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Abstract

Providing estimable sufficient statistics to give policy prescriptions has
become a wide-spread approach over the recent years. A well-known limitation
of this approach is the endogeneity of sufficient statistics to the policy. In this
paper, using optimal tax policy as our field of application, we highlight a new
source of endogeneity. It arises since, under multidimensional heterogeneity,
optimal tax formulas are expressed as a function of weighted means of sufficient
statistics computed at the individual level and the weights are endogenous
to tax policy. We analytically show that ignoring these composition effects
leads to underestimate the optimal linear tax and, under a restrictive set of
assumptions, the optimal nonlinear tax as well. To relax these assumptions, we
use an improved tax perturbation approach to study composition effects in the
latter case. Our numerical simulations using U.S. data suggest the optimal tax
rate may be underestimated by 6 percentage points for high incomes levels. As
a secondary result, we relate our improved tax perturbation method to the first
order mechanism design method, two methods which have hitherto been used
separately to derive optimal tax schedules.

Keywords: Optimal taxation, composition effects, sufficient statistics,
multidimensional screening problems, tax perturbation.

I. Introduction

The recent years have seen an increase in empirical analyses that provide
so-called “sufficient statistics”to give policy prescriptions that are easily
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implementable and relatively easy to explain to the general public. As a
compromise between reduced-form and structural analyses, the approach based
on sufficient statistics has applications in macroeconomics, labor economics,
development economics, industrial organization, political economy and in
international trade (e.g., Chetty (2009), Hornstein et al. (2011), Arkolakis
et al. (2012), Bierbrauer et al. (2019)). In particular, optimal tax researchers
rely extensively on empirically meaningful sufficient statistics to express tax
formulas (e.g., Saez (2001, 2002), Saez and Stantcheva (2018), Costinot and
Werning (2018) and references in Chetty (2009) and in Kleven (2018)). For this
reason, in the present paper, we select optimal tax policy as the field of choice
to illustrate a more general point regarding the use of sufficient statistics1. The
endogeneity of sufficient statistics to the policy is a well-known limitation: the
values of sufficient statistics in the actual economy where they are estimated
differ from their values in the optimal economy where they need to be computed
to determine the optimal policy. We highlight a new source of endogeneity due
to changes in the composition of the population at the different income levels
when one shifts from the actual to the optimal policy.

We call composition effects this new source of endogeneity, the rationale of
which is as follows. Optimal tax policy is expressed as a function of weighted
means of sufficient statistics, the latter being computed at the individual level.
Therefore, between the actual and the optimal economy, not only do the
sufficient statistics of each agent vary, but so do the weights used to compute
the optimal policy. For instance, if the weights of taxpayers with relatively
high (low) values of a certain sufficient statistic decrease (increase) when one
moves from the actual to the optimal economy, then the weighted means of
sufficient statistics decrease, which impacts the optimal policy. We argue that
ignoring these composition effects may lead to quantitatively important bias
in the computation of optimal tax schedules. To understand how, we focus on
composition effects in the elasticity of earnings with respect to the marginal
net-of-tax rate and explain how they impact both linear and nonlinear tax
schedules. We characterize in which direction composition effects bias the
optimal linear and nonlinear tax schedules. Under maximin social preferences
and quasilinear individual preferences, we analytically show that composition
effects exacerbate the difference between the actual and the optimal linear
tax rate. To sign the bias in the nonlinear case, we have to rely on a rather
restrictive set of assumptions. We therefore provide several numerical examples
and show, under what we think to be very plausible empirical assumptions,
that the underestimation of optimal marginal tax rate at high income levels
can easily reach six percentage points. These findings have a crucial implication
for the empirical literature that provides sufficient statistics. One cannot simply

1. In the optimal tax literature, the key sufficient statistics are (i) behavioral responses to
tax reforms, (ii) the income distribution and (iii) the social welfare weights which summarize
the social preferences for redistribution (see e.g., Diamond (1998) and Saez (2001)).
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rely on estimates of the means of sufficient statistics estimated in the actual
economy. One also needs to infer how these means of sufficient statistics at each
income level vary between the actual and the optimal one.

Composition effects play a role in a variety of applications of optimal
taxation. For instance, it may affect the design of optimal joint income taxation
of couples if the labor supply elasticity of wives is larger than that of husbands,
which is empirically plausible (Bargain and Peichl 2016). Among couples who
earn the same total income, those where the wife earns relatively more and the
husband earns relatively less are characterized by a larger elasticity of taxable
income. When moving from the actual to the optimal economy, the share of
such households at each income level changes, which modifies the weighted
mean elasticity of taxable income. Neglecting composition effects then biases
the optimal marginal tax rates of couples. Another situation where composition
effects most probably play a role occurs when taxpayers earn both an income
reported to the tax authority by a third party and self-reported income e.g.,
casual wages such as tips. Reasonably assuming that the earnings elasticity of
self-reported incomes is larger than the one of third-party reported incomes
(Kleven et al. 2011), the earning elasticity of each taxpayer increases with
the share of self-reported income in her total income. Among taxpayers who
earn the same total income, those whose self-reported income is larger are
characterized by a larger elasticity of taxable income. When moving from the
actual to the optimal economy, the share of such taxpayers at each income
level may vary so that the weighted mean elasticity of taxable income is likely
to be impacted by composition effects. Composition effects may also take
place in countries like the U.S. with a comprehensive personal income tax,
i.e. when a single tax schedule applies to the sum of different types of incomes
earned by a household (salaries, financial income, rents, etc). One expects that
subjacent elasticities are specific to each type of income. Therefore, as in the
previous examples, the earning elasticity of the total income of each taxpayer,
at a given level of income, depends on the share of her incomes with larger
elasticities. When moving from the actual to the optimal economy, at each
income level, the weighted mean elasticity of taxable income is then likely
affected by composition effects.

We also contribute to the optimal tax literature by improving the tax
perturbation approach initiated by Piketty (1997) and Saez (2001). This
approach consists in computing all responses to small tax reforms, to sum
them up and equate them to zero in order to obtain the optimal tax schedule.
The initial approach of Piketty (1997) and Saez (2001) is very intuitive but
is only heuristic since it relies on tax reforms that creates kinks for which
effects are neglected. This is the reason why Saez (2001) has to check the
consistency of his tax formula with the one obtained using the mechanism
design approach of Mirrlees (1971). He, however, verifies this only in the
case where unobserved heterogeneity is one-dimensional which excludes the
empirically plausible case where taxpayers differ both in skills and behavioral
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responses. Other attempts at extending the method of Saez (2001) to a richer
class of tax reforms without kinks have been made (e.g., Hendren (2019)
and Sachs et al. (2019) for the most recent). However, they need to assume
that tax revenues are differentiable functions of tax reforms. In contrast, we
show that income decisions are a differentiable functions of tax reforms by
applying the implicit function theorem. We then verify the conjecture of Saez
(2001) that, under multidimensional heterogeneity, optimal marginal tax rates
depend on the averages of sufficient statistics taken among taxpayers who earn
the same income.2 Last but not least, we show that our tax perturbation
approach and the (first-order) mechanism design approach are the two faces
of the same coin.3 In the latter, one considers the effects of perturbations
on allocations (within the class of incentive-compatible differentiable and
increasing allocations), while the tax perturbation considers the effects of a
tax reform that decentralizes these perturbations.

The paper is organized as follows. We introduce the framework in Section
II. We begin our analysis in Section III with the simple linear tax model to
explain what composition effects are and to illustrate the empirical bias they
impose. In Section IV, we characterize the optimal nonlinear tax using the tax
perturbation method and we shed the light on composition effects in that case.
Section V numerically investigates the sensitivity of the optimal tax function to
composition effects. Section VI shows the equivalence between the mechanism
design and tax perturbation approaches. Section VII concludes.

II. Model

Every worker derives utility from consumption c ∈ R+ and disutility from
effort. Effort captures the quantity as well as the intensity of labor supply. More
effort implies higher pre-tax income y ∈ R+ (for short, income hereafter). The
government levies a tax T (.) which depends on income y only. Consumption c
is related to income y through the tax function T (y) according to c = y− T (y).
Individuals differ along their skill level w that belongs to the positive real
line R∗+ and along some characteristics denoted θ ∈ Θ. We call a group a
subset of individuals with the same θ.4 We assume that the set of groups Θ is
measurable with a cumulative distribution function (CDF) denoted µ(·). The
set Θ can be finite or infinite and may be of any dimension. The distribution µ(.)

2. Our method can easily be extended to include participation decisions (Saez 2002; Kleven
et al. 2009; Jacquet et al. 2013), migration decisions (Lehmann et al. 2014; Blumkin et al.
2015) or sectoral decisions (Rothschild and Scheuer 2013; Scheuer 2014; Gomes et al. 2018).

3. The tax perturbation and mechanism design methods have been used separately to solve
optimal income tax problems. While the latter method is widely used in various fields in
economics, the former is more specific to the optimal taxation literature.

4. Our definition of “group” is identical to the one in Werning (2007, p.13).
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of the population across the different groups may be continuous, but it may
also exhibit mass points. Among individuals of the same group θ, skills are
distributed according to the conditional skill density f(·|θ) which is positive
and differentiable over the support R∗+. The conditional CDF is denoted

F (w|θ) def≡
∫ w

0 f(x|θ)dx. We do not make any restriction on the correlation
between w or θ. We normalize to unity the total size of the population.

II.1. Individual choice

Individuals of type (w, θ) have a twice continuously differentiable utility
function with respect to c and y which is specified as U (c, y;w, θ) with Uc > 0
> Uy. We also assume that for each type (w, θ), indifference curves associated
to U (·, ·;w, θ) are strictly convex in the income-consumption space. Earning a
given income requires less effort to a more productive worker, so Uw > 0. A
worker of type (w, θ), facing y 7→ T (y), solves:

U(w, θ)
def≡ max

y
U (y − T (y), y;w, θ) . (1)

We call Y (w, θ) the solution to program (1), C(w, θ) = Y (w, θ)− T (Y (w, θ))
the consumption of a worker of type (w, θ) and U(w, θ) her utility.5 When the
tax function is differentiable, the first-order condition associated to (1) implies
that:

1− T ′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ;w, θ) (2)

where:

M (c, y;w, θ)
def≡ −Uy(c, y;w, θ)

Uc(c, y;w, θ)
(3)

denotes the marginal rate of substitution between (pre-tax) income and
consumption (after-tax income). For a worker of a given type, the left-hand side
of Equation (2) corresponds to the marginal gain of income after taxation while
the right-hand side corresponds to the marginal cost of income in monetary
terms.

We impose the single-crossing (Spence-Mirrlees) condition that, within each
group of workers endowed with the same θ, the marginal rate of substitution
is a decreasing function of the skill level, i.e. that higher-skilled workers find it
less costly to increase their income y:

Assumption 1 (Within-group single-crossing condition). For each θ ∈ Θ,
and each (c, y) ∈ R+ × R+, function w 7→ M (c, y;w, θ) is differentiable with
∀w ∈ R∗+, Mw < 0.

5. To ease the notations, we do not make explicit the dependence of Y (·, ·), C(·, ·), U(·, ·)
on T (·).
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Assumption 1 is for instance verified in the case where U (c, y;w, θ) is
specified as:

U (c, y;w, θ) = c− θ

1 + θ
y1+ 1

θ w−
1
θ w ∈ R∗+, θ ∈ Θ. (4)

We henceforth refer to preferences’ specification (4) as the isoelastic ones. There
θ stands for the labor supply elasticity. The marginal rate of substitution equals
M (c, y;w, θ) = y

1
θ w−

1
θ and is decreasing in w from infinity to zero.

