blood throughout the body [19, 18].

The structure of cardiac tissue (myocarde) studied in this paper is characterized at two different
scales (see Figure 1). At microscopic scale, the cardiac tissue consists of two intracellular media
which contains the contents of the cardiomyocytes (the cytoplasm) that are connected by gap junc-
tions and the other is called extracellular and consists of the fluid outside the cardiomyocytes cells.
Each intracellular medium and the extracellular one are separated by a cellular membrane (the
sarcolemma). While at the macroscopic scale, this domain is well considered as a single domain
(homogeneous).

Figure 1. Representation of the cardiomyocyte structure
http://www.cardio-research.com/cardiomyocytes

It should be noted that there is a difference between the chemical composition of the cytoplasm
and that of the extracellular medium. This difference plays a very important role in cardiac activity.
On the one hand, the sarcolemma allows the penetration of inorganic ions (sodium, potassium,
calcium,...) and proteins, some of which play a passive role and others play an active role powered
by cellular metabolism. In particular, the concentration of anions (negative ions) in cardiomyocytes is
higher than in the external environment. This difference of concentrations creates a transmembrane
potential, which is the difference in potential at the sarcolemma between each intracellular medium
and the extracellular one. On the other hand, gap junctions allows the movement of not only
inorganic ions but also organic ions between two adjacent cells [19]. It provide the pathways for
intracellular current flow, enabling coordinated action potential propagation. So, the difference of
chemical through the gap junction creates a gap potential, which is the difference in potential between
these two intracellular media. Our model that describes the electrical activity in the cardiac tissue
including the gap junctions, is called by ”tridomain model”. From the mathematical viewpoint, the
microscopic tridomain model consists of three quasi-static equations, two for the electrical potential
in the intracellular medium and one for the extracellular medium, coupled by a nonlinear ODE
system at each membrane (the sarcolemma) and by a linear one at gap junction for the dynamics

http://www.cardio-research.com/cardiomyocytes
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of the ion channels. These equations depend on scaling parameter ε whose is the ratio between the
microscopic scale and the macroscopic one. The microscopic tridomain model was proposed three
years ago [34, 17] in the case of just two coupled cells compared to our model which is defined on
larger collections of cells.

The goal of the present paper is to investigate existence and uniqueness of solutions of the trido-
main equations, coupled with an ionic model, namely the FitzHugh–Nagumo model. We mention
some works in the literature on the bidomain model that gives a macroscopic description of the car-
diac tissue from two inter-penetrating domains which are the intracellular and extracellular domains
at the microscopic scale. The first mathematical formulation of this model was constructed by Tung
[33]. This variant leads to two quasi-static whose unknowns are intra- and extracellular electric po-
tentials coupled with non linear ordinary differential equations called ionic models at the membrane.
Next, Krassowska and Neu [25] have proposed to represent cells by large cylinders connected to
each other by narrow channels and then have applied the two-scale asymptotic method to formally
obtain the bidomain model from the microscopic problem. In particular, they are considered that
these narrow channels precisely model gap-junctions (”low-resistance connections between cells”).
There are some references dealing with the well-posedness of this model. First, global existence
in time and uniqueness for the solution of the micro- and macroscopic bidomain model coupled
with FitzHugh–Nagumo simplification for the ionic currents, is proven in [12, 26]. It is based on a
reformulation of the bidomain problem as a Cauchy system for an evolution variational inequality
in a properly chosen Sobolev space. Next, the authors in [35] used Schauder’s fixed point theorem
to establish the well-posedness of the macroscopic bidomain problem with a generalized phase-I
Luo–Rudy ionic model [22]. The authors in [6] have studied the well-posedness of the macroscopic
bidomain model coupled to a third PDE that describes the electrical potential of the surrounding
tissue within the torso. The existence of a global solution of the latter model is proved using the
Faedo-Galerkin method for a wide class of ionic models (including Mitchell-Schaeffer model [23],
FitzHugh-Nagumo [11, 24], Aliev-Panfilov [1], and Roger-McCulloch [29]). Furthermore, in [7], ex-
istence of a global solution of the macroscopic bidomain model is proved only for the last three
ionic models, using a semi-group approach and the Galerkin technique. While uniqueness, however,
is achieved only for the FitzHugh–Nagumo ionic model in the two previous works. Moreover, the
authors in [4] proved the existence and uniqueness of solution of the macroscopic bidomain model
by using the Faedo-Galerkin method (see for instance [5] where the authors prove the well-posedness
of solution for the microscopic bidomain model using the same technique). In the present work, we
prove the existence of solution for the novel microscopic tridomain model by a constructive method
based on Faedo-Galerkin approach without the restrictive assumption, usually found in the litera-
ture, on the conductivity matrices to have the same basis of eigenvectors or to be diagonal matrices
(see for instance [7] where the authors prove the existence of a local in time strong solution of the
bidomain equations). It is worth to mention that our approach is innovative and cannot be found
in the literature in the context of existence of solutions to the microscopic tridomain model.

The main contribution of the present paper. The cardiac tissue structure studied at micro-macro
scales. We start by modeling the microscopic tridomain model by taking account the presence of
gap junctions as connection between adjacent cardiac cells. Next, we formulate our tridomain model
in dimensionless form with the hope to get more insight in the meaning of the microscopic and
macroscopic scales. Finally, we end by proving the well-posedness of the microscopic tridomain
problem by using Faedo-Galerkin method, a priori estimates and L2-compactness argument on the
membrane surface.

The outline of the paper is as follows. In Section 2, we describe the geometry of cardiac tissue
in the presence of gap junction and some notations and explanations on the boundary conditions
are introduced. Furthermore, we introduce in detail our microscopic tridomain model in the cardiac
tissue structure. In Section 3, our main result is stated: existence and uniqueness of a weak solutions.
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In Section 4, we shall completely define and prove existence, uniqueness of a weak solutions. It is
based on Faedo-Galerkin technique, a priori estimates and compactness results. The results are
obtained under minimal regularity assumptions on the data.

2. Tridomain modeling of the cardiac tissue

The aim of this section is to describe the geometry of cardiac tissue and to present the microscopic
tridomain model of the heart.

2.1. Geometry of heart tissue. The cardiac tissue Ω ⊂ Rd (d ≥ 3) is considered as a hetero-
geneous periodic domain with a Lipschitz boundary ∂Ω. The structure of the tissue is periodic at
microscopic scale related to small parameter ε, see Figure 2.

Figure 2. (Left) Periodic heterogeneous domain Ω. (Right) Unit cell Y at ε-
structural level.

Following the standard approach of the homogenization theory, this structure is featured by `mic

characterizing the microscopic length of a cell. Under the one-level scaling, the characteristic length
`mic is related to a given macroscopic length L (of the cardiac fibers), such that the scaling parameter
ε introduced by:

ε =
`mic

L
.

Physiologically, the cardiac cells are connected by many gap junctions. Therefore, geometrically,
the domain Ω consists of two intracellular media Ωk

i,ε for k = 1, 2, that are connected by gap

junctions Γ1,2
ε = ∂Ω1

i,ε ∩ ∂Ω2
i,ε and extracellular medium Ωe,ε (for more details see [34, 17]). Each

intracellular medium Ωk
i,ε and the extracellular one Ωe,ε are separated by the surface membrane Γk

ε

(the sarcolemma) which is expressed by:

Γk
ε = ∂Ωk

i,ε ∩ ∂Ωe,ε, with k = 1, 2,
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while the remaining (exterior) boundary is denoted by ∂extΩ. We can observe that the intracellular
domains as a perforated domain obtained from Ω by removing the holes which correspond to the
extracellular domain Ωe,ε.

We can divide Ω into Nε small elementary cells Yε =
d∏

n=1
]0, ε `mic

n [, with `mic
1 , . . . , `mic

d are positive

numbers. These small cells are all equal, thanks to a translation and scaling by ε, to the same unit

cell of periodicity called the reference cell Y =
d∏

n=1
]0, `mic

n [. So, the ε-dilation of the reference cell Y

is defined as the following shifted set Yε,h :

(1) Yε,h := Th
ε + εY = {εξ : ξ ∈ h` + Y },

where Th
ε represents the translation of εh with h = (h1, . . . , hd) ∈ Zd and h` := (h1`

mic
1 , . . . , hd`

mic
d ).

Therefore, for each macroscopic variable x that belongs to Ω, we define the corresponding microscopic

variable y ≈ x

ε
that belongs to Y with a translation. Indeed, we have:

x ∈ Ω⇒ ∃h ∈ Zd such that x ∈ Y h
ε ⇒ x = ε(h` + y)⇒ y =

x

ε
− h` ∈ Y.

Since, we will study the behavior of the functions u(x, y) which are y-periodic, so by periodicity

we have u
(
x,
x

ε
− h`

)
= u

(
x,
x

ε

)
. By notation, we say that y =

x

ε
belongs to Y.

We are assuming that the cells are periodically organized as a regular network of interconnected
cylinders at the microscale. The microscopic unit cell Y is also divided into three disjoint connected
parts: two intracellular parts Y k

i for k = 1, 2, that are connected by an intercalated disc (gap
junction) Γ1,2 and extracellular part Ye. Each intracellular parts Y k

i and the extracellular one are
separated by a common boundary Γk for k = 1, 2. So, we have:

Y := Y
1

i ∪ Y
2

i ∪ Y e, Γk := ∂Y k
i ∩ ∂Ye, Γ1,2 := ∂Y 1

i ∩ ∂Y 2
i ,

with k = 1, 2. In a similar way, we can write the corresponding common periodic boundary as follows:

(2) Γε,h = Th
ε + εΓ = {εξ : ξ ∈ h` + Γ},

with Th
ε denote the same previous translation, Γε,h := Γk

ε,h,Γ
1,2
ε,h and Γ := Γk,Γ1,2 for k = 1, 2.

In summary, the intracellular and extracellular media can be described as follows:

Ωk
i,ε = Ω ∩

⋃
h∈Zd

Y k
i,ε,h, Ωe,ε = Ω ∩

⋃
h∈Zd

Ye,ε,h,

Γk
ε = Ω ∩

⋃
h∈Zd

Γk
ε,h and Γ1,2

ε = Ω ∩
⋃

h∈Zd

Γ1,2
ε,h,

where Y k
i,ε,h, Ye,ε,h and Γk

ε ,Γ
1,2
ε are respectively defined as (1)-(2) for k = 1, 2.

Both sets Ωk
i,ε, k = 1, 2 and Ωe,ε are assumed to be connected Lipschitz domains so that a

Poincaré-Wirtinger inequality is satisfied in both domains. The boundaries Γk, k = 1, 2 and Γ1,2 are
smooth manifolds such that Γk

ε , k = 1, 2 and Γ1,2
ε are smooth and connected.

2.2. Microscopic tridomain model. A vast literature exists on the bidomain modeling of the
heart, we refer to [27, 12, 26, 9] for more details. Here, we define a novel microscopic tridomain
model described in detail in [34, 17] and used in our investigations, as well the models chosen for the
membrane and gap junctions dynamics. In the sequel, the space-time set (0, T ) × O is denoted by
OT in order to simplify the notation. There are a few references dealing with the tridomain model
for other cells types, e.g. cardiomyocytes and fibroblasts [30] and for simulating bioelectric gastric
pacing [31, 10].
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Basic equations. The basic tridomain equations modeling the propagation of cardiac action poten-
tials at cellular level in the presence of gap junctions which can be formulated as follows. First, we
know that the structure of the cardiac tissue can be viewed as composed by two intracellular spaces
Ωk

i for k = 1, 2, that are connected by gap junction Γ1,2 and the extracellular space Ωe. The mem-
brane Γk is defined by the intersection between each intracellular domain Ωk

i and the extracellular
one with k = 1, 2.

