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Abstract
Given that (co)inductive types are naturallymodelled as fixed

points, it is unsurprising that fixed-point logics are of inter-

est in the study of programming languages, via the Curry-

Howard (or proofs-as-programs) correspondence. This moti-

vates investigations of the structural proof-theory of fixed-

point logics and of their cut-elimination procedures.

Among the various approaches to proofs in fixed-point

logics, circular – or cyclic – proofs, are of interest in this

regard but suffer from a number of limitations, most notably

from a quite restricted use of cuts. Indeed, the validity con-

dition which ensures soundness of non-wellfounded deriva-

tions and productivity of their cut-elimination prevents some

computationally-relevant patterns of cuts. As a result, tra-

ditional circular proofs cannot serve as a basis for a theory

of (co)recursive programming by lack of compositionality:

there are not enough circular proofs and they compose badly.

The present paper addresses some of these limitations by

developing the circular and non-wellfounded proof-theory of

multiplicative additive linear logic with fixed points (µMALL)
beyond the scope of the seminal works of Santocanale and

Fortier and of Baelde et al. We define bouncing-validity: a

new, generalized, validity criterion for µMALL∞, which takes
axioms and cuts into account. We show soundness and cut

elimination theorems for bouncing-valid non-wellfounded

proofs: as a result, even though bouncing-validity proves the

same sequents (or judgments) as before, we have many more

valid proofs at our disposal. We illustrate the computational

relevance of bouncing-validity on a number of examples.

Finally, we study the decidability of the criterion in the cir-

cular case: we prove it is undecidable in general but identify

a hierarchy of decidable sub-criteria.
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1 Introduction
Fixed points in computer science Fixed-point theory has

proved to be a valuable tool in computer science, in particular

for reasoning formally about software systems. Its explicit

uses may be traced back to the first formal semantics of

programming languages in the late 1960s [33] and it is now

pervasive in programming language semantics, concurrency,

automata theory and software verification techniques. As

part of the increasing use of fixed points in computer science,

logics featuring fixed points, generally referred to as µ-calculi,
were developed and studied [27, 32]. Decades later, fixed

points are used in various specification languages, e.g. to

specify temporal or spatial properties of program executions.

Fixed points are also present inmost programming languages

as recursive types. More interestingly, the Curry-Howard

correspondence, which allows to view proofs as programs

and formulas as types, has been extended in various ways to

encompass fixed-point types, e.g. in System F extended with

least and greatest fixed point types [28, 29], in Coq’s calculus

of (co)inductive constructions [19], and in functional reactive

programming types [12].

Fixed-point logics and proofs. Proof systems for fixed point

logics can naturally be obtained by taking (co)induction rules

that closely reflect fixed point theorems, e.g. Knaster-Tarski’s

characterization of least fixed points as least pre-fixed points.

This is the basis for Kozen’s famous axiomatization [27] of

the µ-calculus and for other proof-systems [5]. When build-

ing proofs for such logics, one must identify (co)invariants

which may be significantly more complex than the property

to establish – a phenomenon encountered by students learn-

ing to prove properties by induction on natural numbers.

An alternative to these explicit (co)induction rules is to

consider proof systems featuring non-wellfounded deriva-

tion trees: this makes it possible to reason on fixed points

1
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by unfolding them, possibly infinitely often. However, the

soundness of such systems requires not only that each infer-

ence step follows the legitimate inference rules of the logic,

but also that a global validity condition is met, which en-

sures that some progress is made along each infinite branch.

Consider for instance the following (regular) infinite deriva-

tion, which repeatedly applies the fixed point unfolding rule

(σ ) where σ ∈ {µ,ν }:
⊢ σX .X

(σ )
⊢ σX .X

. The system would be

unsound if this derivation were declared valid for both σ = ν
and σ = µ as the empty sequent could be derived thanks to

the cut rule (least and greatest fixed points are logically dual

of each other). However, the derivation when σ = ν should

be accepted since νX .X ≡ ⊤ (a tautology).

In the case of arithmetic, this style of reasoning is akin

to proofs by infinite descent rather than by induction, and

has been formally studied in infinitary sequent calculus by

Brotherston and Simpson [11]. For propositional µ-calculus,
several such infinitary deduction systems have been pro-

posed [13, 25, 27, 37]. Because they are easier to work with

than the finitary proof systems (or axiomatizations) based

on Kozen-Park (co)induction schemes, they are often found

in completeness arguments for such finitary systems [17, 26,

27, 39–41]. They are also better suited for automated reason-

ing [13, 37]. Among non-wellfounded proofs, regular deriva-

tion trees play a particular role. Such proofs, that we call

circular, can be represented by a finite tree with back-edges:

they can be easily finitely represented and algorithmically

processed. As such, they have found many applications
1
.

Fixed-points in types. On the other end of the Curry-Howard
correspondence, one finds programming languages equipped

with (co)recursion constructs whose typing naturally reflects

the Kozen-Park (co)induction rules [12, 29]. Writing pro-

grams in these systems may be difficult, as it involves coming

up with complex (co)invariants. These difficulties are only

partially lifted through the use of guarded (co)recursion [19]

or sized types [1] in Coq or Agda respectively. Further-

more, (co)recursion involves a suspended computationwhich

makes it difficult to analyze the behavior of a program.

In particular, retrictions such as Coq’s guard condition

results in a serious lack of compositionality properties as

well known and analyzed by various authors [2, 3, 9, 19]. As

an illustration, we show in Fig. 1 some example of Coq coin-

ductive terms drop, incdrop and filter1everyk. While all

are productive coinductive terms, only the first two are valid

Coq terms, the third one does not pass the guard condition:

1) drop filters one elements every two of its input stream;

1
For instance using circular proofs [35] as a system for representing mor-

phisms in µ-bicomplete categories [34, 36], to study the relationship be-

tween induction and infinite descent in first-order arithmetic [11], to gen-

erate invariants for program verification in separation logic [10], or as an

intermediate between ludics’ designs and proofs in linear logic with fixed

points [6].

2) incdrop takes an input stream of nats and filters one ele-

ment every two, incrementing it;

3) filter1everyk’s behaviour depends on a natural num-

ber k: it takes an input streams of booleans and filters one

element out of k and returning, depending on the parity of

k, either the chosen elements or their negation.

As an alternative, one could naturally consider infinitary

(or circular) programs, equipped with a global validity con-

dition ensuring that they behave well – in particular that

they are terminating, or productive for inhabitants of coin-

ductive types. There is surprisingly little work following this

approach. We note the work of Hyvernat [24] whose use of

size-change termination can be seen as a form of validity

checking: it would be interesting to develop this work from

a Curry-Howard perspective to compare it with infinitary

proof systems. and foundations are missing.

This can be understood from the fact that the aforemen-

tioned infinitary proof systems for fixed point logics are all

cut-free; hence, the role of the validity condition in (syntac-

tic) cut-elimination remains unclear from these works. This

shortcoming has been addressed first by Santocanale and

Fortier: in [18] they consider an infinitary sequent calculus

for purely additive logic, featuring cuts and an extended no-

tion of validity, and they show that cuts can be eliminated

from valid proofs (in that setting, cut-elimination is not ter-

minating but productive, and converges to a valid cut-free

derivation). A key insight of this work is that the validity

condition ensures both soundness of the infinitary proof

system and productivity of cut-elimination. The result has

been generalized later to the multiplicative and additive lin-

ear logic with fixed points, µMALL, at the cost of a more

complex argument, by Baelde et al. [7]. Through these syn-

tactic cut-elimination results, infinitary proofs for µMALL
are given a computational content, which is an important

step towards a Curry-Howard correspondence for that logic.

Lack of compositionality of circular proofs. Unfortunately,
existing notions of validity impose a quite limited use of cuts

in non-wellfounded proofs rejecting many proofs that could

be accepted as valid. In particular, this prevents writing cir-

cular proofs in a compositional manner, as exemplified in

the following (supported by Figure 2):

Example 1.1. Consider formulas N = µX .1 ⊕ X and S =
νY .N ⊗ Y encoding natural numbers and streams of natural

numbers in µMALL. Indeed, in a typed language/proof assis-

tant such as Coq, these definitions would correspond to the

following constructs:

Inductive nat := O: nat | S : nat -> nat.
CoInductive Stream := Cons : (nat * Stream) -> Stream.

2
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Figure 2 presents two circular derivation trees, in the two-

sided µMALL∞ sequent calculus
2
.

These examples correspond (at a somehow informal level)

to the Coq coinductive terms drop and incdrop of Fig. 1.

The computational interpretation of the left-hand derivation

is that of a function from streams of nats to streams of nats

which drops its elements in odd position, keeping half of its

elements only
3
. The rightmost proof has a slightly different

computational interpretation: it drops one element every two

but also increments the other element that is returned in the

output stream. This is achieved by using a cut in the proof,

depicted in the box, which corresponds to hdinc and does

the increment. Although both proofs are productive when

they are cut with streams of nats, only the leftmost proof is

valid for [7] (up to axiom expansion): the rightmost proof

has no valid thread inhabiting the infinite branch because of

the cut with the boxed sub-proof occurring in a cycle.

Towards bouncing threads. This paper improves the com-

positionality of circular proofs, contributing to a line of re-

search aiming at providing and analyzing the computational

content of circular proofs. From the Curry-Howard perspec-

tive, considering more relaxed validity criteria is an interest-

ing and important challenge as more circular proofs means
more flexibility to write valid programs on coinductive types.

Indeed, while the previous related cut-elimination results [7,

18] were significant steps, they suffered from strong restric-

tions on the use of cuts along non-wellfounded branches

2
We follow this convention for the example in order to exhibit more clearly

the computational interpretation, even though the rest of the paper will be

developed in the one-sided sequent calculus which is more concise.

3
Notice that N is erasable and duplicable on the left in µMALL∞, hence the

use of the derivable (WNatl) rule, which allows to drop one nat every two.

CoInductive Stream := Cons : ( nat ∗ Stream) → Stream.

CoFixpoint drop (s : Stream) : Stream := match s with

| Cons ( a, Cons ( b, s')) ⇒ Cons (b, ( drop s')) end.

Definition hdinc (s: Stream) : Stream := match s with

| Cons ( a, s') ⇒ Cons (S a, s') end.

CoFixpoint incdrop (s : Stream) : Stream := match s with

| Cons ( a, Cons ( b, s')) ⇒

hdinc (Cons (b, incdrop s')) end.

(***********)

CoInductive BStream := BCons : ( bool ∗ BStream) → BStream.

Definition neghd (s: BStream) : BStream := match s with

| BCons (a, s') ⇒ BCons (negb a, s') end.

CoFixpoint filter1everyk (m : nat) ( s : BStream) : BStream :=

match (m, s) with

| (0, BCons (a, s')) ⇒ BCons (a, filter1everyk k s')

| ( S m', BCons (a, s')) ⇒ neghd (filter1everyk m' s')

end.

Figure 1. Examples of coinductive definitions in Coq.

(or cycles in proofs) as described above. We introduce here

a new validity condition for µMALL∞, the infinitary proof

system for MALL with fixed points. Taking inspiration from

Geometry of Interaction [21], this criterion generalizes the

existing one by enriching the structure of threads: bouncing

threads can leave the branch they validate and “bounce” (i.e.
change direction, moving upward but also downward along

proof branches) on axioms and cut rules.

The circular derivation π0 shown below illustrates the

intuitive idea behind validation by bouncing threads: it is

not valid according to straight threads since its only infi-

nite branch contains no infinite thread at all, but it will be

bouncing-valid (or “b-valid”). Remark that one can trace the

coinductive progress by following νX .X upwards and µX .X
downwards while changing directions and moving from a

formula to its dual when reaching axioms and cuts. This is

formalized by the bouncing thread represented in red. Indeed,

after reducing twice the cut in each repetition of the cycle,

it yields a cut-free proof which is validated by a (straight)

thread, which can be viewed as the “straightened” version

of the above mentioned bouncing thread:

π0 =

(Ax)
⊢ νX .X , µX .X

(µ)
⊢ νX .X , µX .X

⊢ νX .X
(ν ) ×2

⊢ νX .X
(Cut)

⊢ νX .X

→2

cut

π0

(ν )
⊢ νX .X

→ω
cut

⊢ νX .X
(ν )

⊢ νX .X

We investigate the proof-theoretic properties of this new

bouncing validity criterion for µMALL∞ pre-proofs.We prove

that it guarantees soundness (Theorem 5.4) and productivity

of the cut-elimination process (Theorem 5.1). The criterion

is compatible with simple compositions using cuts, as shown

in Example 1.1. Even when considering straight threads only,

our work already extends the results of [7, 18], as we provide

a treatment of both axioms and multiplicatives. Dealing with

the axioms actually introduces substantial difficulties in the

soundness and cut-elimination proofs.

Decidability properties of the bouncing criterion. In The-
orem 6.2, we show that this new bouncing validity condition

is undecidable, already in the purely multiplicative case. The

proof is intricate, and works by reducing the halting problem

of two-counter machines into our bouncing criterion. The

strong constraints on the proof system give rise to complex

gadgets to propagate relevant information about the current

configuration of the machine. Moreover, the linearity of the

proof system forces a "reversibility" constraint on this en-

coding, which can be dealt with by using the same kind of

technique as Bennett [8] to prove Turing-completeness of

reversible Turing machines: a history of the computation

is produced to guarantee reversibility, then this history is

erased by rewinding the computation.

Although the criterion is undecidable, we show (Theorems

6.5 and 6.6) that it can be decomposed into a hierarchy of

decidable criteria, via a parameter called “height”: for each

fixed height k ∈ N, the “b(k)-criterion”, where height is

3
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(Ax)
N ⊢ N S ⊢ S

(⊗r)
N , S ⊢ N⊗S

(⊗l)
N⊗S ⊢ N⊗S

(ν l)
S ⊢ N⊗S

(νr)
S ⊢ S

(WNatl)
N , S ⊢ S

(⊗l)
N⊗S ⊢ S

(ν l)
S ⊢ S

(Ax)
N ⊢ N S ⊢ S

(⊗r)
N , S ⊢ N⊗S

(⊗l)
N⊗S ⊢ N⊗S

(Ax)
N ⊢ N

(⊕r2), (µr)
N ⊢ N

(Ax)
S ⊢ S

(⊗l),(⊗r)
N⊗S ⊢ N⊗S

(Cut)
N⊗S ⊢ N⊗S

(ν l)
S ⊢ N⊗S

(νr)
S ⊢ S

(WNatl)
N , S ⊢ S

(⊗l)
N⊗S ⊢ S

(ν l)
S ⊢ S

Figure 2. Examples of a valid and an invalid circular pre-proof.

• cut-free valid Pre-proofs

• s-valid Pre-proofs

• b(k)-valid Pre-proofs

.
.
.

• b-valid Pre-proofs

• Productive Pre-proofs

• Pre-proofs

Figure 3. Hierarchy of validity conditions

bounded by k , is decidable. Moreover, any b-valid circular

proof is b(k)-valid for some k ∈ N. This allows us to show

that the general b-validity criterion is Σ0

1
-complete, i.e. re-

cursively enumerable. The hierarchy of different criteria is

represented in Figure 3.

Organization of the contributions. In Section 2 we recall

the basic definitions for the non-wellfounded proof system

µMALL∞. We then define, in Section 3 the cut-elimination

procedure. In Section 4, we introduce our new bouncing

validity condition, and show in Section 5 that it guaran-

tees soundness of the system and productivity of the cut-

elimination procedure. We finally study in Section 6 the de-

cidability of our criterion in the multiplicative case. Omitted

proofs and developments can be found in appendices.

2 The pre-proofs of µMALL∞

In this section we introduce the multiplicative additive linear

logic extended with least and greatest fixed point operators,

and a system of infinitary (pre-)proofs for that logic.

Definition 2.1. Given infinite sets of atomsA = {a,b, . . . }
and of fixed-point variables V = {X ,Y , . . . }, µMALL∞-
pre-formulas are built over the following syntax:

φ,ψ ::= a | a⊥ a ∈ A, (atoms)

| µX .φ | νX .φ | X X ∈ V (fixed points)

| ⊥ | 1 | φOψ | φ⊗ψ (multiplicatives)

| 0 | ⊤ | φ ⊕ψ | φNψ . (additives)

The connectives µ and ν bind the variable X in φ. µMALL∞-
formulas are those pre-formulas without free fixed point

variables. The formulas of µMLL∞, the multiplicative frag-

ment, are those µMALL∞ formulas which do not contain

N, ⊕,⊤ or 0 (ie. omitting the last line in the grammar).

Definition 2.2 (Negation). (_)⊥ is the involution on formu-

las satisfying: (a⊥)⊥ = a; X⊥ = X ; (νX .φ)⊥ = µX .φ⊥;

⊥⊥ = 1; (φOψ )⊥ = φ⊥⊗ψ⊥
; (φ ⊕ψ )⊥ = φ⊥Nψ⊥.

Setting X⊥ = X would be incorrect when considering for-

mulas with free variables, but it yields the proper dualization

for closed formulas, e.g. (µX .X )⊥ = νX .X . Since negation is

not a connective, formulas enjoy the positivity condition by

construction: all fixed-point expressions are monotonic.

There are several presentations of sequents in the lit-

erature. Considering that we are aiming at the proofs-as-

program correspondence we could take sequents as lists of

formulas or as sets of occurrences of formulas
4
. Here, we

make the choice of sequents as named formulas that we call

formula occurrences, following [7].

We recall next their formal definition. A formula occur-

rence is the pair of a formula and an address. In a derivation,

all the conclusion (and cut) formula occurrences will have

pairwise distinct and incomparable addresses: this invariant

4
Details on the formulations of sequents can be found in Appendix A.1.

4
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will be preserved by each inference. When a rule is applied

to a formula occurrence, the addresses of its sub-occurrences

will be extended by {l, r, i} (standing for left, right and in-

side respectively) in order to record their provenance. This

is of great importance for our developments: the validity cri-

terion traces the evolution of formulas, which is completely

explicit in their addresses.

Definition 2.3. Let Afresh be an infinite set of atomic ad-
dresses, A⊥

fresh = {α⊥
at
| αat ∈ Afresh}, and Σ = {l, r, i}. An

address is a word of the form αat.w , where αat ∈ Afresh ∪

A⊥
fresh andw ∈ Σ∗

. Let us call Addr the set of addresses. We

say that α ′
is a sub-address of α when α is a prefix of α ′

,

written α ⊑ α ′
. We say that α and β are disjoint when α

and β are incomparable wrt. ⊑.

Definition 2.4. A formula occurrence, or simply occur-
rence, is given by a formula φ and an address α , and written
φα . Occurrences will be denoted by F ,G , H . Occurrences are

disjoint when their addresses are. The occurrences φα and

ψβ are structurally equivalent, written φα ≡ ψβ , if φ = ψ .
A sequent is a set of disjoint occurrences.

Example 2.5.
⊢ φαl,φαr,ψβ

(O)
⊢ (φOφ)α ,ψβ

is an example of an occurrence-

based inference (α and β are assumed to be disjoint). Note

that the relation of sub-address is the inverse of the prefix

relation, which is coherent with the sub-formula relation.

For instance, in the example above, φ is a sub-formula of

φOφ, but its address is αr while the address of φOφ is α .