II.2. Government

The government’s budget constraint takes the form:∫∫
θ∈Θ,w∈R∗+

T (Y (w, θ)) f(w|θ)dw dµ(θ) = E (5)

where E ≥ 0 is an exogenous amount of public expenditures. The objective
of the planner is to maximize a general social welfare function that sums over
all types of individuals an increasing transformation Φ(U ;w, θ) of individuals’
utility levels U :

∫∫
θ∈Θ,w∈R∗+

Φ (U(w, θ);w, θ) f(w|θ)dw dµ(θ). (6)

This welfarist specification allows Φ to vary with type (w, θ) which makes it
very general. Weighted utilitarian preferences are obtained with Φ(U ;w, θ) ≡
ϕ(w, θ) · U with weights ϕ(w, θ) depending on individual characteristics. The
objective is utilitarist if ϕ(w, θ) is constant and Φ(U ;w, θ) ≡ U and it turns out
to be maximin (or Rawlsian) if ϕ(w, θ) = 0 ∀w > 0. When Φ(U ;w, θ) does not
vary with its two last arguments and is concave in individual utility (ΦUU ≤ 0),
we obtain a Bergson-Samuelson criterion which is a concave transformation of
utility.

The government’s problem consists in finding the tax schedule T (·) that
maximizes the social welfare objective (6) subject to the budget constraint (5).
Let λ > 0 denote the shadow price of public funds. The Lagrangian (expressed
in monetary terms) is:

L
def≡

∫∫
θ∈Θ,w∈R∗+

[
T (Y (w, θ)) +

Φ (U(w, θ);w, θ)

λ

]
f(w|θ)dw dµ(θ). (7)

We define the social marginal welfare weights associated with workers of type
(w, θ) expressed in terms of public funds by:

g (w, θ)
def≡ ΦU (U (w, θ) ;w, θ)Uc (C(w, θ), Y (w, θ);w, θ)

λ
. (8)

6



The government values giving one extra dollar to a worker (w, θ) as a gain of
g(w, θ) dollar(s) of public funds.

III. Optimal linear tax and composition effects

In this section, we illustrate how composition effects bias the empirical
implementation of the optimal tax rate using the very simple case of linear
taxation. The tax schedule is linear with a tax rate denoted τ and a demogrant
D so: T (y) = τ y −D. Let yM (w, θ; τ,D) denote the Marshalian solution to
the taxpayer’s program max

y
U ((1− τ)y +D,y;w, θ). The budget constraint

(5) can be rewritten as:

τ

∫∫
(w,θ)∈R∗+×Θ

yM (w, θ; τ,D) f(w|θ)dw dµ(θ)−D = E. (9)

Assuming leisure is a normal good, one has yMD (w, θ; τ,D) ≤ 0, which ensures
that the left hand-side of the previous equation is decreasing in D. Hence, for
each tax rate τ , there exists a single demogrant denoted D̃(τ) that clears the

budget constraint (9). We denote: ỹ(w, θ; τ)
def≡ yM

(
w, θ; τ, D̃(τ)

)
the pretax

income of taxpayers of type (w, θ) when the tax rate is τ and the demogrant
clears the budget constraint. The earnings elasticity of these taxpayers with
respect to the net-of-tax rate 1− τ is defined as:

ε̃(w, θ; τ)
def≡ − 1− τ

ỹ(w, θ; τ)

∂ỹ(w, θ; τ)

∂τ
.

Define aggregate earnings as the sum of all individual incomes:

Y (τ)
def≡
∫∫

(w,θ)∈R∗+×Θ

ỹ(w, θ; τ) f(w|θ)dw dµ(θ).

Following Piketty and Saez (2013), the optimal tax rate τL is such that
(Appendix A):

τL =
1− g(τL)

1− g(τL) + e(τL)
, (10)

where the Lagrange multiplier verifies:6

λ =

∫∫
(w,θ)∈R∗+×Θ

ΦU 〈w, θ〉Uc 〈w, θ〉 f(w|θ)dw dµ(θ), (11)

6. The notation 〈w, θ〉 is a shortcut to indicate that the arguments are evaluated at the
bundle chosen by taxpayers of type (w, θ).
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where the mean social marginal welfare weight is given by:

g(τ)
def≡
∫∫

(w,θ)∈R∗+×Θ

g (w, θ)
ỹ(w, θ; τ)

Y (τ)
f(w|θ)dw dµ(θ), (12)

and the mean earnings elasticity e(τ) is defined as:

e(τ)
def≡ −1− τ

Y (τ)

∂Y

∂τ
=

∫∫
(w,θ)∈R∗+×Θ

ε̃(w, θ; τ)
ỹ(w, θ, τ)

Y (τ)
f(w|θ)dw dµ(θ). (13)

The following proposition explains why composition effects affect the evaluation
of the optimal linear tax rate.

Proposition 1. In the optimal linear tax formula given by (10), the share of
income from (w, θ)-taxpayers in the aggregate earnings, ỹ(w, θ; τ)f(w|θ)/Y (τ)
impacts the mean social marginal welfare weight g(τ) in (12) and the mean
earnings elasticity e(τ) in (13).

With a linear tax schedule, the optimal tax depends on a weighted
mean of social welfare weights and earnings elasticities, where the weights
ỹ(w, θ; τ)f(w|θ)/Y (τ) are equal to the shares of income from (w, θ)-taxpayers
in aggregate earnings. We define composition effects as the variations of the
weighted means of welfare weights and earnings elasticities due to the change
in the weights ỹ(w, θ; τ)f(w|θ)/Y (τ) when one shifts from the actual economy
(where g(τ) and e(τ) are estimated) to the optimal economy. Hence, ignoring
composition effects typically biases the implementation of the optimal tax
formula.

Importantly, the welfare weight g(w, θ) and the earnings elasticity ε̃(w, θ, τ)
of each type of taxpayers are also endogenous to the tax policy. So, to better
isolate the direction of the bias induced by composition effects, we now specify
individual preferences and the social objective to make g(w, θ) and ε̃(w, θ, τ)
exogenous. For this purpose, we assume the government’s objective is maximin
which is equivalent to maximizing tax revenue τ ·Y −E (Boadway and Jacquet
2008) with welfare weights equal to zero. Substituting g(τL) = 0 into (10), the
tax rate that maximizes tax revenue (or the Laffer rate) is:

τL =
1

1 + e(τL)
. (14)

Moreover, we assume individual preferences are isoelastic as in (4). This implies
that income are given by ỹ(w, θ; τ) = (1− τ)θ w, so that ε̃(w, θ; τ) = θ which is
tax policy-invariant and homogeneous within each group. The average earnings
within group θ is then given by:

y(θ, τ)
def≡ (1− τ)θ

∫
w∈R∗+

wf (w| θ)dw.
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and the aggregate earnings can be rewritten as:

Y (τ)
def≡
∫
θ∈Θ

y(θ, τ) dµ(θ) =

∫
θ∈Θ

(1− τ)θ
∫
w∈R+

wf(w|θ)dw dµ(θ).

Hence, the elasticity of aggregate earnings given by (13) thus takes the following
simpler expression:

e(τ) =

∫
θ∈Θ

θ
y(θ, τ)

Y (τ)
dµ(θ). (15)

Let τ0 denote the tax rate in the actual economy. Intuitively, if one neglects
composition effects, one would implement the optimal tax formula (14) using
e(τ0) instead of e(τL). If the optimal tax rate is larger than the actual one,
the rise from the actual to the optimal tax rate decreases earnings in every
group. This decrease is higher for groups with a larger θ since their behavioral
responses are larger than the ones of groups with a lower θ. Consequently, the
rise in the tax rate is going to decrease (increase) the weight of high (low)
θ-groups in the computation of the elasticity of aggregate earnings in (15) and
we eventually get that e(τL) < e(τ0). Therefore, neglecting composition effects
leads to underestimate the optimal tax rate, as proved in Appendix B and
stated in the following proposition.

Proposition 2. If the optimal linear revenue maximizing tax rate is higher
(lower) than the actual tax rate, neglecting composition effects leads to a
downward (upward) bias in the computation of the optimal tax rate.

As a back-of-the-envelope numerical illustration, consider the case where
the economy is made of two groups, a high elasticity one with θH = 0.4
and a low elasticity one with θL = 0.1. Assume both groups are of equal
size µ(θL) = µ(θH) = 0.5 and are characterized by the same average income
y(θ, τ) in the actual economy where the tax rate is assumed to be τ0 = 0.25.
Then, ignoring the heterogeneity in the elasticity of labor supply, one obtains a
revenue maximizing linear tax rate equal to 1/(1 + 0.25) = 80.0%. By contrast,
taking into account composition effects leads to a revenue maximizing linear
tax rate which rises to 82.1% from (14) and (15). With θH = 0.6, we obtain
a larger discrepancy: the optimal linear tax rate without composition effects
is equal to 1/(1 + 0.35) ' 74.1%, while it increases to 78.5% with composition
effects.

IV. Optimal nonlinear tax and composition effects

In this section, we study composition effects when the tax schedule is
nonlinear. For this purpose, we improve the tax perturbation method initiated
by Piketty (1997) and Saez (2001). In Subsection IV.1, we propose a tax
perturbation method when individual characteristics are multidimensional
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and state sufficient conditions for using it. We define empirically measurable
sufficient statistics (Subsection IV.2) that we use for characterizing desirable
tax reforms and for deriving the optimal tax formula (Subsection IV.3). We
then tell the reader about composition effects (Subsection IV.4).

IV.1. Sufficient conditions for the tax perturbation method

Define a reform of a tax schedule y 7→ T (y) with its direction, which is
a differentiable function y 7→ R(y) defined on R+, and with its algebraic
magnitude m ∈ R. After a reform, the tax schedule becomes y 7→ T (y)−m R(y)
and the utility of an individuals of type (w, θ) is:

UR(m;w, θ)
def≡ max

y
U (y − T (y) +m R(y), y;w, θ) . (16)

We denote by Y R(m;w, θ) the income of workers of types (w, θ) after the reform
and her consumption becomes CR(m;w, θ) = Y R(m;w, θ)− T (Y R(m;w, θ)) +
m R(Y R(m;w, θ)). When m = 0, we have Y R(0;w, θ) = Y (w, θ) and
CR(0;w, θ) = C(w, θ). Applying the envelope theorem to (16), we get:

∂UR

∂m
(m;w, θ) = Uc

(
CR(m;w, θ), Y R(m;w, θ);w, θ

)
R(y). (17)

Using (3), the first-order condition associated to (16) equalizes to zero the
following expression:

Y R(y,m;w, θ)
def≡ 1−T ′(y) +mR′(y)−M (y − T (y) +m R(y), y;w, θ) . (18)

For simplicity, we drop the superscript R and write Yy(Y (w, θ);w, θ)
for Y R

y (Y (w, θ), 0;w, θ).7 We define behavioral responses to tax reforms of
direction R by applying the implicit function theorem at m = 0. For this
purpose, we need the following assumptions:

Assumption 2. Sufficient conditions for the tax perturbation method.

i) The tax function T (·) is twice differentiable.
ii) For all (w, θ) ∈ R∗+ × Θ, the second-order condition holds strictly:

Yy (Y (w, θ);w, θ) < 0.
iii) For all (w, θ) ∈ R∗+ × Θ, the function y 7→ U (y − T (y), y;w, θ) admits a

unique global maximum over R+.

Part i) of Assumption 2 ensures that first-order condition (18) is
differentiable.8 Part ii) guarantees it is invertible in income y. Under i) and

7. Indeed, at m = 0, Y R
y does no longer depend on the direction R of the tax reform.

8. In practice, most of real world tax schedules are piecewise linear. In theory, bunching
should occur at convex kink points and gaps in the income distribution should occur at
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ii), one can apply the implicit function theorem to (18) to describe how a local
maximum of the individual maximization program (16) changes after a tax
reform. Part iii) ensures that after an incremental tax reform or change in
skill, the maximum remains global. Indeed since the tax function is nonlinear,
the function y 7→ U (y − T (y) +mR(y), y;w, θ) may in general admit several
global maxima among which individuals of type (w, θ) are indifferent. Any small
tax reform may then lead to a jump in individual’s choice from one maximum
to another one (which is associated to a jump in the supply of effort). Part iii)
prevents this situation and ensures the allocation changes in a differentiable
way with the magnitude m of a tax reform.