Thus, the membrane Γk is pierced by proteins whose role is to ensure ionic transport between
the two media (intracellular and extracellular) through this membrane. So, this transport creates
an electric current.
Using Ohm’s law, the intracellular electrical potentials uki and extracellular one ue are respectively
related to the current volume densities Jk

i and Je for k = 1, 2 :

Jk
i = Mi∇uki , in Ωk

i,T := (0, T )× Ωk
i ,

Je = Me∇ue, in Ωe,T := (0, T )× Ωe,

where Mj represents the corresponding conductivity of the tissue for j = i, e (which are assumed to
be isotropic at the microscale and are given in mS/cm).
In addition, the transmembrane potential vk is known as the potential at the membrane Γk which
is defined as follows:

vk = (uki − ue)|Γk : (0, T )× Γk 7→ R for k = 1, 2.

Moreover, we assume the intracellular and extracellular spaces are source-free and thus the intra-
cellular and extracellular potentials are solutions to the elliptic equations:

(3)
− divJk

i = 0, in Ωk
i,T ,

− divJe = 0, in Ωe,T ,

with k = 1, 2.
According to the current conservation law, the surface current density Ikm is now introduced:

(4) Ikm = −Jk
i · nki = Je · ne, on Γk

T := (0, T )× Γk,

with nki denotes is the (outward) normal pointing out from Ωk
i,ε for k = 1, 2 and ne is the normal

pointing out from Ωe,ε.
The membrane has both a capacitive property schematized by a capacitor and a resistive property

schematized by a resistor. On the one hand, the capacitive property depends on the formation of
the membrane which can be represented by a capacitor of capacitance Cm (the capacity per unit
area of the membrane is given in µF/cm2). We recall that the quantity of the charge of a capacitor
is qk = Cmv

k. Then, the capacitive current Ikc for k = 1, 2 is the amount of charge that flows per
unit of time:

Ikc = ∂tq
k = Cm∂tv

k.

On the other hand, the resistive property depends on the ionic transport between the intracellular
and extracellular media. Then, the resistive current Ir is defined by the ionic current Ikion measured
from the intracellular to the extracellular medium which depends on the transmembrane potential
vk and the gating variable wk : Γk 7→ R with k = 1, 2. Moreover, the total transmembrane current
Ikm (see [9]) is given by:

Ikm = Ikc + Ikr − Ikapp on Γk
T ,

with Ikapp is the applied current of the membrane surface for k = 1, 2 (given in µA/cm2).
Consequently, due to the dynamics of the ionic fluxes through the cell membrane, its electrical
potential vk satisfies the following dynamic condition on Γk involving the gating variable wk:

(5)
Ikm = Cm∂tv

k + Iion
(
vk, wk

)
− Ikapp on Γk

T ,

∂tw
k −H

(
vk, wk

)
= 0 on Γk

T .
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Furthermore, the functions H and Iion correspond to the ionic model of membrane dynamics. All
surface current densities Ikm for k = 1, 2 and Iion are given in µA/cm2. Moreover, time is given in
ms and length is given in cm.

In addition, we represent the gap junction between intra-neighboring cells by a passive model.
This model includes several state variables in addition to the gap junction potential s which is
defined as follows:

s = (u1
i − u2

i )|Γ1,2 : (0, T )× Γ1,2 7→ R.
The ionic current I1,2 through the gap junction Γ1,2 defined by:

(6) I1,2 = −J1
i · n1

i = J2
i · n2

i , on Γ1,2
T := (0, T )× Γ1,2.

Similarly, the ionic current I1,2 at a gap junction Γ1,2 represents the sum of the capacitive and
resistive currents. Consequently, regarding the dynamic structure of the gap junction, its electrical
potential s satisfies the following dynamic condition on Γ1,2 :

(7) I1,2 = C1,2∂ts+ Igap (s) on Γ1,2
T ,

where C1,2 represents the capacity per unit area of the intercalated disc and Igap represents the
corresponding resistive current. In general, the value of C1,2 is set to Cm/2 because the intercalated
disc is assumed to be a membrane of thickness twice as large as the cell membrane, and the specific
capacitance of a capacitor Cm formed by two parallel plates separated by an insulator may be as-
sumed to be inversely proportional to the thickness of the insulator [17].

Non-dimensional analysis. We use the microscopic model given in the previous part without the
parameter scaling ε. In the non-dimensionalization procedure, ε will appear also in each boundary
conditions due to the scaling of the involved quantities (see [15, 9, 2] for the bidomain case).

As a natural assumption for homogenization, we want to formulate the tridomain equations (3)-
(7) in dimensionless form with the hope to get more insight in the meaning of the parameter ε.
We define the dimensionless parameter ε as the ratio between the microscopic length `mic and the
macroscopic length L, i.e.

ε =
`mic

L
.

Using all fundamental material constants, several additional time and length constants can be for-
mulated. For convenience, the macroscopic length is defined as L =

√
Rmλ`mic, the membrane time

constant τm is given by:

τm = RmCm,

where Rm is the resistance of the passive membrane and λ is a normalization of the conductivity
matrix Mj for j = i, e.
After that, we can convert the microscopic tridomain problem into a non-dimensional form by scaling
space and time with the constants, such as,

x = Lx̂ and t = τmt̂.

We take x̂ to be the variable at the macroscale (slow variable),

y :=
x̂

ε

to be the microscopic space variable (fast variable) in the unit cell Y . We also scale the electric
potentials for k = 1, 2:

uki = δv ûki , ue = δv ûe,

and wk = δw ŵk
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where δv, δw are respectively the convenient units to measure the electric potentials and the gating
variable. Furthermore, we normalize the conductivities matrices as follows

M̂j =
1

λ
Mj , for j = i, e,

and we nondimensionalize the ionic functions Iion, H, the applied current Ikapp, k = 1, 2, and the
gap current Igap by using the following scales:

Îion
(
v̂k, ŵk

)
=
Rm

δv
Iion

(
vk, wk

)
, Ĥ

(
v̂k, ŵk

)
=
τm
δw

H
(
vk, wk

)
,

Îkapp =
Rm

δv
Ikapp, and Îgap (ŝ) =

RmCm

δvC1,2
Igap (s) ,

where v̂k = ûki − ûe for k = 1, 2 and ŝ = û1
i − û2

i .

Remark 1. Recalling that the dimensionless parameter ε, given by ε :=

√
`mic

Rmλ
, is the ratio between

the microscopic cell length `mic and the macroscopic length L, i.e. ε = `mic/L and solving for ε, we
obtain

ε =
L

Rmλ
.

As pointed in [15, 9], we can consider for a typical cardiac cell that `mic = 100µm, λ = 5mS/cm and
Rm = 10 000 Ωcm2, leading to ε = 7.1× 10−3.

Remark 2. Using all scaling parameters, we obtain the dimensionless of gap boundary condition
(7) as follows

ε
C1,2

Cm

(
∂t̂ŝ+ Îgap (ŝ)

)
= Î1,2 on Γ1,2

ε,T .

As previously stated, we can consider C1,2 = Cm/2 so we rewrite the above equation as follows

ε

2

(
∂t̂ŝ+ Îgap (ŝ)

)
= Î1,2 on Γ1,2

ε,T .

Cardiac tissue exhibits a number of significant inhomogeneities in particular those related to
cell-to-cell communications. Rescaling the equations (3)-(7) in the intracellular and extracellular
media and omitting the superscript ·̂ of the dimensionless variables, we obtain the following non-
dimensional form:

−∇ ·
(
Mε

i∇uki,ε
)

= 0 in Ωk
i,ε,T := (0, T )× Ωk

i,ε,(8a)

−∇ · (Mε
e∇ue,ε) = 0 in Ωe,ε,T := (0, T )× Ωe,ε,(8b)

uki,ε − ue,ε = vkε on Γk
ε,T := (0, T )× Γk

ε ,(8c)

−Mε
i∇uki,ε · nki = Mε

e∇ue,ε · ne = Ikm on Γk
ε,T ,(8d)

ε
(
∂tv

k
ε + Iion

(
vkε , w

k
ε

)
− Ikapp,ε

)
= Ikm on Γk

ε,T ,(8e)

∂tw
k
ε −H

(
vkε , w

k
ε

)
= 0 on Γk

ε,T ,(8f)

u1
i,ε − u2

i,ε = sε on Γ1,2
ε,T := (0, T )× Γ1,2

ε ,(8g)

−Mε
i∇u1

i,ε · n1
i = Mε

i∇u2
i,ε · n2

i = I1,2 on Γ1,2
ε,T ,(8h)

ε

2
(∂tsε + Igap (sε)) = I1,2 on Γ1,2

ε,T ,(8i)

with k = 1, 2 and each equation corresponds to the following sense: (8a) Intra quasi-stationary con-
duction, (8b) Extra quasi-stationary conduction, (8c) Transmembrane potential, (8d) Continuity
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equation at cell membrane, (8e) Reaction condition at the corresponding cell membrane, (8f) Dy-
namic coupling, (8g) Gap junction potential, (8h) Continuity equation at gap junction, (8e) Reaction
condition at gap junction.

Observe that the tridomain equations (8a)-(8b) are invariant with respect to the above scaling.
We define now the rescaled electrical potential as follows:

uki,ε(t, x) := uki

(
t, x,

x

ε

)
, ue,ε(t, x) := ue

(
t, x,

x

ε

)
, for k = 1, 2.

Analogously, we obtain the rescaled transmembrane potential vkε , the rescaled gap junction potential
sε and the corresponding gating variable wk

ε for k = 1, 2. Furthermore, the conductivity tensors are
considered dependent both on the slow and fast variables, i.e. for j = i, e, we have

(9) Mε
j(x) := Mj

(
x,
x

ε

)
,

satisfying the elliptic and periodicity conditions: there exist constants α, β ∈ R, such that 0 < α < β
and for all λ ∈ Rd :

Mjλ · λ ≥ α |λ|2 ,(10a)

|Mjλ| ≤ β |λ| ,(10b)

Mj y-periodic, for j = i, e.(10c)

Remark 3. Finally, we assume that each Mj is symmetric: MT
j = Mj .