We now define the rules of linear logic with fixed points

in the framework of sequents as sets of occurrences. As seen

above, inferences are address-sensitive: they look at the struc-

ture of the formula underlying an occurrence, decompose

it following a standard µMALL rule, then assign addresses

to its subformulas in the obvious way. One can make the

address implicit in the inference by defining the syntax of

µMALL∞ to operate directly on occurrences:

Definition 2.6. Logical connectives are lifted to operations

on occurrences as:

• For any ⋆ ∈ {O, ⊗, ⊕,N}, if F = φαl and G = ψαr
then F ⋆G = (φ ⋆ψ )α .

• For any σ ∈ {µ,ν }, if F = φαi then σX .F = (σX .φ)α .

Definition 2.7. We define a duality over Addr by setting

(α .w)⊥ = α⊥.w and (α⊥.w)⊥ = α .w for all α ∈ Afresh and

w ∈ Σ∗
. We then define (φα )

⊥ = (φ⊥)α⊥ , and write F⊥G
when F⊥ = G. We define substitution over occurrences as

follows: (φα )[ψβ/X ] = (φ[ψ/X ])α .

We are ready to introduce our infinitary sequent calculus.

Definition 2.8. A µMALL∞ pre-proof is a possibly infinite

tree, coinductively generated by the rules of Fig. 4. Given a

sequent s in a pre-proof π , we denote by premiss(s) the set
of sequents which are premisses of the rule of conclusion

s in π . Rules other than (Ax) and (Cut) are called logical
rules. For every instance of one such rule we call principal
occurrence the occurrence in its conclusion sequent that is

decomposed to obtain the premisses.

The infinite derivations of µMALL∞ may be quite complex

trees, possibly not even computable. In practical uses one

would turn to sub-systems, typically the fragment of circular

pre-proofs [11, 17, 18, 35]. In a nutshell, a circular derivation

is an infinite derivation which has only finitely many distinct

sub-trees up to renaming of addresses [16].

Notation 1 (Two-sided notation). While it is proof-theoretically
convenient to work with one-sided sequents as in the previous
definition, it is more illuminating for some examples, especially
when aiming at illustrating the computational interpretation
of some proofs, to allow to use the usual two-sided sequent cal-
culi. In the following (and in the examples of the introduction),
two-sided sequents may be used:

F1, . . . , Fn ⊢ Γ should be read as ⊢ Γ, F⊥
1
, . . . , F⊥n .

Regarding the labelling of inference rules, we allow ourselves
two conventions: either the inference rules are written with the
labels introduced in Fig. 4 or, as in the introductory example,
we use their two-sided names, for instance (⊗l) and (⊗r), in
which case this is a notation for the corresponding rule in the
one-sided sequent calculus, respectively (O) and (⊗) here.

Example 2.9. In Fig.5, πsucc & πdup illustrate pre-proofs.

Pre-proofs are obviously unsound: any sequent can be

derived. Hence, a validity condition shall be required for a

pre-proof to be a proof. First we define cut-reduction.

3 The cut elimination process
In this section we introduce the cut-elimination rules for

µMALL∞ pre-proofs. In general, the cut-elimination proce-

dure is not productive. However, we will show in Section 5

that when we restrict to valid pre-proofs (that will be defined

in Section 4), the process is productive and outputs a valid

pre-proof.

3.1 The multicut rule
In finitary proof theory, cut elimination may proceed by

reducing topmost cuts. In the infinitary setting however, by

non-wellfoundedness, there is no such thing, in general, as

a topmost cut inference. In [7, 18], this issue is dealt with by

reducing bottom-most cuts, and when encountering during
the reduction a cut which is immediately above another one,

instead of permuting two consecutive cuts, merging them

into a new rule calledmulticut and noted (mcut). A multicut

can be seen as a meta-rule to represent a finite tree of cuts.

We will also use this multicut approach
5
, but we now have

to deal with axiom/cut reductions. This leads us to enrich

5
Note that there are various approaches to cut-elimination in infinitary

settings, for non-wellfounded derivations or for logics including an Ω-rule,
in particular Mints continuous cut-elimination [31].

5
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⊢ F ,G, Γ
(O)

⊢ FOG, Γ

⊢ Γ
(⊥)

⊢ ⊥, Γ

⊢ F , Γ ⊢ G, Γ
(N)

⊢ FNG, Γ
(⊤)

⊢ ⊤, Γ
⊢ G[νX .G/X ], Γ

(ν )
⊢ νX .G, Γ

F ≡ G
(Ax)

⊢ F ,G⊥

⊢ F , Γ ⊢ G,∆
(⊗)

⊢ F⊗G, Γ,∆
(1)

⊢ 1
⊢ Fi , Γ

(⊕i), i ∈ {1, 2}
⊢ F1 ⊕ F2, Γ

(no rule for 0)
⊢ F [µX .F/X ], Γ

(µ)
⊢ µX .F , Γ

⊢ Γ, F ⊢ F⊥,∆
(Cut)

⊢ Γ,∆

Figure 4. Rules of the proof system µMALL∞

πsucc =

(Ax)
N ⊢ N ′′

(⊕2)
N ⊢ 1⊕N ′′

(µ)
N ⊢ N ′

πdup =

(µ),(⊕1),(1)
⊢ N1

(µ),(⊕1),(1)
⊢ N2

(⊥),(⊗)
1 ⊢ N1⊗N2

N ′ ⊢ N ′
1
⊗N ′

2

πsucc πsucc
(O),(⊗)

N ′
1
⊗N ′

2
⊢ N1⊗N2

(Cut)
N ′ ⊢ N1⊗N2

(ν ),(N)
N ⊢ N1⊗N2

Figure 5. Examples of pre-proofs πsucc and πdup.

the structure of multicuts, by allowing those to perform a

renaming. A multicut is a rule written as:

⊢ Γ1 . . . ⊢ Γn
mcut(ι, ⊥⊥)

⊢ Γ

and comes with a function ι which shows how the occur-

rences of the conclusion are distributed over the premisses

(modulo renaming), and a relation |= specifying which occur-

rences are cut-connected. Below is an example of a multicut

rule: the function ι is represented by the red lines, the relation

|= is represented by the blue ones.

⊢ F ′,G ⊢ G⊥,H ⊢ H⊥,K
mcut(ι, ⊥⊥)

⊢ F ,K

Precise definitions and more explanations are given in appen-

dix A.2. Later, if clear from the context, we omit to specify ι
and |= in the rule name.

From now, we add the multicut rule to our proof system.

Definition 3.1. We call µMALL∞m the infinitary proof sys-

tem obtained from µMALL∞ by adding the multicut rule.

3.2 Reduction rules and strategy
The reduction rules are the same as in [7, 18], adapting them

in a straightforward way to account for the extra labellings

ι, |= in multicut rules. We give examples of such reductions

in this section.

There are two kinds of cut reductions: external ones that
push themulticut deeper in the pre-proof (Example in fig. 6.a),

and internal ones, that keep the multicut at the same level,

and are not productive (Example in fig. 6.b). The rules in the

first category are said to be productive, since they contribute

to the output of the process. Intuitively, the cut-elimination

process succeeds if infinitely many productive rules occur

on each branch of the proof. An exhaustive description of

the µMALL∞m cut-reduction rules is given in appendix A.3.

We nowdescribe a procedure to eliminate cuts from µMALL∞

proofs, using as an intermediary framework the system with

multicuts. We start by embedding µMALL∞ in µMALL∞m by

adding a unary multicut at the root of the pre-proof, with

the identity as ι and |= = ∅. We then apply internal and

external reduction rules to this multicut. We will require

reduction sequences to be fair , in the sense that every redex

is eventually fired.

The next section introduces the validity condition that

will guarantee productivity of this cut elimination process.

4 Bouncing threads and pre-proof validity
We now formally introduce our bouncing threads and the

corresponding notion of validity for pre-proofs. Given an

alphabetA, we denote byAω
the set of infinite words overA,

and define A∞
to be A∗ ∪Aω

. We will make use of the letter

λ to denote ordinals in ω + 1, i.e. either ω or a finite ordinal

in N. For such an ordinal, recall that 1 + λ = λ iff λ = ω.
Finally, we will make use of a special concatenation: given

u = (ui )i≤n<ω and v = (vi )i ∈λ such that un = v0, we define

u⊙v as the standard concatenation ofu andv without its first

element, i.e. u · (vi )i ∈λ\{0} . For example aba ⊙ aab = abaab.

4.1 Threads
We start with a naive notion of pre-thread, defined as a

sequence of pointed sequents (i.e. sequents with a marked

formula) with a direction: a pre-thread follows occurrences

in consecutive sequents, travelling up- or downwards.

Definition 4.1. A pre-thread is a sequence (Fi , si ,di )i ∈λ
of tuples of a formula, a sequent and a direction, such that

for all i ∈ λ, Fi ∈ si , di ∈ {↑,↓} and if i + 1 ∈ λ then one of

the following clauses holds:

• di = di+1 = ↑, si+1 ∈ premiss(si ), and Fi+1 ⊑ Fi ;
• di = di+1 = ↓, si ∈ premiss(si+1), and Fi ⊑ Fi+1;

• di = ↓, di+1 = ↑, si and si+1 are the two premisses of

the same cut rule, and Fi = F⊥i+1
;

• di = ↑, di+1 = ↓ and si = si+1 = {Fi , Fi+1} is the

conclusion of an axiom rule (so that Fi ≡ F⊥i+1
).
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(a) Example of an external reduction rule:

C

⊢ ∆, F ′[µX .F ′/X ]
(µ)

⊢ ∆, µX .F ′

(mcut)
⊢ Σ, µX .F

−→

C ⊢ ∆, F ′[µX .F ′/X ]
(mcut)

⊢ Σ, F [µX .F/X ]
(µ)

⊢ Σ, µX .F

(b) Examples of internal reduction rules:

C

⊢ ∆, F ⊢ Γ, F⊥
(Cut)

⊢ ∆, Γ
(mcut)

⊢ Σ

−→
C ⊢ ∆, F ⊢ F⊥, Γ

(mcut)
⊢ Σ

C

⊢ ∆, F [µX .F/X ]
(µ)

⊢ ∆, µX .F

⊢ F ′⊥[νX .F ′⊥/X ], Γ
(ν )

⊢ νX .F ′⊥, Γ
(mcut)

⊢ Σ

−→
C ⊢ ∆, F [µX .F/X ] ⊢ F ′⊥[νX .F ′⊥/X ], Γ

(mcut)
⊢ Σ

Figure 6. Examples of external and internal reduction rules.

If λ = n + 1 is finite we call F0 and Fn the endpoints of the
pre-thread.

Example 4.2. Consider the formulas φ = νX .X , F = φα ,
F ′ = φβ , F

′′ = φβ .i where α and β are disjoint addresses. Let

G,G ′
be two disjoint occurrences such that G ≡ G ′

. Below,

the red and blue lines are two pre-threads
6
:

(Ax)
⊢ F , F ′⊥

(Ax)
⊢ G,G ′⊥

(O, ⊗)
⊢ FOG, F ′⊥ ⊗ G ′⊥

...

⊢ F ′′,G ′

(ν )
⊢ F ′,G ′

(O)
⊢ F ′OG ′

(Cut)
⊢ FOG

We shall define threads as pre-threads satisfying a par-

ticular condition that will make them compatible with cut

reduction, in the sense that they will have residuals after

cut-elimination steps. In Example 4.2, the red thread has no

residual if one performs a cut elimination step on F ′OG ′
, be-

cause it comes from the right-hand subformula of F ′⊥⊗G ′⊥

and goes to the left-hand subformula of F ′OG ′
. In contrast,

the blue thread can meaningfully be simplified to persist

over cut elimination steps: its residual is well-defined. Ge-

ometry of Interaction [21] provides a formalization of these

notions, assigning weights to pre-threads and determining

which weights correspond to meaningful computations. We

follow this inspiration, adapting it to our framework.

Definition 4.3. Let t = (Fi , si ,di )i ∈1+λ be a pre-thread. The

weight of t is a word (wi )i ∈λ ∈ {l, r, i, ¯l, r̄, ¯i,W,A,C}∞,
written w(t) and defined as follows. For every i ∈ λ one of
the following clauses holds:

6
... which respectively correspond to the following sequences:

tr = (FOG ; ⊢ FOG ; ↑) · (FOG ; ⊢ FOG, F ′⊥⊗G′⊥
; ↑) · (F ; ⊢ F , F ′⊥

; ↑) ·

(F ′⊥
; ⊢ F , F ′⊥

; ↓) · (F ′⊥⊗G′⊥
; ⊢ FOG, F ′⊥⊗G′⊥

; ↓) · (F ′OG′
; ⊢ F ′OG′

; ↑) ·

(F ′
; ⊢ F ′, G′

; ↑) · (F ′′
; ⊢ F ′′, G′

; ↑) and

tb = (FOG ; ⊢ FOG ; ↑) · (FOG ; ⊢ FOG, F ′⊥⊗G′⊥
; ↑) · (G ; ⊢ G, G′⊥

; ↑) ·

(G′⊥
; ⊢ G, G′⊥

; ↓) ·(F ′⊥⊗G′⊥
; ⊢ FOG, F ′⊥⊗G′⊥

; ↓) ·(F ′OG′
; ⊢ F ′OG′

; ↑) ·

(F ′
; ⊢ F ′, G′

; ↑) · (F ′′
; ⊢ F ′′, G′

; ↑).

• wi = x if Fi = φα and Fi+1 = ψαx for x ∈ {l, r, i};
• wi = x̄ if Fi = φαx and Fi+1 = ψα for x ∈ {l, r, i};
• wi = A if di = ↑ and di+1 = ↓ (corresponding to

bouncing on an axiom rule);

• wi = C if di = ↓ and di+1 = ↑ (corresponding to

bouncing on a cut rule);

• wi =W if Fi = Fi+1.

Example 4.4. The blue pre-thread of Example 4.2 has a

weight of the formWlWA¯lWCli . . . .

The weight should be seen as a bracketed expression,

where each symbol x̄ , x ∈ {l, r, i}, is an opening bracket

with matching closing bracket x . When defining threads

from pre-threads, we will be particularly interested in the

following classes of well-bracketed words:

Definition 4.5. Let B and H be the set of words defined

inductively as follows:

B := C | BW∗AW∗B | x̄W∗BW∗x H := ϵ | AW∗B

A (finite) pre-thread is called a b-path ifw(t) ∈ B. It is called

an h-path ifw(t) ∈ H . It is called an ϵ-path. ifw(t) ∈ W∗H .

The b-paths start downwards and end upwards: they con-

sist of a series of U-shapes centered around cuts, glued to-

gether by axioms. The endpoints of b-paths are negations of
each other (up to renaming). The h-paths start and end going
upwards, and their endpoints are structurally equivalent (up

to renaming). Intuitively, h-paths will be simplified during

cut elimination, and eventually disappear completely.

Definition 4.6. A pre-thread t is a thread when it can be

written ⊙i ∈1+λ(Hi ⊙ Vi ) where for all i ∈ 1 + λ:

• w(Hi ) ∈ H and it is non-empty if i , 0.

• w(Vi ) ∈ {l, r, i,W}∞ and it is non-empty if i , λ;

Notice that such a decomposition is unique, except possibly

for some neutralW∗
factors, for which an arbitrary choice is

7
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made
7
. We call (Vi )i ∈1+λ the visible part of t , and we denote

it by vp(t), and (Hi )i ∈1+λ itshidden part and we denote it by
hp(t). A thread is stationary when its visible part is a finite

sequence (of finite words), or when there exists k ∈ 1 + λ
such that w(Vi ) ∈ {W}∞ for all k ≤ i ∈ 1 + λ.

For instance if a pre-thread t = (Fi , si ,↑)i ∈λt of length λt
goes only upwards (w(t) ∈ {l, r, i,W}λt ), then the above

decomposition is given by λ = 0, H0 = (F0, s0,↑) and V0 = t .

Example 4.7. Let us consider the blue pre-thread of Exam-

ple 4.2. We can decompose it into a visible part (plain line)

and a hidden part (dashed line) as shown below:

(Ax)
⊢ F , F ′⊥

(Ax)
⊢ G,G ′⊥

(O, ⊗)
⊢ FOG, F ′⊥ ⊗ G ′⊥

...

⊢ F ′′,G ′

(ν )
⊢ F ′,G ′

(O)
⊢ F ′OG ′

(Cut)
⊢ FOG

The blue pre-thread is then indeed a thread. On the con-

trary, the red pre-thread from example 4.2 admits no such

decomposition.

If we consider the sequence of formulas followed by a

non-stationary thread on its visible part, ignoring its hidden

parts (which have equivalent formulas on their endpoints),

and skipping the steps in the visible parts corresponding to

W weights, we obtain an infinite sequence of formulas as in

[7] where each formula is an immediate subformula or an

unfolding of the previous formula. It is then well known [16]

that the formulas appearing infinitely often in that sequence

admit a minimumw.r.t. the subformula ordering. We call this

formula the minimal formula of the thread.

Definition 4.8. A non-stationary thread is valid if its min-

imal formula is a ν-formula.

Consider for example the formula F = µX .νY .X . The
minimal formula obtained by unfolding F infinitely often is

F itself, a µ-formula, so the corresponding thread is invalid.

4.2 Pre-proof validity: the multiplicative case
The previous notion of valid thread suggests a first extension

of the notion of valid proof based on straight threads [7]:

one might say that a branch β is valid when there is a valid

bouncing thread which meets β infinitely often, and declare

a pre-proof valid when all its branches are. However, this

notion of weak validity turns out to allow unsound proofs,

as shown next.

Example 4.9. LetT := νX .X and F := µX .X . The following

is a weakly valid proof of the empty sequent. The hidden

part of the decomposition (and the prefix of the thread up to

7
It can happen that a W∗

factor can be put either in the visible part or

the hidden part. Since such choices will play no role in the following,

we can make now an arbitrary choice for these factors, and consider the

decomposition unique.

the first axiom) is dashed, the visible part (except the prefix

of the thread up to the first axiom) is shown in green. The

minimal formula along the thread is T .

(Ax)
⊢ Fαl,Tβl

(Ax)
⊢ T αri, F βr

(ν )
⊢ T αr, F βr

(⊗)
⊢ (F⊗T )α ,Tβl, F βr

(O)
⊢ (F⊗T )α , (TOF )β ⊢ (F⊗T )β⊥

(Cut)
⊢ F⊗Tα

(Ax)
⊢ Tα⊥l, Fα⊥r

(O)
⊢ (TOF )α⊥

(Cut)
⊢

A proper notion of validity must therefore be more con-

straining. We shall consider the following one, which re-

quires that the visible part of the valid thread t is contained
in the infinite branch β .

Definition 4.10. Let π be a µMLL∞ pre-proof. An infinite

branch β of π is said to be valid if there is a valid thread

t starting from one of its sequents, whose visible part is

contained in this branch. A µMLL∞ proof is a µMLL∞ pre-

proof in which every infinite branch is valid.

Example 4.11 (valid and invalid pre-proofs).

(Ax)
⊢ (νX .X )α , (µX .X )β

⊢ (νX .X )β⊥i
(ν )

⊢ (νX .X )β⊥

(Cut)
⊢ (νX .X )α

(Ax)
⊢ (νX .X )αi, (µX .X )β

(ν )
⊢ (νX .X )α , (µX .X )β ⊢ (νX .X )β⊥

(Cut)
⊢ (νX .X )α

The topmost pre-proof is valid: its infinite branch is sup-

ported by the valid blue thread, whose visible part belongs

to the infinite branch. The bottommost pre-proof is not valid,

because the red thread, though valid, has a visible part that

is not contained in the infinite branch.