Assumption 2 is automatically satisfied when the tax function T (y) is
restricted to be linear as the indifference curves associated to U (., .;w, θ) are
assumed strictly convex. Similarly, Assumption 2 is also satisfied when the tax
function T (y) is convex (y 7→ y − T (y) being concave, Parts ii) and iii) are
then verified). By continuity, Assumption 2 is also verified when y 7→ T (y) is
“not too concave”, more precisely when y 7→ y − T (y) is less convex than the
indifference curve with which it has a tangency point in the (y, x)-plane (so
that Part ii) of Assumption 2 is satisfied) and when this indifference curve is
strictly above y 7→ y − T (y) for all other y (so that Part iii) of Assumption 2
is satisfied). In a nutshell, Assumption 2 is satisfied whenever the marginal tax
rate does not decrease too rapidly with income.9

Thanks to Assumption 2, we can apply the implicit function theorem
to prove that income is differentiable with respect to m after a tax reform
in the direction R(·) (see Equation (19) below). Conversely, Golosov et al.
(2014) do assume that the income function is locally Lipschitz continuous in
tax reforms, while Hendren (2019) does assume that aggregate tax revenue,∫∫
θ∈Θ,w∈R+

T (Y (w, θ)) f(w|θ)dw dµ(θ) varies smoothly in response to changes

in the tax schedule, which is rather ad-hoc since these responses are endogenous.
The strength of our approach is therefore to give micro-foundations to the
property of smooth responses to tax reforms. In contrast, Hendren (2019)’s
assumption allows for discrete changes in individual behavior in response to
small tax changes, which is more general than our property of differentiable
income. We can also note that Assumption 2 bears on tax functions that are
endogenous objects. Considering only tax functions that verify this assumption
is a restriction similar to considering only smooth allocations with no bunching,
as done in the first-order mechanism design approach introduced by Mirrlees
(1971). We drop the “no jumping” restriction by assuming Part iii) of

concave kink points. In practice, bunching is very rare (with the noticeable exception of
Saez (2010)) and gaps as well. This discrepancy between theory and reality is plausibly due
to the fact that taxpayers do not optimize with respect to the exact tax schedule but with
respect to some smooth approximation of it, which verifies i) of Assumption 2.

9. As pointed out by a referee, if the compensated elasticity is not bounded from above,
Assumption 2 becomes verified only if the tax schedule is weakly convex.
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Assumption 2 and verify ex-post in the simulations that the obtained tax
schedule does satisfy Assumption 2.

IV.2. Behavioral responses

We now define the behavioral responses to a tax reform. Applying the
implicit function theorem to Y R(y,m;w, θ) = 0 at m = 0 yields:

∂Y R

∂m
(0;w, θ) = −Y R

m (Y (w, θ), 0;w, θ)

Y R
y (Y (w, θ), 0;w, θ)

(19)

where:

Y R
y (y,m;w, θ) = −T ′′(y)−My(y − T (y) +m R(y), y;w, θ) (20a)

− M (y − T (y) +m R(y), y;w, θ) Mc(y − T (y) +m R(y), y;w, θ),

Y R
m (y,m;w, θ) = R′(y)−R(y) Mc(y − T (y) +m R(y), y;w, θ). (20b)

Checking out (20b), a tax reform affects individuals’ decisions either because of
a change in marginal tax rate (the term R′(y) in (20b)) or because of a change
in tax liability (the term proportional to R(y) in (20b)).

Along the nonlinear income tax schedule, we define the compensated
elasticity of earnings with respect to the marginal retention rate 1−T ′(.) as the
elasticity of earnings for individuals of type (w, θ) to a change in the marginal
tax rate, while leaving unchanged the level of tax at y = Y (w, θ). This tax
reform has direction R(y) = y− Y (w, θ) with R(Y (w, θ)) = 0 since the tax level
is not modified at y = Y (w, θ) and with R′(Y (w, θ)) = 1 since the marginal tax
rate is uniformly modified. Using (2) and (20b), the compensated elasticity of
earnings is equal to:

ε(w, θ)
def≡ 1− T ′ (Y (w, θ))

Y (w, θ)

∂Y

∂m

c

=
M (C(w, θ), Y (w, θ);w, θ)

−Y (w, θ) Yy(Y (w, θ);w, θ)
> 0 (21a)

which is positive due to Assumption 2 and where the superscript ”c” stands
for “compensated”.

Along the nonlinear income tax schedule, the income effect is defined as
the behavioral response to a lump-sum change m in tax liability with direction
R(y) = 1. Plugging R(Y (w, θ)) = 1 and R′(Y (w, θ)) = 0 into (3) and (20b), the
income effect is equal to:

η(w, θ)
def≡ ∂Y

∂m

i

=
Mc(C(w, θ), Y (w, θ);w, θ)

Yy(Y (w, θ);w, θ)
(21b)

where the superscript ”i” stands for ”income effect”. We have η(w, θ) < 0 if
leisure is a normal good, since then Mc > 0.
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Combining (21a) and (21b) with (20b) and (19), the way income of
individuals (w, θ) reacts to any tax reform R(·) is given by:

∂Y R

∂m
(0;w, θ)

∣∣∣∣
m=0

= ε(w, θ)
Y (w, θ)

1− T ′(Y (w, θ))
R′(Y (w, θ)) + η(w, θ) R(Y (w, θ)).

(21c)
Under Assumption 2, one can compute the elasticity α(w; θ) of earnings

with respect to the skill level:10

α(w, θ)
def≡ w

Y (w, θ)
Ẏ (w, θ) =

w Mw(C(w, θ), Y (w, θ);w, θ)

Y (w, θ) Yy(Y (w, θ);w, θ)
> 0. (21d)

Assumption 1 ensures this elasticity is positive. Hence, bunching cannot occur
under Assumptions 1 and 2.11 This might be surprising since Rochet and Choné
(1998) shows that bunching is generic in multidimensional screening problems.
However, the reason why bunching occurs in their multidimensional nonlinear
pricing model is because of the interplay between participation12 constraints at
the lower bounds of the type space and self-selection constraints. This argument
does not apply in our optimal tax problem without participation constraints.

It is worth stressing that ε(w, θ), η(w, θ) and α(w, θ) denote total responses
of earnings since they take into account the nonlinearity of the tax schedule
as in Jacquet et al. (2013), see also Scheuer and Werning (2017). In Appendix
C, we make the link between total responses and direct responses, the latter
assuming a linear tax function (e.g. Saez (2001)).

Let h(y|θ) denote the conditional income density within group θ at income

y and H(y|θ) def≡
∫ y

0 h(z|θ)dz the corresponding conditional income CDF.
According to (21d) and Assumption 1, income Y (·, θ) is strictly increasing
in skill within each group. We then have H (Y (w, θ)|θ) ≡ F (w|θ) for each skill
level w. Differentiating both sides of this equality with respect to w and using

10. The dot above a variable stands for the partial derivative of this variable with respect
to skill w.

11. Since we have many types but a single observed action (pre-tax income), we call
bunching a situation where, within each group, agents with different skill levels earn the
same income. This seems a natural way of extending the usual definition of bunching,
found in optimal tax models with a single dimension of unobserved heterogeneity, to our
multidimensional setting. The focus in this paper is on different agents of distinct groups
who earn the same income. With our multidimensional types, it seems natural to call this
configuration pooling.

12. In Rochet and Choné (1998), every agent faces the same cost of participation.
Conversely, in the random participation models of Rochet and Stole (2002) and Jacquet
et al. (2013), the cost of participation is continuously distributed, so that at each income
level, participation decisions are continuous. A last difference with Rochet and Choné (1998)
is that, in their model, consumers choose a n-dimensional basket of commodities, so their
nonlinear price schedule has n arguments while our nonlinear tax schedule admits a single
argument: taxpayers’ income.
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(21d), the two densities are linked by:

h (Y (w, θ)|θ) =
f(w|θ)
Ẏ (w, θ)

⇔ Y (w, θ) h (Y (w, θ)|θ) =
w f(w|θ)
α(w, θ)

. (22)

Let W (·, θ) denote the inverse of Y (·, θ) so that, within each group θ,
individuals of type (w = W (y, θ), θ) earn income y. According to Assumption
1, W (y, θ) is the unique skill level w such that, for individuals in group θ, the
first-order condition 1− T ′(y) = M (y − T (y), y;w, θ) is verified at income y.
The unconditional income density is given by:

ĥ(y)
def≡
∫
θ∈Θ

h(y|θ) dµ(θ). (23a)

The mean total compensated elasticity at income level y is:

ε̂(y) =

∫
θ∈Θ

ε (W (y, θ), θ)
h(y|θ)
ĥ(y)

dµ(θ). (23b)

where each within-group total elasticity is weighted by the relative proportion
h(y|θ)/ĥ(y) of individuals in the corresponding group among individuals who
earn y. The mean total income effect at income level y is:

η̂(y) =

∫
θ∈Θ

η (W (y, θ), θ)
h(y|θ)
ĥ(y)

dµ(θ). (23c)

Finally, the mean marginal social welfare weight at income level y is:

ĝ(y) =

∫
θ∈Θ

g (W (y, θ), θ)
h(y|θ)
ĥ(y)

dµ(θ). (23d)

IV.3. Tax perturbation and optimal tax formula

We now study when a tax reform is desirable. A tax reform with direction
y 7→ R(y) affects the tax liability of a (w, θ)-worker through mechanical and
behavioral effects as follows:

∂T (Y R(m;w, θ))−m R(Y R(m;w, θ))

∂m

∣∣∣∣
m=0

= −R(Y (w, θ))︸ ︷︷ ︸
Mechanical

+ T ′(Y (w, θ))
∂Y R

∂m
(0;w, θ)︸ ︷︷ ︸

Behavioral

= ε(w, θ)
T ′(Y (w, θ))

1− T ′(Y (w, θ))
Y (w, θ) R′(Y (w, θ))

−
[
1− η(w, θ) T ′(Y (w, θ))

]
R(Y (w, θ)). (24)

where the second equality is obtained using (21c). Combining Equations (8),
(17) and (22)-(24) and integrating by parts, we get (see Appendix D):
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Lemma 1. Under Assumptions 1 and 2, reforming the tax schedule in the
direction R(·) triggers first-order effects on the Lagrangian (7) equal to:

∂L R

∂m

∣∣∣∣
m=0

=

∫ ∞
y=0

{[
ĝ(y)− 1 + T ′(y) η̂(y)

]
ĥ(y)− d

dy

[
T ′(y)

1− T ′(y)
ε̂(y) y ĥ(y)

]}
R(y)dy (25)

+ lim
y 7→∞

T ′(y)

1− T ′(y)
ε̂(y) y ĥ(y) R(y)− lim

y 7→0

T ′(y)

1− T ′(y)
ε̂(y) y ĥ(y) R(y).

An important point to notice is that, in general, implementing a reform with
direction R(·) implies a budget surplus or deficit. A first-order approximation
of this budget surplus (or deficit) can be computed by putting social welfare
weights ĝ(·) equal to zero in (25). One can then define a balanced-budget tax
reform with magnitudem and directionR(·) by combining it with the lump-sum
rebate required to bind the budget constraint. As stated in the next lemma,
Expression (25) allows one to characterize desirable tax reforms when λ is
determined to verify:

1 =

∫ ∞
y=0

[
ĝ(y) + T ′(y) η̂(y)

]
ĥ(y)dy = 0. (26)

Lemma 2. Under (26), a tax reform with direction R(·), combined with a
lump-sum transfer to keep it budget-balanced, is socially desirable if either
∂LR

∂m

∣∣∣
m=0

> 0 and m > 0 or ∂LR

∂m

∣∣∣
m=0

< 0 and m < 0.