We complete system (8) with no-flux boundary conditions on ∂extΩ:(
Mε

i∇uki,ε
)
· n = (Mε

e∇ue,ε) · n = 0 on (0, T )× ∂extΩ,

where k = 1, 2 and n is the outward unit normal to the exterior boundary of Ω. We impose initial
conditions on transmembrane potential vkε , gap junction potential sε and gating variable wk

ε as
follows:

(11)
vkε (0, x) = vk0,ε(x), wk

ε (0, x) = wk
0,ε(x) a.e. on Γk

ε,T ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε,T ,

with k = 1, 2.
We mention some assumptions on the ionic functions, the source term and the initial data.
Assumptions on the ionic functions. The ionic current Iion(vk, wk) at each cell membrane Γk

can be decomposed into Ia,ion
(
vk
)

and Ikb,ion
(
wk
)
, where Iion

(
vk, wk

)
= Ia,ion

(
vk
)

+ Ib,ion
(
wk
)

with k = 1, 2. Furthermore, the nonlinear function Ia,ion : R→ R is considered as a C1 function and
the functions Ib,ion : R → R and H : R2 → R are considered as linear functions. Also, we assume
that there exists r ∈ (2,+∞) and constants α1, α2, α3, α4, α5, C > 0 and β1 > 0, β2 ≥ 0 such that:

1

α1
|v|r−1 ≤ |Ia,ion (v)| ≤ α1

(
|v|r−1

+ 1
)
, |Ib,ion (w)| ≤ α2(|w|+ 1),(12a)

|H(v, w)| ≤ α3(|v|+ |w|+ 1), and Ib,ion (w) v − α4H(v, w)w ≥ α5 |w|2 ,(12b)

Ĩa,ion : v 7→ Ia,ion(v) + β1v + β2 is strictly increasing with lim
v→0

Ĩa,ion(v)/v = 0,(12c)

∀v, v′ ∈ R,
(

Ĩa,ion(v)− Ĩa,ion(v′)
)

(v − v′) ≥ 1

C
(1 + |v|+ |v′|)r−2 |v − v′|2 ,(12d)

with (v, w) :=
(
vk, wk

)
for k = 1, 2.
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Remark 4. In the mathematical analysis of bidomain equations, several paths have been followed in
the literature according to the definition of the ionic currents. We summarize below the phenomeno-
logical models:

Other non-physiological models have been introduced as approximations of ion current mod-
els. They can be used in large problems because they are typically small and fast to solve,
although they are less flexible in their response to variations in cellular properties such as
concentrations or cell size. We take in this paper the FitzHugh-Nagumo model [11, 24] that
satisfies assumptions (12) which reads as

H (v, w) = a1v − b1w,(13a)

Iion (v, w) = [ρv(1− v) (v − θ)]− ρw := Ia,ion (v) + Ib,ion (w)(13b)

where a1, b1, ρ, θ are given parameters with a1, b1 > 0, ρ < 0 and θ ∈ (0, 1). According to
this model, the functions Iion and H are continuous and the non-linearity Ia,ion is of cubic
growth at infinity then the most appropriate value is r = 4. Using Young’s inequality, we
have

(14) |v|2 ≤ 2 |v|3

3
+

1

3
, |v| ≤ |v|

3

3
+

2

3
, |v| ≤ |v|

2

2
+

1

2

and then assumption (12a) holds for r = 4 :

|Ia,ion (v)| = |ρv(1− v) (v − θ)| ≤
(

2

3
θ +

1

3
(1 + θ)

)
|ρ|+

(
1

3
θ +

2

3
(1 + θ) + 1

)
|ρ| |v|3 ,

|Ib,ion (w)| = |ρ| |w| ,
|H (v, w)| = |a1v − b1w| ≤ a1 |v|+ b1 |w| .

Now, we compute the function E(u, v) := Ib,ion (w) v − α4H(v, w)w defined in R2. So, the

second assumption (12b) holds with α4 = − ρ

a1
:

(15) E(u, v) =
ρ

a1
w2.

Moreover, the conditions (12c)-(12d) are automatically satisfied by any cubic polynomial
Iion with positive leading coefficient. We end this remark by mentioning other reduced ionic
models: the Roger-McCulloch model [29] and the Aliev-Panfilov model [1], may consider more
general that the previous model but still rise some mathematical difficulties. Furthermore,
the Mitchell-Schaeffer model [23] has been studied in [6, 20] and its regularized version have
a very specific structure. In particular, no proof of uniqueness of solutions for these models
exists in the literature.

Now, we represent the gap junction Γ1,2
ε between intra-neighboring cells by a passive membrane:

(16) Igap(s) = Ggaps,

where Ggap = 1
Rgap

is the conductance of the gap junctions. A discussion of the modeling of the gap

junctions is given in [16].
Assumptions on the source term. There exists a constant C independent of ε such that the
source term Ikapp,ε satisfies the following estimation for k = 1, 2:

(17)
∥∥∥ε1/2Ikapp,ε

∥∥∥
L2(Γk

ε,T )
≤ C.



PART 1- MODELING AND WELL-POSEDNESS 11

Assumptions on the initial data. The initial condition vk0,ε, s0,ε and wk
0,ε satisfy the following

estimation:

(18)
∑
k=1,2

∥∥∥ε1/rvk0,ε

∥∥∥
Lr(Γk

ε )
+
∥∥∥ε1/2s0,ε

∥∥∥
L2(Γ1,2

ε )
+
∑
k=1,2

∥∥∥ε1/2wk
0,ε

∥∥∥
L2(Γk

ε )
≤ C,

for some constant C independent of ε. Moreover, vk0,ε, s0,ε and wk
0,ε are assumed to be traces of

uniformly bounded sequences in C1(Ω) with k = 1, 2.
Finally, one can observe that Equations in (8) are invariant under the change of uki,ε, k = 1, 2

and ue,ε into uki,ε + c, ue,ε + c, for any c ∈ R. Therefore, we may impose the following normalization
condition:

(19)

∫
Ωe,ε

ue,ε dx = 0, for a.e. t ∈ (0, T ).

3. Main results

In this part, we highlight our main results obtained in our paper. First, we define the weak
solutions of the microscopic tridomain model. Next, we find a priori estimates and we supply
our existence and uniqueness results by using Faedo-Galerkin method, compactness argument and
monotonicity.

We start by stating the weak formulation of the microscopic tridomain model as given in the
following definition.

Definition 5 (Weak formulation of microscopic system). A weak solution to problem (8)-(11) is a
collection (u1

i,ε, u
2
i,ε, ue,ε, w

1
ε , w

2
ε) of functions satisfying the following conditions:

(A) (Algebraic relation).

vkε = (uki,ε − ue,ε)|Γk
ε,T

a.e. on Γk
ε,T , for k = 1, 2,

sε = (u1
i,ε − u2

i,ε)|Γ1,2
ε,T

a.e. on Γ1,2
ε,T .

(B) (Regularity).

uki,ε ∈ L2
(
0, T ;H1

(
Ωk

i,ε

))
, uεe ∈ L2

(
0, T ;H1(Ωe,ε)

)
,∫

Ωe,ε

ue,ε(t, x) dx = 0, for a.e. t ∈ (0, T ),

vkε ∈ L2
(

0, T ;H1/2
(
Γk
ε

))
∩ Lr

(
Γk
ε,T

)
, r ∈ (2,+∞)

sε ∈ L2
(

Γ1,2
ε,T

)
, wk

ε ∈ L2(Γk
ε,T ),

∂tv
k
ε ∈ L2

(
0, T ;H−1/2

(
Γk
ε

))
+ Lr/(r−1)

(
Γk
ε,T

)
,

∂tsε ∈ L2(Γ1,2
ε,T ), ∂tw

k
ε ∈ L2(Γk

ε,T ) for k = 1, 2.

(C) (Initial conditions).

vkε (0, x) = vk0,ε(x), wk
ε (0, x) = wk

0,ε(x) a.e. on Γk
ε ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε .
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(D) (Variational equations).

(20)

∑
k=1,2

∫∫
Γk
ε,T

ε∂tv
k
εψ

k dσxdt+
1

2

∫∫
Γ1,2
ε,T

ε∂tsεΨ dσxdt

+
∑
k=1,2

∫
Ωk

i,ε,T

Mε
i∇uki,ε · ∇ϕk

i dxdt+

∫
Ωe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

+
∑
k=1,2

∫∫
Γk
ε,T

εIion
(
vkε , w

k
ε

)
ψk dσxdt+

1

2

∫∫
Γ1,2
ε,T

εIgap(sε)Ψ dσxdt

=
∑
k=1,2

∫∫
Γk
ε,T

εIkapp,εψk dσxdt

(21)

∫∫
Γk
ε,T

∂tw
k
ε e

k dσxdt =

∫∫
Γk
ε,T

H
(
vkε , w

k
ε

)
ek dσxdt

for all ϕk
i ∈ L2

(
0, T ;H1

(
Ωk

i,ε

))
, ϕe ∈ L2

(
0, T ;H1(Ωe,ε)

)
with

• ψk = ψk
i − ψk

e :=
(
ϕk
i − ϕe

)
|Γk

ε,T
∈ L2

(
0, T ;H1/2

(
Γk
ε

))
∩ Lr

(
Γk
ε,T

)
for k = 1, 2,

• Ψ = Ψ1
i −Ψ2

i :=
(
ϕ1
i − ϕ2

i

)
|Γ1,2

ε,T
∈ L2(Γ1,2

ε,T ),

• ek ∈ L2(Γk
ε,T ) for k = 1, 2.

Remark 6. Due to Lions-Magenes theorem (see [8] p. 101), the following injection

V :=
{
u ∈ L2

(
0, T ;H1/2

(
Γk
ε

))
∩ Lr

(
Γk
ε,T

)
and ∂tu ∈ L2

(
0, T ;H−1/2

(
Γk
ε

))
+ Lr/(r−1)

(
Γk
ε,T

)}
⊂ C0

(
[0, T ];L2(Γε)

)
, for k = 1, 2

is continuous with r ∈ (2,+∞). Then, vkε ∈ C0
(
[0, T ];L2(Γk

ε)
)

for k = 1, 2. Therefore, the initial

data of vkε for k = 1, 2 in Definition 5 is well defined. In the same manner, the initial condition on
sε and on wk

ε for k = 1, 2 makes sense.

Theorem 7 (Microscopic Tridomain Model). Assume that the conditions (10)-(18) hold. Then,
System (8)-(11) possesses a unique weak solution in the sense of Definition 5 for every fixed ε > 0.

Furthermore, this solution verifies the following energy estimates: there exists constants C1, C2, C3, C4,
independent of ε such that:

(22)
∑
k=1,2

∥∥√εvkε∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∑
k=1,2

∥∥√εwk
ε

∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∥∥√εsε∥∥2

L∞(0,T ;L2(Γ1,2
ε )) ≤ C1

(23)
∑
k=1,2

∥∥uki,ε∥∥L2(0,T ;H1(Ωk
i,ε))

+ ‖uεe‖L2(0,T ;H1(Ωe,ε)) ≤ C2,

(24)
∑
k=1,2

∥∥∥ε1/rvkε

∥∥∥
Lr(Γk

ε,T )
≤ C3 and

∑
k=1,2

∥∥∥ε(r−1)/rIa,ion(vkε )
∥∥∥
Lr/(r−1)(Γk

ε,T )
≤ C4.

Moreover, if vkε,0 ∈ H1/2(Γk
ε) ∩ Lr(Γk

ε), k = 1, 2, then there exists a constant C5 independent of ε
such that:

(25)
∑
k=1,2

∥∥√ε∂tvke∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥√ε∂twk
ε

∥∥2

L2(Γk
ε,T )

+
∥∥√ε∂tsε∥∥2

L2(Γ1,2
ε,T )
≤ C5.

The proof of Theorem 7 is treated in Section 4.



PART 1- MODELING AND WELL-POSEDNESS 13

Remark 8. The authors in [5, 2, 3] treated the microscopic bidomain problem where the gap junction
is ignored. They considered that there are only intra- and extracellular media separated by the
membrane (sarcolemma). Comparing to [5], the microscopic tridomain model in our work consists
of three elliptic equations coupled through three boundary conditions, two on each cell membrane and
one on the gap junction which separates between two intracellular media.

4. Existence and Uniqueness of solutions for the microscopic tridomain model

This section is devoted to proving existence and uniqueness of solutions to the heterogeneuous
microscopic tridomain model presented in Section 2 for fixed ε > 0. The proof of Theorem 7 is based
on the Faedo-Galerkin method and carried out in several steps:

• Construction of the basis on the intra- and extracellular domains.
• Construction and local existence of approximate solutions.
• Find some a priori estimates of the approximate solutions.
• Existence and uniqueness of solution to the microscopic tridomain model.

We refer the reader to the well-posedness results for weak solutions of the microscopic bidomain
model, established in [7, 5] by using a Faedo-Galerkin technique. See also [4, 6] for a similar
approach, based on a parabolic regularization technique.