4.3 Pre-proof validity: accommodating the additives
The previous definition of validity is too weak to ensure

cut-elimination for µMALL∞, which is not a strictly linear

sequent calculus (as µMLL∞ is) since commutation/external

reductions for the (N) connective induce the duplication of a

sub-proof. As a result, the extension of the validity condition

in Section 4.2 fails to ensure productivity and validity of

cut-elimination as shown in figure 7.(i). The result of cut-

elimination on the proofs in the sequence (π ′
k )k≥0 can be

split into the following cases:

(i) from π ′
0
, cut-elimination is productive and produces a

valid cut-free proof;

(ii) from π ′
1
, cut-elimination produces an invalid pre-proof

(see Figure 7.(ii)): any infinite branch following only finitely

many times the left back-edge is invalid;

(iii) from π ′
k , for k ≥ 2 it is not even productive. Indeed, in

these examples, each π ′
k contains exactly one infinite branch

which is supported by a thread on T bouncing on the left-

most axiom and this thread is valid.

8
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π ′
k =

(Ax) †
⊢ T ,T⊥

(⊥)

⊢ ⊥,T ,T⊥

(Ax) ‡
⊢ T ,T⊥

(⊥)

⊢ ⊥,T ,T⊥

(µ)k

⊢ ⊥,T ,T⊥

(N)

⊢ ⊥N⊥,T ,T⊥ ⊢ S,T
(Cut)

⊢ ⊥N⊥, S,T
(µ),(O)

⊢ S,T
(ν )

⊢ S,T

⊢S,T
(⊥)

⊢ ⊥, S,T

⊢ S,T
(⊥)

⊢ ⊥, S,T
(N)

⊢ ⊥N⊥, S,T
(µ),(O)

⊢ S,T
(ν )

⊢ S,T

Sl(π ′
k ) ∋

(Ax)
⊢ T ,T⊥

(⊥)

⊢ ⊥,T ,T⊥

(µ)k

⊢ ⊥,T ,T⊥

(N2)

⊢ ⊥N⊥,T ,T⊥ ⊢ S,T
(Cut)

⊢ ⊥N⊥, S,T
(µ),(O)

⊢ S,T
(ν )

⊢ S,T
(i) (ii) (iii)

Figure 7. (i) Pre-proof family (π ′
k )k ∈N with S = µY .((⊥N⊥)OY ),T = νX .X . Note that we omit the occurrences and that k

is a parameter fixing how many times the µ rule (in red) should be applied to the sequent ⊢ ⊥,T ,T⊥
. (ii) Result of applying

(infinitary) cut-elimination to π ′
1
. (iii) Example of a slice of π ′

k .

To understand the problem, consider the first step of cut-

reduction (from π ′
k , for any k): it is a (Cut)/(N) commutation

step, which copies the right-premiss of the cut (ie. the non-
wellfounded part of the proof): after this step, the pre-proof

contains two infinite branches, but only one thread to vali-

date them. While the leftmost copy can be validated by the

original thread, the rightmost copy does not contain a resid-

ual of the original thread. Of course, one might consider

a thread originated in the cut inference, but that will not

suffice to ensure validity, nor productivity, as π ′
2
exemplifies:

its rightmost branch produces the bottom rule.

Sliced proof system. This issue is solved by refining the

criterion using slices [20, 22, 23, 38] and requiring that there

exists a supporting thread not only for every infinite branch

of the proof, but also for every infinite branch of every persis-
tent slice of the pre-proof. In linear logic, an additive slice is a

subtree of a sequent proof obtained by removing, for any of

its (N) inference, the subtree rooted in one of its premisses

(see Appendix A.5 for details and precise definitions).

Definition 4.12. µSMALL∞ is obtained by extending µMALL∞

with the following three inference rules:

⊢ A, Γ
(N1)

⊢ ANB, Γ

⊢ B, Γ
(N2)

⊢ ANB, Γ
(Ω)

⊢ Γ

Definition 4.13 (Additive slice). Partially sliced pre-proofs

are the non-wellfounded µSMALL∞ pre-proofs. A slice is a
(N)-free, (Ω)-free, µSMALL∞-pre-proof.

To a µMALL∞ sequent (pre-)proof, one can associate a

set of slices by keeping, for each (N) inference, only one of

its premisses and replacing the (N) with the corresponding

inference in (N1), (N2). More precisely:

Definition 4.14 (Slicing of a pre-proof). The set of slices
of π , Sl(π ), is defined corecursively by

Sl
©­«

π1

⊢ A1, Γ

π2

⊢ A2, Γ
(N)

⊢ A1NA2, Γ

ª®¬ =


π ′
i

⊢ Ai , Γ
(Ni)

⊢ A1NA2, Γ

,
π ′
i ∈ Sl(πi ),
i ∈ {1, 2}


(The other inferences are treated homomorphically.)

Example 4.15. Fig. 7.(iii) gives an example of a slice.

Cut-reductions for slices. Cut-reduction rules for (partial)

slices of µSMALL∞ extend those for µMALL∞ with specific

rules for sliced additives and (Ω). A problematic situation is

when (N1) interacts with (⊕2): cut-elimination cannot rely

on sub-proofs as usual, and in this case (Ω) is used to solve

this mismatch of inferences.

Definition 4.16 (Cut reductions for slices). The sliced addi-

tive principal case is reduced as follows, if {A⊥
1
NA⊥

2
,A′

1 ⊕

A′
2} ∈ |= , with r = (princ, {A⊥

1
NA⊥

2
,A′

1 ⊕ A′
2}).

C

πi

⊢ A⊥
i , Γ

(Ni)

⊢ A⊥
1
NA⊥

2
, Γ

π ′
j

⊢ A′
j , Γ

(⊕j)
⊢ A′

1 ⊕ A′
2,∆

mcut(ι, ⊥⊥)
⊢ Σ

−→
r



(Ω)
⊢ Σ if i , j

C

πi

⊢ A⊥
i , Γ

π ′
i

⊢ A′
i ,∆

mcut(ι, ⊥⊥′)
⊢ Σ

if i = j

where |=

′ = |= ∪ {{A⊥
i ,A

′
i }}

or
C

(Ω)
⊢ Γ

mcut(ι, ⊥⊥)
⊢ Σ

−→
r

(Ω)
⊢ Σ with r = (princ,Ω).

Notions of b-paths and h-paths can be naturally extended

to additive slices.

Persistent slices. Persistent slices are introduced precisely

as those in which no case of the above mismatch ever occurs:

Definition 4.17 (Persistent slice). Given a slice π , a (Ni)

rule of principal formula A1NA2 occurring in π is said to

be well-sliced if no b-path starting down from the A1NA2

occurrence of this sequent ends in a formula A⊥
1
⊕A⊥

2
that is

the principal formula for a (⊕j) inference with i , j. A slice

is persistent if all its (Ni) occurrences are well-sliced.

Example 4.18. The slice in Fig. 7.(iii) is trivially persistent

as it contains no ⊕ inference. The sliced (N) rule depicted in

definition 4.16 is well-sliced if, and only if, i = j.

The following two properties of persistent slices are the

key for the cut-elimination property (see proof in A.5):

9
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Proposition 4.19. All reducts of a persistent slice are (Ω)-
free, and therefore are slices.

Proposition 4.20 (Pull-back property). If π →∗ π ′ (resp.
π →ω π ′) and S ′ ∈ Sl(π ′), then there is a S ∈ Sl(π ) such that
S →∗ S ′ (resp. S →ω S ′).

Additive validity. Def 4.1 and 4.5 of (pre-)threads directly

adapt to additive slices – as they are not specific to µMLL∞–
and allow us to consider the following definition:

Definition 4.21. A persistent slice is valid if it is valid in

the sense of Definition 4.8
8
. A µMALL∞ pre-proof π is valid

if all its persistent slices are valid.

Example 4.22. Pre-proof πdup of Figure 5 is valid, the only
infinite branch is validated by a straight. Among the pre-

proofs of (π ′
k )k ∈N given in Figure 7, only π ′

0
is valid.

The circular pre-proof of Figure 8 is valid. It corresponds

to the last program considered in the introduction.

5 Cut elimination theorem for µMALL∞

In this section, we shall establish our central result:

Theorem 5.1. Fair reduction sequences on µMALL∞m proofs
produce cut-free µMALL∞ proofs.

For expository reasons, we focus on the multiplicative

case here. The treatment of additives, while bringing new

cases, is similar and can be found in Appendix A.5.

The proof follows the same lines as the proof of [7] for

straight threads. We only sketch it here and emphasize the

new phenomena due to the presence of axioms and bouncing

threads. The full proof can be found in Appendix A.4.

The proof of Theorem 5.1 is in two parts. We first prove

that we cannot have an infinite fair reduction sequence made

only of (unproductive) internal reductions. Hence cut elimi-

nation is productive, i.e., reductions of µMLL∞m proofs con-

verge to cut-free µMLL∞ pre-proofs. We then establish that

the obtained pre-proof is a valid proof. In this section, we

will only show productivity, validity of the resulting proof is

shown in a similar way (See Appendix A.4).

To show productivity, we proceed by contradiction, as-

suming that there exists a fair infinite sequence of internal

reductions from a given proof π of conclusion Γ. We will

also assume w.l.o.g. that π has only one multicut at the root.

Note that since we perform only internal reduction rules,

and since the latter do not duplicate multicuts, there is only

one multicut progressing in the proof during this sequence of

reductions. In the following, we refer to it as “the” multicut.

5.1 Trace of a reduction sequence
Let us first introduce an important tool to analyse internal

reduction sequences, called their trace. Along an internal

8
That is, every infinite branch of the slice is visited by a valid thread having

its visible part contained in the branch.

reduction sequence (πi ) from a proof π , some sequents π
become a premise of the multicut rule of some πi . The trace
of an internal reduction sequence is defined as the collection

of those sequents together with the conclusion sequent and

the corresponding inference rules of the starting proof. By

analyzing the reduction rules, it is easy to see that the trace

of a proof is its proof tree from which some branches have

been pruned and replaced by open leaves:

Proposition 5.2. Given a µMLL∞ proof π and a fair reduc-
tion sequent ρ, the trace of π after ρ is a subtree (possibly with
open leaves) of the original proof π .

An example of a trace is shown below: sequents not in the

trace are grayed.

...
(µ)

⊢ µX .Xβi
(µ)

⊢ µX .Xβ

...
(ν )

⊢ µX .Xβ⊥ii, µX .Xγ
(ν )

⊢ µX .Xβ⊥i, µX .Xγ

...
(ν )

⊢ νX .Xγ ⊥i,⊥α
(ν )

⊢ νX .Xγ ⊥ ,⊥α
(Cut)

⊢ νX .Xβ⊥i,⊥α
(ν )

⊢ νX .Xβ⊥ ,⊥α
(mcut)

⊢ ⊥α

We shall get a contradiction using the trace in three steps:

1. Wewill define an extension of the proof system µMLL∞,
and show that it is sound wrt. to a boolean semantics.

2. Then we will show that the trace can be seen as a proof

of a false sequent in this extended proof system.

3. This contradicts soundness and concludes the proof.

5.2 The trace is almost a µMLL∞ proof
As said above, we will need to see the trace as a genuine

proof. Being a subtree of the original proof π , the trace is
almost a µMLL∞ proof; it may not be a proof for two reasons:

1) The trace may have unjustified sequents: this happens

when a sequent S enters the multicut during the reduction

sequence but never gets reduced. It will then be part of the

trace but the subtree of π rooted in S will not. This is the

case of the sequent ⊢ νX .Xγ ⊥i,⊥α in the example above.

2) The infinite branches of the trace may not be valid: they

are of course also infinite branches of the proof π , and thus

are supported by valid bouncing threads of π . However, since
the threads can bounce, they might leave the branch and

might not be entirely included in the trace.

We will show later how to handle the first problem of

unjustified sequents. As for the second problem, we show

that this actually never happens:

Proposition 5.3. Let T be the trace of a reduction sequence
starting from a proof π , and let β be an infinite branch of T .
If t is a bouncing thread of π validating β , then t is also a
bouncing thread of T .

This is one of the difficulties specific to the bouncing

threads. This result is trivial with straight threads [7], since

threads belong to the branch they support.

10
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πfilter =

πk

⊢ N

(Ax)
B ⊢ B S ⊢ S

(ν l),(⊗l),(νr),(⊗r)
S ⊢ S

(1l)
1, S ⊢ S

N , S ⊢ S

πneд

B ⊢ B
(Ax)

S ⊢ S
(ν l),(⊗l),(νr),(⊗r)

S ⊢ S
(Cut)

N , S ⊢ S
(WBooll)

N ,B, S ⊢ S
(ν l),(⊗l)

N , S ⊢ S
(µl),(⊕1)

N , S ⊢ S
(Cut)

S ⊢ S

Figure 8. Example of an additive circular proof

5.3 Truncated proof system
To see the trace as a proof, we need to overcome the problem

of unjustified sequents. For that, we will embed the trace in

a so-called truncated proof system, extending µMLL∞.
This proof system is parameterized by a partial function

τ : Addr → {⊤, 0} (from addresses to the formulas ⊤, 0)
called a truncation. To get a sound proof system, we impose

a coherence condition on truncations: they should assign

dual values to dual addresses. The rules of the truncated

proof system are the same as those of µMLL∞, with an extra

rule which allows to replace an occurrence by its image in

τ . Pre-proofs and the validity condition are defined in the

same way as for µMLL∞. The advantage of the truncated
proof system is that it allows to close sequents easily: if the

address of an occurrence of the sequent is mapped to ⊤ by

τ , we can justify the sequent by a ⊤ rule.

The boolean semantics can be extended in the presence of

truncations in a natural way: the occurrences whose ad-

dresses are in the domain of the truncation obtain as a

boolean value their image by τ . Boolean values are prop-

agated through the connectives as usual. We show that the

truncated proof system is sound for this semantics.

Note that µMLL∞ can be seen as a truncated proof sys-

tem, where the truncation has empty domain. The truncated

boolean semantics then coincides with the classical boolean

semantics. Hence µMLL∞ is sound for the boolean semantics,

a result which can be extended to µMALL∞:

Theorem 5.4. µMALL∞ is sound for the boolean semantics.

5.4 Trace as a truncated proof
Let us see how to transform the trace into a proof in a trun-

cated proof system. For this, we need to find a truncation τ
that can allow us to close every unjustified sequent. In other

words, we need to find a strategy for selecting an occurrence

in each unjustified sequent, to which we will assign ⊤ by the

truncation τ . This strategy should be coherent in the sense

that it should not assign ⊤ to two dual occurrences.

In [7], such a strategy is given in a simpler setting: select

the formula occurrence in the unjustified sequent that is

principal in the proof π . Axioms complicate the situation: if

F is the occurrence that has been selected in an unjustified

sequent, then its dual might appear in an axiom rule ⊢ F⊥,G .
By coherence of the truncation, the address of F⊥ must be

assigned 0 and the axiom rule cannot be soundly applied

anymore. To justify ⊢ F⊥,G, we need to assign ⊤ to the

address of G. Since the same can happen on the G side, we

need to show that it remains possible to define τ in a coherent
way.

To get our desired contradiction, we need in addition for

τ to assign 0 to the conclusion, thereby obtaining a proof of

a false sequent. This needs to be done while still respecting

the aforementioned constraints induced by axioms.

Summary. To sumup, we have found a truncationτ i) which
assigns 0 to the conclusion formula and ii) for which the

trace can be seen as a proof in the corresponding truncated

proof system. Since the proof system is sound, we get a

contradiction. This concludes the proof of productivity.

6 Decidability properties of µMLLω

6.1 An operational approach to threads
In this section, we explain how threads can be recognized

by a specific deterministic ω-pushdown automaton reading

only the weight of a pre-thread. This allows us to define the

height of a thread and the notion of constraint stack.
Let Athread be the deterministic ω-pushdown automaton

described in Fig. 9, on alphabet Σ = {l, r, i, ¯l, r̄, ¯i,A,C,W}

and stack alphabet Γ = {l, r, i,⊥} where ⊥ is the empty

stack symbol. The transitions are labelled “(a,γ ) | τ ”, where
a ∈ Σ is the input letter, γ ∈ Γ is the topmost stack symbol,

and τ is the action performed on the stack (no action if τ is

not specified). If no stack symbol is specified, the stack is

left unchanged. Symbol x stands for an element in {l, r, i}.
No acceptance condition is specified: any run is accepting.

Only the absence of an available transition can cause the

automaton to reject its input, e.g. reading l with topmost

stack symbol r in state ↑. The transition marked with a

double arrow corresponds to the visible part of the thread.

The stack of Athread is referred to as the constraint stack.
11
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↑ ↓

(x ,⊥)

(x ,x) | pop()

W
A

(x̄ ,γ ) | push(x)
W

C

Figure 9. The deterministicω-pushdown automatonAthread

(Ax)
⊢ G, F ⊢G, F

(µ, O, ⊗)
⊢ G, FOF

(ν )
⊢ G, F

πR

⊢ G, F
πM

⊢ G, F
(Cut)

⊢ G, F
(Cut)

⊢ G, F

Figure 10. A sketch of the main pre-proof P

Lemma 6.1. Let t be a pre-thread. Then t is a thread if and
only if w(t) is accepted by Athread .

Proof. Constraints on the stack ofAthread match the grammar

of Def. 4.5. □

6.2 Undecidability of bouncing validity
In this section we present the proof of the following result:

Theorem 6.2. The bouncing validity condition is already
undecidable for µMLLω .

Thismotivates the following section introducing decidable

subcriteria constituting a hierarchy of criteria.

To show undecidability, we reduce from the halting prob-

lem for Minsky Machines, i.e. two-counter machines (2CM)

able to perform increment, decrement, and zero test on the

counters. The halting problem for 2CM is known to be Σ0

1
-

complete [30].

The proof is only sketched here, and some technicalities

have been abstracted away for clarity purposes. See Appen-

dix A.6.1 for exact definitions and encodings.

We encode the halting problem of a 2CMM using a bounc-

ing thread. The thread of interest will always follow a for-

mula F = νX .(XOX ) when going upwards, and its dual

G = µX .(X⊗X ) when going downwards. The idea is to use

the constraint stack to encode the value of counters, and the

position in the graph to encode the control state of the ma-

chine. The general shape of the main pre-proof P performing

the desired reduction is represented in Fig. 10. Boldface for-

mulas are those introduced in cuts, and grayed formulas are

the ones that are not part of the thread of interest. We ignore

addresses in this sketch, unless relevant to our encoding.

We build P so that the only branch which is not clearly

validated is the one going infinitely many times through the

loop. A thread validating this branch (in blue in Fig. 10) must

go through the two cuts, and bounce on axioms in πM and

πR . The trajectory of this thread in πM will simulate the run

ofM . It will be allowed to exit πM if and only ifM terminates.