The proof is in Appendix D. To obtain the optimal tax formula, we note
that if the tax schedule is optimal, any tax reform R(.) should have no first-
order effect on the Lagrangian (7), i.e. (25) should be nil for any direction R(·).
This leads to the following proposition which is proved in Appendix.

Proposition 3. Under Assumptions 1 and 2, the optimal tax schedule
satisfies:

T ′ (y)

1− T ′ (y)
=

1

ε̂(y)

1− Ĥ(y)

y ĥ(y)

1−

∫ ∞
y

[
ĝ(z) + η̂(z) T ′(z)

]
ĥ(z)dz

1− Ĥ(y)

 (27)

If income effects were assumed away, Equation (26) would imply that the
weighted sum of social welfare weights is equal to 1. In the presence of income
effects, a uniform increase in tax liability induces a change in tax revenue
proportional to the marginal tax rate which explains the presence of η̂(z) ·T ′(z).

The optimal tax rate given in Equation (27) generalizes the ABC terms
described in Diamond (1998) and Saez (2001): (a) the behavioral responses to
taxes denoted by 1/ε̂(y), which, in the vein of Ramsey (1927), is the inverse
of the mean compensated elasticity; (b) the social preferences and income

15



effects 1−
(∫ ∞

y

[
ĝ(z) + η̂(z) T ′(z)

]
ĥ(z)dz

)
/ (1− Ĥ(y)), which indicates the

distributional benefits of increasing the tax liability by one unit for all workers
with incomes above y and (c) the shape of the income distribution measured

by the inverse of the local Pareto parameter (1− Ĥ(y))/(y ĥ(y)) of the income
distribution. Shifting from the model with one dimension of heterogeneity to
the model with multiple dimensions leads to replacing the marginal social
welfare weight, the compensated elasticity and the income effect by their means
calculated at a given income level. It is the mean of the total (rather than direct)
compensated elasticity and income effect that must be computed.

IV.4. Composition effects

With a nonlinear tax schedule, the optimal tax depends at income y on
weighted means of compensated responses, incomes responses and welfare
weights. Plugging Equations (23c) and (23d) into (27) leads to:

T ′ (y)

1− T ′ (y)
=

1

ε̂(y)

1− Ĥ(y)

y ĥ(y)

1−
∫∫

θ∈Θ,z≥y

[
g (W (z, θ), θ) + η (W (z, θ), θ)T ′(z)

] h (W (z, θ)|θ)
1− Ĥ(y)

dz dµ(θ)


According to Equation (23b), the relevant weighted mean of compensated

response ε̂(y) is computed among taxpayers who earn y and the weights

are equal to the relative proportion h(y|θ)/ĥ(y) of taxpayers of group θ
among taxpayers who earn income y. We define composition effects on mean
compensated elasticities as the variation of ε̂(y) due to the change in the weights

h(y|θ)/ĥ(y), which gives the relative share of θ-taxpayers among those who
earn y, when one shifts from the actual economy where ε̂(y) is estimated to
the optimal economy. We define composition effects on the mean of income
responses η(w, θ) T ′(Y (w, θ)) and on the mean of welfare weights g(w, θ) as

the variation due to the change in the weights h (W (z, θ)|θ) /
(

1− Ĥ(y)
)

when

one shifts from the actual economy where they are estimated to the optimal
economy. The means are computed among taxpayers who earn more than y.

The weights are equal to the relative proportion h (W (z, θ)|θ) /
(

1− Ĥ(y)
)

of

taxpayers in group θ who earn z among taxpayers who earn income higher than
y. Hence, as with a linear tax, ignoring composition effects typically biases the
implementation of the optimal tax formula.

To study how composition effects impact the optimal tax rates, we
consider maximin (to shut down composition effects on welfare weights13) and
quasilinear preferences (to shut down composition effects on income responses).

13. Cuff (2000); Boadway et al. (2002); Brett and Weymark (2003); Choné and Laroque
(2010) and Lockwood and Weinzierl (2015) introduce in the Mirrlees (1971) model an
additional source of heterogeneity, typically preferences for leisure, that matters only for the
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This allows one to rewrite (27) as:

T ′ (y)

1− T ′ (y)
=

1

ε̂(y)

1− Ĥ(y)

y ĥ(y)
=

1∫
θ∈Θ

ε (W (y, θ), θ)
h(y|θ)
ĥ(y)

dµ(θ)

1− Ĥ(y)

y ĥ(y)
. (28)

where the second equality follows (23b). Consider that marginal tax rates are
larger at the optimum than in the actual economy, which is very likely under
maximin in the United States. In this case, taxpayers respond to the rise of
marginal tax rates from their actual to their optimal levels by reducing their
incomes. These responses are larger in groups where the compensated elasticity
ε(W (y, θ), θ) is larger. Consequently, the income densities h(y|θ) of groups
with a high compensated elasticity are much more shifted to the left than
the income densities of groups with a low compensated elasticity. If the relative
proportion h(y|θ)/ĥ(y) of high elasticity groups among income y earners is
increased (decreased), these composition effects increase (decrease) the mean
compensated elasticity ε̂(y) at income y, which reduces (increases) optimal
marginal tax rate in (28).

However, there are two additional sources of endogeneity in (28). First,
for each taxpayer, the compensated elasticity ε (W (y, θ), θ) is endogenous to
the tax policy. Second, the local Pareto parameter of the income distribution
y ĥ(y)/(1 − Ĥ(y)) is also sensitive to the tax policy. To better isolate the
direction of composition effects, we now consider isoelastic preferences (4) and
we assume that each group-specific skill density is Pareto, with the same Pareto
parameter (i.e. the local Pareto parameter of each group-specific income density
is constant across groups and incomes). The latter assumption is obviously
much more realistic for the upper part of the income distribution. Under these
specifications, we get:

Proposition 4. Assume isoelastic preferences (Equation (4)) and that each
group skill-specific density is Pareto with the same Pareto coefficient. If the
nonlinear revenue maximizing marginal tax rate is higher (lower) than the
actual marginal tax rate, neglecting composition effects leads to a downward
(upward) bias in the computation of the optimal marginal tax rate.

This is formally shown in Appendix F. We now rely on numerical
simulations to study composition effects under more general specifications of
group-specific skill densities.

computation of social welfare weights. Introducing this additional source of heterogeneity
into our model would generate composition effects on welfare weights.
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V. Numerical illustrations of composition effects

In this section, we illustrate, thanks to simulations, that even in the case
with only a second dimension of heterogeneity –the labor supply elasticity–
the derived optimal tax schedule is significantly distinct from the one obtained
when ignoring these effects.

V.1. Calibration

We first describe how we calibrate the model, i.e. how we select social
preferences, individual preferences and the distribution of types.

To focus on composition effects that take place through compensated
elasticities, we consider a maximin social objective, so there is no heterogeneity
in social welfare weights g(w, θ). We also assume away income effects by
specifying individual preferences to be quasilinear (see Equation (4)).

The meta-analysis of Bargain and Peichl (2016) shows that the elasticity
along the intensive margin is lower for men than for women. We thus consider
two groups of taxpayers, women with a high elasticity denoted by θH and men
with a low elasticity denoted by θL. We select the values of θL and θH with
two objectives in mind. First, we want the mean elasticity computed over the
whole population to take a plausible value given the literature that estimates
elasticities of taxable income (Saez et al. 2012). Second, we want the ratio of
male over female elasticities to be realistic. Based on German data, Hermle
and Peichl (2018) show that income responses to taxes differ substantially by
gender. Based on Swedish data, Blomquist and Selin (2010) find that the labor
earnings elasticity of women is five times larger than the one of men. Bargain
and Peichl (2016) finds that women elasticity is two to six times larger than
the one of men. Given this, we take θL = 0.1 for men and θH = 0.4 for women.
This leads to a mean elasticity computed over the whole population equal to
0.237, which lies in the range [0.12, 0.40] that correspond to the best available
estimates for the long-run elasticity according to the meta-analysis of Saez et al.
(2012).

We use CPS 2016 to calibrate the distribution of types. To avoid labor
supply interactions within couples and to consider taxpayers facing the same
tax schedule, we only consider singles without dependents. The fraction
of women is µ(θL) = 0.459. For each earning observation, we infer the
corresponding skill level by inverting taxpayers’ first-order condition (2), using
the gender of the corresponding observation (thereby the corresponding θ)
and an approximation of the US tax schedule (see Appendix G). We then
estimate each gender-specific type density f(·|θ) using the Silverman kernel
density estimator. Earnings in CPS are top-coded, so, the kernel estimation is
not valid for the upper part of each gender-specific skill distribution. Diamond
(1998) and Saez (2001) emphasize that the upper part of these densities are
well approximated by a Pareto, and this leads to a positive asymptotic optimal
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tax rate, implying that the zero-top tax rate result of Sadka (1976) and Seade
(1977) is a very local result. We therefore choose to extend the kernel density
estimations by Pareto distributions. A Pareto density k y−1−p is characterized
by a scale k parameter and a Pareto parameter p. Using an estimate for p,
we determine k and the skill level where the extension takes place to ensure
identical left- and right-derivatives at the extension as well as continuity. We
finally normalize the obtained density to get a total mass of 1.

According to Piketty and Saez (2013), the Pareto coefficient for top US
incomes is p = 1.5. However, Atkinson et al. (2018) find that the Pareto
coefficient is lower for men than for women in a set of OECD countries that,
unfortunately, does not include the US. We therefore consider two scenarios. In
the first scenario, we take the same asymptotic Pareto parameter equal to 1.5
for men and women. In the second scenario, we take different Pareto parameters
for men and women.

V.2. Scenario 1: Gender specific elasticities, same asymptotic
Pareto parameter

The solid blue line in Figure 1 displays the optimal marginal tax rates
with composition effects which have the usual U-shaped pattern (Diamond
1998). The numerical algorithm is described in Appendix G. To quantify the
magnitude of the composition effects, we compare these optimal marginal tax
rates with the ones obtained without composition effects.

To do so, we propose two different ways to figure out what optimal marginal
tax rates would have been without composition effects. A first benchmark
without composition effects consists in studying the workers as a single group
with an homogeneous θ. One may, however, object that assuming a fixed θ is
not a fair way to ignore composition effects, because a sophisticated calibration
should use the information about differing elasticities for male and female
workers and about how the share of women varies with income. In this ”more
sophisticated” benchmark without composition effects, one calculates, under
the actual tax schedule, the elasticity at each income level as a weighted average
of male and female elasticities where weights are the densities of male and
female workers.