In this proof, we will remove the ε-dependence in the solution
(
u1
i,ε, u

2
i,ε, ue,ε, v

1
ε , v

2
ε , sε, w

1
ε , w

2
ε

)
for simplification of notation. The demonstration is described as follows:

Step 1: Construction of the basis. We first consider functions φ, φ̃ ∈ C0(Ω
k

i,ε) and we let

Vk
0,i denote the completion of C0(Ω

k

i,ε) under the norm induced by the inner product 〈·, ·〉Vk
0,i

which

defined by

〈Θ, Θ̃〉Vk
0,i

:=

∫
Ωk

i,ε

φφ̃ dx+

∫
Γk
ε

φ|Γk
ε
φ̃|Γk

ε
dσ +

∫
Γ1,2
ε

φ|Γ1,2
ε
φ̃|Γ1,2

ε
dσ, for k = 1, 2,

where Θ = t
(
φ φ|Γk

ε
φ|Γ1,2

ε

)
, Θ̃ = t

(
φ̃ φ̃|Γk

ε
φ̃|Γ1,2

ε

)
. Similarly, for functions φ, φ̃ ∈ C1(Ω

k

i,ε)

and we let Vk
1,i denote the completion of C1(Ω

k

i,ε) under the norm induced by the inner product
〈·, ·〉Vk

1,i
which defined by

〈Θ, Θ̃〉Vk
1,i

:=

∫
Ωk

i,ε

Mε
i∇φ · ∇φ̃ dx+

∫
Γk
ε

φ|Γk
ε
φ̃|Γk

ε
dσ +

∫
Γk
ε

∇Γk
ε
φ · ∇Γk

ε
φ̃ dσ

+

∫
Γ1,2
ε

φ|Γ1,2
ε
φ̃|Γ1,2

ε
dσ +

∫
Γ1,2
ε

∇Γ1,2
ε
φ · ∇Γ1,2

ε
φ̃ dσ, for k = 1, 2

where ∇Γ denotes the tangential gradient operator on Γ (Γ := Γk
ε ,Γ

1,2
ε ). We note that the following

injections hold:

Vk
0,i ⊂ L2(Ωk

i,ε), and Vk
1,i ⊂ H1(Ωk

i,ε).

Moreover, the injection from Vk
1,i to Vk

0,i is continous and compact for k = 1, 2. We refer the reader
to [13, 28] for similar approaches. It follows from a well-known result (see e.g. [32] p. 54) that the
bilinear form

a(Θ, Θ̃) := 〈Θ, Θ̃〉Vk
1,i

defines a strictly positive self adjoint unbounded operator Bki
Bki : D(Bki ) = {Θ ∈ Vk

1,i : Bki Θ ∈ Vk
1,i} → Vk

0,i
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such that, for any Θ̃ ∈ Vk
1,i, we have 〈Bki Θ, Θ̃〉Vk

0,i
= a(Θ, Θ̃). Thus, for n ∈ N, we take a complete

system of eigenfunctions {Θk
i,n = t

(
φki,n ψk

i,n Ψk
i,n

)
}n of the problem

Bki Θk
i,n = λnΘk

i,n, in Vk
0,i, for k = 1, 2,

with

• {λn}n be a sequence such that 0 < λ1 ≤ λ2, . . . , λn →∞ as n→∞.
• Θk

i,n ∈ D(Bki ), ψk
i,n := φki,n|Γk

ε
and Ψk

i,n := φki,n|Γ1,2
ε

where φki,n, ψ
k
i,n and Ψk

i,n are regular
enough for k = 1, 2.

Moreover, the eigenvectors {Θk
i,n}n turn out to form an orthogonal basis in Vk

1,i and Vk
0,i, and they

may be assumed to be normalized in the norm of Vk
0,i for k = 1, 2. Since C1(Ω

k

i,ε) ⊂ Vk
1,i ⊂ H1(Ωk

i,ε)

and C1(Ω
k

i,ε) is dense in H1(Ωk
i,ε) then Vk

1,i is dense in H1(Ωk
i,ε) for the H1-norm. Therefore, {Θk

i,n}n
is a basis in H1(Ωk

i,ε) for the H1-norm.

On the other hand, we consider a basis {ζkn}n, n ∈ N that is orthonormal in L2(Γk
ε) and orthogonal

in H1(Γk
ε) and we set the spaces

Pk
i,` = span{Θk

i,1, . . . ,Θ
k
i,`}, Pk

i,∞ =

∞⋃
`=1

Pk
i,`,

Kk
i,` = span{ζk1 , . . . , ζk` }, Kk

i,∞ =

∞⋃
`=1

Kk
i,`,

where Pk
i,∞ and Kk

i,∞ are respectively dense subspaces of Vk
1,i and H1(Γk

ε) for k = 1, 2.

Remark 9. Analogously, we construct a basis on the extracellular domain. We let Vp,e denote the

completion of Cp(Ωe,ε) under the norm induced by the inner product 〈·, ·〉Vp,e
for φ, φ̃ ∈ Cp(Ωe,ε),

p = 0, 1 which respectively defined by

〈Θ′, Θ̃′〉V0,e
:=

∫
Ωe,ε

φφ̃ dx+
∑
k=1,2

∫
Γk
ε

φ|Γk
ε
φ̃|Γk

ε
dσ,

and

〈Θ′, Θ̃′〉V1,e
:=

∫
Ωe,ε

Mε
e∇φ · ∇φ̃ dx+

∑
k=1,2

[∫
Γk
ε

φ|Γk
ε
φ̃|Γk

ε
dσ +

∫
Γk
ε

∇Γk
ε
φ · ∇Γk

ε
φ̃ dσ

]
,

where Θ′ = t
(
φ φ|Γ1

ε
φ|Γ2

ε

)
, Θ̃′ = t

(
φ̃ φ̃|Γ1

ε
φ̃|Γ2

ε

)
. Similarly, we take a complete basis which

is orthogonal in V1,e and orthonormal in V0,e and we set the spaces

Pe,` = span{Θe,1, . . . ,Θe,`}, Pe,∞ =

∞⋃
`=1

Pe,`,

where Pe,∞ is a dense subspace of V1,e.

Step 2: Construction and local existence of approximate solutions. Supplied with the basis
introduced in the first step, we look for the approximate solutions as sequences {uki,n}n>1, {ue,n}n>1
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and {wk
n}n>1, k = 1, 2 defined for t > 0 and x ∈ Ω by:

(26)

Uk
i =


uki,n

uki,n

u
k
i,n

 :=

n∑
`=1

dki,`(t)


φki,`

ψk
i,`

Ψk
i,`

 , Ue =


ue,n

u1
e,n

u2
e,n

 :=

n∑
`=1

de,`(t)


φe,`

ψ1
e,`

ψ2
e,`


and wk

n :=

n∑
`=1

ck` (t)ζk` (x),

with φki,`|Γk
ε

= ψk
i,`, φ

k
i,`|Γ1,2

ε
= Ψk

i,` and φe,`|Γk
ε

= ψk
e,` for k = 1, 2. To apply the Faedo-Galerkin

scheme, we first regularize the microscopic tridomain system (8)-(11) using specific approximation
as follows (recall that our system is degenerate)

(27)

(ε+ δn)

∫
Γ1
ε

∂tu
1
i,nψ

1
i dσx − ε

∫
Γ1
ε

∂tu
1
e,nψ

1
i dσx + δn

∫
Ω1

i,ε

∂tu
1
i,nφ

1
i dx

+ (
ε

2
+ δn)

∫
Γ1,2
ε

∂tu
1
i,nΨ1

i dσx −
ε

2

∫
Γ1,2
ε

∂tu
2
i,nΨ1

i dσx

=

∫
Γ1
ε

ε
(
−Iion(v1

n, w
1
n) + I1

app,ε

)
ψ1
i dσx

− 1

2

∫
Γ1,2
ε

εIgap(sn)Ψ1
i dσx −

∫
Ω1

i,ε

Mε
i∇u1

i,n · ∇φ1
i dx

(28)

(ε+ δn)

∫
Γ2
ε

∂tu
2
i,nψ

2
i dσx − ε

∫
Γ2
ε

∂tu
2
e,nψ

2
i dσx + δn

∫
Ω2

i,ε

∂tu
2
i,nφ

2
i dx

− ε

2

∫
Γ1,2
ε

∂tu
1
i,nΨ2

i dσx + (
ε

2
+ δn)

∫
Γ1,2
ε

∂tu
2
i,nΨ2

i dσx

=

∫
Γ2
ε

ε
(
−Iion(v2

n, w
2
n) + I2

app,ε

)
ψ2
i dσx

+
1

2

∫
Γ1,2
ε

εIgap(sn)Ψ2
i dσx −

∫
Ω2

i,ε

Mε
i∇u2

i,n · ∇φ2
i dx

(29)

− ε
∑
k=1,2

∫
Γk
ε

∂tu
k
i,nψ

k
e dσx + (ε+ δn)

∑
k=1,2

∫
Γk
ε

∂tu
k
e,nψ

k
e dσx + δn

∫
Ωe,ε

∂tue,nφe dx

=
∑
k=1,2

∫
Γk
ε

ε
(
Iion(vkn, w

k
n)− Ikapp,ε

)
ψk
e dσx −

∫
Ωe,ε

Mε
e∇ue,n · ∇φe dx

(30)

∫
Γk
ε

∂tw
k
nζ

k dσx =

∫
Γk
ε

H
(
vkn, w

k
n

)
ζk dσx,

where the regularization parameter δn =
1

n
, Θk

i = t
(
φki ψk

i Ψk
i

)
∈ Pk

i,n, ζ
k ∈ Kk

n for k = 1, 2,

and Θe = t
(
φe ψ1

e ψ2
e

)
∈ Pe,n. The regularization terms multiplied by δn have been added to

overcome degeneracy in (20). Moreover, the resulting regularized problem is supplemented with



16 FAKHRIELDDINE BADER∗, MOSTAFA BENDAHMANE, MAZEN SAAD, AND RAAFAT TALHOUK

initial conditions:

(31)

uki,n(0, x) = uk0,i,n(x) :=

n∑
`=1

dki,`(0)φki,`(x),

uki,n(0, x) = uk0,i,n(x) :=

n∑
`=1

dki,`(0)ψk
i,`(x),

u
k
i,n(0, x) = u

k
0,i,n(x) :=

n∑
`=1

dki,`(0)Ψk
i,`(x), dki,`(0) := 〈Uk

0,i,Θ
k
i,`〉Vk

0,i
,

ue,n(0, x) = u0,e,n(x) :=

n∑
`=1

de,`(0)φe,`,

uke,n(0, x) = u0,e,n(x) :=
n∑

`=1

de,`(0)ψk
e,`(x), de,`(0) := 〈U0,e,Θe,`〉V0,e

,

wk
n(0, x) = wk

0,n :=

n∑
`=1

ck` (0)ζk` (x), ck` (0) := 〈wk
0 , ζ

k
` 〉L2(Γk

ε ),

where Uk
0,i := Uk

i (0, x), for k = 1, 2 and U0,e := Ue(0, x).
Next, we prove in the following lemma the local existence of solutions for the previous regularized

problem:

Lemma 10 (Local existence of solutions for the regularized problems). Assume that the conditions
(10)-(18) hold. Then, there exits a positive time 0 < t0 ≤ T such that System (27)-(31) admit a
unique solution over the time interval [0, t0].