We now give an example of one of the simplest gadgets

used to perform this simulation: the increment gadget on

the first counter. Consider a state p of the machineM , whose

action is to increment the first counter and go to state q.
Assume counter values (n,m) are encoded by a constraint

stack lnrlmr, where l (resp. r) stands for a left (resp. right)
constraint on the unfolding of F , i.e. a relative address il
(resp. ir). This means that to increment the first counter, we

need to add a left constraint at the top of the stack. This can

be performed by the following gadget, where nodes labeled

(p) and (q) encode the current control state:

(q) ⊢ G, F,A

(Ax)
⊢ Gl, F

(∞)
⊢ Gr,A

(⊗)
⊢ Gl⊗Gr, F ,A

(µ)
⊢ G, F ,A

(Acut)
(p) ⊢ G, F ,A

Here A is an auxiliary formula νX .(XOX )⊗X , that can
be duplicated as required and used to build axiom-less valid

proofs, denoted by an (∞)meta-rule. The rule (Acut) denotes

a cut combined with a duplication of A. A thread entering

node (p) upwards with constraint stack lnrlmr will enter
node (q) with constraint stack ln+1rlmr.

In order to fully simulate the run of M , we also need to

design gadgets simulating increment on the second counter,

as well as decrement and zero test on both counters. The

main difficulty lies in the tests performed by the machine: we

want the thread to follow a conditional branching, depend-

ing on the value of the constraint stack. This can be done,

but because of the linearity of the proof system, we cannot

avoid leaving some extra constraints encoding the results of

the tests. These “garbage constraints” will be collected by

the thread on its path downwards in πM , after the simulation

of the machine is completed. Since we want to finish with

empty constraint, we need to erase these garbage constraints.

To do this, we add a second gadget πR performing the com-

putation in a dual way: garbage constraints are fed to the

thread, which rewinds the computation while erasing these

unwanted constraints. All gadgets in πR are dual versions of

those in πM . This technique is reminiscent of the one used

by Bennett [8] to prove Turing-completeness of reversible

Turing machines, where a history of the computation is pro-

duced to guarantee reversibility, then this history is erased

by rewinding the computation.

We can finally exit this detour with no constraint, and

perform a visible ν-unfolding on the main branch (in red in

Fig. 10), before looping back to the root of the proof.

The global pre-proof P will be a valid proof according to

the criterion if and only if the machineM halts.

Notice that among the simplifications we made here for

clarity of exposition, the auxiliary formulaA needed in some

gadgets has been removed from the main pre-proof P .
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6.3 A hierarchy of decidable validity conditions
In order to recover a decidable criterion, we will consider

restrictions on the constraint stack of valid threads.

Definition 6.3. If t is a thread, we define its height h(t) ∈
ω + 1 to be the supremum of the size of the stack of Athread
along its run on w(t).

Definition 6.4. Let k ∈ N. An infinite branch is k-valid if

there is a thread of height at most k validating it. A proof P
is a k-proof if every infinite branch of P is k-valid.

The following two theorems show that the height parame-

ter k induces a hierarchy of decidable criteria – see Figure 3

on page 4 – whose union matches the full validity criterion.

Theorem 6.5. If P is a valid circular proof of µMLLω , there
exists k ∈ N such that P is a k-proof.

Theorem 6.6. Given a circular pre-proof P of µMLLω and
an integer k , it is decidable whether P is a k-proof.

We now give a brief proof sketch to give an intuition on

how to prove Theorems 6.5 and 6.6. See Appendix for details.

Proof. (Sketch) We will use the fact that once a starting point

for a thread has been chosen, the thread evolves determinis-

tically along the proof tree until a visible event occurs. We

define the notion of minimal shortcut which is a part of a

thread with no visible weight, bouncing on an axiom, and

ending in the first point where the constraint stack is empty.

It corresponds to an ϵ-path.
By bounding the maximal height of the stack by k , we

can detect loops or declare stack overflow, and we are able

to compute the unique minimal shortcut (if it exists) for

each starting point in the finite proof graph. Now, checking

validity of the proof can be done using an algorithm for

straight threads [16], allowing them to take these shortcuts.

Theorem 6.5 is obtained by taking the maximal height

reached by all minimal shortcuts of the proof graph. □

Combining Theorems 6.5 and 6.6, we obtain that validity

of a circular pre-proof of µMLLω is in Σ0

1
, i.e. recursively

enumerable. Together with the reduction from Sec. 6.2, we

obtain the following corollary:

Corollary 6.7. The problem of deciding whether a circular
pre-proof of µMLLω is a proof is Σ0

1
-complete.

7 Conclusion
We have studied non-wellfounded and circular proofs of

µMALL∞ and defined an extended validity criterion for the

pre-proofs of µMALL∞ compared to previous works [7, 18].

We have shown that our criterion enjoys cut elimination and

soundness, but reaches the barrier of undecidability: in the

purely multiplicative fragment already, a parameter has to be

bounded by an explicit value to make the criterion decidable.

mull For future work, we plan to investigate whether this

decidability result still holds when adding the additives.

We also want to extend these results to more relaxed crite-

ria: we conjecture that requiring the visible parts to meet the

validated branch infinitely often is sufficient to ensure pro-

ductivity and soundness, generalizing Theorems 5.1 and 5.4

to a more relaxed validity condition. A less sequential variant

of circular proofs has been developed by De et al. [14, 15]: the
canonicity and absence of commutation rules of proof nets

may have good properties with respect to cut-elimination

and we expect bouncing validity to be fruitful in that setting.

Finally, the present work is a first step in improving the

compositionality of circular proofs. We demonstrated the

flexibility of bouncing threads on a number of examples:

current work is pursued to develop a proof-term syntax,

in the style of system L, for circular µMALL. In addition to

strengthening our cut-elimination result as mentioned above,

we plan to investigate how one can import results from sized

types [1] or copattern [4] approach which also have good

properties with respect to compositionality and may be used

in an infinitary scenario [2, 3].
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A Appendices
A.1 On sequents as sets of occurrences
There are several presentations of sequents in the literature:

a sequent can be defined as a set of formulas, a multiset

of formulas, a list of formulas or a set of named formulas.

The first two presentations (sets and multisets of formu-

las) are not suitable in a Curry-Howard perspective as they

identify proofs having completely different computational

behaviours: we need not only a “ressource-aware” notion of

sequents but also an “occurrence-aware”, essentially using

lists of formulas or occurrences of formulas.

The last two presentations are the most used in the proofs-

as-programs framework. Considering sequents as lists of

formulas requires a constant use of the exchange rule, which

is very heavy. In this paper, we made the choice to work

with sequents as sets of named formulas, also called formula
occurrences.
A formula occurrence is a formula together with an ad-

dress. In a derivation, all the conclusion (and cut) formula

occurrences will have pairwise distinct addresses.

We consider a set of atomic addresses which is used to

provide an infinite set of incomparable addresses (this could

be achieved via words at the cost of an encoding). This intu-

ition is that atomic addresses and their duals will be assigned

to the conclusions and cut formulas, ensuring those occur-

rences are disjoint, and all the addresses appearing in the

proofs will be sub-addresses of these addresses: disjointness

is preserved by each inference rule.

When a rule is applied to a formula occurrence, the ad-

dresses of its sub-occurrences will be extended by {l, r, i}
(standing for left, right and inside respectively) in order to

record their provenance. This is of great importance for our

developments: our validity criterion traces the evolution of

formulas, and this evolution is completely explicit in their

addresses.

Example A.1. We show in the following an example of an

application of theO rule in the framework of sequents as sets,

as multisets and as sets of formula occurrences respectively:

⊢ φ
(O)

⊢ φOφ
⊢ φ,φ

(O)
⊢ φOφ

⊢ φαl,φαr
(O)

⊢ (φOφ)α

In the first case, the two subformulas of φOφ collapse into

one formula, in the second framework we keep track of the

multiplicity but we cannot distinguish between the formula

coming from the right and the one coming from the left.

In the framework of formula occurrences, we can do this

thanks to the tags l and r in their addresses.

A.2 The multicut rule
A new phenomenon occurs in the presence of axioms. Con-

sider for instance the following pre-proof where F = φα and

G = φβ :

(Ax)
⊢ F ,G⊥

π

⊢ G, Γ . . .
(mcut)

⊢ F , Γ′

In the finitary cut-elimination procedure, we would reduce

this multicut to the derivation labelled (mcut1) below. Doing
so, we have to perform a substitution on addresses (denoted

by [α/β]) to relocate the subderivation π on the required

occurrence. Another option, described by the derivation

(mcut2) below, is to avoid the renaming by keeping a link

explicitely in the multicut rule.

π [β/α]

⊢ F , Γ . . .
(mcut1)

⊢ F , Γ′
or

π

⊢ G, Γ . . .
(mcut2)

⊢ F , Γ′

We choose the last option to avoid the global renaming,

which would complicate our technical development.

A multicut rule will now be written as:

⊢ Γ1 . . . ⊢ Γn
mcut(ι, ⊥⊥)

⊢ Γ

and comes with a function ι which shows how the occur-

rences of the conclusion are distributed over the premisses

(modulo renaming), and a relation |= specifiying which oc-

currences are cut-connected. A precise definition of the mul-

ticut rule is given below.

Definition A.2. Given sequents s, s1, . . . , sn where n > 0

and such that si , sj are disjoint for all i , j, a multicut of
conclusion s and premisses (si )i ∈[1;n] is given by an injection

ι : s 7→ ∪i ∈[1;n]si and a symmetric relation |= ⊆ (∪i ∈[1;n]si )
2

such that:

• For all F ∈ s , ι(F ) ≡ F .
• For all F ,G ∈ ∪i ∈[1;n]si , F |=G implies F ≡ G⊥

.

• dom( |= ) = (∪i ∈[1;n]si ) \ im(ι).
• Given two sequents si and sj , we say that they are

|= -connected on the formula occurrences F ,G when

F ∈ si andG ∈ sj such that F |=G . We say that they are

|= -connected, and we write si |= sj , when they are |= -

connected on some F ,G. The relation |= on sequents

must satisfy two conditions:

– two sequents must be |= -connected on at most one

pair of occurrences F ,G;
– the graph of the relation |= must be connected and

acyclic.

We write this multicut rule as:

s1 . . . sn
mcut(ι, ⊥⊥)s

A.3 Cut elimination rules
We detail the rules of cut elimination introduced in section 3.

Definition A.3. External reductions are defined in fig. 11.

In the first external rule, the sets C∆ and CΓ are the subsets of
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C which are respectively connected to ∆ and Γ respectively.

More precisely,

C∆ = {s | ∃s ′, s |=

∗s ′ and s ′ is |= -connected to

⊢ ∆, Γ, F ⊗ G on an occurrence of ∆},

where |=

∗
is the transitive closure of the relation |= on se-

quents. CΓ is defined similarly.

Remark 1. Note that the (⊗)/(mcut) external reduction yields
multiple multicuts, though always on disjoint sub-trees. Thus,
µMLL∞m is stable by external reductions.

In external reductions, we pushed a multicut away from

the root, above a logical rule. If we start with a µMLL∞m pre-

proof and apply a reduction sequence where external rules

are applied infinitely often to each multicut, we will produce

at the limit a cut-free proof. This is the reason why we say

that external reductions are productive. This is not the case
for the internal reduction rules given next.

Definition A.4. Internal reductions are the principal re-
ductions given in fig. 12 together with the following two

reductions:

• the merge (mcut)/(Cut) reduction

C

⊢ ∆, F ⊢ Γ, F⊥
(Cut)

⊢ ∆, Γ
mcut(ι, ⊥⊥)

⊢ Σ

−→
r

C ⊢ ∆, F ⊢ Γ, F⊥
mcut(ι, ⊥⊥′)

⊢ Σ

where |=

′
extends |= with F |=

′ F⊥ and r = (merge, {F , F⊥}).
• the axiom reduction (mcut)/(Ax)

C
(Ax)

⊢ F , F ′⊥ ⊢ F ′′, Γ
mcut(ι, ⊥⊥)

⊢ Σ

−→
r

C ⊢ F ′′, Γ
mcut(ι′, ⊥⊥′)

⊢ Σ

where r = (CutAx, {F , F ′⊥}), F ′⊥ |= F ′′
and ι′, |=

′
are

defined as follows:

– for all G ∈ Σ, if ι(G) = F then ι′(G) = F ′′
, otherwise

ι′(G) = ι(G);
– |=

′ = |= ∪ {{F ′′,G}|{F ,G} ∈ |= }.

In internal reductions, the multicut remains at the root of

the redex. Thus, if a sequence of multicut reductions even-

tually involved only internal reductions, it would not be

productive.

The use of labels in reductions allows us to define in full

details our notion of reduction sequence and fairness.

DefinitionA.5. A reduction sequence is a finite or infinite
sequence σ = (πi , ri )i ∈1+λ with λ ∈ ω + 1, where the πi are
µMLL∞m pre-proofs, the ri are labels identifying multicut

reduction rules and, for all i ∈ λ, πi −→
ri

πi+1. The sequence

is fair if for all i ∈ λ and r such that πi −→
r

π ′
there is some

j ∈ λ such that j ≥ i and πj −→
r

πj+1.

A.4 Cut elimination for µMLL∞

A.4.1 Trace of a reduction sequence
If R is a reduction sequence starting from π , we start by

defining the trace of R to be the subtree of π whose se-

quents occur in the reduction sequence as premisses of some

multicut. Note that each node of the trace corresponds to

a well-formed inference: indeed, if sequents S and S ′ are
premisses of a same inference (which must thus be a tensor

or cut) and S enters a multicut at some point in the reduc-

tion sequence, then S ′ must also enter a multicut – though

not necessarily the same one. However, the trace may have

unjustified sequents: this happens when a sequents S enters

the multicut during the reduction sequence but never leaves

it; it will then be part of the trace but the subtree of π rooted

in S will not.

The unjustified sequents of the trace are called its border
sequents. Note that a border sequent cannot be the conclu-
sion of an axiom rule nor a cut rule in the initial derivation π .
If this were the case, by fairness, it would have been absorbed

by an (Ax)/(mcut) or a (Cut)/(mcut) reduction respectively.

This allows to define the distinguished occurrence of a

border sequent as the principal occurrence of the logical rule

applied to the border sequent in π .
There is another reason why the trace of a reduction se-

quence might not be a proof: its infinite branches may not

be valid. The infinite branches of the trace are also infinite

branches of the proof π , thus they are supported by valid

threads of π , but these threads might not be included in the

trace. We show that this actually never happens.

A.4.2 The bouncing threads of the trace belong to
the trace

This section is dedicated to proving the following theorem.

Proposition A.6. Let T be the trace of a reduction sequence
starting from a proof π , and let β be an infinite branch of T . If
t is a thread of π validating β , then t is also a thread of T .

We now introduce a a useful technical tool called the

residual of a pre-thread.

Definition A.7 (Residual of a pre-thread). Let R be a finite

reduction path starting from π to π ′
and let t be a pre-thread

of π . Let S ′ be the set of sequents of π ′
. We call the residual

of t after the reduction R the pre-thread t ∩ {(F , s,d)|s ∈

S ′,d ∈ {↑,↓}}.

By definition, the length of the residual of t is smaller than

the length of t .

Proposition A.8. Let R be a finite reduction path starting
from π to π ′, let T be its trace. Let t be a b-thread of π and
t ′ its residual after R. Then t ′ is a b-thread. Furthermore, if t
is a B-path of π , then t ′ is a B-path of T , and t ′ has the same
endpoints as t .
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C

⊢ ∆, F ′ ⊢ Γ,G ′

(⊗)
⊢ ∆, Γ, F ′⊗G ′

mcut(ι, ⊥⊥)
⊢ Σ∆, ΣΓ, F⊗G

−→
r

C∆ ⊢ ∆, F ′

mcut(ι′, ⊥⊥)
⊢ Σ∆, F

CΓ ⊢ Γ,G ′

mcut(ι′′, ⊥⊥)
⊢ ΣΓ,G

(⊗)
⊢ Σ∆, ΣΓ, F⊗G

C

⊢ ∆, F ′,G ′

(O)
⊢ ∆, F ′OG ′

mcut(ι, ⊥⊥)
⊢ Σ, FOG

−→
r

C ⊢ ∆, F ′,G ′

mcut(ι′, ⊥⊥)
⊢ Σ, F ,G

(O)
⊢ Σ, FOG

C

⊢ ∆, F ′[σX .F ′/X ]
(σ )

⊢ ∆,σX .F ′

mcut(ι, ⊥⊥)
⊢ Σ,σX .F

−→
r

C ⊢ ∆, F ′[σX .F ′/X ]
mcut(ι′, ⊥⊥)

⊢ Σ, F [σX .F/X ]
(σ )

⊢ Σ,σX .F

C

⊢ ∆
(⊥)

⊢ ∆,⊥β
mcut(ι, ⊥⊥)

⊢ Σ,⊥α

−→
r

C ⊢ ∆
mcut(ι′, ⊥⊥)

⊢ Σ
(⊥)

⊢ Σ,⊥α

(1)
⊢ 1β

mcut(ι, ⊥⊥)
⊢ 1α

−→
r

(1)
⊢ 1α

In the first reduction ((⊗)/(mcut)) we require that ι(F⊗G) = F ′⊗G ′
and take ι′ and ι′′ that coincide with ι on Σ∆ and ΣΓ

respectively, and such that ι′(F ) = F ′
and ι′′(G) = G ′

. In the other reductions ι and ι′ are similarly constrained.

Figure 11. External reduction rules, where r = (ext, F ) and F is the principal occurrence.

C

⊢ ∆, F ⊢ Γ,G
(⊗)

⊢ ∆, Γ, F⊗G

⊢ Θ, F ′⊥,G ′⊥

(O)

⊢ Θ, F ′⊥OG ′⊥

mcut(ι, ⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆, F ⊢ Γ,G ⊢ Θ, F ′⊥,G ′⊥

mcut(ι, ⊥⊥′)
⊢ Σ

where F⊗G |= G ′⊥OG ′⊥
and |=

′
coincides with |= except for F |=

′ F ′⊥
and G |=

′ G ′⊥

C

⊢ ∆, F ′[µX .F ′/X ]
(µ)

⊢ ∆, µX .F ′

⊢ Γ, F⊥[νX .F⊥/X ]
(ν )

⊢ Γ,νX .F⊥
mcut(ι, ⊥⊥)

⊢ Σ

−→
r

C ⊢ ∆, F ′[µX .F ′/X ] ⊢ Γ, F⊥[νX .F⊥/X ]
mcut(ι, ⊥⊥′)

⊢ Σ

where µX .F ′ |= νX .F⊥ and |=

′
coincides with |= except for F ′[µX .F ′/X ] |=

′ F⊥[νX .F⊥/X ]

C

⊢ Γ
(⊥)

⊢ Γ,⊥α
(1)

⊢ 1β
mcut(ι, ⊥⊥)

Σ

−→
r

C ⊢ Γ
mcut(ι, ⊥⊥)

Σ
where ⊥α |= 1β

Figure 12. Principal reductions, where r = (princ, {F , F ′⊥}) with {F , F ′⊥} the principal occurrences that have been reduced.

Proof. It suffices to consider a single reduction step. Most of

the claims follow from a simple inspection of the reduction

rules. For the last one (i.e. t and t ′ have the same endpoints)

we have to additionally rule out the possibility that, if s and

s ′ are the endpoints of t , s gets reduced at some point of the

reduction while s ′ does not: this could only happen if s (or s ′)
was part of an (Ax)/(mcut) reduction, but that would mean

that our B-path can be extended into an h-path (if the axiom
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is at the beginning of the path) or the reverse of an h-path
(if the axiom is at the end). □

Definition A.9. A pre-thread t is a B-path of π if:

• it is a maximal b-path of π , i.e. there is no b-path of π
which contains t as an infix;

• it cannot be extended as an h-path or as the reverse of

an h-path.