No composition effects benchmark with a fixed mean elasticity. In the first
benchmark without composition effects, optimal marginal tax rates are
described by the dashed red curve in Figure 1. In this benchmark, all taxpayers
are assumed to belong to the same group characterized by a fixed direct
elasticity θ = θ defined as the mean direct elasticity over the whole population,
i.e.:

θ = µLθL + µHθH ' 0.238 (29)
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As detailed in Appendix G, the skill density in this economy is calibrated in
a way similar to the calibration of both gender-specific skill densities in the
economy with composition effects.
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Figure 1. Optimal marginal tax rates with composition effects (solid blue line), without
composition effects and fixed θ (dashed red lines), without composition effects and varying
θ (dash-dotted pink lines)

We find that composition effects reduce marginal tax rates by as much as
1.5 percentage points below an income threshold around $53, 000 and increase
them above this threshold, with a difference that rises to 4.4 percentage points
at y = $97, 000. This can be seen on Figure 1 when comparing the solid blue
curve (marginal tax rates with composition effects) with the dashed red curve
(marginal tax rates without composition effects and fixed θ = θ). Intuitively,
marginal tax rates increase from the actual situation to the optimum. This
induces taxpayers to reduce their labor supply and these behavioral responses
are much larger for women than for men. Consequently, as described in Figure
2, both gender-specific income densities shift leftwards from the actual schedule
(where dashed lines are used for the densities) to the optimal economy (where
solid lines are used for the densities), but the shift is much larger for the income
density of women (in blue) than for the one of men (in red). Figure 3 shows
that the share of women at each income level is dramatically affected: the
share of women rockets from 49% to 76% for the lowest income levels while it
drops from 46% to 30% for the highest income levels. This pushes the mean
compensated elasticities upwards (downwards) for low (high) income levels,
thereby decreasing (increasing) optimal marginal tax rates through composition
effects, as expected from Equation (28). This is illustrated in Figure 4 where the
mean direct14 elasticities with and without composition effects are displayed.
The mean direct elasticity without composition effects is constant at θ ' 0.238

14. “Direct”means ignoring the impact of the curvature of tax function on the size of
behavioral responses as detailed in Appendix C, i.e. substituting T ′′ = 0 in the definitions
of the compensated and mean compensated elasticities.
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while the mean direct elasticity with composition effects markedly decreases
with income.
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Figure 2. Gender-specific densities under the actual tax schedule (dashed red and blue
lines) and under the optimal tax schedule (solid red and blue lines) in the economy with
composition effects
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Figure 3. Share of women (in percentage) under the actual tax schedule (dash-dotted
pink lines) and under the optimal tax schedule (in blue) in the economy with composition
effects

We conduct sensitivity analysis. Differences between optimal marginal tax
rates with and without composition effects can rapidly be magnified. For
instance, when the male elasticity is θL = 0.1 and female elasticity is θH = 0.6
instead of 0.4, composition effects reduce marginal tax rates by as much as
3 percentage points around $16, 000 (instead of 1.5 percentage points), and
increase them up to 8.1 percentage points at y = $97, 000 (instead of 4.4
percentage points).

No composition effects benchmark with an elasticity that varies with income.
We now compare the optimal tax schedule with composition effects to the
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Figure 4. Mean direct elasticities with composition effects (solid blue line), without
composition effects and fixed θ (dashed red lines), without composition effects and varying
θ (dash-dotted pink lines)

one obtained without composition effects but with θ varying along the income
distribution. For this purpose, we compute optimal marginal tax rates by
assuming, at each income level, a single value for the direct elasticity which
depends on the share of women computed in our approximation of the actual
economy with the actual tax schedule. At each income level, the direct elasticity
θ̃(y) is then calculated as:

θ̃(y) = θL
h0(y|θL) µ(θL)

h0(y|θL) µ(θL) + h0(y|θH) µ(θH)
+ θH

h0(y|θH) µ(θH)

h0(y|θL) µ(θL) + h0(y|θH) µ(θH)
(30)

where subscript 0 corresponds to our approximation of the income distribution
in the actual economy. The share of women, h0(y|θH) µ(θH)/(h0(y|θL) µ(θL) +
h0(y|θH) µ(θH)) , decreases with income, as illustrated on Figure 3 (see the

dash-dotted curve) so that the direct elasticity θ̃(y) decreases with income. In
Figure 4 where direct elasticities without composition effects are displayed, one
sees that the mean direct elasticities are larger (lower) with varying θ than with
fixed θ for low (high) incomes.

The optimal marginal tax rates for this second benchmark without
composition effects are described by the dash-dotted pink lines in Figure 1 (see
Appendix G for the detailed calculation). As expected from the way mean direct
elasticities vary with income, optimal marginal tax rates are lower (larger) with
varying θ than with fixed θ and for low (high) incomes. Hence, the differences
between the optimal tax schedules with and without composition effects are
slightly attenuated with the varying θ compared to the fixed θ but remain non
negligible. The largest difference for low income is reduced to 1, 2 percentage
point (instead of 1.5 percentage points) around y = $18, 000, while the largest
difference for high incomes is 4.3 percentage points (instead of 4.4 percentage
points) around income y = $93, 000.
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V.3. Scenario 2: Gender specific elasticities and heterogeneous
asymptotic Pareto parameters

Atkinson et al. (2018) find that the upper parts of men and women income
distributions are characterized by different Pareto parameters in many OECD
countries. For instance, they obtain pθL ' 1.7 for men and pθH ' 2.1 for women
in the UK (see their Figure 3(B)). To investigate how our previous results are
affected by the assumption of identical Pareto parameters for men and women,
we choose pθH = 1.8 for women and pθL = 1.4 for men. With these values,
Figure 5 indicates how the local Pareto parameter of the overall population
varies with income. It confirms that our choice of pθH = 1.8 and pθL = 1.4 is
consistent with the estimation of 1.5 in Piketty and Saez (2013).

Out[ ]=

0 200000 400000 600000 800000 1×106
Income

1.3

1.4

1.5

1.6

Figure 5. Local Pareto coefficient in our approximation of the actual economy with
pθH = 1.8 and pθL = 1.4

Figure 6 displays the optimal marginal tax rates respectively with
composition effects (solid blue line), without composition effects and with fixed
θ (dashed red lines) and without composition effects and with varying θ (dash-
dotted pink lines). Since the Pareto parameter of women is larger than the one
of men, the share of women decreases with income and it tends to zero as income
goes to infinity in our approximation of the actual economy. Consequently,
the direct elasticity without composition effects but with varying θ decreases
asymptotically to θL = 0.1 (see Equation (30)). Figure 7, however, shows this
convergence is actually very slow. This decrease in the direct elasticity induces
that the optimal marginal tax rate without composition effects and with varying
θ increases in income in the upper part of the distribution, while it remains
constant without composition effects and with fixed θ.

The decrease in the share of women in the upper part of the distribution
also affects the shape of optimal marginal tax rates with composition effects.
Although the local Pareto parameter of the overall distribution remains close to
1.5 (see Figure 5), the gender-specificity in the Pareto parameters implies that
the share of women is decreasing in income in the upper part of the distribution.
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Figure 6. Optimal marginal tax rates with composition effects (solid blue line), without
composition effects and fixed θ (dashed red lines), without composition effects and varying
θ (dash-dotted pink lines)

The optimal marginal tax rate with composition effects is thereby increasing in
income for high incomes. At income $200, 000, the optimal marginal tax rate
with composition effects is 4.3 percentage points higher than optimal marginal
tax rate without composition effects and varying θ and 5.9 percentage points
higher than the optimal marginal tax rate without composition effects and fixed
θ.
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Figure 7. Assuming gender specific Pareto parameters, mean direct elasticities with
composition effects (solid blue line), without composition effects and fixed θ (dashed red
lines), without composition effects and varying θ (dash-dotted pink lines)

V.4. Optimal top marginal tax rates

Saez (2001) proposes two different approaches to compute optimal top
marginal tax rates. One method consists in implementing the optimal nonlinear
tax formula at a sufficiently high income level. We henceforth refer to the
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formula obtained in this way as the optimal nonlinear top tax rates formula and
call the resulting tax rates, optimal nonlinear top tax rates. Another method
consists in equating to zero the sum of mechanical and behavioral responses to
a tax reform in which the marginal tax rate is increased by the same amount for
all incomes above a given sufficiently high income threshold. As this approach
is close to the one used to derive optimal linear tax rate, we say that it leads
to the optimal linear top tax rates formula and optimal linear top tax rates.15

Both methods are generally believed to provide similar quantitative
predictions. We now show that this equivalence does not necessarily hold
true whenever unobserved heterogeneity is multidimensional. More specifically,
under isoelastic individual preferences (4), maximin social preferences and
group-specific skill densities that are Pareto with group-specific coefficients
denoted pθ, the optimal top tax rate increases with the weighted mean of the
group-specific products θpθ of the direct elasticity and Pareto coefficient, under
both approaches. However, the weights take distinct values in each approach,
as shown in Appendix H.

This can be understood intuitively. The optimal nonlinear top tax rate
formula can be obtained by increasing marginal tax rate around a high income
level y and increasing tax liability by a uniform amount for all incomes above y.
Consequently, group-specific products θpθ are weighted by the proportion of θ-
taxpayers within taxpayers who earn more than y. In contrast, the optimal
linear top tax rates formula consists in summing the responses when one
increases the (marginal) tax rate for all taxpayers with incomes above an
income threshold y. In this case, at income z larger than y, the tax liability
varies in proportion to the difference z − y. Therefore, group-specific products
θpθ are weighted by the proportion of income above y earned by θ-taxpayers.

When the Pareto coefficients are identical across groups, the weights do
not vary with income and are identical under both approaches. This is no
longer true when Pareto coefficients vary across groups. To illustrate, take
again θL < θH and pθL < pθH . When the income level at which the optimal top
tax formulas are evaluated tends to infinity, only the group θL with the lowest
Pareto parameter prevails asymptotically since it is the group with the fatter
income density. From (28), the optimal tax formula at the very top tends to
1/(1 + θL pθL). With the optimal linear top tax rates formula, the weight that
multiplies θLpθL is, whatever the income level, always closer to one than with
the optimal nonlinear top tax rates formula. This is due to the fact that the
men skill distribution has a fatter tail. It implies that the proportion of incomes
above y earned by men is larger than the proportion of men among taxpayers
who earn more than y. Hence, at any income level, the optimal linear top tax

15. In Saez (2001), Section 3 is devoted to the linear top tax formula and Section 4 develops
the nonlinear formula.
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rate is higher and closer to 1/(1 + θL pθL) than the optimal nonlinear top tax
rate.

Out[ ]=

0 2000 4000 6000 8000 10000
Income threshold (k$)

82

84

86

Marginal Tax Rate (%)

Optimal nonlinear top tax rates

Optimal linear top tax rates

Figure 8. Top marginal tax rates calculated with the optimal nonlinear top tax rates
formula vs with the optimal linear top tax rates formula

As an illustration, Figure 8 compares optimal asymptotic tax rates under
both approaches using the calibration of the second scenario described in
the preceding subsection, where in particular θL = 0.1, θH = 0.4, pθL =
1.4 and pθH = 1.8. As expected, the convergence of top tax rate towards
1/(1 + θL pθL) ' 87.7% is much faster when one uses the linear top tax rates
formula. One can note that top tax rates converge towards 1/(1 + θL pθL)
under both approaches only for extremely high income levels, so it is a very
local result.

VI. On the equivalence of tax perturbation and mechanism design
methods

In this section, we relate the tax perturbation approach (which relies
on the sufficient conditions in Assumption 2) to the mechanism design
approach, assuming individual characteristics are multidimensional. We discuss
the relations between both approaches under the within-group single-crossing
condition (Assumption 1).

The mechanism design approach relies on the Taxation Principle
(Hammond 1979; Guesnerie 1995) according to which it is equivalent for the
government to select a nonlinear tax schedule taking into account labor supply
decisions such as those described in (1), or to directly select an allocation
(w, θ) 7→ (C(w, θ), Y (w, θ)) that verifies the incentive constraints:

∀w, θ,w′, θ′ ∈
(
R∗+ ×Θ

)2
U (C(w, θ), Y (w, θ);w, θ) ≥ U

(
C(w′, θ′), Y (w′, θ′);w, θ

)
. (31)

According to (31), individuals of type (w, θ) are better off with the bundle
(C(w, θ), Y (w, θ)) designed for them than with bundles (C(w′, θ′), Y (w′, θ′))
designed for individuals of any other type (w′, θ′).
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In the mechanism design approach, it is usual to assume that
the government selects among incentive-compatible allocations that are
continuously differentiable (Salanié 2005). Then, incentive constraints (31)
imply the first-order incentive constraints, i.e.