Proof. The goal is to determine the coefficients dk
i = {dki,`}n`=1, de = {de,`}n`=1 and ck = {ck` }n`=1

for k = 1, 2. For this purpose, if n fixed, we choose Θk
i = Θk

i,m, Θe = Θe,m and ζk = ζkm for
1 ≤ m ≤ n and substitute the approximate solutions (26) into (27)-(30). Then, the problem (27)-
(30) is equivalent to the system of ordinary differential equations (ODE) in the following compact
form:
(32)

(ε+ δn)A1

ii(d
1
i )′ − εA1

ied
′
e + δnA1

ii(d
1
i )′ + (

ε

2
+ δn)A

1

ii(d
1
i )′ − ε

2
A

1,2

ii (d2
i )′ = F1

i (t,d1
i ,d

2
i ,de, c

1, c2)

(ε+ δn)A2

ii(d
2
i )′ − εA2

ied
′
e + δnA2

ii(d
2
i )′ − ε

2
A

1,2

ii (d1
i )′ + (

ε

2
+ δn)A

2

ii(d
2
i )′ = F2

i (t,d1
i ,d

2
i ,de, c

1, c2)∑
k=1,2

[
−εAk

ie(d
k
i )′ + (ε+ δn)Ak

eed
′
e

]
+ δnAeed

′
e = Fe(t,d

1
i ,d

2
i ,de, c

1, c2)

Gk(ck)′ = Hk(t,d1
i ,d

2
i ,de, c

1, c2)

with the (`,m) entry of matrix:

• Ak
ii is 〈φki,`, φki,m〉L2(Ωk

i,ε)

(
resp. of Aee is 〈φe,`, φe,m〉L2(Ωe,ε)

)
,

• Ak

ii is 〈ψk
i,`, ψ

k
i,m〉L2(Γk

ε )

(
resp. of Ak

ee is 〈ψk
e,`, ψ

k
e,m〉L2(Γk

ε )

)
,

• Ak

ie is 〈ψk
i,`, ψ

k
e,m〉L2(Γk

ε ),

• A
k

ii is 〈Ψk
i,`,Ψ

k
i,m〉L2(Γk

ε )

(
resp. of A

1,2

ii is 〈Ψ1
i,`,Ψ

2
i,m〉L2(Γ1,2

ε )

)
,

• Gk is 〈ζk` , ζkm〉L2(Γk
ε ),

for 1 ≤ `,m ≤ n and k = 1, 2. Herein, the vectors Fk
i , Fe and Hk for k = 1, 2 correspond to the right

hand sides of the equations given in (27)-(30).
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Furthermore, the first three equations in ODE system (32) can be written as follows:

(33) M


(d1

i )′

(d2
i )′

d′e
(c1)′

(c2)′

 =


F1
i

F2
i

Fe

H1

H2

 ,
with M := M1 + εM2 and each matrix defined by:

(34) M1 =



δn

(
A1

ii + A1
ii + A

1

ii

)
0 0 0 0

0 δn

(
A2

ii + A2
ii + A

2

ii

)
0 0 0

0 0 δn

(
A1

ee + A2

ee + Aee

)
0 0

0 0 0 G1 0
0 0 0 0 G2


and

(35) M2 =


A1

ii + 1
2A

1

ii − 1
2A

1,2

ii −A1

ie 0 0

− 1
2
tA

1,2

ii A2

ii + 1
2A

2

ii −A2

ie 0 0

−tA1

ie −tA2

ie A1

ee + A2

ee 0 0
0 0 0 0 0
0 0 0 0 0

 .

In order to write 
(d1

i )′

(d2
i )′

d′e
(c1)′

(c2)′

 = M−1


F1
i

F2
i

Fe

H1

H2

 ,
one needs to prove that the matrix M is invertible. According to Lemma 11, given below, the
matrix M is symmetric positive definite, hence invertible. Consequently, we can write the ODE
system (32) in the form z′(t) = F (t, z(t)). Finally, we prove the existence of a local solution [0, t0)
to this ODE system with t0 ∈ (0, T ) (independent of the initial data). To this end, we show that th
entries of Fk

i ,Fe and Hk for k = 1, 2 are Caratheodory functions bounded by L1 functions using the
assumptions (10)-(18) by following the same strategy in [4]. �

Lemma 11. For all n ∈ N∗, the matrix M is positive definite.

Proof. Since we have M = M1 + εM2 with M1 and M2 defined respectively by (34)-(35). Note

that by the orthonormality of the basis, the matrices Ak

ii,Ak
ii,A

k

ii, A
k

ee, Aee and Gk are equal to the
identity matrix In×n for k = 1, 2. So, the matrix

M1 =


3δnIn×n 0 0 0 0

0 3δnIn×n 0 0
0 0 3δnIn×n 0 0
0 0 0 In×n 0
0 0 0 0 In×n


It suffices to show that the matrix M2 is positive semi-definite. Let d = t

(
d1
i d2

i de c1 c2
)

where

dk
i = t

(
dk
i,1, . . . ,d

k
i,n

)
∈ Rn, de = t (de,1, . . . ,de,n) ∈ Rn and ck = t

(
ck1 , . . . , c

k
n

)
∈ Rn for k = 1, 2,
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we prove that tdM2d ≥ 0.
Indeed, we have:

tdM2d = td1
i

(
A1

ii +
1

2
A

1

ii

)
d1
i + td2

i

(
A2

ii +
1

2
A

2

ii

)
d2
i + tde

(
A1

ee + A2

ee

)
de

− td1
iA

1,2

ii d2
i − 2 td1

iA
1

iede − 2 td2
iA

2

iede

= td1
iA

1

iid
1
i − 2 td1

iA
1

iede + tdeA
1

eede

+ td2
iA

2

iid
2
i − 2 td2

iA
2

iede + tdeA
2

eede

+
1

2
td1

iA
1

iid
1
i − td1

iA
1,2

ii d2
i +

1

2
td2

iA
2

iid
2
i

:= E1 + E2 + E3

We complete by showing that E1 ≥ 0 and the proof of the other terms E2,E3 is similar. Due the
form of matrices and the orthonormality of basis, we obtain:

E1 = td1
iA

1

iid
1
i − 2 td1

iA
1

iede + tdeA
1

eede

=

n∑
`,m=1

[
d1
i,`d

1
i,m

∫
Γ1
ε

ψ1
i,`ψ

1
i,m − 2d1

i,`de,m

∫
Γ1
ε

ψ1
i,`ψ

1
e,m + de,`de,m

∫
Γ1
ε

ψ1
e,`ψ

1
e,m

]
dσx

=

∫
Γ1
ε

[
n∑
`

d1
i,`ψ

1
i,` − de,`ψ

1
e,`

]2

dσx ≥ 0.

�

Remark 12. The above proof of the matrix M points out the role of the regularization term M1. It
allows to obtain a matrix M in (33) which is nonsingular, so that the resulting system of ODE is
non-degenerate.

To prove global existence of the Faedo-Galerkin solutions on [0, T ), we derive a priori estimates,
independent of the regularization parameter n, bounding uki,n, ue,n, v

k
n, w

k
n for k = 1, 2 and sn in the

next step.

Step 3: Energy estimates. The Faedo-Galerkin solutions satisfy the following weak formulations:

(36)

(ε+ δn)

∫
Γ1
ε

∂tu
1
i,nψ

1
i,n dσx − ε

∫
Γ1
ε

∂tue,nψ
1
i,n dσx + δn

∫
Ω1

i,ε

∂tu
1
i,nϕ

1
i,n dx

+ (
ε

2
+ δn)

∫
Γ1,2
ε

∂tu
1
i,nΨ1

i,n dσx −
ε

2

∫
Γ1,2
ε

∂tu
2
i,nΨ1

i,n dσx

=

∫
Γ1
ε

ε
(
−Iion(v1

n, w
1
n) + I1

app,ε

)
ψ1
i,n dσx

− 1

2

∫
Γ1,2
ε

εIgap(sn)Ψ1
i,n dσx −

∫
Ω1

i,ε

Mε
i∇u1

i,n · ∇ϕ1
i,n dx
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(37)

(ε+ δn)

∫
Γ2
ε

∂tu
2
i,nψ

2
i,n dσx − ε

∫
Γ2
ε

∂tue,nψ
2
i,n dσx + δn

∫
Ω2

i,ε

∂tu
2
i,nϕ

2
i,n dx

− ε

2

∫
Γ1,2
ε

∂tu
1
i,nΨ2

i,n dσx + (
ε

2
+ δn)

∫
Γ1,2
ε

∂tu
2
i,nΨ2

i,n dσx

=

∫
Γ2
ε

ε
(
−Iion(v2

n, w
2
n) + I2

app,ε

)
ψ2
i,n dσx

+
1

2

∫
Γ1,2
ε

εIgap(sn)Ψ2
i,n dσx −

∫
Ω2

i,ε

Mε
i∇u2

i,n · ∇ϕ2
i,n dx

(38)

− ε
∑
k=1,2

∫
Γk
ε

∂tu
k
i,nψ

k
e,n dσx + (ε+ δn)

∑
k=1,2

∫
Γk
ε

∂tu
k
e,nψ

k
e,n dσx + δn

∫
Ωe,ε

∂tue,nϕe,n dx

=
∑
k=1,2

∫
Γk
ε

ε
(
Iion(vkn, w

k
n)− Ikapp,ε

)
ψk
e,n dσx −

∫
Ωe,ε

Mε
e∇ue,n · ∇ϕe,n dx

(39)

∫
Γk
ε

∂tw
k
ne

k
n dσx =

∫
Γk
ε

H
(
vkn, w

k
n

)
ekn dσx,

where

ϕk
i,n(t, x) :=

n∑
`=1

aki,`(t)φ
k
i,`(x), ϕe,n(t, x) :=

n∑
`=1

ae,`(t)φe,`(x), ekn(t, x) :=

n∑
`=1

b`(t)ξ
k
` (x),

for some given (absolutely continuous) coefficients aki,`(t), ae,`(t), b
k
` (t) with ` = 1, . . . , n and k = 1, 2.

Moreover, we recall that ψk
i,n (resp. ψk

e,n) is the trace of ϕk
i,n (resp. of ϕe,n) on Γk

ε and Ψk
i,n is the

trace of ϕk
i,n on Γ1,2

ε for k = 1, 2.
We find now the a priori estimates of the solution of approximate problem (36)-(39). First, we

sum the three equations (36)-(38) to obtain the following weak formulation:

(40)

∑
k=1,2

∫
Γk
ε

ε∂tv
k
nψ

k
n dσx +

∑
k=1,2

∫
Γk
ε

δn∂tu
k
i,nψ

k
i,n dσx +

∑
k=1,2

∫
Γk
ε

δn∂tu
k
e,nψ

k
e,n dσx

+
1

2

∫
Γ1,2
ε

ε∂tsnΨn dσx +
∑
k=1,2

∫
Γ1,2
ε

δn∂tu
k
i,nΨk

i,n dσx

+
∑
k=1,2

∫
Ωk

i,ε

δn∂tu
k
i,nϕ

k
i,n dx+

∫
Ωe,ε

δn∂tue,nϕe,n dx

+
∑
k=1,2

∫
Ωk

i,ε

Mε
i∇uki,n · ∇ϕk

i,n dx+

∫
Ωe,ε

Mε
e∇ue,n · ∇ϕe,n dx

+
∑
k=1,2

∫
Γk
ε

εIion
(
vkn, w

k
n

)
ψk
n dσx +

1

2

∫
Γ1,2
ε

εIgap (sn) Ψn dσx

=
∑
k=1,2

∫
Γk
ε

εIkapp,εψk
n dσx,

(41)

∫
Γk
ε

∂tw
k
ne

k
n dσx =

∫
Γk
ε

H
(
vkn, w

k
n

)
ekn dσx,

where ψk
n = ψk

i,n − ψk
e,n for k = 1, 2 and Ψn = Ψ1

i,n −Ψ2
i,n.
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Next, we substitute ϕk
i,n = uki,n, ϕe,n = ue,n and ekn = εα4w

k
n, respectively, in (40)-(41) to get the

following equality:

(42)

1

2

d

dt

[ ∑
k=1,2

∫
Γk
ε

∣∣√εvkn∣∣2 dσx +
∑
k=1,2

∫
Γk
ε

∣∣∣√δnuki,n∣∣∣2 dσx +
∑
k=1,2

∫
Γk
ε

∣∣∣√δnuke,n∣∣∣2 dσx

+
1

2

∫
Γ1,2
ε

∣∣√εsn∣∣2 dσx +
∑
k=1,2

∫
Γ1,2
ε

∣∣∣√δnuki,n∣∣∣2 dσx

+
∑
k=1,2

∫
Ωk

i,ε

∣∣∣√δnuki,n∣∣∣2 dx+

∫
Ωe,ε

∣∣∣√δnue,n∣∣∣2 dx

]