Intuitively, the second condition means that the path can-

not be extended by an axiom on either side, possibly after

silent steps corresponding to W weights.

Lemma A.10. Let R = {πi , ri }i ∈ω be a reduction sequence
and let T = Tr (R) be its trace. If t is a B-path of T , then there
is an index i such that the endpoints of t are mcut-connected
in the multicut of πi .

Proof. As reductions are performed, the thread t is simplified

into residuals. As long as these residuals remain non-empty,

they are still b-paths in their respective derivations, and they

keep the same endpoints because the only way to reduce

one endpoint without the other is through an (Ax)/(mcut)
reduction. Moreover, the length of residuals only decreases.

In fact, since t is in the trace, it strictly decreases infinitely

often. Thus, at some point, the two endpoints of t are directly
mcut-connected. □

Proof of proposition 5.3. Let t be a thread validating the branch
β in π . The visible part of t belongs to β , hence its belongs to
the traceT . One needs to prove that the hidden part belongs

also to the trace.

Suppose by contradiction that someH = (Fi , si ,di )1≤i≤n ∈

hp(t) leaves the trace. Thus there is an index j ≤ n such that

sj is a border sequent of the trace. Take the maximal such j.
If dj = ↑ then, since the hidden part H ends in a sequent of

β , there must be a position k with j < k < n such that the

path exits the subtree rooted in sj to re-enter β : we would
then have sk = sj , contradicting the maximality of j. Hence,
dj = ↓.

SinceH is a b-path, anddj =↓, then there is k > j such that
H [j,k] is a b-path: keeping with the intuition that b-paths
are well-bracketed words, the opening bracket at position j
must have a corresponding closing bracket at position k such

that the word in between is well-bracketed, thus a b-path.
By maximality of j, H [j,k] is in the trace.

Let k be maximal with this property. Note that H [j,k] is a
maximal b-path in the trace, since sj is a border sequent and
k is chosen to be maximal. Let us show thatH [j,k] cannot be
extended to an ϵ-path of the trace. Suppose by contradiction

that this is the case. Since sj is a border sequent, H [j,k] can
be extended only on the right. Thus there is l > k such

thatH [j, l] is an ϵ-path. SinceH [j, l] starts with a downward

direction, and since ϵ-paths have the same direction in their

endpoints, we have that dl = ↓. Thus by the same reasoning

as before, there ism > l such that H [l ,m] is a b-path. Thus
H [j,m] is a b-path, which contradicts the maximality of k .
We can now apply lemma A.10 to H [j,k]: at some point

of the reduction, the sequents sj and sk are mcut-connected

through the occurrences Fj and Fk . Note that sk+1 belongs to

T (by maximality of j) and that Fk+1 is a strict sub-occurrence

of Fk (otherwise, this would contradict the maximality of

k). Since Fk+1 is in the trace, this means that Fj has been
reduced which is not possible since sj is in the border of the

trace. □

In order to view a trace as a µMLL∞m proof, we shall devise

a way to justify its border sequents. Intuitively, we will iden-

tify each distinguished occurrence with the true constant

⊤. To achieve this formally, we introduce a truncated proof

system in the next section. Before that, let us mention a key

technical result, which builds on the intuition that b-paths
are simplified during cut elimination.

A.4.3 Truncated proof system
The truncated proof system builds on a truncation that forces

a semantics on particular occurrences.

Definition A.11. A truncation τ is a partial function from

Σ∗
to {⊤, 0} such that:

• For any α ∈ Σ∗
, if α ∈ Dom(τ ), then α⊥ ∈ Dom(τ ) and

τ (α) = τ (α⊥)⊥.

• If α ∈ Dom(τ ) then for any β ∈ Σ+, α .β < Dom(τ ).

Definition A.12. Given a truncation τ , the infinitary proof
system µMLL∞τ is obtained by taking all the rules of µMLL∞

together with the following rule for ⊤:

(⊤)
⊢ Γ,⊤α

with the following proviso. The rules of µMLL∞ only apply

when the address of their principal occurrence is not in the

domain of τ , otherwise the following rule has to be applied:

⊢ τ (α)αi ,∆
(τ )

⊢ φα ,∆
if α ∈ Dom(τ )

The notions of thread and validity are the same as in µMLL∞.

As in [7] we define a classical truth semantics for our

truncated proof system. Truncated occurrences (i.e. whose

address is in Dom(τ )) are assigned their value under τ . The
semantics of a unit ⊤ or 0 is itself. Then this semantics is

propagated to more complex formulas inductively, interpret-

ing O as disjunction, ⊗ as conjunction, and µ,ν as least and

greatest fixed points respectively. The semantics of an oc-

currence F under a truncation τ is noted JFK. We establish,

in the same way as in [7] that µMLL∞τ is sound wrt. this

semantics:

Proposition A.13. If ⊢ Γ is provable in µMLL∞τ , then JFK =
⊤ for some F ∈ Γ.

Since µMLL∞ is a sub-system of µMLL∞τ , we obtain as a

corollary that µMLL∞ is sound wrt. the boolean semantics.
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A.4.4 From traces to truncated proofs
Definition A.14. Let π be a pre-proof. We define the rela-

tions ≈π and |= π as follows:

• F ≈π G if there is an h-path in π from F to G , or from
G to F .

• F |= πG if there is a b-path in π between F and G.

The relations |= π and ≈π are symmetric — note that the

reverse of a b-path from F to G is a b-path from G to F . The
relation ≈π is reflexive.

Proposition A.15. Let R be a reduction. The trace of R can-
not contain an occurrence F and two distinguished occurrences
G and H such that F |= TG and F ≈T H .

Proof. We proceed by contradiction. Let t2 be theb-path from
G to F , starting with a ↓ direction and ending with ↑. Let

t1 be the path from F to H . It must be an h-path, starting
and ending with ↑. Indeed, the reverse of an h-path would

reach H with a ↓ which is absurd since H is a distinguished

occurrence of a border sequent.

Let t be the b-path obtained by gluing the path from G to

F with the path from F toH . This path is a B-path ofT , since
its endpoints are distinguished formulas, so they are in the

border of the trace. By applying lemma A.10, there is a point

in the reduction where the occurrencesG and H are directly

mcut-connected.

Since G and H are distinguished, they are principal oc-

currences of the rules applied to their border sequents in π .
Thus, considering the point of the reduction where they are

directly mcut-connected, there is an internal redex onG and

H . By fairness it is reduced, which contradicts the fact that

they are distinguished occurrences of border sequents. □

By proposition A.15 we can define the truncation and

truncated proof associated to a trace.

Definition A.16. Let R be a reduction sequence and T be

its trace. The truncation τ associated with R is defined by

setting:

• τ (F ) = 0 if there is a distinguished occurrence G such

that F |= TG,
• τ (F ) = ⊤ if there is a distinguished occurrenceG such

that G ≈T F .

Definition A.17. Let T be the trace of a infinite internal

reduction sequence starting from π , and let τ be the trun-

cation associated to this reduction. The truncated proof
πτ is obtained from T by replacing every border sequent

⊢ φα , Γ, whose distinguished occurrence is φα by the follow-

ing derivation:

(⊤)
⊢ ⊤α .i , Γ

(τ )
⊢ φα , Γ

It is now easy to establish productivity of cut elimination.

Proposition A.18. Any fair reduction sequence produces a
µMLL∞ pre-proof.

Proof. By contradiction, consider a fair infinite sequence

of internal multicut reductions starting from π . Let πτ be

the truncated proof of its trace. Since no external reduction

occurs, it means that an occurrence F in the conclusion of

πτ can only be principal in an (Ax)/(mcut) reduction of the

considered sequence. If ι is the injection associated to the

multicut after that reduction, the same observation holds for

ι(F ), and so on. In short, any occurrence F ′ ≈πτ F will never

be principal in a logical rule. Hence we can replace all these

occurrences by occurrences of ⊥. We thus obtain a proof of

the sequent ⊢ ⊥, . . . ,⊥ which contradicts the soundness of

µMLL∞τ . □

A.4.5 Proof of cut elimination
We have shown in proposition A.18 that multicut reduction

is productive. To establish cut-elimination (theorem 5.1), it

only remains to prove that the resulting (cut-free) pre-proof

is actually a valid proof.

Proof of theorem 5.1. Let π be a µMLL∞m proof of conclusion ⊢

A, and π ′
the cut-free pre-proof obtained by proposition A.18,

i.e., the limit of the multicut reduction process. Any branch

of π ′
corresponds to a multicut reduction path. For the sake

of contradiction, assume that π ′
is invalid. It must thus have

an invalid infinite branch β = (si )i ∈ω , corresponding to

an infinite reduction path R. Let τ and θ be the associated

truncation and truncated proof in µMLL∞τ .
We set Froz(β) to be the set of occurrences of β which are

never principal. For convenience we will use the weakening

rule:

⊢ Γ
(W)

⊢ Γ,∆

Weakening is indeed admissible as long as the derivation

on which it is applied contains an infinite branch, since one

can let the weakened occurrences "travel" into this infinite

branch. Without loss of generality, we now assume that all

occurrences of Froz(β) have been weakened away in β .
We define the truncation τ ′ to be the truncation obtained

by extending τ as follows. For every occurrence F1OF2 which

is principal in β , we set, for i ∈ {1, 2}, τ ′(Fi ) = 0 if Fi ∈

Froz(β).
Let β≥i be the suffix of β starting from the ith element.

If ⊢ Γ is the conclusion of β≥i , then for every ∆ ⊆ Γ, we
define coinductively the proof β≥i

⊥(∆) of conclusion ⊢ ∆⊥

as follows. We proceed by case analysis on the rule applied

to the conclusion of β . This rule can be either a logical rule or
a weakening. If the rule is a weakening, then it is simulated

by a weakening rule. If it is a logical rule, then let F be its

principal occurrence. We set ∆′ = ∆ \ {F }. We have either:
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• F = σX .G where σ ∈ {µ,ν }. We set σ to be the dual

of σ , and:

β⊥≥i (∆) =

β⊥≥i+1
(∆′,G[F/X ])

⊢ ∆′⊥,G⊥[F⊥/X ]
(σ )

⊢ ∆′⊥, F⊥

• F = G ⊗H . Suppose wlog. thatG ∈ si+1 (i.e., H left the

branch β). We set ∆′′ = ∆′ ∩ si+1 and:

β⊥≥i (∆) =

β⊥≥i+1
(∆′′,G)

⊢ ∆′′⊥,G⊥

(W)

⊢ ∆′⊥,G⊥,H⊥

(O)

⊢ ∆′⊥, F⊥

• F = GOH and G ∈ Dom(τ ′) and H < Dom(τ ′), or sym-

metrically. We set:

β⊥≥i (∆) =
(τ ′), (⊤)

⊢ G⊥

β⊥≥i+1
(∆′,H )

⊢ ∆′⊥,H⊥

(⊗)

⊢ ∆′⊥, F⊥

• F = GOH , G ∈ Dom(τ ′) and H ∈ Dom(τ ′). In this case

we set:

β⊥≥i (∆) =
(τ ′), (⊤)

⊢ G⊥
(τ ′), (⊤)

⊢ ∆′⊥,H⊥

(⊗)

⊢ ∆′⊥, F⊥

• F = GOH , G < Dom(τ ′) and H < Dom(τ ′). In this case

we set:

β⊥≥i (∆) =

β⊥≥i+1
(G)

⊢ G⊥

β⊥≥i+1
(∆′,H )

⊢ ∆′⊥,H⊥

(⊗)

⊢ ∆′⊥, F⊥

Observe now that β⊥ := β⊥≥0
is a proof in the truncated

proof system µMLL∞τ ′ of conclusion A⊥
. Indeed, its threads

(which are necessarily straight threads since no cuts and

axioms are involved) are the duals of the threads of the

branch β , which are by hypothesis not valid.

Since µMLL∞τ ′ is sound, we have that JA⊥K = ⊤. But the

truncated proof θ is a µMLL∞τ proof of conclusion A, and
again by soundness we have that JAK = ⊤: contradiction. □

A.5 Extending µMLL∞ cut-elimination to the
additives

In this appendix, we give details on the proof of cut-elimination

theorem for full µMALL∞. First, we provide precise defini-
tion for the sliced proof system and the associated partial

cut-reduction relation and introduce persistent slices. We

can then formulate precisely the additive validity criterion

and prove the cut-elimination theorem. The proof schema

of additive cut-elimination follows the same pattern as in

the multiplicative case but we check that the multiplicative

result can indeed be lifted. Most of the definitions can be very

straightforwardly lifted to the additive but for the soundness

result some work has to be done: we show that we do not

need a full soundness result but that a soundness result wrt.

a specific class of derivations, called τ -adapted proofs, which
then allows us to prove productivity of cut-elimination and

preservation of validity by fair-reduction sequences.

A.5.1 Sliced proof system and its cut-reduction
To solve the previous issue, we will make use of slices, orig-

inally introduced by Girard in his seminal paper and later

used in the analysis of interaction and cut-elimination of

linear logic in the setting of Ludics [22, 38] or in the design

of additive proof-nets [23].

Definition A.19 (Additive slice). A sliced pre-proof is a

pre-proof built on a variant of µMALL∞, µSMALL∞, where
the inference rule (N) has been replaced by the following

two rules:

⊢ A, Γ
(N1)

⊢ ANB, Γ

⊢ B, Γ
(N2)

⊢ ANB, Γ

Definition A.20 (Slicing of a pre-proof). To a µMALL∞ se-

quent (pre-)proof, one can associate a set of slices by keeping,

for each (N) inference, only one of its premisses and replac-

ing theN by the corresponding inference in (N1), (N2). More

precisely, a slice of π is any µSMALL∞ derivation obtained

from π by applying corecursively one of the following two

reductions (the other inferences are treated homomorphi-

cally):

π1

⊢ A1, Γ

π2

⊢ A2, Γ
(N)

⊢ A1NA2, Γ

−→

π1

⊢ A1, Γ
(N1)

⊢ A1NA2, Γ

,

π2

⊢ A2, Γ
(N2)

⊢ A1NA2, Γ

that is:

Sl
©­«

π1

⊢ A1, Γ

π2

⊢ A2, Γ
(N)

⊢ A1NA2, Γ

ª®¬ =


π ′
i

⊢ Ai , Γ
(Ni)

⊢ A1NA2, Γ

,
π ′
i ∈ Sl(πi ),
i ∈ {1, 2}


A.5.2 Cut-reductions for sliced proofs
Cut-reduction rules for slices of µSMALL∞ are identical to

those for µMALL∞ except for the sliced additives. In this case,

onemay have a problematic situation when a (N1) shall inter-

act with a (⊕2): cut-elimination cannot be performed. Among

the several ways to cope with this problem, we choose here

to introduce a special inference, (Ω), a generalized axiom

rule allowing to derive any sequent, which denotes the fact

that a bad interaction occurred.

(Ω)
⊢ Γ

This does not impact the technical development since this

serves essentially the purpose of defining those slices which

avoid the mismatch.

Considering the (Ω) inference, cut-reductions for slices
are specified as follows

9
:

9
This reduction is straightforwardly extended to multicuts and some care

shall be taken in treating (Ω), in particular any cut involving (Ω) is reduced

to (Ω) itself as standard in ludics.
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Definition A.21 (Cut reductions for slices). The sliced ad-

ditive principal case is reduced as follows, if {A⊥
1
NA⊥

2
,A′

1 ⊕

A′
2} ∈ |= , with r = (princ, {A⊥

1
NA⊥

2
,A′

1 ⊕ A′
2}).

C

πi

⊢ A⊥
i , Γ

(Ni)

⊢ A⊥
1
NA⊥

2
, Γ

π ′
j

⊢ A′
j , Γ

(⊕j)
⊢ A′

1 ⊕ A′
2,∆

mcut(ι, ⊥⊥)
⊢ Σ

−→
r



(Ω)
⊢ Σ if i , j

C

πi

⊢ A⊥
i , Γ

π ′
i

⊢ A′
i ,∆

mcut(ι, ⊥⊥′)
⊢ Σ

if i = j

where |=

′ = |= ∪ {{A⊥
i ,A

′
i }}

Notions of b-paths and ϵ-paths can be naturally extended

to additive slices.

A.5.3 Persistent slices
To state the validity criterion for the additives, one needs to

describe persistent slices that will never produce a (Ω):

Definition A.22 (Persistent slice). Given a slice π , a (Ni)

rule of principal formula A1NA2 occurring in π is said to

be well-sliced if no b-path starting down from the A1NA2

occurrence of this sequent ends in a A⊥
1
⊕ A⊥

2
which is the

principal formula of a (⊕j) inference with i , j. A slice is

persistent if all its (Ni) occurrences are well-sliced.

Lemma A.23. In a persistent slice, (Ni) rules are character-
ized by the following property: (i) either there exists a b-path
starting in Ai , (ii) or there is a maximal pre-thread t starting
from Ai such that w(t) is prefix of a word in B ends in the
conclusion sequent or in the conclusion of a ⊤ rule (iii) or no
such maximal pre-thread t (starting from Ai such that w(t) is
prefix of a word in B) exists and they mutually extend into an
infinite pre-thead.

Proof. By case distinction, the fourth case being disabled by

the condition of well-sliced (Ni) rules. □

In establishing the cut-elimination result, an intermediate

proof system will be useful, that of partially sliced µMALL∞

pre-proofs, in which both (N), (N1) and (N2) occur:

The reader will notice that the additive N-inferences oc-

curring in the trace of a reduction path will always be sliced

inferences ((N1) or (N2)).

Proposition A.24. All reducts of a persistent slice are (Ω)-
free.

Proof. The property relies on the simple observation that (i)

any cut-reduction step from a persistent slice results in a

persistent slice and (ii) if there is a reduction step from slice

S which creates a (Ω) rule, then S is non-persistent. □

Proposition A.25 (Pull-back property). If π →∗ π ′ (resp.
π →ω π ′) and S ′ is a slice of π ′, then there is a slice S of π
such that S →∗ S ′ (resp. S →ω S ′).

Proof. In the case of the finitary reduction, this is a well-

known property of slices.

For the infinite fair reductions, it results from the fact

that fair reductions are strongly convergent in the sense of

infinitary rewriting. As a consequence, for any position in

the resulting slice, one can find a finite prefix of the reduction

sequence which produces it and we can trace it back to a set

of slices of the original proof which can produce this prefix.

The intersection of all those sets define a non-empty set of

slices of which any element can be considered. The obtained

slice is of course persistent since it reduces to S ′. □

A.5.4 Additive bouncing validity criterion
Definitions 4.1 and 4.5 of (pre-)threads directly adapt to the

additives as they are not specific to the multiplicative frag-

ment.

Definition A.26 (Validity). A slicing is valid if it is persis-

tent and if it is valid in the multiplicative sense
10
. A µMALL∞

pre-proof π is valid if all its persistent slicings are valid.

A.5.5 Additive cut-elimination theorem
We now state the cut-elimination theorem and give a schema

of the proofs.

TheoremA.27. Fair infinite cut-reduction on µMALL∞ proofs
is productive and produces valid proofs.