∀(w, θ) ∈ R∗+ ×Θ U̇(w, θ) = Uw (C(w, θ), Y (w, θ);w, θ) . (32)

These first-order incentive constraints are necessary but not sufficient to verify
the incentive constraints (31). The allocation also has to verify a monotonicity
constraint according to which in each group, Y (·, θ) is nondecreasing in skill.
We define smooth allocations as follows:

Definition 1. We say an allocation (w, θ) 7→ (C(w, θ), Y (w, θ)) is smooth if
and only if it is continuously differentiable, it verifies (31) and w 7→ Y (w, θ)
admits a positive derivative for any group θ ∈ Θ and at any skill level w ∈ R∗+
.

We get the following connection between Assumption 2 required for the tax
perturbation approach and the smooth allocation assumed in the first-order
mechanism design approach. The proof is in Appendix I.

Proposition 5. Under Assumption 1,

i) Any tax schedule y 7→ T (·) verifying Assumption 2 (i.e. the conditions for
the tax perturbation) induces a smooth allocation.

ii) Any smooth allocation can be decentralized by a tax schedule that verifies
Assumption 2.

Intuitively, under Assumption 1 (which states the single-crossing condition
within group), elements of Assumption 2 and assuming a smooth allocation
are equivalent. The fact that, for each group θ, the second-order condition
of the individual program (1) holds strictly (Part ii of Assumption 2) is
equivalent to Y (·, θ) admitting a strictly positive derivative in skill. In the
mechanism design approach, the latter condition is related to the second order
incentive constraints. Moreover, the uniqueness of the global maximum from the
individual maximization program (1) (Part iii of Assumption 2) is equivalent
to Y (·, θ) being continuous in skill.

Thanks to Proposition 5, first-order mechanism design and tax perturbation
approaches are analogous.16 The (first-order) mechanism design approach
consists in choosing, among smooth allocations, the one that maximizes the
social objective (6) subject to the budget constraint (5). It involves computing

16. In Jacquet and Lehmann (2016), optimal tax formula (28) is obtained thanks to a
mechanism design method. To follow this method, one however needs to assume additive
separable preferences.
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the first-order effect, on the Lagrangian (7), of a small perturbation of
the optimal allocation within the set of smooth and incentive compatible
allocations. Since the allocation after perturbation has to be smooth, it is
decentralized by a tax schedule that has to be smooth. Therefore, as stated in
Proposition 5, the effects of a perturbation of the allocation that preserves its
smoothness are equivalent to the responses of the allocation to a perturbation
of the tax function that preserves smoothness. In other words, the mechanism
design approach focuses on the effects of an allocation perturbation whereas
the tax perturbation approach focuses on the effects of the tax reform that
decentralizes this perturbation of the allocation. For this reason, the mechanism
design approach and the tax perturbation approach are the two faces of the
same coin.

In the literature where the unobserved heterogeneity is unidimensional,
the mechanism design approach can be developed without assuming smooth
allocations. In particular, Lollivier and Rochet (1983); Guesnerie and Laffont
(1984); Ebert (1992); Boadway et al. (2000) study the case where individuals
endowed with different skill levels choose the same consumption-income bundle.
To decentralize such an allocation where bunching occurs, one would need a
kink in the tax function. This is excluded with the tax perturbation because
of Assumption 2 but has been largely studied with the mechanism design
approach. Note that the alternative “pathology” where individuals may be
indifferent between two levels of income appears much more plausible under
twice continuously differentiable tax schedules. Surprisingly, this problem has
attracted much less attention than bunching in the literature based on the
mechanism design approach, a notable exception being Hellwig (2010).

With one dimension of heterogeneity, it is highly plausible that the optimal
tax schedule does verify Assumption 2 or, equivalently, that the optimal
allocation is smooth. With multidimensional heterogeneity, the plausibility of
smooth optimal allocations is an open question. In our numerical calibrations,
each group being characterized by a specific direct elasticity, optimal tax
schedules are far from violating Assumption 2. Note that if the elasticity were
continuously distributed and unbounded from above, Assumption 2 part ii)
would imply that the marginal tax rate has to be nondecreasing. What happens
when part ii or iii) of 2 is violated at the optimum is an open question.

VII. Concluding Comments

In this paper, using a new tax perturbation method, we provide formulas
to calculate sufficient statistics in the presence of multidimensional individual
heterogeneity. We also provide a set of sufficient conditions that guarantee the
equivalence between the tax perturbation method and (first-order) mechanism
design. Multidimensional heterogeneity generates a new channel through
which sufficient statistics differ in the optimal and actual economies. We call
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this additional channel “composition effects ”. These effects are due to the
modification of the average behavioral response at each income level. We
emphasize the key role they play in the calculation of sufficient statistics.
We determine the sign of the bias that ignoring composition effects entails
on the optimal linear and nonlinear tax schedules. We also run simulations
to determine the direction and the size of the bias on the U.S. optimal tax
schedule.

Our results call for more empirical studies on labor supply elasticities and
distribution parameters for different demographic groups (e.g., according to
age, ethnicity and gender), different types of workers (e.g., self-employed and
salary workers) and sectors of activity.

Additionally, we expect that composition effects play a crucial role in many
other applications beyond optimal income taxation. One such situation is
that of social unemployment insurance (à la Baily (1978) and Chetty (2006))
when the job-search elasticities to unemployment benefits are heterogeneous.
Another case is the optimal provision of public goods when the marginal
rates of substitution between private and public goods are heterogeneous and
endogenous. A final example is the regulation of a monopoly (à la Baron and
Myerson (1982)) if uncertainty concerns not only the marginal cost but also the
degree of convexity of the cost function, which is highly plausible empirically.
Studying other applications where composition effects may play a role is part
of our research agenda.

Appendix A: Derivation of Equation (10)

Given (9), the government’s program is:∫∫
(w,θ)∈R∗+×Θ

Φ

(
max
y

U
(
(1− τ)y + τ Y (τ)−E;w, θ

)
;w, θ

)
f(w|θ)dw dµ(θ).

The first-order condition is:

0 =

∫∫
(w,θ)∈R∗+×Θ

ΦU 〈w, θ〉 Uc 〈w, θ〉
[
−ỹ(w, θ; τ) + Y (τ) + τ

∂Y (τ)

∂τ

]
f(w|θ)dw dµ(θ).

Dividing this condition by Y (τ)
∫∫

(w,θ)∈R∗+×Θ ΦU 〈w, θ〉 Uc 〈w, θ〉 f(w|θ)dw dµ(θ)

and using (8), (11) and (13) leads to:∫∫
(w,θ)∈R∗+×Θ

g(w, θ)
ỹ(w, θ; τ)

Y (τ)
f(w|θ)dw dµ(θ) = 1− τ

1− τ
e(τ).

According to (12), the left-hand side is equal to g(τ). Rearranging terms leads
to (10).
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Appendix B: Proof of Proposition 2

Combining y(θ, τ) = (1 − τ)θ
∫
w∈R∗+

wf (w| θ)dw and (15) the income-

weighted average elasticity is given by:

e(τ) =

∫
θ∈Θ

θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)∫

θ∈Θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

. (B.1)

We now show that e′(τ) < 0.

e′(τ) =

−

∫
θ∈Θ

θ2

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)− e(τ)

∫
θ∈Θ

θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

(1− τ)

∫
θ∈Θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

=

−

∫
θ∈Θ

(θ − e(τ)) θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

(1− τ)

∫
θ∈Θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

.

If θ < e(τ), one has (θ − e(τ)) < 0, so that (θ − e(τ))θ > (θ − e(τ))e(τ). The
latter inequality also holds if θ > e(τ). Hence, we get:

e′(τ) < e(τ)

∫
θ∈Θ

(θ − e(τ))

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

(1− τ)

∫
θ∈Θ

(
1− τ
1− τ0

)θ
y(θ, τ0) dµ(θ)

= 0.

In the absence of composition effects, there is a single group with an
elasticity equal to e(τ0). So, the optimal tax rate without composition effects
is given by 1/(1 + e(τ0)) from (14). If the linear revenue maximizing tax rate
τL is higher (lower) than the actual tax rate τ0, one gets e(τ0) > e(τL) (resp.
e(τ0) > e(τL)), so that 1/(1 + e(τ0)) < 1/(1 + e(τL)) (resp. 1/(1 + e(τ0)) >
1/(1 + e(τL))). That is the optimal tax rate with compositions effects is larger
(lower) than without composition effects.

Appendix C: Total vs direct elasticities and income responses

The definitions of the behavioral responses given in (21a)-(21d) depend on
the curvature of the tax function as emphasized by the term T ′′ (Y (w, θ)) in
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Equation (20a). Indeed, a circular process (Saez 2001) is encapsulated into these
definitions since any small tax reform or change in skill triggers a behavioral
response that creates a change in marginal tax rate (whenever T ′′ (Y (w, θ)) 6= 0)
that itself provokes a new behavioral response, etc. Behavioral responses (21a)-
(21d) are therefore called total. In contrast, when the tax schedule is linear, one
obtains the usual expressions for these responses that we call direct ones. Let
ε?(w, θ), η?(w, θ) and α?(w, θ) denote direct responses, i.e. (21a), (21b) and
(21d) when T ′′ = 0 in (20a). From the implicit function theorem and Equation
(19), for each type of behavioral response, the ratio of the total to the direct
behavioral response is equal to the ratio of the value of YY with T ′′ (Y (w, θ))
set to zero to the value YY , i.e.:

My + MMc

T ′′ + My + MMc
=

1− T ′(Y (w, θ))

1− T ′(Y (w, θ)) + Y (w, θ) T ′′(Y (w, θ)) ε?(w, θ)

where the second equality is obtained using (2), (3) and the definition of
ε∗(w, θ) from (21a). We therefore obtain, as in Jacquet et al. (2013) that direct
responses are timed by the above corrective term to obtain total responses as
made explicit by the following equations:

ε(w, θ) =
1− T ′(Y (w, θ))

1− T ′(Y (w, θ)) + Y (w, θ) T ′′(Y (w, θ)) ε?(w, θ)
ε?(w, θ),

η(w, θ) =
1− T ′(Y (w, θ))

1− T ′(Y (w, θ)) + Y (w, θ) T ′′(Y (w, θ)) ε?(w, θ)
η?(w, θ),

α(w, θ) =
1− T ′(Y (w, θ))

1− T ′(Y (w, θ)) + Y (w, θ) T ′′(Y (w, θ)) ε?(w, θ)
α?(w, θ).

Appendix D: Proofs of Lemmas 1 and 2

Let L R be the Lagrangian that results from applying a reform with a
direction R and magnitude m on the Lagrangian (7):

L R(m)
def≡∫∫

θ∈Θ,w∈R+

[
T (Y R(m;w, θ))−m R(Y R(m;w, θ)) +

Φ
(
UR(m;w, θ);w, θ

)
λ

]
f(w|θ)dw dµ(θ).
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Combining Equations (8), (17) and (24), the contribution of a (w, θ)-agent to
the Lagrangian L R varies with the magnitude of the tax reform by:

∂

[
T (Y R(m;w, θ))−m R(Y R(m;w, θ)) +

Φ(UR(m;w, θ), w, θ)

λ

]
∂m

∣∣∣∣∣∣∣∣
m=0

(D.1)

= ε(w, θ)
T ′(Y (w, θ))

1− T ′(Y (w, θ))
Y (w, θ) R′(Y (w, θ))

+
[
g(w, θ)− 1 + η(w, θ) T ′(Y (w, θ))

]
R(Y (w, θ)).