+
∑
k=1,2

∫
Ωk

i,ε

Mε
i∇uki,n · ∇uki,n dx+

∫
Ωe,ε

Mε
e∇ue,n · ∇ue,n dx

+
∑
k=1,2

∫
Γk
ε

εIion
(
vkn, w

k
n

)
vkn dσx +

1

2

∫
Γ1,2
ε

εIgap (sn) sn dσx

=
∑
k=1,2

∫
Γk
ε

εIkapp,εvkn dσx,

α4

2

d

dt

∫
Γk
ε

∣∣√εwk
n

∣∣2 dσx =

∫
Γk
ε

εα4H
(
vkn, w

k
n

)
wk

n dσx, for k = 1, 2.(43)
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Integrating (42)-(43) over (0, t) for t ∈ (0, t0] in each equation and then summing the resulting
equations, we procure the following equality using the assumption (12) on Iion:
(44)

1

2

[ ∑
k=1,2

∥∥√εvkn∥∥2

L2(Γk
ε )

+ α4

∑
k=1,2

∥∥√εwk
n

∥∥2

L2(Γk
ε )

+
1

2

∥∥√εsn∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥√δnuki,n∥∥∥2

L2(Γk
ε )

+
∑
k=1,2

∥∥∥√δnuke,n∥∥∥2

L2(Γk
ε )

+
∑
k=1,2

∥∥∥√δnuki,n∥∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥√δnuki,n∥∥∥2

L2(Ωk
i,ε)

+
∥∥∥√δnue,n∥∥∥2

L2(Ωe,ε)

]

+
∑
k=1,2

∫ t

0

∫
Ωk

i,ε

Mε
i∇uki,n · ∇uki,n dxdτ +

∫ t

0

∫
Ωe,ε

Mε
e∇ue,n · ∇ue,n dxdτ

+
∑
k=1,2

∫ t

0

∫
Γk
ε

εĨa,ion
(
vkn
)
vkn dσxdτ

=
1

2

[ ∑
k=1,2

∥∥√εvk0,n∥∥2

L2(Γk
ε )

+ α4

∑
k=1,2

∥∥√εwk
0,n

∥∥2

L2(Γk
ε )

+
1

2

∥∥√εs0,n

∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥√δnuk0,i,n∥∥∥2

L2(Γk
ε )

+
∑
k=1,2

∥∥∥√δnuk0,e,n∥∥∥2

L2(Γk
ε )

+
∑
k=1,2

∥∥∥√δnuk0,i,n∥∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥√δnuk0,i,n∥∥∥2

L2(Ωk
i,ε)

+
∥∥∥√δnu0,e,n

∥∥∥2

L2(Ωe,ε)

]

− 1

2

∫ t

0

∫
Γ1,2
ε

εIgap (sn) sn dσxdτ +
∑
k=1,2

∫ t

0

∫
Γk
ε

ε
(
−Ib,ion

(
wk

n

)
vkn + α4H

(
vkn, w

k
n

)
wk

n

)
dσxdτ

+
∑
k=1,2

∫ t

0

∫
Γk
ε

ε
(
β1v

k
n + β2

)
vkn dσxdτ +

∑
k=1,2

∫ t

0

∫
Γk
ε

εIkapp,εvkn dσxdτ.

We denote by E` with ` = 1, . . . , 9 the terms of the previous equation which is rewritten as follows
(to respect the order):

E1 + E2 + E3 + E4 = E5 + E6 + E7 + E8 + E9.

Now, we estimate E` for ` = 2, . . . , 9 as follows:

• Due the uniform ellipticity (10) of Mε
j for j = i, e, we have

E2 + E3 ≥ α

∑
k=1,2

∫ t

0

∥∥∇uki,n∥∥2

L2(Ωk
i,ε)

dτ +

∫ t

0

‖∇ue,n‖2L2(Ωe,ε) dτ

 ≥ 0.

• Using the assumption (12d) on Ĩa,ion, we deduce that E4 ≥ 0.
• By the assumptions (18) on the initial data, we have E5 ≤ C for some constant independent

of n and ε.
• By the structure form of Igap defined in (16), we obtain

E6 ≤ Ggap

∫ t

0

∥∥√εsn∥∥2

L2(Γ1,2
ε )

dτ.
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• Using the assumption on Ib,ion and H defined as (12b), then we obtain

E7 ≤ α5

∑
k=1,2

∫ t

0

∥∥√εwk
n

∥∥2

L2(Γk
ε )
dτ.

• It easy to estimate E8 as follows

E8 ≤ C
∑
k=1,2

∫ t

0

∥∥√εvkn∥∥2

L2(Γk
ε )
dτ,

with C is constant independent of n and ε.
• By Young’s inequality with the uniform L2 boundedness (17) of Ikapp,ε, there exist constants
C1, C2 > 0 independent of n and ε such that

E9 ≤ C1 + C2

∑
k=1,2

∫ t

0

∥∥√εvkn∥∥2

L2(Γk
ε )
dτ.

Collecting all the estimates stated above, one obtains from (44) the following inequality for all
t ≤ t0,
(45)∑
k=1,2

∥∥√εvkn∥∥2

L2(Γk
ε )

+
∑
k=1,2

∥∥√εwk
n

∥∥2

L2(Γk
ε )

+
∥∥√εsn∥∥2

L2(Γ1,2
ε )

≤ C

1 +
∑
k=1,2

∫ t0

0

∥∥√εvkn∥∥2

L2(Γk
ε )
dτ +

∑
k=1,2

∫ t0

0

∥∥√εwk
n

∥∥2

L2(Γk
ε )
dτ +

∫ t0

0

∥∥√εsn∥∥2

L2(Γ1,2
ε )

dτ

 .

By an application of Gronwall’s lemma in the last inequality, one gets∑
k=1,2

∥∥√εvkn∥∥2

L2(Γk
ε )

+
∑
k=1,2

∥∥√εwk
n

∥∥2

L2(Γk
ε )

+
∥∥√εsn∥∥2

L2(Γ1,2
ε )
≤ C.

Hence, we conclude that∑
k=1,2

∥∥√εvkn∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∑
k=1,2

∥∥√εwk
n

∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∥∥√εsn∥∥2

L∞(0,T ;L2(Γ1,2
ε )) ≤ C.

Then, we can deduce from this inequality that our approximate weak solution of the microscopic
tridomain problem is global on (0, T ).

Moreover, one can obtain by exploiting this last inequality along with (44) the following a priori
estimates for some constant C > 0 not depending on n and ε:

(46)

∑
k=1,2

∥∥√εvkn∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∑
k=1,2

∥∥√εwk
n

∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∥∥√εsn∥∥2

L∞(0,T ;L2(Γ1,2
ε ))

+
∑
k=1,2

∥∥∥√δnuki,n∥∥∥2

L∞(0,T ;L2(Γ1,2
ε ))

+
∑
k=1,2

∥∥∥√δnuke,n∥∥∥2

L∞(0,T ;L2(Γk
ε ))

+
∑
k=1,2

∥∥∥√δnuki,n∥∥∥2

L∞(0,T ;L2(Γk
ε ))
≤ C,

(47)

∑
k=1,2

∥∥∇uki,n∥∥2

L2(Ωk
i,ε,T )

+ ‖∇ue,n‖2L2(Ωe,ε,T ) ≤ C,

(48)

∑
k=1,2

∥∥∥εĨa,ion (vkn) vkn∥∥∥
L1(Γk

ε,T )
≤ C.



PART 1- MODELING AND WELL-POSEDNESS 23

(49)

∑
k=1,2

∥∥√εvkn∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥√εwk
n

∥∥2

L2(Γk
ε,T )

+
∥∥√εsn∥∥2

L2(Γ1,2
ε,T )
≤ C,

for some constant C > 0 not depending on n and ε.
Furthermore, we deduce from (48) together with assumption (12d) on Ĩa,ion the following estima-

tion:

(50)

∑
k=1,2

∥∥∥ε1/rvkn

∥∥∥r
Lr(Γk

ε,T )
≤ C,

for some constant C > 0 not depending on n and ε. The second estimate (24) in Theorem 7 is a
direct consequence of (50) and assumption (12a) on Ia,ion.

It remains to estimate on the L2 norms of the intracellular and extracellular potentials which are
need to complete the proof of Estimate (23) on H1. To do this end, we will use the next lemma,
which is a consequence of the uniform Poincaré-Wirtinger’s inequality and the trace theorem for
ε-periodic surfaces.

Lemma 13. Let uki ∈ H1
(
Ωk

i,ε

)
for k = 1, 2 and ue ∈ H1 (Ωe,ε) . Set vk :=

(
uki − ue

)
|Γk

ε
for

k = 1, 2. Assume that the condition (19) holds, then there exists a positive constants C, independent
of ε, such that

(51)
∥∥uki ∥∥2

L2(Ωk
i,ε)
≤ C

(∥∥√εvk∥∥2

L2(Γk
ε )

+
∥∥∇uki ∥∥2

L2(Ωk
i,ε)

+ ‖∇ue‖2L2(Ωe,ε)

)
, with k = 1, 2.

Proof. We follow the same idea to the proof of Lemma 3.7 in [14]. Due the normalization condition
(19), Poincaré-Wirtinger’s inequality implies that

(52) ‖ue,n‖2L2(Ωe,ε) ≤ C ‖∇ue,n‖
2
L2(Ωe,ε) ,

for some constant C independent on n and ε. Note that in the sequel C is a generic constant whose
value can change from one line to another.
To estimate on the L2 norms of uki,n for k = 1, 2, we write

uki,n = ûki,n + ũki,n,

where ũki,n :=
1∣∣Ωk
i,ε

∣∣ ∫
Ωk

i,ε

uki,ndx is constant in Ωk
i,ε and ûki,n := uki,n − ũki,n has zero mean in Ωk

i,ε.

Clearly, we see that for k = 1, 2∥∥uki,n∥∥2

L2(Ωk
i,ε)

=
∥∥ûki,n∥∥2

L2(Ωk
i,ε)

+
∥∥ũki,n∥∥2

L2(Ωk
i,ε)

.

In view of Poincaré-Wirtinger’s inequality, one has

(53)
∥∥ûki,n∥∥2

L2(Ωk
i,ε)
≤ C

∥∥∇ûki,n∥∥2

L2(Ωk
i,ε)

= C
∥∥∇uki,n∥∥2

L2(Ωk
i,ε)

for k = 1, 2.

Let us bound now
∥∥ũki,n∥∥2

L2(Ωk
i,ε)

=

∣∣Ωk
i,ε

∣∣
|Γk

ε |
∥∥ũki,n∥∥2

L2(Γk
ε )

for k = 1, 2. Since
∣∣Γk

ε

∣∣ = ε−1
∣∣Γk
∣∣ and∣∣Ωk

i,ε

∣∣ ≤ |Ω| , we deduce that∥∥ũki,n∥∥2

L2(Ωk
i,ε)
≤ Cε

∥∥ũki,n∥∥2

L2(Γk
ε )
, for k = 1, 2.