Schema of the proof For cut-elimination, the proof goes

by contradiction: assuming that we have a non productive

fair cut-elimination, we may assume that it consists only of

internal reduction steps and the trace of this cut-elimination

is actually a slice with open premisses. It is actually con-

tained in a persistent slice of π . As a consequence, there is
an infinite branch of π which is entirely visited by the trace

and this branch is visited by a thread thanks to additive valid-

ity. By adapting the truncated proof system to the additives

and proving a restricted soundness result, we transform the

valid persistent slice in a truncated derivation of the empty

sequent by pruning the conclusion formulas which are never

principal in the trace, from which results the contradiction.

For proving validity, it goes also by contradiction: assume

the produced cut-free proof of ⊢ F π ′
contains a persistent

slice S ′ containing an invalid branch β ′. By the pull-back

property, we find a persistent slice S of π reducing to S ′

which is valid by assumption. From the invalid branch β ′

one can build a cut-free proof β ′⊥ of ⊢ F⊥ together with a

truncation τ ′ ensuring that F is interpreted a 0 while validity

of S and adaptation wrt. τ ′ ensures that F is interpreted as

⊤, a contradiction.

10
That is, every infinite branch of the slicing is visited by a valid thread

having its visible part contained in the branch.
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Wenow establish productivity of µMALL∞ cut-elimination:

Theorem A.28. Fair reduction sequences of µMALL∞ are
productive.

To do so, first notice that the following notions of appen-

dix A.4 can be straightforwardly adapted to the additive case

(or to additive slices):

• Definition A.7 and Lemma A.10 adapt without change

to persistent slices as it is not specific to the multiplica-

tive case (but persistency is needed).

• Proposition 5.3 applies to the trace of a persistent slice

π .
• Missing and unjustified sequents can be extended to

reduction paths of µMALL∞ pre-proofs (non-sliced)

for the (N) connective as done already in [7].

• While truncations need no adaptation, the truncated

semantics shall be adapted to the additives by adding

the following clauses:

J(φNψ )α KE = JφαlKE ∧ JψαrKE ,

J(φ ⊕ψ )α KE = JφαlKE ∨ JψαrKE

• The truncated proof system is extended in the most

natural way (as in[7]).

• Truncation induced by a reduction path is lifted to

the additive case and it is well-defined since the addi-

tive inference would simply add a tricky case of miss-
ing sequent for a N premiss erased when reducing a

(Cut)/(N) cut but there cannot be an ϵ-path in this

case. Therefore the only case to treat is that of distin-

guished occurrences of unjustified sequents of type 1

which works as for the multiplicative.

As for adapting soundness (Prop. A.13), we actually do

not need the full soundness result but only soundness wrt. a

class of derivations that we introduce now:

DefinitionA.29. Given a truncationτ , aτ -adapted µMALL∞τ
derivation π is a µMALL∞τ pre-proof such that (i) for all

(φNψ )α occurring in π , either α ∈ Dom(τ ) or {αl,αr} ∩
τ−1(⊤) , ∅. (ii) given a (N) occurring in π of conclusion

sequent s and principal formula (φ1Nφ2)α , if αl < Dom(τ )
(resp. αr < Dom(τ )) there is no b-path starting down from

the (φ1Nφ2)α occurrence of s ending in a (φ⊥
1
⊕ φ⊥

2
)β which

principal formula of a (⊕j) inference with i , j.

We will use soundness for τ -adapted proofs:

PropositionA.30. Given a truncationτ and a validτ -adapted
µMALL∞τ derivation π of conclusion ⊢ Γ, there exists a formula
F ∈ Γ such that JFK = ⊤.

Proof. The soundness proof for µMLL∞τ of proposition A.13

can be extended to this setting: first notice that the relation

≤ on pointed sequents that is used to transfer the marking

through ϵ-path can be extended and we will use it in the

following consistently with the underlying slice τ -adaptation
suggests.

Construction of (si ) shall now treat the additive inferences:

(i) for the (⊕) rule, nothing is to be changed since the rule

is unary: si+1 is the premiss of si ; (ii) for the (N) inference

on si of principal occurrence G = HNK , we reason as in [7]:

since [fi (G)] = 0 and fi (G) is of the form HmNKm where

Hm and Km are marking ofH and K respectively, then either

[Hm] = 0 or [Km] = 0. Moreover, by τ -adaptation, we know
that the address of one of H ,K is in τ−1(⊤) and therefore we

necessarily choose the other disjunct suppose w.l.o.g. that

[Hm] = 0. We set si+1 to be the premiss of si that contains H .

The definition of the sequence of markings (fi ) is trivially
extended (more precisely the clauses for the N and ⊕ are

those used in [7].

The multiplicative soundness argument can be carried

over in this setting since by τ -adaptation, the branch we

have built is part of the persistent valid slice induced by τ
(that is the purpose for the τ -adaptation requirement) and we

therefore have a thread for which the decreasing sequence

of ordinal can be applied concluding soundness for those

derivations. □

Note that even this restricted soundness for the trun-

cated µMALL proof-system ensure soundness for the (un-

truncated) µMALL∞ b-valid proofs. Indeed, assuming some

valid proof π derives a sequent S which can be valued to

⊥. One can define a truncation τ for which π is τ -adapted
and such that for any N formula which is principal in π
and interpreted as false, at least one of its premisses inter-

preted as false is not in the domain of the truncation, which

is possible thanks to inhabitation of any persistent slice by

a bouncing thread. From which the previous result can be

applied providing the desired contradiction. Hence:

TheoremA.31. µMALL∞ is sound for the boolean semantics.

We can finally establish productivity of cut-elimination:

Proof. Let π be a µMALL∞ valid proof. By contradiction, as-

sume that π has a fair infinite sequence of internal reductions.

Wlog. we can assume that all reductions steps from π are

internal.

For each (N) inference ofπ , the trace of this cut-elimination

contains at most one premiss ie. it is contained in a slice: one

can actually find a persistent slice S which contains the trace.

The previous remark ensures that for each N formula

principal in the trace, the truncation τ of the reduction path

contains one of its subformulas in its domain and that the

truncated proof πτ associated with the trace is τ -adapted.
Since the reduction contains only internal reductions, the

conclusion formulas of πτ are never principal in the πτ and

therefore we can erase them resulting in π ′
τ which is a τ -

adapted µMALL∞τ valid derivation of the empty sequent

which cannot be by soundness (prop A.30). □
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Theorem A.32. Given π a µMALL∞ proof, any fair mcut-
reduction from π produces a µMALL∞ proof.

Proof. Let π be a µMALL∞m proof of conclusion ⊢ F and π ′

the cut-free pre-proof resulting from the previous property.

By contradiction, assume π ′
is non-valid. Thatmeans there

exists a slice S ′ of π ′
(π ′

is cut-free so there is no persistency

assumption applying here) and an infinite branch β ′ of S ′

such that β ′ is supported by no valid thread. By the pull-back
property, S ′ has been built by reducing a persistent slice S
of π and therefore β ′ corresponds to a reduction path from

S . Since we are working in a persistent additive slice, the

multiplicative validity can be extended in order to extract an

infinite branch β invalid in S . The construction of the proof

β ′⊥ used to obtain the contradiction is lifted to the additive

case as follows:

• first one shall define truncation τ ′ not only by consid-

ering the occurrences of F1OF2 which are principal in

β ′, but also those of F1 ⊕ F2 and extend the truncation

to τ ′(Fi ) = 0 if F1 ⊕ F2 is the principal occurrence of a

(⊕j) rule with i , j.
• then the construction of the dual of branch β , β⊥, is
extended with the following clauses to the definition

of page 20:

– F = GNH . Suppose wlog. that G ∈ si+1 (i.e., H left

the branch β).

β⊥≥i (∆) =

β⊥≥i+1
(∆′,G)

⊢ ∆′⊥,G⊥

(⊕1)

⊢ ∆′⊥, F⊥

– F = G ⊕ H and G ∈ Dom(τ ′) and H < Dom(τ ′). We

set:

β⊥≥i (∆) =
(τ ′), (⊤)

⊢ ∆′⊥,G⊥

β⊥≥i+1
(∆′,H )

⊢ ∆′⊥,H⊥

(N)

⊢ ∆′⊥, F⊥

β ′⊥ is cut-free and valid (therefore valid in the sense of

[7]) since its threads are dual of the threads of β (which are

invalid).

β ′⊥ is τ ′-adapted (as β⊥ is cut-free, this amounts to check-

ing that the appropriate premiss of each (N) has its formula

in the domain of τ ′ which is by design) and by proposi-

tion A.30, we conclude the desired contradiction since one

the one hand we have JFK = ⊤ and on the other hand we

have JF⊥K = ⊤. □

A.6 (Un)decidability properties
In this appendix, we prove the undecidability of the general

bouncing criterion and introduce a hierarchy of decidable

sub-criteria.

Proof of decidability for the bounded height criterion
We start by detailing some structure of proofs, via the notion

of shortcut.

Definition A.33. A shortcut is a finite pre-thread t = uv
where w(u) ∈W ∗A andv is a b-path. A shortcut t isminimal
if no strict prefix of t is a shortcut.

Notice that if t is a shortcut, then t is an ϵ-path.
We will note (F , s) a pointed sequent: s is a sequent of

the proof, and F ∈ s . We want to be able to follow threads

where shortcuts have been removed. These threads behave

like straight threads, except on cuts where they are allowed

to jump from the starting point of a shortcut to its end. We

will now formalize a description of such “jumping” threads.

Let Σjump = {W, i, l, r, cl , cr }, where cl (resp. cr ) stands
for left (resp. right) cut occurrences. A word τ ∈ Σ∗

jump will

be called a relative address. If P is a pre-proof and (F , s)
is a pointed sequent of P , then a relative address τ points

to another pointed sequent τ@(F , s) in P . We define this by

induction on τ :

• If τ = ϵ then τ@(F , s) = (F , s).
• If τ =Wτ ′ then τ@(F , s) = τ ′@(F , s ′), where s ′ is the
premiss of s containing F .

• If τ = iτ ′, F = σX .G (for some σ ∈ {µ,ν }) is principal
in s with premiss s ′, then τ@F = τ ′@(G[F/X ], s ′).

• If τ = lτ ′ (resp. τ = rτ ′), F = G ⋆H (for some ⋆ ∈

{O, ⊗}) is principal in s , then τ@(F , s) = τ ′@(F ′, s ′)
where F ′ = G (resp. F ′ = H ) and s ′ is the premiss of s
containing F ′

.

• If τ = clτ
′
(resp. τ = crτ

′
), and the rule applied to s

in P is a cut, then τ@(F , s) = τ ′@(F ′, s ′), where F ′
is

the occurrence introduced by the cut on the left (resp.

right) premiss s ′ of this cut.
• Otherwise, τ@(F , s) is undefined.

Lemma A.34. Let P be a circular pre-proof. If t is a minimal
shortcut from (F , s) to (F ′, s ′), then F ≡ F ′. Moreover, there is a
relative address τ such that (F ′, s ′) = τ@(F , s). This τ is called
the effect of t and noted effect(t). For each pointed sequent
(F , s), there is at most one minimal shortcut starting in (F , s)

Proof. Since the weight of minimal shortcut starts withW ∗A,
no choice is possible before an axiom is encountered. When

going downwards, constraints will be pushed on the con-

straint stack, and the shortcut is again uniquely defined.

When going upwards (i.e. after having seen a cut, and before

the next axiom), two cases can occur. Either the constraint

stack is not empty, and therefore it uniquely determines the

path followed by the shortcut, or it is empty, which marks

the end of the minimal shortcut t . The relative address τ is

given by the position of the end of t relatively to the begin-

ning of t in the proof tree. The fact that F ≡ F ′
follows from

the fact that any shortcut is an ϵ-path. □

If P is a pre-proof and (F , s) is a pointed sequent in P , we
note short(F , s) the minimal shortcut starting in (F , s) if it
exists. If not, we fix short(F , s) := ϵ . We also fix effect(ϵ) = ϵ .
We will abbreviate effect(short(F , s)) by effect(F , s) to lighten
notations.
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Remark 2. If P is a circular pre-proof, and (F , s), (F ′, s ′) are
two pointed sequents of P corresponding to the same occurrence
in the finite graph of P , then effect(F , s) = effect(F ′, s ′).

This remark allows us to compute only finitely many ef-

fects: one for each pointed sequent in the finite proof graph.

Definition A.35. An s-thread is a sequence (Fi , si ,↑)i ∈ω
that obeys the same rules as a thread going only upwards,

with some relaxation in the constraints between (Fi , si ,↑)
and (Fi+1, si+1,↑) defining a pre-thread. Indeed we add a

new clause allowing the s-thread to take minimal shortcuts:

(Fi+1, si+1) can be reached from (Fi , si ) following the relative
address effect(Fi , si ), i.e. (Fi+1, si+1) = effect(Fi , si )@(Fi , si ).
The weight of an s-thread is defined by generalizing the

definition of weight of a thread, matching this new clause

with wi = W. The notion of visible part and validity of an

s-thread is then induced by this definition.

Notice that the visible part of an s-thread is obtained by

simply removing steps introduced by this new clause, corre-

sponding to shortcuts.

Lemma A.36. An infinite branch is validated by a thread if
and only if it is validated by an s-thread.

Proof. The s-thread is obtained from the thread by compress-

ing minimal shortcuts and replacing them with the new

clause. Conversely, the thread can be obtained from the s-

thread by replacing the new clause with minimal shortcuts.

This transformation preserves the visible part. □

We now give the proof of Theorem 6.5, stating that any

valid proof of µMLLω is a k-proof for some k ∈ N.

Proof. Let P be a valid proof of µMLLω . Each pointed sequent
in P can be annotated with its effect, and with the height of

its minimal shortcut (or with (ϵ, 0) if this minimal shortcut

does not exist).

By Lemma A.36, all infinite branches of P are validated

by s-threads, following effects annotating P . Let k be the

maximal height annotating a pointed sequent in P . We obtain

that P is a k-proof. □

The rest of the section is devoted to proving Theorem

6.6, stating that given a pre-proof P and an integer k , it is
decidable whether P is a k-proof.

Proof. Let us note

effectk (F , s) =
{
effect(F , s) if short(F , s) has height ≤ k
ϵ otherwise

For each (F , s) in the graph, effectk (F , s) can be computed in

a finite time. Indeed, it suffices to follow the only possible

thread starting in (F , s) in the graph of P , until we find a

minimal shortcut or we detect a failure. Reasons for failure

are:

• The weight does not begin withW∗A, i.e. an unfolding

happen before the first axiom,

• the constraint stack gets higher than k ,
• we detect a loop: the same pointed sequent is visited

twice with identical stack content.

This corresponds to turning the automaton Athread into

a DFA, by bounding the size of the stack to k , and accept

words of the formW∗AΣ∗C by empty stack. This allows us

to annotate each pointed sequent (F , s) with effectk (F , s).
We can now verify that the pre-proof is a k-proof, using a

nondeterministic parity automatonAs reading branches of P
and guessing the existence of an s-thread. This automaton is

identical to the one in [16] for straight threads, except that it

can follow effects. While following the relative address given

by an effect, the thread is considered hidden, and the action

preformed on it does not influence the accepting condition

of As . Since the length of effects is globally bounded (there

are finitely many of them), the relative adresses to follow can

be stored in the state space of the automaton. The pre-proof

P is a k-proof if and only if As accepts all branches. □

A.6.1 Details on the undecidability proof
We show that the validity condition is already undecidable

for the proof system µMLLω .
We reduce from the halting problem for two-counter ma-

chines (2CM), known to be Σ0

1
-complete [30].

Here is a brief outline of the proof.

We start by recalling the definition of 2CM in the next

section. These are finite-state deterministic machines manip-

ulating two counters, able to perform Zero test, increment

and decrement on each counter.

We then show how to encode the halting problem of a

2CMM using bouncing threads. The idea is to use the con-

straint stack to encode the value of counters, and position

in the graph to encode the control state. Gadgets allow to

increment or decrement each counter. The main difficulty

lies in the tests performed by the machine: we want to de-

sign a conditional branching on the thread, depending on

the value of the constraint stack. This can be done, but be-

cause of the linearity of the proof system, we cannot avoid

leaving some extra constraints encoding the results of the

tests, that will be collected by the thread later. Since we want

to finish with empty constraint, we need to erase this extra

information. To do this, we add a second gadget perform-

ing the computation in a dual way: results of tests are fed

to the thread, that rewinds the computation while erasing

these extra constraints. We can finally exit the detour with

(almost) no constraints, and perform a visible ν-unfolding
on the main branch, before looping back to the root of the

proof.

The global pre-proof will be a valid proof according to the

criterion if and only if the machineM halts.
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Two Counter Machines
A 2CM M is a tuple (Q,q0,qf ,δ ) where Q is a finite set of

states, q0 is the initial state, qf is the final state, and δ is the

transition function. The machine has access to two coun-

ters storing nonnegative integer values. The counters are

initialized to 0.

The possible actions of the machine are the following,

where τ ∈ {1, 2} identifies one of the counters:

• Incτ (q) : increment counter τ , and jump to state q
• Decτ (q) : decrement counter τ , and jump to state q
• Testτ (qZ ,qP ): if the current value of counter τ is 0,

jump to qZ , else jump to qP .

Let Act = {Incτ (q) | τ ∈ {1, 2},q ∈ Q} ∪ {Decτ (q) | τ ∈

{1, 2},q ∈ Q} ∪ {Testτ (qZ ,qP ) | τ ∈ {1, 2},qZ ,qP ∈ Q} be

the set of possible actions.

The transition function ofM is a function δ : Q \ {qf } →
Act, specifying which action is executed when each state

is reached. No action is mapped to qf , since the run stops

when qf is reached.

A configuration of themachineM is a triple (p,k[1],k[2]) ∈
Q × N2

specifying the current state and the values for the

two counters.

A run of the machine M is a sequence of configurations

(pi ,k[1]i ,k[2]i )0≤i≤n such that p0 = q0, k[1]0 = k[2]0 = 0,

pn = qf , and consistent with δ , i.e. for all i ∈ [0,n − 1] :, we

have

• if δ (pi ) = Incτ (q) then pi+1 = q and k[τ ]i+1 = k[τ ]i +1.

• if δ (pi ) = Decτ (q) then pi+1 = q and k[τ ]i+1 = k[τ ]i −
1.

• if δ (pi ) = Testτ (qZ ,qP ), then k[τ ]i+1 = k[τ ]i , and
– if k[τ ]i = 0 then pi+1 = qZ .
– if k[τ ]i > 0 then pi+1 = qP .

In all cases the other counter is left unchanged, i.e. k[3 −
τ ]i+1 = k[3 − τ ]i

Without loss of generality, we can also assume that the

run ends with both counter values equal to 0, i.e. k[1]n =
k[2]n = 0.

The next theorem states that the halting problem is unde-

cidable for Two Counter Machines.

Theorem A.37. [30] Given a Two Counter Machine M =

(Q,q0,qf ,δ ), it is undecidable to determine whetherM has a
run, by a reduction from Turing Machines halting problem.

From machines to proofs
We will now encode the halting problem for 2CM into the

problem of deciding whether a pre-proof is a proof.

We fix a machineM = (Q,q0,qf ,δ ).
We will build a pre-proof P such that the leftmost infinite

branch can be validated by a bouncing thread if and only if

there exists a run of the machineM . All the other branches

of P will be validated by non-bouncing threads.