Aggregating the latter expression over all types (w, θ), the partial (Gateaux)
differential of the Lagrangian with respect to m, at m = 0, is equal to:

∂L R

∂m

∣∣∣∣
m=0

=

∫∫
θ∈Θ,w∈R+

{
T ′(Y (w, θ))

1− T ′(Y (w, θ))
Y (w, θ) ε(w, θ) R′(Y (w, θ))

+
[
T ′(Y (w, θ)) η(w, θ)− 1 + g(w, θ)

]
R(Y (w, θ))

}
f(w|θ)dw dµ(θ)

=

∫∫
θ∈Θ,y∈R+

{
T ′(y)

1− T ′(y)
y ε (W (y, θ), θ) R′(y)

+
[
T ′(y) η (W (y, θ), θ)− 1 + g (W (y, θ), θ)

]
R(y)

}
h(y|θ)dy dµ(θ)

=

∫
y∈R+

{
T ′(y)

1− T ′(y)
y ε̂(y) R′(y) +

[
T ′(y) η̂(y)− 1 + ĝ(y)

]
R(y)

}
h(y)dy.

We use (D.1) to obtain the first equality. We use (22) for the change of variable
from skill w to income y in the second equality. We use (23a)-(23d) for the third

equality. Integrating by parts the integral of T ′(y)
1−T ′(y)y ε̂(y) ĥ(y) R′(y) leads to

(25).

We now show that the first-order effect on the Lagrangian (7) of a reform
with magnitude m and direction R(·) is positively proportional to the first-
order effect on the social objective (6) of the reform denoted R̃(m). The latter
is a tax reform in the direction R(·) with magnitude m where the induced net
budget surplus is rebated in a lump-sum way. Let `(m) denote this budget
surplus. Under the balanced-budget tax reform R̃(m) individuals solve:

U R̃(m;w, θ)
def≡ max

y
U (y − T (y) +m R(y) + `(m), y;w, θ) . (D.2)

Applying the envelope theorem to (D.2) at m = 0 yields:

∂U R̃

∂m
(0;w, θ) =

(
R(y) + `′(0)

)
Uc (C(w, θ), Y (w, θ);w, θ) . (D.3)
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Applying the implicit function theorem on the first-order condition

1− T ′ (y) +m R′ (y) = M (y − T (y) +m R (y) + `(m), y;w, θ) .

at y = Y R̃(m;w, θ) and using (20b), (21b) and (21c) leads to:

∂Y R̃

∂m
(0;w, θ) =

∂Y R

∂m
(0;w, θ) + η(w, θ) `′(m). (D.4)

We now denote respectively BR(m), S R(m) and L R(m) the budget
surplus, the social objective and the Lagrangian when the tax function is
perturbed in the direction R as a function of the magnitude m with L R(m) =

BR(m) + (1/λ)S R(m) . We symmetrically denote BR̃(m), S R̃(m) and

L R̃(m) the budget surplus, the social objective and the Lagrangian when the
tax function is perturbed by the balanced-budget tax reform in the direction

R with magnitude m. We get for all m that BR̃(m) = 0 with:

BR̃(m) =

∫∫
(w,θ)∈R∗+×Θ

{
T
(
Y R̃(m;w, θ)

)
−m R

(
Y R̃(m;w, θ)

)}
f(w|θ)dw dµ(θ)− `(m).

We then obtain:

`′(0) =

∫∫
(w,θ)∈R∗+×Θ

{
T ′ (Y (w, θ))

∂Y R̃

∂m
(0;w, θ)−R (Y (w, θ))

}
f(w|θ)dw dµ(θ).

Using (D.4), we can then write:

`′(0) =
∂BR

∂m
(0) + `′(0)

∫∫
(w,θ)∈R∗+×Θ

T ′(Y (w, θ)) η(w, θ) f(w|θ)dw dµ(θ)

so that:

`′(0) =
1

1−
∫∫

(w,θ)∈R∗+×Θ

T ′(Y (w, θ)) η(w, θ) f(w|θ)dw dµ(θ)

∂BR

∂m
(0). (D.5)

Finally, using (D.3), we get:

∂S R̃

∂m
(0)

=
∂S R

∂m
(0) + `′(0)

∫∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ);w, θ) Uc(C(w, θ), Y (w, θ);w, θ) f(w|θ)dw dµ(θ)

=
∂S R

∂m
(0) +

∫∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ);w, θ) Uc(C(w, θ), Y (w, θ);w, θ) f(w|θ)dw dµ(θ)

1−
∫∫

(w,θ)∈R∗+×Θ

T ′(Y (w, θ)) η(w, θ) f(w|θ)dw dµ(θ)

∂BR

∂m
(0)

= λ
∂L R

∂m
(0) (D.6)
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where the latter equality holds if and only if

λ =

∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ);w, θ) Uc(C(w, θ), Y (w, θ);w, θ) f(w|θ)dw dµ(θ)

1−
∫

(w,θ)∈R∗+×Θ

T ′(Y (w, θ)) η(w, θ) f(w|θ)dw dµ(θ)

(D.7)
which is equivalent to (26).

Appendix E: Proof of Proposition 3

An optimal tax system implies that any tax reform R(.) does not yield
any first-order effect on the Lagrangian (7). That is (25) is nil at m =

0 for any direction R(·). This implies that lim
y 7→0

T ′(y)
1−T ′(y) ε̂(y) y ĥ(y) =

lim
y 7→∞

T ′(y)
1−T ′(y) ε̂(y) y ĥ(y) = 0 and, for any income y, we have:

d

dy

[
T ′(y)

1− T ′(y)
ε̂(y) y ĥ(y)

]
=
[
ĝ(y)− 1 + T ′(y) η̂(y)

]
ĥ(y).

Integrating the latter equality for all income z above y and using

lim
y 7→∞

T ′(y)
1−T ′(y) ε̂(y) y ĥ(y) = 0 yields (27). Making y tends to 0 in (27) and

using lim
y 7→0

T ′(y)
1−T ′(y) ε̂(y) y ĥ(y) = 0 leads to (26).

Appendix F: Proof of Proposition 4

Assume individual preferences (4). In the optimal economy, the skill level
of taxpayers in group θ who earn income y is given by:

W (y, θ) = (1− T ′(y))−θ y. (F.1)

Under maximin (ĝ(y) = g(w, θ) = 0) and using Equations (23a)-(23d) and (F.1),
Equation (28) can be rewritten as:

T ′(y)

1− T ′(y)

∫
θ∈Θ

ε(W (y, θ), θ)
y h(y|θ)

1−H(y|θ)
dµ̂(y, θ) = 1 (F.2)

where µ̂ is the CDF of θ among taxpayers earning an income larger than y, i.e.:

µ̂(y, θ)
def≡

∫
θ′∈Θ,θ′≤θ

(
1− F

(
(1− T ′(y))−θ

′
y
∣∣∣ θ′)) dµ(θ′)∫

θ′∈Θ

(1− F ((1− T ′(y))−θ′ y| θ′)) dµ(θ′)
(F.3)
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so that dµ̂(y, θ) = 1−H(y|θ)
1−Ĥ(y)

dµ(θ). From (F.1), we have H(y|θ) ≡

F
(

(1− T ′(y))
−θ
y
∣∣∣ θ). Differentiating both sides of this equality with respect

to income y leads to:

h(y|θ) =

(
1 +

y T ′′(y) θ

1− T ′(y)

) (
1− T ′(y)

)−θ
f
((

1− T ′(y)
)−θ

y
∣∣∣ θ)

y h(y|θ) =

(
1− T ′(y) + y T ′′(y) θ

1− T ′(y)

)
W (y, θ) f (W (y, θ)| θ)

ε(y, θ) y h(y|θ) = θ W (y, θ) f (W (y, θ)| θ)

ε(y, θ)
y h(y|θ)

1−H(y|θ)
= θ

W (y, θ) f (W (y, θ)|θ)
1− F (W (y, θ)|θ)

= θ p (W (y, θ)|θ) (F.4)

where the third equality uses (C.1a) and ε?(y, θ) = θ (with preferenecs
preferences (4)) and the latest equality uses H(y|θ) = F (W (y, θ)|θ) and the
following definition of the local Pareto parameter of the skill distribution:

p(w|θ) =
w f(w|θ)

1− F (w|θ)
. (F.5)

Plugging (F.4) into (F.2) leads to:

T ′(y)

1− T ′(y)
=

1∫
θ∈Θ

θ p (W (y, θ)|θ) dµ̂(y, θ)
. (F.6)

Now assume that the conditional skill distribution in each group takes the form:

f(w|θ) = kθ p w
−(1+p) and 1− F (w|θ) = kθ w

−p if w > wθ.
(F.7)

Therefore the local Pareto parameter p(w|θ) (in (F.5)) is equal to p, provided
that the income is high enough for W (y, θ) to remain above the positive lower
bound of the skill distribution, which we henceforth assume. Substituting (F.1)
into (F.6) yields:

T ′(y)

1− T ′(y)
=

∫
θ∈Θ

kθ y
−p (1− T ′(y)

)p θ
dµ(θ)

p

∫
θ∈Θ

θ kθ y
−p (1− T ′(y)

)p θ
dµ(θ)

.

Define the weighted average direct elasticity as

θ̂(ζ)
def≡

∫
θ∈Θ

θ kθ (1− ζ)p θ dµ(θ)∫
θ∈Θ

kθ (1− ζ)p θ dµ(θ)

where ζ is the marginal tax rate. Substituting the latter equation in the previous
one, we directly see that the optimal marginal tax rate T ′(y) is decreasing in
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the weighted-average direct elasticity θ̂(T ′(y)). In the absence of composition

effects, there is a single group with an elasticity equal to θ̂(T ′0(y)) = θ. Consider,
at a given level of income, that the optimal marginal tax rate T ′(y) is larger

(lower) than the actual one T ′0(y). In this case, θ̂(T ′(y)) when composition

effects prevail is lower (larger) than θ̂(T ′0(y)) obtained without composition

effects since θ̂′(ζ) < 0 as we now show.

Proof. The previous equation can be rewritten as:

θ̂′(ζ) = −

∫
θ∈Θ

p θ2 kθ (1− ζ)p θ−1 dµ(θ)− θ̂(ζ)

∫
θ∈Θ

p θ kθ (1− ζ)p θ−1 dµ(θ)∫
θ∈Θ

kθ (1− ζ)p θ dµ(θ)

= −p

∫
θ∈Θ

(
θ − θ̂(ζ)

)
θ kθ (1− ζ)p θ−1 dµ(θ)∫

θ∈Θ

kθ (1− ζ)p θ dµ(θ)

.

If θ < θ̂(ζ), then
(
θ − θ̂(ζ)

)
θ >

(
θ − θ̂(ζ)

)
θ̂(ζ). The same inequality holds

when θ > θ̂(ζ). We can conclude that:

θ̂′(ζ) < −p θ̂(ζ)

∫
θ∈Θ

(
θ − θ̂(ζ)

)
kθ (1− ζ)p θ−1 dµ(θ)∫

θ∈Θ

kθ (1− ζ)p θ dµ(θ)

= 0.

�

Combining the latter result (θ̂(T ′(y)) is lower (larger) than θ̂(T ′0(y))) with

T ′(y) decreasing with θ̂(T ′(y)), we can conclude that the optimal marginal tax
rate with composition effect is higher (lower) than the optimal one obtained
when one neglects composition effects.

Appendix G: Numerical algorithm

Rewriting Equation (27) taking into account the specifications we use
for our empirical exercise (maximin and isoelastic individual preferences)
yields Equation (F.6) that we use for the simulations. This equation is very
convenient because it implicitly defines the optimal marginal tax rate at income
y independently of marginal tax rates at other incomes. It is a quasi-closed form.
For each income y, the numerical algorithm starts from the actual marginal tax
rate schedule and iterates the following steps until convergence:
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1. Given T ′(y), the algorithm finds the skill level that corresponds to each
observed income y, for each group θ using (F.1).

2. For each group θ, it finds the local Pareto parameter of the gender-specific
skill distribution p(w|θ) using (F.5) and finds dµ̂(y, θ) using (F.3).

3. It updates the marginal tax rate using (F.6).

One needs to distinguish these three steps because the non-parametric
calibration of the gender-specific skill densities prevents from numerically
solving simultaneously (F.1), (F.3), (F.5) and (F.6). We finally check that the
obtained tax schedule does verify Assumption 2.