It easy to check that ∣∣ũki,n∣∣2 ≤ C (∣∣uki,n − ue,n∣∣2 +
∣∣ûki,n∣∣2 + |ue,n|2

)
.
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Finally, we obtain for k = 1, 2

∥∥ũki,n∥∥2

L2(Ωk
i,ε)
≤ C

(
ε
∥∥vkn∥∥2

L2(Γk
ε )

+ ε
∥∥ûki,n∥∥2

L2(Γk
ε )

+ ε ‖ue,n‖2L2(Γk
ε )

)
≤ Cε

∥∥vkn∥∥2

L2(Γk
ε )

+ C

(∥∥ûki,n∥∥2

L2(Ωk
i,ε)

+ ε2
∥∥∇ûki,n∥∥2

L2(Ωk
i,ε)

)
+ C

(
‖ue,n‖2L2(Ωe,ε) + ε2 ‖∇ue,n‖2L2(Ωe,ε)

)
≤ C

(∥∥√εvkn∥∥2

L2(Γk
ε )

+
∥∥∇uki,n∥∥2

L2(Ωk
i,ε)

+ ‖∇ue,n‖2L2(Ωe,ε)

)
,

where the second inequality is a direct consequence of the trace theorem and the final one is a result
of (52) and (53). This completes the proof of this lemma. �

Now, Estimate (47) and (51) imply that

(54) ‖ue,n‖L2(0,T ;H1(Ωe,ε)) ≤ C,

for some constant C independent on n and ε. Furthermore, we have
∥∥√εvkn∥∥2

L2(Γk
ε,T )
≤ C for k = 1, 2.

Then Estimates (51), (47) and (54) ensure that for k = 1, 2,

(55)
∥∥uki,n∥∥L2(0,T ;H1(Ωk

i,ε))
≤ C.

This completes the proof of (22)-(24) in Theorem 7.
Now we turn to find some uniform estimates on the time derivatives by following [4] which will

be useful for the passage to the limit. We notice first for k = 1, 2 that,

∫∫
Ωk

i,ε,T

Mε
i∇uki,n · ∇

(
∂tu

k
i,n

)
dx =

1

2

∫ T

0

∂t

(∫
Ωk

i,ε

Mε
i∇uki,n · ∇uki,n dx

)
dt

=
1

2

[∫
Ωk

i,ε

Mε
i∇uki,n(T, ·) · ∇uki,n(T, ·) dx−

∫
Ωk

i,ε

Mε
i∇uki,n(0, ·) · ∇uki,n(0, ·) dx

]
,

and

∫∫
Γk
ε,T

Ia,ion
(
vkn
)
∂tv

k
n dσxdt =

∫ T

0

∂t

(∫
Γk
ε

∫ vk
n

0

Ia,ion
(
ṽkn
)
dṽkndσx

)
dt

=

∫
Γk
ε

∫ vk
n(T,·)

0

Ia,ion
(
vkn
)
dvkndσx −

∫
Γk
ε

∫ vk
n(0,·)

0

Ia,ion
(
vkn
)
dvkndσx.
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Next, we substitute ϕk
i,n = ∂tu

k
i,n, ϕe,n = ∂tue,n and ekn = εα4∂tw

k
n, respectively, in (40)-(41)

then integrate in time to deduce using the previous equalities:
(56)∑
k=1,2

∥∥√ε∂tvkn∥∥2

L2(Γk
ε,T )

+ α4

∑
k=1,2

∥∥√ε∂twk
n

∥∥2

L2(Γk
ε,T )

+
1

2

∥∥√ε∂tsn∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuke,n∥∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Ωk
i,ε,T )

+
∥∥∥√δn∂tue,n∥∥∥2

L2(Ωe,ε,T )

+
1

2

[ ∑
k=1,2

∫
Ωk

i,ε

Mε
i∇uki,n · ∇uki,n(T, ·) dx+

∫
Ωe,ε

Mε
e∇ue,n(T, ·) · ∇ue,n(T, ·) dx

+
∑
k=1,2

∫
Γk
ε

∫ vk
n(T,·)

0

εĨa,ion
(
vkn
)
dvkndσx

]

=
1

2

[ ∑
k=1,2

∫
Ωk

i,ε

Mε
i∇uki,n(0, ·) · ∇uki,n(0, ·) dx+

∫
Ωe,ε

Mε
e∇ue,n(0, ·) · ∇ue,n(0, ·) dx

+
∑
k=1,2

∫
Γk
ε

∫ vk
n(0,·)

0

εIa,ion
(
vkn
)
dvkndσx +

∑
k=1,2

∫
Γk
ε

∫ vk
n(T,·)

0

ε
(
β1v

k
n + β2

)
dvkndσx

]

− 1

2

∫∫
Γ1,2
ε,T

εIgap (sn) ∂tsn dσxdτ +
∑
k=1,2

∫
Γk
ε,T

ε
(
−Ib,ion

(
wk

n

)
∂tv

k
n + α4H

(
vkn, w

k
n

)
∂tw

k
n

)
dσxdτ

+
∑
k=1,2

∫
Γk
ε,T

εIkapp,ε∂tvkn dσxdτ.

We denote by E′` with ` = 1, . . . , 6 the terms of the previous equation which is rewritten as follows
(to respect the order):

E′1 + E′2 = E′3 + E′4 + E′5 + E′6,

where

E′1 :=
∑
k=1,2

∥∥√ε∂tvkn∥∥2

L2(Γk
ε,T )

+ α4

∑
k=1,2

∥∥√ε∂twk
n

∥∥2

L2(Γk
ε,T )

+
1

2

∥∥√ε∂tsn∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuke,n∥∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Ωk
i,ε,T )

+
∥∥∥√δn∂tue,n∥∥∥2

L2(Ωe,ε,T )
.

Now, we estimate E′` for ` = 2, . . . , 6 as follows:
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• Due the uniform ellipticity (10) of Mε
j for j = i, e, with the monotonicity (12d) on Ĩa,ion,

then we have

E′2 ≥ α

∑
k=1,2

∥∥∇uki,n(T, ·)
∥∥2

L2(Ωk
i,ε)

+ ‖∇ue,n(T, ·)‖2L2(Ωe,ε)


+
∑
k=1,2

∫
Γk
ε

∫ vk
n(T,·)

0

εĨa,ion
(
vkn(T, ·)

)
dσxdv

k
n ≥ 0.

• Furthermore, using the a priori estimate (46) with the assumption on Ia,ion and on the initial
data, one gets

E′3 ≤ β

∑
k=1,2

∥∥∇uki,n(0, ·)
∥∥2

L2(Ωk
i,ε)

+ ‖∇ue,n(0, ·)‖2L2(Ωe,ε)


+ α1

∑
k=1,2

∫
Γk
ε

ε
(∣∣vkn(0, ·)

∣∣r +
∣∣vkn(0, ·)

∣∣) dσx

+
β1

2

∑
k=1,2

∫
Γk
ε

ε
∣∣vkn(T, ·)

∣∣2 dσx + β2

∑
k=1,2

∫
Γk
ε

ε
∣∣vkn(T, ·)

∣∣ dσx ≤ C3

for some constant C3 independent of n and ε.
• By the structure form of Igap defined in (16), we obtain using Young’s inequality with

estimate (49)

E′4 ≤
Ggap

2

∥∥√εsn∥∥2

L2(Γ1,2
ε,T )

+
1

4

∥∥√ε∂tsn∥∥2

L2(Γ1,2
ε,T )

.

≤ C4 +
1

4

∥∥√ε∂tsn∥∥2

L2(Γ1,2
ε,T )

with C4 independent of n and ε.
• Similarly, using the assumption on Ib,ion and H defined as (12a)-(12b), then we obtain using

Young’s inequality with the estimate (49)

E′5 ≤ C5 +
1

2

∑
k=1,2

(∥∥√ε∂tvkn∥∥2

L2(Γk
ε,T )

+
∥∥√ε∂twk

n

∥∥2

L2(Γk
ε )

)
with C5 independent of n and ε.
• By Young’s inequality with the uniform L2 boundedness (17) of Ikapp,ε, there exist constants
C1, C2 > 0 independent of n and ε such that

E′6 ≤ C6 +
1

2

∑
k=1,2

∥∥√ε∂tvkn∥∥2

L2(Γk
ε,T )

,

with C6 independent of n and ε.

Exploiting all this estimates along with (56), one obtains

(57)

∑
k=1,2

∥∥√ε∂tvkn∥∥2

L2(Γk
ε,T )

+ α4

∑
k=1,2

∥∥√ε∂twk
n

∥∥2

L2(Γk
ε,T )

+
∥∥√ε∂tsn∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuke,n∥∥∥2

L2(Γk
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥√δn∂tuki,n∥∥∥2

L2(Ωk
i,ε,T )

+
∥∥∥√δn∂tue,n∥∥∥2

L2(Ωe,ε,T )
≤ C
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for some constant C > 0 not depending on n and ε.

The next steps is devoted to completing the proof of Theorem 7 and to passing to the limit when
n goes to infinity. Further, it treat the uniqueness of the weak solutions to System (8)-(11)

Step 4: Passage to the limit and global existence of solutions. In view of (54)-(55), we can
see that vkn, u

k
j,n are bounded in L2

(
0, T ;H1/2(Γk

ε)
)

for j = i, e and k = 1, 2 using the standard

trace lemma. Similarly, it easy to check that sn and u
k
i,n are bounded in L2

(
0, T ;H1/2(Γ1,2

ε )
)

for

k = 1, 2. Furthermore, we deduce from (57) the uniform bound on ∂tv
k
n in L2(Γk

ε,T ) for k = 1, 2 and

the uniform bound on ∂tsn in L2(Γ1,2
ε,T ). Recall that by the Aubin-Lions compactness criterion, the

following injection

W :=
{
u ∈ L2

(
0, T ;H1/2(Γε)

)
and ∂tu ∈ L2

(
0, T ;H−1/2(Γε)

)}
⊂ L2(Γε,T )

is compact with Γε := Γk
ε ,Γ

1,2
ε for k = 1, 2. Hence, we can assume there exist limit functions u1

i,ε,

u2
i,ε, ue,ε, v

1
ε , v

2
ε , sε, wε with vkε = uki,ε − uke,ε on Γk

ε,T for k = 1, 2 and sε = u
1
i,ε − u

2
i,ε on Γ1,2

ε,T , such

that as n→∞ ( for fixed ε and up to an unlabeled subsequence)

(58)



vkn → vkε a.e. in Γk
ε , strongly in L2(Γk

ε,T ),

and weakly L2
(
0, T ;H1/2(Γk

ε)
)

for k = 1, 2,

sn → sε a.e. in Γ1,2
ε , strongly in L2(Γ1,2

ε,T ),

and weakly L2
(
0, T ;H1/2(Γ1,2

ε )
)
,

wk
n ⇀ wk

ε weakly in L2(Γk
ε,T ),

uki,n ⇀ uki,ε weakly in L2
(
0, T ;H1(Ωk

i,ε)
)

for k = 1, 2,

ue,n ⇀ ue,ε weakly in L2
(
0, T ;H1(Ωe,ε)

)
,

Ia,ion
(
vkn
)
→ Ia,ion

(
vkε
)

a.e. in Γk
ε , weakly in Lr/(r−1)(Γk

ε,T ),

and

(59)


∂tv

k
n ⇀ ∂tv

k
ε weakly in L2(Γk

ε,T ),

∂tw
k
n ⇀ ∂tw

k
ε weakly in L2(Γk

ε,T ) for k = 1, 2,

∂tsn ⇀ ∂tsε weakly in L2(Γ1,2
ε,T ).

Moreover, using again estimate (57), we get for j = i, e and k = 1, 2,

(60)



√
δn∂tu

k
j,ε ⇀ 0 in D′

(
0, T ;L2(Γk

ε)
)

for j = i, e,

√
δn∂tu

k
i,ε ⇀ 0 in D′

(
0, T ;L2(Γ1,2

ε )
)
,
√
δn∂tu

k
i,ε ⇀ 0 in D′

(
0, T ;L2(Ωk

i,ε)
)
,

and
√
δn∂tue,ε ⇀ 0 in D′

(
0, T ;L2(Ωe,ε)

)
.