We will use throughout the proof the formulas F ,G , where
F = νX .(XOX ), G = F⊥ = µX .(X⊗X ), and auxiliary formu-

las A = νX .(XOX )⊗X and B = µX .(XOAOA). Their ad-
dresses will sometimes be omitted, keep in mind that a letter

can represent different occurrences in a proof tree.

The thread will always follow a formula F when going

upwards, and G when going downwards. The formula A
will be used to ensure that all infinite branches except the

leftmost one are validated by non-bouncing threads.

The conclusion of the proof P is the sequent G, F ,B.
The idea of the construction is to use a bouncing thread

to encode a run ofM , by storing the current configuration

onM in the stack of constraints that the thread must satisfy.

The general shape of the pre-proof P is given in Figure 13.

By convention, formulas introduced in cuts will always be

F on the left and G on the right. This means that a thread

going upwards following a formula F will always turn right

on cuts, bounce on axioms in the right part, and finally come

back to visit the left part of the cut.

Auxiliary formulas are grayed to emphasize the trajectory

of the thread of interest.

The thread on the branch with infinitely many (⋆) must

use formula F , as it is the only one performing a ν -unfolding.
This means it has to go through the two cuts and bounce

on axioms in πM and πR . All other infinite branches are

validated by non-bouncing threads.

As described in the outline, the goal of πM is to use the

bouncing thread stemming from F to simulate a run ofM in

a deterministic way, accumulating “garbage constraints” for

every test. The role of πR is to erase these garbage constraints,

by mirroring the behaviour of πM .

After πR , the formula F is unfolded twice before looping

back to the root. The first unfolding is used to match a left-

over constraint, that cannot be erased in πR for technical

reasons detailed later. The second unfolding contributes to

the visible part of the thread.

Encoding of counters in the constraint stack
We describe here how the pre-proof πM will be able to simu-

late a run ofM via a thread following formula F .
When F is unfolded, a thread following F can either go to

the left disjunct or to the right, corresponding to weights il
or ir. We will use the alias l for il and r for ir, since unfold-
ings will always alternate with left/right choices. We will

refer to the word u ∈ {l, r}∗ storing the current constraints
as the constraint stack. For instance if the constraint stack
u is of the form lv , then when the thread goes up and en-

counters an unfolding of F , it has to follow the left disjunct,

and update the constraint stack from u to v . Constraints are
updated according to the stack of the pushdown automaton

Athread described in Section 6.1.

We are now ready to detail how configurations of the

machine will be encoded in the constraint stack. A counter
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(Ax)
⊢ Gl, Fl

⊢Grl, Frl,B
(Ax)

⊢ Grr, Frr
(µ, ν, O, ⊗)

⊢ Gr, Fr,B
(µ, ν, O, ⊗)

⊢ G, F ,B

πR

⊢ G, F ,A
(Cut)

⊢ G, F ,B,A

πM

⊢ G, F ,A
(Cut)

⊢ G, F ,B,A,A
(µ, O)

⊢ G, F ,B

Figure 13. The main pre-proof P

of value n will be encoded by the sequence of constraints

(rlnr). Therefore, when the thread is simulating the run of

M , its constraint stack is of the form (rlnr)(rlmr) to denote

that k[1] = n and k[2] =m.

The current state is not encoded in the constraint stack,

but in the current position of the thread in the pre-proof: for

instance if the thread is in the node labeled (q0) in the proof

graph, then the current state of the corresponding run is q0.

“Garbage constraints” are constraints that will not be part

of the constraint stack during the simulation of the run of

M , but will be pushed on the stack by the thread when the

simulation has succeeded, i.e. after the node labeled (qf )
has been reached by the thread. In order to exit the cut, the

thread must go down from (qf ) to (q0), and that is where

garbage constraints may be pushed. These extra constraints

will encode the results of all tests performed during the

computation. The result of a test is r if the tested counter

was Zero, and l otherwise, so in general it is a letterX ∈ {r, l}.
Garbage constraints will be of the form rX for a test on the

first counter, and of the form rlk rrX for a test on second

counter, where X is the result of the test and k is the value

of the first counter.

Auxiliary metarules for πM
In order to make the construction readable and modular, we

start by describing metarules that will be used as building

blocks throughout the section.

Rules relative to A

Wewill use the∞ notation to denote an infinite tree obtained

by unfolding a proof of A. This yields a valid cut-free proof

tree that contains no axiom.

We explicit this from sequent Γ,A, where Γ can be any

sequent.

(∞)
⊢ Γ,A ≡ (△)

(♠) (♠)
(⊗, O)

⊢ A, (AOA)⊗A
(ν )

(♠) ⊢ A,A
(⊗, O)

⊢ Γ, (AOA)⊗A
(ν )

(△) ⊢ Γ,A

We will often want to duplicateA using its O connective. Let

us define the following metarule, valid for any sequent Γ,A:

⊢ Γ,A,A
(OA)

⊢ Γ,A
≡

⊢ Γ,A,A
(O)

⊢ Γ,AOA
(∞)

⊢ A
(⊗)

⊢ Γ, (AOA)⊗A
(ν )

⊢ Γ,A

We will define an alias for a cut rule allowing to duplicate

the A formula on both sides, noted (Acut). The effect of rule

(Acut) is simply a cut for formulas F ,G, so it can be consid-

ered as such for threads of interests following F upwards

and G downwards.

⊢ G, F ,A ⊢ G, F ,A
(Acut)

⊢ G, F ,A
≡

⊢ G, F ,A ⊢ G, F ,A
(Cut)

⊢ G, F ,A,A
(OA)

⊢ G, F ,A

Copying left and right constraints
We now describe a helpful metarule: the expanding rule

(exp), represented in Fig. 14. It allows to unfold F and G
once, pairing the left (resp. right) unfolding of F with the left

(resp. right) unfolding of G. This ensures that if the thread
goes left (resp. right) upwards on F , it will also go left (resp.

right) downwards on G. This can therefore be understood

as a copying operator: the bit of the constraint stack will be

the same before and after bouncing on the current cut. As

before, we will gray formulas that will always be avoided by

the thread of interest.

In most constructions, the left (resp. right) conjunct of F
will be paired with the left (resp. right) conjunct ofG when

both are expanded, so we will often omit the labels. The

left expansions will be represented on the left branch of the

proof.

We give metarule (l) (resp. (r)) forcing the reading and

copying of a left (resp. right) constraint on the stack. This

is enforced by preventing the thread from bouncing on an

axiom if the forbidden bit is read, thanks to the axiomless

infinite proofs described by the (∞) metarules.
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⊢ Gl, Fl,A ⊢ Gr, Fr,A
(exp)

⊢ G, F ,A
≡

⊢ Gl, Fl,A ⊢ Gr, Fr,A
(⊗)

⊢ Gl⊗Gr, Fl, Fr,A,A
(µ, ν, O)

⊢ G, F ,A,A
(OA)

⊢ G, F ,A

Figure 14. the metarule (exp)

⊢ G, F ,A
(l)

⊢ G, F ,A
≡ ⊢ Gl, Fl,A

(∞)
⊢ Gr, Fr,A

(exp)
⊢ G, F ,A

⊢ G, F ,A
(r)

⊢ G, F ,A
≡

(∞)
⊢ Gl, Fl,A ⊢ Gr, Fr,A

(exp)
⊢ G, F ,A

Constraint introduction
We might also want to push a right constraint without pop-

ping one. For instance this is needed at the beginning when

the stack is empty. This can be done via the followingmetarules

πri and (ri), where i stands for ”Introduction”. We define both

variants because we might want to use one or the other de-

pending on the context.

Let πri be the following pre-proof:

πri

⊢ G, F ,A
≡

(∞)
⊢ Gl,A

(Ax)
⊢ Gr, F

(⊗)
⊢ Gl⊗Gr, F ,A

(µ)
⊢ G, F ,A

This pre-proof allows a thread to go upwards following F
without any event, bounce on an axiom, and go downwards

following G while pushing a right constraint.

We now combine πri with a cut in order to go back to

a thread going upwards, having a constraint stack starting

with an extra r.

⊢ G, F ,A
(ri)

⊢ G, F ,A
≡ ⊢ G, F ,A

πri

⊢ G, F ,A
(Acut)

⊢ G, F ,A

This means that the effect of the rule (ri) on the constraint

stack can be summarized by ϵ 7→ r, adding an extra r at the
top of the constraint stack.

The above rule can be similarly defined to introduce a l
constraint instead, by simply switching the G, F axiom to

the left premiss instead of the right in πri . This dual version
will be noted by πli and metarule (li).

The initialization metarule
We describe here the first metarule encountered in πM . Its

role is to initialize the constraint stack to encode two coun-

ters with value 0, and go to the (q0) node to start the simula-

tion of the run ofM .

It must therefore allow the thread to enter with empty

constraint stack and exit the cut with a constraint stack

(rr)(rr). This is straightforward now that we have the (ri)
rule:

(q0) ⊢ G, F ,A
(init)

⊢ G, F ,A
≡

(q0) ⊢ G, F ,A
(ri)

⊢ G, F ,A
(ri)

⊢ G, F ,A
(ri)

⊢ G, F ,A
(ri)

⊢ G, F ,A

In the following, we describe how to build the pre-proof

πM , by connecting nodes of the form (p) to their successors

in the computation. So for each p ∈ Q , a pre-proof of “local
root” (p) will be built with hypotheses of the form (q) with
q ∈ Q . Once such a pre-proof has been built for each node

(p), the hypotheses (q) are connected to their corresponding

“local root” node trough back loops.

Encoding the action Inc

We now assume that we are at a node of the proof graph

labeled by (p), where p is a state of the machineM , and that

the current constraint stack encodes the counter value as

described earlier, i.e. (rlk[1]r)(rlk [2]r).
Assume δ (p) = Inc1(q) with q ∈ Q . We will build a

metarule (Inc1) updating the configuration by acting on the

constraint stack, and ending up in node (q):

(q) ⊢ G, F ,A
(Inc1)

(p) ⊢ G, F ,A
≡

(q) ⊢ G, F ,A

πli

⊢ Gr, Fr,A
(r)

⊢ G, F ,A
(Acut)

(p) ⊢ G, F ,A

Notice that in order to bounce on the axiom, the thread

must see r while going up, and rl on the way down. The rest

of the current stack (of the form l∗r(rl∗r)) is left unchanged.
This rule turns a stack of the form ru into rlu, thereby in-

crementing the first counter. We will abbreviate this action

r 7→ rl.
We might also need to increment the second counter,

which is deeper in the stack. For this, let us devise another

auxiliary metarule (counter), allowing us to skip the part of

the stack encoding the first counter.
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⊢ G, F ,A
(counter)

⊢ G, F ,A
≡

(†) ⊢ Grl, Frl,A ⊢ Grr, Frr,A
(exp)

(†) ⊢ Gr, Fr,A
(r)

⊢ G, F ,A

This metarule processes constraints of the form (rl∗r) on
the way up, and these same constraints will be copied back

when the thread returns downwards from the formula G
of the hypothesis. This means that this gadget allows the

right premiss sequent to access the encoding of the second

counter, while leaving the first one untouched.

We can now give the pre-proof allowing to increment the

second counter, by simply adding the (counter) metarule at

the appropriate place:

(q) ⊢ G, F ,A
(Inc2)

(p) ⊢ G, F ,A
≡

(q) ⊢ G, F ,A

πli

⊢ Gr, Fr,A
(r)

⊢ G, F ,A
(counter)

⊢ G, F ,A
(Acut)

(p) ⊢ G, F ,A

The effect of this metarule is (rl∗r)r 7→ (rl∗r)rl
This achieves the treatment of states performing an incre-

ment. For all nodes (p) where p performs an increment of

counter τ before going to q, we link node (p) of the proof
with node (q) through the metarule (Incτ ).

Encoding the action Dec

Assume δ (p) = Dec1(q) with q ∈ Q .
This means wewant to build a metarule with action rl 7→ r

on the stack, in order to decrease the value of the first counter

by 1.

This is done by the following metarule (Dec1):

(q) ⊢ G, F ,A

(∞)
Gl, Fl, Frr,A

(Ax)
Gr, Frl

(⊗)
⊢ Gl⊗Gr, Fl, Frl, Frr,A

(ν, O)
⊢ Gl⊗Gr, Fl, Fr,A

(µ, ν, O)
⊢ G, F ,A

(Acut)
(p) ⊢ G, F ,A

Notice that if the thread does not start with rl, it gets lost
in an (∞) proof, corresponding to a failure of the run.

If δ (p) = Dec2(q), the construction is similar, using again

the metarule (counter) to leave the first counter untouched

and access the second one. This is done by the following

metarule (Dec2).

(q) ⊢ G, F ,A

(∞)
Gl, Fl, Frr,A

(Ax)
Gr, Frl

(⊗)
⊢ Gl⊗Gr, Fl, Frl, Frr,A

(ν, O)
⊢ Gl⊗Gr, Fl, Fr,A

(µ, ν, O)
⊢ G, F ,A

(counter)
⊢ G, F ,A

(Acut)
(p) ⊢ G, F ,A

Encoding the action Test

It remains to describe how to modify the constraint stack for

actions of type Test.

Test on the first counter
Let us assume first that δ (p) = Test1(qZ ,qP ).

Notice that a zero test can be performed by simply testing

whether the stack starts with rr or with rl, i.e. by identifying
the second letter of the stack. Therefore, these first two letters

can be used to branch to the result of the test. However,

since they must be still be part of the encoding, we need to

reintroduce them in the stack after having read them. We

define the metarule (Test1) accordingly:

(qP ) ⊢ G, F ,A
(li)

⊢ G, F ,A
(ri)

⊢ Grl, Frl,A

(qZ ) ⊢ G, F ,A
(ri)

⊢ G, F ,A
(ri)

⊢ Grr, Frr,A
(exp)

⊢ Gr, Fr,A
(r)

(p) ⊢ G, F ,A

This metarule allows the thread to go to (qZ ) if the counter
was zero, or to (qP ) if the counter was strictly positive, leav-

ing the stack unchanged in both cases.

Notice that this metarule also leaves some garbage con-

straints in the following sense: when going back down from

(qZ ) (resp. (qP )) to (p), the thread will push extra constraints

rr (resp. rl) on top of the pile, due to the (exp) and (r) rule
in (Test1).

Test on the second counter
We now assume that δ (p) = Test2(qZ ,qP ), and we want to

encode the corresponding metarule, linking (p) to (qZ ) and
(qP ) in the pre-proof πM .

This is more tricky, because we need to access the relevant

bit encoding the result of this test, and copy the value of the

first counter after it to restore the stack. This corresponds

to copying an unbounded amount of information, so this

cannot be done directly in the same way as in the previous

construction for Test1.

We therefore design auxiliary gadgets allowing us to copy

the information bit by bit. The result T of a test will be

encoded by T = rrr for zero and T = rrl for not zero.
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The pre-proof πshift, represented Fig. 15 has effect lk+1T 7→

lkT l, with T ∈ {rrr, rrl}. The proof can be built thanks to

the following table, that explicits the transformation of the

relevant prefix constraint stack:

before: ll lrrl lrrr
after: ll rrll rrrl

Notice that all axioms in the right part of the cut in πshift

are paired according to the table above.

The main interesting phenomenon in πshift occurs on the

(•) loop. In the case where the result starts with l, this loop
allows to enter the cut again, after the popping of one l
constraint. This will therefore perform the wanted trans-

formation on the constraint stack. Let us take an explicit

example to see this gadget at work: consider a thread enter-

ing πshift with constraint u = llrrr. The thread will bounce

on axiom Gll, Fll, leaving this constraint unchanged, and it

will enter the (•) node with constraint lrrr. This time, the de-

tour will enter πaux, and will pop lrrr and push rrrl onto the

stack. When exiting the cut, the thread will have a constraint

starting with r and therefore will immediately bounce on

the axiom. When going back, it will push back the first l on
the way down to the original root. It will finally exit with

constraint lrrrl, which is the wanted result of the mapping

lkT 7→ lk−1T l.
We can now iterate πshift in order to move the result T on

top of the stack.

Let us start with an auxiliary metarule (copyl) (Fig. 16)
copying the first letter of the stack if it is l, and do nothing

if the stack starts with r. I.e. it has action
{
l 7→ ll
r 7→ r on the

stack. It will actually be the case that if the constraint starts

with r, it starts with rr.
We now build the proof πmove (Fig. 17), iterating πshift,

allowing to copy an unbounded quantity of information past

the test resultT . The proof πmove has the following action on

the stack:

{
lkT 7→ lkT lk

r 7→ r . The principle is to first duplicate

the leading l, so that the extra occurrence can be used to

test whether we want to perform a shifting using πshift. If

the stack starts with r (actually with rr), then the (copyl)
metarule will do nothing, and the thread will just bounce on

the right axiom. This allows us to iteratively call πshift, until

we reach the encoded resultT . When exiting this gadget, the

last πshift leaves constraint T lk , and one extra l is collected
by each (⋆) loop. That is why the constraint afer πmove is

lkT lk .
Another auxiliary metarule (prep) (Fig. 18) will allow us

to prepare the input for πmove from the standard counter

encoding, i.e. performing action rlk rrX 7→ rlk (rrX )rrX , with

X ∈ {r, l}. The parenthesized expression is the T that we

will want to move to the top. Notice that this corresponds

to a copying of the counter rlk r, followed by a mapping

rrX 7→ rX rrX . The dots in Fig. 18 represents (∞) proofs, not

detailed for concision.

Let us now combine these gadgets to define a metarule

(result), moving the test result at the wanted place, while

producing extra stack content before it. This metarule has

action rlkT 7→ lkT lkT , with T ∈ {rrl, rrr}, and leaves a

garbage constraint r that will be seen later on the way down.

⊢ G, F ,A
(result)

⊢ G, F ,A
≡

⊢ G, F ,A

πmove

⊢ G, F ,A
(Acut)

⊢ Gr, Fr,A
(r)

⊢ G, F ,A
(prep)

⊢ G, F ,A

We can detail the stackmodifications in (result): (rlk )T
(prep)
−−−−−→

rlkTT
(r)
−−→ lkTT

πmove
−−−−→ lkT lkT .

We can finally build the metarule for Test2, performing

the wanted test and leaving garbage constraint of the form

rlk rrX with X ∈ {l, r}.

(♣) ⊢ Gl, Fl,A

(qP ) ⊢ G, F ,A
(ri)

⊢ Grrl, Frrl,A

(qZ ) ⊢ G,F ,A
(ri)

⊢ Grrr, Frrr,A
(exp)

⊢ Grr, Frr,A
(r)

⊢ Gr, Fr,A
(exp)

(♣) ⊢ G, F ,A
(result)

(p) ⊢ G, F ,A

The principle of this gadget is the following: after prepar-

ing the stack via the (result) metarule, the (♣) loops and the

(r) rule first pop the garbage prefix lk rr. The following bit

X ∈ {l, r} is the wanted test result, and allows us to enter

(qZ ) or (qP ) with a remaining stack that encodes the next

configuration of the machine (after adding the leading r to
complete the valid encoding).

Final state qf
It remains to describe what happens to a thread entering the

node labelled by the final state qf . We will simply allow it to

finally bounce on an axiom, thereby starting a downwards

path that will gather all the garbage constraints, exit πM , and

enter the second cut and the proof πR .
We just need to evacuate the formula A from the sequent.