For the economy without composition effects and fixed θ, we use the same
algorithm, except that in Step 1, in (F.1), we use the mean direct elasticity
θ = µ(θL) θL + µ(θH) θH in the whole population instead of θ. As soon as
each skill level is obtained from the income y found in the data, the algorithm
approximates the density by a kernel density approximation. It then expands
the latter density by a Pareto density with parameter 1.5 and rescales the
obtained function to ensure the total mass is 1. Another difference for the
economy without composition effects and fixed θ is that, in Step 3, we use:

T ′(y)

1− T ′(y)
=

1

θ p (W (y))

instead of (F.6).

For the economy without composition effects and varying θ, we first
compute at each income level the weighted mean of direct elasticities in the
actual economy as follows:

θ̃(y) =
θL h0(y|θL) µ(θL) + θH h0(y|θH) µ(θH)

h0(y|θL) µ(θL) + h0(y|θH) µ(θH)
.

We then follow the same steps as in the economy with composition effects and
fixed θ but use θ̃(y) in Step 1 and

T ′(y)

1− T ′(y)
=

1

θ̃(y) p (W (y))

in Step 3. In particular, we approximate the direct elasticity in the optimal
economy at a given income level from the direct elasticity in the actual economy
at the same income level. The skill distribution is calibrated by inferring from
observed income levels the corresponding skill level from (F.1) using θ̃(y). As
in the other economy without composition effects, we approximate the density
by a kernel density approximation, we expand the obtained density by a Pareto
density with parameter 1.5 and rescale the obtained function to ensure the total
mass is 1.

To calibrate the various skill densities, we approximate the tax schedule for
singles without dependents by the US federal Income tax schedule, as follows:
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Income tax bracket Marginal tax rate
$0 to $9, 225 10%

$9, 225 to $37, 450 15%
$37, 450 to $90, 750 25%

$90, 750 to $189, 300 28%
$189, 300 to $411, 500 33%

Above $411, 500 35%

Table G.1. Income tax schedule used for calibration

Appendix H: Top tax rate with a linear versus a nonlinear tax
schedule

When the group-specific skill distribution is Pareto, the group-specific skill
density takes the form:

f(w|θ) = kθ pθ w
−(1+pθ) and 1− F (w|θ) = kθ w

−pθ if w ≥ wθ.

Hence, following (F.5), one has p(w|θ) = pθ whatever the income level.
Assuming isoelastic individual preferences (4) and maximin social objective,
the optimal nonlinear income tax schedule is given by (F.6), which given the
assumption of Pareto group-specific skill distribution, simplifies to:

T ′(y)

1− T ′(y)
=

1∫
θ∈Θ

θ pθ dµ̂(y, θ)
.

The optimal nonlinear asymptotic marginal tax rate is therefore a weighted
mean of θ pθ where, according to (F.3), the weights are given by the fraction
of taxpayers in group θ within taxpayers who earn more than y.

Under the linear approach, one neglects the nonlinearity of the tax schedule
for all incomes above y and one considers reforms of direction z 7→ (z− y)1z≥y.
Then, applying (D.1) with the approximations ε(w, θ) = θ and T ′(Y (w, θ)) = τ
for all income above y, the optimal tax has to verify:

τ

1− τ

∫
θ∈Θ

θ

[∫
w≥W (y,θ)

Y (w, θ)f(w|θ)dw

]
dµ(θ) =

∫
θ∈Θ

[∫
w≥W (y,θ)

(Y (w, θ)− y) f(w|θ)dw

]
dµ(θ)

Let ym(y, θ) denote the mean of income above y among taxpayers of group
θ. One can rewrite the preceding condition as:

τ

1− τ

∫
θ∈Θ

θ ym(y, θ) (1−F (W (y, θ)|θ))dµ(θ) =

∫
θ∈Θ

(ym(y, θ)− y) (1−F (W (y, θ)|θ))dµ(θ)

Under Pareto group-specific skill density, one has ym(y, θ) = y pθ/ (pθ − 1).
Plugging this equality in the latter optimal tax condition leads to:

τ

1− τ

∫
θ∈Θ

θ pθ
1− F (W (y, θ)|θ)

pθ − 1
dµ(θ) =

∫
θ∈Θ

1− F (W (y, θ)|θ)
pθ − 1

dµ(θ)
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Using ym(y, θ)− y = y/ (pθ − 1), the sum of income above y earned by taxpayers
in group θ is equal to y (1− F (W (y, θ)|θ)) / (pθ − 1). Hence the linear optimal
asymptotic tax rate is a weighted mean of θ pθ where the weights are the shares
of incomes above y earned by taxpayers who belong to group θ.

Appendix I: Proof of Proposition 5

Part i) of Proposition 5.

Let T (·) be an income tax schedule satisfying Assumption 2. We already
know that under Assumptions 1 and 2, one can apply the implicit function
theorem to the first-order condition associated to (1). This implies that
Y (·, θ), thereby C(·, θ) is continuously differentiable in w within each group
θ. Moreover, Y (·, θ) admits a positive derivative according to (21d). Finally,
from (1) we get that:

∀w, θ, y′ ∈ R∗+ ×Θ×R+ U (C(w, θ), Y (w, θ);w, θ) ≥ U
(
y′ − T (y′), y′;w, θ

)
.

Taking y′ = Y (w′, θ′) leads to C(w′, θ′) = y′ − T (y′), so that the latter
inequality leads to (31). Therefore the allocation w 7→ (C(·, θ), Y (·, θ)) induced
by T (·) verifies (31), thereby is smooth.

Part ii) of Proposition 5

Let (w, θ) 7→ (C(w, θ), Y (w, θ)) be a mapping defined over R∗+ ×Θ which
is smooth. Let Y denote the set of incomes that are assigned to some
individuals along this allocation. To define the tax schedule that decentralizes
this allocation, we first show that if two types (w, θ) and (w′, θ′) of individuals
earn the same income y = Y (w, θ) = Y (w′, θ′), then they have to be assigned
the same consumption C(w, θ) = C(w′, θ′). Otherwise, if by contradiction one
has: C(w, θ) < C(w′, θ′), then one would get that individuals of type (w, θ)
would be better off with the bundle (C(w′), Y (w′)) designed for individuals of
type (w′, θ′), which would be in contradiction with (31). A symmetric argument
applies if C(w, θ) > C(w′, θ′) by inverting the role of (w, θ) and of (w′, θ′). We
can then unambiguously define the tax schedule denoted T (·) that decentralizes
this allocation by:

∀y ∈Y T (y)
def≡ Y (w, θ)−C(w, θ) where (w, θ) are such that: y = Y (w, θ).

(I.1)
Given this tax schedule, Program (1) of individuals of type (w, θ) is equivalent
to:

max
(w′,θ′)∈R∗+×Θ

U
(
C(w′, θ′), Y (w′, θ′);w, θ

)
,
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the solution of the latter is (w, θ) since (w, θ) 7→ (C(w, θ), Y (w, θ)) verifies the
incentive constraints (31). Therefore, the tax schedule T (·) defined by (I.1)
decentralizes the given allocation.17

We now need to show a mathematical result. For each group θ ∈Θ, as Y (·, θ)
is continuously differentiable, it admits a reciprocal denoted Y −1(·, θ) which is
also continuously differentiable with a strictly positive derivative. Therefore the
image of the (open) skill set R∗+ by Y (·, θ) is an open set denoted Y(θ) ⊂ R+.
Equation (I.1) can be rewritten on Y(θ) by:

T (y) = y −C
(
Y −1(y, θ), θ

)
. (I.2)

Moreover, we get that Y = ∪θ∈ΘY(θ) and is therefore an open set. Hence, for
each income y ∈ Y, there exists a group θ such that T (·) verifies (I.2) in the
neighborhood of y.

To show that T (·) verifies Part i) of Assumption 2, note that from (I.2),
T (·) is continuously differentiable as Y −1(·, θ) and C(·, θ) are continuously
differentiable. Moreover, from (2), we have:

T ′(y) = 1−M (y − T (y), y;Y −1(w, θ), θ).

As T (·) and Y −1(·, θ) are continuously differentiable in y, and M (·, ·; ·, θ)
is continuously differentiable in (c, y,w), y 7→ M (y − T (y), y;Y −1(w, θ), θ) is
continuously differentiable. Therefore, T ′(·) is continuously differentiable and
T (·) verifies Part i) of Assumption 2.

To show that T (·) verifies Part ii) of Assumption 2, note that the
first-order condition (18) can be rewritten as Y (Y (w, θ);w, θ) ≡ 0 for
all skill levels. Differentiating this equality with respect to skill leads to:
Yy (Y (w, θ);w, θ) Ẏ (w, θ) + Yw (Y (w, θ);w, θ) = 0. As Yw (Y (w, θ);w, θ) =
−Mw (C(w, θ), Y (w, θ);w, θ) which is positive from Assumption 1 and
Ẏ (w, θ) > 0 since allocations are assumed smooth, then one must have
Yy (Y (w, θ);w, θ) < 0, which is Part ii) of Assumption 2.

To show that T (·) verifies Part iii) of Assumption 2, we assume by
contradiction that individuals of type (w∗, θ) are indifferent between earning
income Y (w∗, θ) and earning an income level denoted y′ ∈ Y. We show
that in such a case, some individuals with skill w close to w∗ are better
of with the bundle (y′ − T (y′), y′) than with the bundle (C(w, θ), Y (w, θ))
designed for them, a contradiction. For this purpose, we denote C (u, y;w, θ)
the consumption an individual of type (w, θ) should get to enjoy utility u
while earning income y. Function C (·, y;w, θ) is the reciprocal of function
U (·, y;w, θ). We get: Cu = 1/Uc, Cy = −Uy/Uc = M and Cw = −Uw/Uc.

17. We have here followed Hammond (1979) very closely.
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Let us denote:

Q(w)
def≡ C

(
U(w, θ), y′;w, θ

)
− y′ + T (y′).

To be indifferent between earning income Y (w, θ) and income y′, individuals of
type (w, θ) have to receive after-tax income C (U(w, θ), y′;w, θ) when they earn
income y′. Therefore, Q(w) is a measure in monetary units of the difference in
well-being for individuals of type (w, θ) between the bundle (C(w, θ), Y (w, θ))
designed for them (from which they obtain utility U(w, θ)) and the utility
they would get by earning income y′ and consuming y′ − T (y′). We have by
assumption Q(w∗) = 0. We obtain:

Q′(w) =
V (U(w, θ), Y (w, θ), w, θ)− V (U(w, θ), y′, w, θ)

Uc (C (U(w, θ), Y (w, θ);w, θ), Y (w, θ);w, θ)

where V (u, y;w, θ)
def≡ Uw (C (u, y;w, θ), y;w, θ) describes how Uw varies with

income y along the indifference curve of individuals of type (w, θ) with utility
u. We get that Vy = −Uc Mw which is strictly positive from Assumption 1.
Therefore:

� If y′ > Y (w∗, θ), then Q′(w∗) < 0, which implies that for some skills
w > w∗ above w∗ and sufficiently close to w∗, Q(w) < 0, i.e. U(w, θ) <
U (y′ − T (y′), y′;w, θ). Therefore, individuals of type (w, θ) strictly prefers
the bundle (y′−T (y′), y′) rather than the bundle (C(w, θ), Y (w, θ) designed
for them, a contradiction.

� If y′ < Y (w∗, θ), then Q′(w∗) > 0, which implies that for some skills
w < w∗ below w∗ and sufficiently close to w∗, Q(w) < 0, i.e. U(w, θ) <
U (y′ − T (y′), y′;w, θ). Therefore, individuals of type (w, θ) strictly prefers
the bundle (y′−T (y′), y′) rather than the bundle (C(w, θ), Y (w, θ) designed
for them, a contradiction.
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