The last difficulty is to prove that the nonlinear term Ia,ion
(
vkn
)

converges weakly to the term

Ia,ion
(
vkε
)

for k = 1, 2. Since vkn converges strongly to vkε in L2(Γk
ε,T ), we can extract a subsequence,

such that vkn converges almost everywhere to vkε in Γk
ε for k = 1, 2.Moreover, since Ia,ion is continuous,

we have

(61) Ia,ion
(
vkn
)
→ Ia,ion

(
vkε
)

a.e. in Γk
ε for k = 1, 2.

However, using a classical result (see Lemma 1.3 in [21]):

(62) Ia,ion
(
vkn
)
⇀ Ia,ion

(
vkε
)
, weakly in Lr/(r−1)(Γk

ε,T ) for k = 1, 2.
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Remark 14. By our choice of basis, it is clear that ukj,n(0, x) → uk0,j,ε in L2(Γk
ε) for k = 1, 2 and

j = i, e. Furthermore, we have u
k
i,n(0, x)→ u

k
0,i,ε in L2(Γk

ε) for k = 1, 2.

Keeping in mind (58)-(62), we obtain by letting n→∞ in the weak formulation (40)-(41)

(63)

∑
k=1,2

∫
Γk
ε

ε∂tv
k
εψ

k dσx +
1

2

∫
Γ1,2
ε

ε∂tsεΨ dσx

+
∑
k=1,2

∫
Ωk

i,ε

Mε
i∇uki,ε · ∇ϕk

i dx+

∫
Ωe,ε

Mε
e∇ue,ε · ∇ϕe dx

+
∑
k=1,2

∫
Γk
ε

εIion
(
vkε , w

k
ε

)
ψk dσx +

1

2

∫
Γ1,2
ε

εIgap (sε) Ψ dσx

=
∑
k=1,2

∫
Γk
ε

εIkapp,εψk dσx,

(64)

∫
Γk
ε

∂tw
k
ε e

k dσx =

∫
Γk
ε

H
(
vkε , w

k
ε

)
ek dσx,

for all ϕk
i ∈ H1(Ωk

i,ε), ϕe ∈ H1(Ωe,ε) with ψk = ψk
i − ψk

e ∈ H1/2(Γk
ε) ∩ Lr(Γk

ε) for k = 1, 2,

Ψ = Ψ1
i −Ψ2

i ∈ L2(Γ1,2
ε ) and ek ∈ L2(Γk

ε) for k = 1, 2. Finally, it only remains to be proved that vkε ,
wk

ε for k = 1, 2 and sε satisfy the initial conditions stated in Definition 5. Using the weak formulation
(36)-(38), we see that vkε (0, x) = vk0,ε(x) a.e. on Γk

ε,T , since, by construction, ukj,n(0, x) → uk0,j,ε in

L2(Γk
ε) for k = 1, 2 and j = i, e. The same argument holds for wk

ε for k = 1, 2 and sε.

Step 5: Uniqueness of solutions. This step prove that there there exists at most one weak

solution of (63)-(64). We assume that u` =
(
u1,`
i,ε , u

2,`
i,ε , u

`
e,ε, w

1,`
ε , w2,`

ε

)
, ` ∈ {`′, `′′} are two weak

solutions in the sense of Definition 5 with same initial data. Thus, this weak formulations hold

respectively for uk,`
′

i,ε − u
k,`′′

i,ε and wk,`′

ε − wk,`′′

ε for k = 1, 2.

Firstly, we substitute ϕk
i = uk,`

′

i,ε − u
k,`′′

i,ε , ϕe = u`
′

e,ε − u`
′′

e,ε, and ek = ε
(
wk,`′

ε − wk,`′′

ε

)
, k = 1, 2,

respectively in (63)-(64). Then, we add the resulting equations and integrate over (0, t) for 0 < t ≤ T
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to get

1

2

[ ∑
k=1,2

∫
Γk
ε

(
ε
∣∣∣(vk,`′ε − vk,`

′′

ε

)
(t, ·)

∣∣∣2 + ε
∣∣∣(wk,`′

ε − wk,`′′

ε

)
(t, ·)

∣∣∣2) dσx

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε ) (t, ·)

∣∣∣2 dσx

]

+
∑
k=1,2

∫∫
Ωk

i,ε,t

Mε
i∇
(
uk,`

′

i,ε − u
k,`′′

i,ε

)
· ∇
(
uk,`

′

i,ε − u
k,`′′

i,ε

)
dxdτ

+

∫∫
Ωe,ε,t

Mε
e∇
(
u`
′

e,ε − u`
′′

e,ε

)
· ∇
(
u`
′

e,ε − u`
′′

e,ε

)
dxdτ

+
∑
k=1,2

∫∫
Γk
ε,t

ε
(

Ĩa,ion

(
vk,`

′

ε

)
− Ĩa,ion

(
vk,`

′′

ε

))(
vk,`

′

ε − vk,`
′′

ε

)
dσxdτ

=
1

2

[ ∑
k=1,2

∫
Γk
ε

(
ε
∣∣∣(vk,`′0,ε − v

k,`′′

0,ε

)∣∣∣2 + ε
∣∣∣(wk,`′

0,ε − w
k,`′′

0,ε

)∣∣∣2) dσx

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′0,ε − s`′′0,ε

)∣∣∣2 dσx

]

+ β1

∑
k=1,2

∫∫
Γk
ε,t

ε
(
vk,`

′

ε − vk,`
′′

ε

)2

dσxdτ

−
∑
k=1,2

∫∫
Γk
ε,t

εIb,ion

(
wk,`′

ε − wk,`′′

ε

)(
vk,`

′

ε − vk,`
′′

ε

)
dσxdτ

−
∑
k=1,2

∫∫
Γk
ε,t

ε
(
H
(
vk,`

′

ε , wk,`′

ε

)
−H

(
vk,`

′′

ε , wk,`′′

ε

))(
wk,`′

ε − wk,`′′

ε

)
dσxdτ

− 1

2

∫∫
Γ1,2
ε,t

εIgap
(
s`
′

ε − s`
′′

ε

)(
s`
′

ε − s`
′′

ε

)
dσxdτ

+
∑
k=1,2

∫∫
Γk
ε,t

εIkapp,ε
(
vk,`

′

ε − vk,`
′′

ε

)
dσxdτ.

Due the uniform ellipticity (10) of Mε
j for j = i, e, we have∑

k=1,2

∫∫
Ωk

i,ε,t

Mε
i∇
(
uk,`

′

i,ε − u
k,`′′

i,ε

)
· ∇
(
uk,`

′

i,ε − u
k,`′′

i,ε

)
dxdτ

+

∫∫
Ωe,ε,t

Mε
e∇
(
u`
′

e,ε − u`
′′

e,ε

)
· ∇
(
u`
′

e,ε − u`
′′

e,ε

)
dxdτ

≥ α

∑
k=1,2

∥∥∥∇(uk,`′i,ε − u
k,`′′

i,ε

)∥∥∥2

L2(Ωk
i,ε,t)

+
∥∥∥∇(u`′e,ε − u`′′e,ε)∥∥∥2

L2(Ωe,ε,t)

 ≥ 0.

Furthermore, thanks to the monotonicity assumption (12d) on Ĩa,ion, we deduce that∑
k=1,2

∫∫
Γk
ε,t

ε
(

Ĩa,ion

(
vk,`

′

ε

)
− Ĩa,ion

(
vk,`

′′

ε

))(
vk,`

′

ε − vk,`
′′

ε

)
dσxdτ ≥ 0.
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Moreover, by the linearity of Ib,ion, H and Igap, we can deduce using Young’s inequality the following
estimation

(65)

1

2

[ ∑
k=1,2

∫
Γk
ε

(
ε
∣∣∣(vk,`′ε − vk,`

′′

ε

)
(t, ·)

∣∣∣2 + ε
∣∣∣(wk,`′

ε − wk,`′′

ε

)
(t, ·)

∣∣∣2) dσx+

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε ) (t, ·)

∣∣∣2 dσx

]

+ α

∑
k=1,2

∥∥∥∇(uk,`′i,ε − u
k,`′′

i,ε

)∥∥∥2

L2(Ωk
i,ε,t)

+
∥∥∥∇(u`′e,ε − u`′′e,ε)∥∥∥2

L2(Ωe,ε,t)


≤ 1

2

[ ∑
k=1,2

∫
Γk
ε

(
ε
∣∣∣(vk,`′0,ε − v

k,`′′

0,ε

)∣∣∣2 + ε
∣∣∣(wk,`′

0,ε − w
k,`′′

0,ε

)∣∣∣2) dσx

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′0,ε − s`′′0,ε

)∣∣∣2 dσx

]

+ C

[ ∑
k=1,2

∫ t

0

∫
Γk
ε

(
ε
∣∣∣(vk,`′ε − vk,`

′′

ε

)∣∣∣2 + ε
∣∣∣(wk,`′

ε − wk,`′′

ε

)∣∣∣2) dσx

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε )∣∣∣2 dσxdτ

]

where C > 0 is a constant independent of ε. Thus, we obtain by applying Gronwall’s inequality

1

2

[ ∑
k=1,2

∫
Γk
ε

(
ε
∣∣∣(vk,`′ε − vk,`

′′

ε

)
(t, ·)

∣∣∣2 + ε
∣∣∣(wk,`′

ε − wk,`′′

ε

)
(t, ·)

∣∣∣2) dσx

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε ) (t, ·)

∣∣∣2 dσx

]

≤ C

[ ∑
k=1,2

∫
Γk
ε

(
ε
∣∣∣(vk,`′0,ε − v

k,`′′

0,ε

)∣∣∣2 + ε
∣∣∣(wk,`′

0,ε − w
k,`′′

0,ε

)∣∣∣2) dσx

+
1

2

∫
Γ1,2
ε

ε
∣∣∣(s`′0,ε − s`′′0,ε

)∣∣∣2 dσx

]

for some constant C > 0. Hence, we deduce that vk,`
′

ε = vk,`
′′

ε , wk,`′

ε = wk,`′′

ε for k = 1, 2 and

s`
′

ε = s`
′′

ε . Moreover, using Estimation (65), we conclude that

∇
(
u`
′

e,ε − u`
′′

e,ε

)
= 0 a.e. on Ωe,ε,t,

∇
(
uk,`

′

i,ε − u
k,`′′

i,ε

)
= 0 a.e. on Ωk

i,ε,t,

which means that u`
′

e,ε = u`
′′

e,ε + c and uk,`
′

i,ε = uk,`
′′

i,ε + c for k = 1, 2. On the one hand, due to the

normalization condition (19), c = 0 and u`
′

e,ε = u`
′′

e,ε. On the other hand, the estimation (51) holds
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for uk,`
′

i,ε − u
k,`′′

i,ε which gives∥∥∥uk,`′i,ε − u
k,`′′

i,ε

∥∥∥2

L2(Ωk
i,ε)
≤ C

(∥∥∥√ε(vk,`′ε − vk,`
′′

ε

)∥∥∥2

L2(Γk
ε )

+
∥∥∥∇(uk,`′i,ε − u

k,`′′

i,ε

)∥∥∥2

L2(Ωk
i,ε)

+
∥∥∥∇(u`′e,ε − u`′′e,ε)∥∥∥2

L2(Ωe,ε)

)
, with k = 1, 2.

In addition, we have vk,`
′

ε = vk,`
′′

ε so we obtain finally uk,`
′

i,ε = uk,`
′′

i,ε for k = 1, 2. This gives the
uniqueness proof of weak solutions.
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Avenue Michel Crépeau, La Rochelle, France

Email address: fakhrielddine.bader@univ-lr.fr
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Université de Bordeaux, 33076 Bordeaux Cedex, France

Email address: mostafa.bendahmane@u-bordeaux.fr
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