Since we know that the constraint stack starts with r, this
can be done in the following way:

(∞)
⊢ Gl, Fl,A

(Ax)
⊢ Gr, Fr

(µ, ν, O, ⊗)
(qf ) ⊢ G, F ,A
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πshift

⊢ G, F ,A
≡

(•) ⊢ Gl, Fl,A
(Ax)

⊢ Gr, Fr
(µ, ν, O, ⊗)

⊢ G, F ,A

(Ax)
⊢ Gll, Fll

(∞)
⊢ Glr, Fr,A

(µ, ⊗)
⊢ Gl, Fll, Fr,A

πaux

⊢ Gr, Flr,A
(⊗)

⊢ Gl⊗Gr, Fll, Flr, Fr,A,A
(µ, (ν, O)2)

⊢ G, F ,A,A
(OA)

⊢ G, F ,A
(Acut)

(•) ⊢ G, F ,A

πaux

⊢ Gr, Flr,A
≡

(∞)
⊢ Grl, Flrl,A

(Ax)
⊢ Grrll, Flrrl

(∞)
⊢ Grrlr,A

(µ, ⊗)
⊢ Grrl, Flrrl,A

(Ax)
⊢ Grrrl, Flrrr

(∞)
⊢ Grrlr,A

(µ, ⊗)
⊢ Grrr, Flrrr,A

(µ, ν, O, ⊗)
⊢ Grr, Flrr,A

(exp)
⊢ Gr, Flr,A

Figure 15. The pre-proof πshift with its auxiliary πaux

⊢ G, F ,A
(copyl)

⊢ G, F ,A
≡

⊢ G, F ,A

(Ax)
⊢ Gll, Fl,A

(∞)
⊢ Glr,A

(µ, ⊗)
⊢ Gl, Fl,A

(Ax)
⊢ Gr, Fr

(⊗)
⊢ Gl⊗Gr, Fl, Fr,A

(µ, ν, O)
⊢ G, F ,A

(Acut)
⊢ G, F ,A

Figure 16. The metarule (copyl)

πmove

⊢ G, F ,A
≡

(⋆) ⊢ G, F ,A πshift

(Acut)
⊢ Gl, Fl,A

(Ax)
⊢ Gr, Fr

(µ, ν, O, ⊗)
⊢ G, F ,A

(copyl)
(⋆) ⊢ G, F ,A

Figure 17. The metarule πmove

⊢ G, F ,A
(prep)

⊢ G, F ,A
≡

⊢ G, F ,A

(∞)
Gl, Fl, Frl,A

(Ax)
⊢ Grlrrl, Frrl

(Ax)
⊢ Grrrrr, Frrr . . .

(⊗, µ, OA)
∗

⊢ Gr, Frrl, Frrr,A
(µ, ⊗)

⊢ G, Fl, Frl, Frrl, Frrr,A,A
((ν, O)3, OA)

⊢ G, F ,A
(counter)

⊢ G, F ,A
(Acut)

⊢ G, F ,A

Figure 18. The metarule prep

Exiting the proof πM
This concludes the description of the proof πM , starting with

(q0) ⊢ G, F ,A
(init)

⊢ G, F ,A
, and built as described by linking state-

labelled nodes using rules we defined for the action per-

formed by each state according to δ .
This construction ensures the following Lemma:

Lemma A.38. A thread entering πM with empty constraint
will be able to exit it if and only if M has a run. If this is the
case, the constraint after the exit is a wordu1u2 . . .uk r4, where
k is the number of tests performed, and ui encodes the results
X ∈ {l, r} of the i th test in the following way:

• if the test is on the first counter, then ui = rX ,
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• if the test is on the second counter, then ui = rlk rrX ,
where k is the value of the first counter at the time of
the test.

Proof. It is straightforward to prove by induction of the

length of the thread/run: a thread entering πM with empty

constraint can reach node (p) with constraint (rlnr)(rlmr) if
and only if their is a partial run ofM reaching state p with

counter values n,m. Moreover, the garbage constraints that

will be pushed back from (p) on the way back to the root of

πM encode the results of tests as described in the statement

of the Lemma. The r4
following garbage constraints is the

constraint stack reached in (qf ) at the end of computation,

encoding two counters of value 0, as we assumed M ends

with this configuration. □

However, we want the thread to be back on the main

branch with a bounded number of constraints. We therefore

must erase all these garbage constraints. This will be the role

of the pre-proof πR .

The reverse simulation proof πR
The goal of the proof πR will be to erase the garbage con-

straints instead of creating them. To achieve this, we will aim

at building a dual version of the pre-proof πM . A convenient

way to think about it is the following: we try to reproduce

the proof πM , but considering this time that the thread of in-

terest t ′ originates in the sequentG . Therefore it will always
follow G upwards and F downwards. We call such a thread

a G-thread, and the previous version used in πM a F -thread.
The principle is that if the G-thread t ′ creates garbage

constraints u, i.e. has a visible weight u ∈ Σ∗
then its dual,

the identical thread considered in reverse and originating

in F , has a visible weight dual(u), where the function dual :

Σ∗ → Σ∗
is defined as follows. Let v 7→ v̄ : Σ∗ → Σ∗

be

the length-preserving morphism defined on letters by the

following correspondence:

x : l r i ¯l r̄ ī A C W

x̄ :
¯l r̄ ī l r i A C W

Let vR be the reverse of a word v , defined by induction:

ϵR = ϵ and if (u,a) ∈ Σ∗ × Σ then (ua)R = a(uR ).
We now define dual(u) = ūR .

Lemma A.39. Let t be a thread from φα to ψβ , and dual(t)
be the identical thread considered in the other direction, from
ψβ to φα . Then vp(tR ) = dual(vp(t))

Let tM be the F -thread of the main pre-proof P going

through the πM cut and ending with the cut rule, and tR
be the analog F -thread for the πR cut. We want to build πR
such that vp((tR )R ) = vp(tM ). By Lemma A.39, this implies

vp(tR ) = dual(vp(tM )), and moreover vp(tM ) ⊆ {¯l , r̄ , ī}∗, and
w(tM ) ends with C . Therefore vp(tMtR ) = ϵ .

In the following, we will describe how gadgets of πM
are dualized to create πR , where the run of the machine is

simulated by a G-thread.

Dual auxiliary metarules
Rules relatives toA are left unchanged, so we will freely used

(∞), (OA), (Acut).

The rules (exp), (r), (l) also stay identical.

The main difference will occur when we want to introduce

or delete a constraint, since they will now be reversed. In par-

ticular, in the previous construction, we saw that introducing

a constraint could be done at will without any assumption,

but removing a constraint as done in (Dec1) needed the pres-
ence of a known bit occuring before the constraint to be

removed.

We therefore redefine constraint introduction gadgets πr′i
and (r′i ), with the notable change that the effect on stack is

now r 7→ rr, i.e. we always assume that the stack starts with

r. We keep the convention for cuts, i.e. the newly introduced

cut formulas are written on the inside (left F and right G).

πr′i

⊢ G, F ,A
≡

(∞)
Gl, Fl, Frl,A

(Ax)
Gr, Frr

(⊗)
⊢ Gl⊗Gr, Fl, Frl, Frr,A

(ν, O)
⊢ Gl⊗Gr, Fl, Fr,A

(µ, ν, O)
⊢ G, F ,A

⊢ G, F ,A
(r′i)

⊢ G, F ,A
≡

πr′i

⊢ G, F ,A ⊢ G, F ,A
(Acut)

⊢ G, F ,A

It is easily verified that aG-thread entering with constraint
r will exit with constraint rr.

As before, we also define the left analog πl′i and (l′i ), with
effect r 7→ rl.

Initialisation of πR
We now want to initialize the dual thread. However, since

the introduction rule needs to assume an r constraint already
on the stack, we will need to assume this for the G-thread
entering πR . This means that in the end, the F -thread exiting
πR viaG (the real thread of interest) will have a leftover con-

straint r, that we will need to evacuate on the main branch,

as done in the main pre-proof P .
Thus, we only need to add three r constraints to the one

already assumed:

(q′
0
) ⊢ G, F ,A

(init′)
⊢ G, F ,A

≡

(q′
0
) ⊢ G, F ,A

(r′i)
⊢ G, F ,A

(r′i)
⊢ G, F ,A

(r′i)
⊢ G, F ,A

We will use the (p ′) notation with p ∈ Q for state-labelled

nodes of πR , to distinguish them from nodes in πM .
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Dual encoding of action Inc

Assume δ (p) = Inc1(q) with q ∈ Q . We want to define a

metarule (Inc
′
1
) updating the configuration reached in (p ′)

by acting on the constraint stack, and ending up in node (q′),
with effect r 7→ rl on the stack. Therefore it suffices to use

the l introduction defined before:

(q′) ⊢ G, F ,A
(Inc′1)

(p ′) ⊢ G, F ,A
≡

(q′) ⊢ G, F ,A
(l′i)

(p ′) ⊢ G, F ,A

To manipulate the second counter instead, we can use the

(counter) rule which is identical as in πM . Thus the metarule

(Inc′2) is defined as follows:

πl′i

⊢ G, F ,A
(counter)

⊢ G, F ,A (q′) ⊢ G, F ,A
(Acut)

(p ′) ⊢ G, F ,A

The effect of this metarule on a G-thread is (rl∗r)r 7→

(rl∗r)rl

Dual encoding of action Dec

We now need to encode a metarule having the effect rl 7→ r
on G-thread.

This is done by metarule (Dec′1), described here:

(Ax)
⊢ Grl, Fr

(∞)
⊢ Grr,A

(µ, ⊗)
⊢ Gr, Fr,A

(r)
⊢ G, F ,A (q′) ⊢ G, F ,A

(Acut)
(p ′) ⊢ G, F ,A

To manipulate the second counter, again we just need to

have a (counter) metarule, as shown in metarule (Dec′2):

(Ax)
⊢ Grl, Fr

(∞)
⊢ Grr,A

(µ, ⊗)
⊢ Gr, Fr,A

(r)
⊢ G, F ,A

(counter)
⊢ G, F ,A (q′) ⊢ G, F ,A

(Acut)
(p ′) ⊢ G, F ,A

Dual encoding of action Test

If δ (p) = Test1(qZ ,qP ), we can define the Test rule in a

similar way as in πM . However, extra care is needed for

introduction rules, as they cannot be used as freely as before.

Thus, we first define the metarule (rXcop) (Fig. 19), with

effect rX 7→ rX rX on a G-thread, for X ∈ {l, r}.
We can now give the metarule (Test

′
1), that uses the first

rX output by (rXcop) to perform the zero test:

(q′P ) ⊢ Grl, Frl,A (q′Z ) ⊢ Grr, Frr,A
(exp)

⊢ Gr, Fr,A
(r)

⊢ G, F ,A
(rXcop)

(p ′) ⊢ G, F ,A

If theG-thread enters with constraint prefix rr, this prefix
will be copied, the first copywill be read, put in the garbage to

be collected later, and theG-thread will enter (q′Z ). Similarly

if the constraint started with rl, the G-thread will go to (q′P )
with unchanged stack and garbage rl.

To treat the case of the second counter, i.e.δ (p) = Test2(qZ ,qP ),
we just need to describe dual versions of all gadgets from

(Test2) in πM . We design them so that the effect on the G-
thread is exactly the same as the one of their original version

on the F -thread.
The only difficulty to keep in mind is that the introduction

rules now assume that the constraint stack starts with r. We

start with π ′
shift

described Fig. 20, where the pairing between

G and F formulas in axioms is recalled in the table:

before: ll lrrl lrrr
after: ll rrll rrrl

For readability, we separated π ′
aux, described Fig. 21:

As before, the effect of π ′
shift

on the G-thread is lk+1T 7→

lkT lwithT ∈ {rrr, rrl}. We continue with the dual (copy′l) of

(copyl), represented Fig. 22, with action

{
l 7→ ll
rr 7→ rr . Notice

that we now use the fact that in the present context, a stack

starting with r actually starts with rr, as mentioned when

defining the gadget (copyl).
We turn to π ′

move, represented Fig. 23, iterating πshift with

effect lkT 7→ lkT lk and rr 7→ rr, functioning along the same

principle as πmove:

The rule (prep′) (Fig. 24) will again allow us to prepare the

input for π ′
move, using the same pairing as before. This rule

has effect (rlk r)rX 7→ (rlk r)rX rrX , with X ∈ {l, r}. We will

note ΓF for a sequent composed of several non-pertinent oc-

currences of formula F , for concision. We continue with the

metarule (result′), having action rlkT 7→ lkT lkT on the G-
thread, with T ∈ {rrl, rrr}, and leaving a garbage constraint

r that will be seen later on the way down.

⊢ G, F ,A
(result′)

⊢ G, F ,A
≡

π ′
move

⊢ G, F ,A ⊢ G, F ,A
(Acut)

⊢ Gr, Fr,A
(r)

⊢ G, F ,A
(prep′)

⊢ G, F ,A

Since the dual form of the (ri) rule used in (Test2) needs

extra care, we will devise another auxiliary gadget rule (rXri)
(Fig. 25), with effect rX 7→ rX r with X ∈ {l, r}. This is to
restore the stack content after the bit X encoding the test

result to its original value starting with r. We can finally

build the metarule for Test2 (Fig. 26), performing the wanted
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⊢ G, F ,A
(rXcop)

⊢ G, F ,A
≡

(∞)
⊢ Gl, ΓF ,A

(Ax)
Grl, Frlrl

(Ax)
Grr, Frrrr

(µ, ⊗)
Gr, Frlrl, Frrrr

(µ, ⊗)
⊢ G, ΓF , Frlrl, Frrrr,A

((ν, O)4)
⊢ G, F ,A

Figure 19. The metarule (rXcop)

π ′
aux

⊢ Gl, Fll, Frrll, Frrrl,A
(∞)

⊢ Gr, Flr, Frl, Frlr, Frrr,A
(µ, ⊗)

⊢ G, Fll, Flr, Frl, Frlr, Frrll, Frrlr, FrrrlFrrrr,A,
((ν, O)6)

⊢ G, F ,A

(•) ⊢ Gl, Fl,A
(Ax)

⊢ Gr, Fr
(µ, ν, O, ⊗)

⊢ G, F ,A
(Acut)

(•) ⊢ G, F ,A

Figure 20. The pre-proof π ′
shift

π ′
aux

⊢ Gl, Fll, Frrll, Frrrl,A
≡

(Ax)
⊢ Gll, Fll

(∞)
⊢ Glrl,A

(Ax)
⊢ Glrrl, Frrll

(Ax)
⊢ Glrrr, Frrrl

(µ, ⊗)
⊢ Glrr, Frll, Frrl

(µ, ⊗)
⊢ Glr, Frll, Frrl,A

(µ, ⊗)
⊢ Gl, Fll, Frrll, Frrrl,A

Figure 21. The pre-proof π ′
aux

⊢ G, F ,A
(copy′l)

⊢ G, F ,A
≡

(Ax)
⊢ Gl, Fll

(∞)
⊢ Grl, Flr, Frl,A

(Ax)
⊢ Grr, Frr

(µ, ⊗)
⊢ Gr, Flr, Frl, Frr,A

(⊗)
⊢ G, Fll, Flr, Frl, Frr,A

((ν, O)2)
⊢ G, F ,A ⊢ G, F ,A

(Acut)
⊢ G, F ,A

Figure 22. The metarule (copy′l)

test and leaving garbage constraint of the form rlk rrX with

X ∈ {l, r}. After entering (Test
′
2) with stack content u, theG-

thread will reach node (q′Z ) (resp. (q
′
P )) if the second counter

value is zero (resp. not zero), with same stack content u.

Dual final state q′f
As before, when reaching the node (q′f ), we just need bounce

on an axiom after evacuating the formulaA from the sequent.

The same gadget as in πM can be used:

(∞)
⊢ Gl, Fl,A

(Ax)
⊢ Gr, Fr

(µ, ν, O, ⊗)
(q′f ) ⊢ G, F ,A

Correctness of the pre-proof P and conclusion
By construction, if the machine M does not halt, then the

F -thread entering πM will never exit it, so it cannot validate

the branch looping through the (⋆) nodes, and the pre-proof
P is not a proof. Conversely, if M halts, then the F -thread
will exit πM with a constraint u encoding the results of the

tests as described in Lemma A.38. Moreover, the G-thread
t ′ entering πR with a single constraint r will exit on the

same node with the same constraints u. This means that

the F -thread going through πM and πR will exit πR with a

single constraint r. This constraint will be popped on the

first unfolding of F , and the second (left) unfolding of F will

be on the visible part of the thread. The thread then reaches

node (⋆), and loops back to the root to go through the same

path infinitely many times.

Thus the F -thread starting in the root validates the branch

containing infinitelymany (⋆) nodes. All other infinite branches
of P are validated by non-bouncing thread following formu-

las A, that can also be originated in the root of P , in the

formula B.
Therefore, we showed the following theorem:
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π ′
move

⊢ G, F ,A
≡

π ′
shift

⊢ G, F ,A (⋆′) ⊢ G, F ,A
(Acut)

⊢ Gl, Fl,A
(Ax)

⊢ Gr, Fr
(µ, ν, O, ⊗)

⊢ G, F ,A
(copy′l)

(⋆′) ⊢ G, F ,A

Figure 23. The pre-proof π ′
move

⊢ G, F ,A
(prep′)

⊢ G, F ,A
≡

(∞)
Gl, ΓF ,A

(Ax)
⊢ Grl, Frlrrl

(Ax)
⊢ Grr, Frrrrr

(µ, ⊗)
⊢ Gr, Frlrrl, Frrrrr

(µ, ⊗)
⊢ G, ΓF , Frlrrl, Frrrrr,A

((ν, O)5)
⊢ G, F ,A

(counter)
⊢ G, F ,A ⊢ G, F ,A

(Acut)
⊢ G, F ,A

Figure 24. The metarule (prep′)

⊢ G, F ,A
(rXri)

⊢ G, F ,A
≡

(∞)
⊢ Gl, ΓF ,A

(Ax)
Grl, Frlr

(Ax)
Grr, Frrr

(µ, ⊗)
Gr, Frlr, Frrr

(µ, ⊗)
⊢ G, ΓF , Frlr, Frrr,A

((ν, O)3)
⊢ G, F ,A

Figure 25. The metarule (rXri)

(qP ) ⊢ G, F ,A (qZ ) ⊢ G, F ,A
(Test

′
2)

(p) ⊢ G, F ,A
≡

(♣′) ⊢ Gl, Fl,A

(qP ) ⊢ Grrl, Frrl,A (qZ ) ⊢ Grrr, Frrr,A
(exp)

⊢ Grr, Frr,A
(r)

⊢ Gr, Fr,A
(rXri)

⊢ Gr, Fr,A
(exp)

(♣′) ⊢ G, F ,A
(result′)

(p) ⊢ G, F ,A

Figure 26. The metarule (Test
′
2)

Theorem A.40. The pre-proof P is a proof if and only if the
2CMM has a run.

By Theorem A.37, we obtain that deciding whether a circu-

lar pre-proof of µMLLω is a proof is undecidable, and more

precisely it is Σ0

1
-hard. In the next section, we show that

this problem is recursively enumerable, so we obtain Cor.

6.7, stating that deciding validity of a circular pre-proof of

µMLLω is Σ0

1
-complete.
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