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Continuous-time stochastic analysis of rumor spreading with

multiple operations

François Castella ∗ Bruno Sericola † Emmanuelle Anceaume ‡ Yves Mocquard §

May 30, 2022

Abstract

In this paper, we analyze a new asynchronous rumor spreading protocol to deliver a rumor to all the
nodes of a large-scale distributed network. This protocol relies on successive pull operations involving
k different nodes, with k ≥ 2, and called k-pull operations. Specifically during a k-pull operation, an
uninformed node a contacts k−1 other nodes at random in the network, and if at least one of them knows
the rumor, then node a learns it. We perform a detailed study in continuous-time of the total time Θk,n

needed for all the n nodes to learn the rumor. These results extend those obtained in a previous paper
which dealt with the discrete-time case. We obtain the mean value, the variance and the distribution of
Θk,n together with their asymptotic behavior when the number of nodes n tends to infinity.

keywords. Rumor spreading time; k-pull protocol; Poisson Process; Markov chain; Asymptotic analysis.

1 Introduction

Randomized rumor spreading or gossiping is an important communication mechanism that allows the dis-
semination of information in large-scale and open networks. A large-scale and open network comprises a
collection of sequential computing entities (e.g., processes, processors, nodes, agents, peers) that join and
leave the system at any time, and communicate with one another by exchanging messages. Randomized ru-
mor spreading was initially proposed by Deemers et al. [6] for the update of a database replicated at different
sites, and has then been adopted in many applications due to its robustness and simplicity. In contrast to
reliable communication broadcasts which must provide agreement on the broadcast value with possibly addi-
tional ordering guarantees on the delivery of updates from different sources, a randomized rumor spreading
procedure provides reliability only with some probability. A randomized spreading rumor protocol describes
the rules required for one or more pieces of information known by an arbitrary node in the network (we call
such a node an informed node) to be spread to all the nodes of the network. The push and pull protocols
are the basic operations used by the nodes to propagate an information over the entire network [6, 8]. With
the push operation, an informed node contacts some randomly chosen node in the system, and gives it the
rumor while with the pull operation, an uninformed node contacts some random node and asks for the
rumor. Note that in both cases the contacted node may already know the rumor or not. The same node
can perform both operations according to whether it knows or not the rumor, which corresponds to the
push-pull protocol, or performs only one, either a pull or push operation, which corresponds to the pull or
push protocols respectively. One of the important questions raised by these protocols is the spreading time,
that is the time needed for the rumor to be known by all the nodes of the network.
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To answer such a question, one first needs to specify how synchronized nodes are, or in other words
whether we suppose that all the nodes of the system act in a synchronous way or not. In the former case,
the system model is synchronous while in the latter case it is asynchronous. The most studied one is the
synchronous model. This model assumes that all the nodes of the network act synchronously, which allows
the algorithms designed in this model to divide time in synchronized rounds. During each synchronized
round, each node a of the network selects at random one of its neighbors b and either sends the rumor to
b if a knows it (push operation) or gets the rumor from b if b knows the rumor (pull operation). In this
model, the spreading time of a rumor is defined as the number of synchronous rounds necessary for all the
nodes to know the rumor. When the underlying graph is complete, it has been shown by Frieze [11] that the
number of rounds divided by log2(n) converges in probability to 1 + ln(2) when the number n of nodes in
the graph tends to infinity. Further results have been established (see for example [20, 16] and the references
therein), the most recent ones resulting from the observation that the rumor spreading time is closely related
to the conductance of the graph of the network, see [12]. Investigations have also been done in different
topologies of the network as in [2, 5, 10, 18], in the presence of link or nodes failures as in [9], in dynamic
graphs as in [3], and in general graphs in terms of vertex expansion [13]. Another alternative consists in
letting the nodes make more than one call during the push or pull operations [19]. The authors show that
the push-pull protocol takes O (log n/ log log n) rounds in expectation if the number of neighbors of a node
is chosen independently according to a power law distribution with exponent β ∈ (2, 3).

In large scale networks, that is in networks involving several thousands of nodes, assuming that all nodes
act synchronously is a very strong assumption. Thus several authors, including [14, 17, 1, 7, 21], suppose
an asynchronous model, that is a model in which nodes asynchronously trigger operations with randomly
chosen nodes in the system, either to push, pull or push-pull information. The asynchronous gossip protocol
is usually modeled by a time-continuous stochastic (Markovian) process [14, 17, 1, 7, 21]. This type of
stochastic processes belongs to the death process category, which has many applications in demography,
queuing theory, performance engineering, epidemiology, biology and many other distributed applications.
For instance, in [4], an analysis of the SI (Susceptible-Infected) model –corresponding to an asynchronous
push-pull model– allows us in some cases to explicit the state probabilities by using the Laplace transform
on the Kolmogorov forward equation. However, these techniques prove ineffective when the transition rate
is non-linear (Laplace transform inversion becomes a tricky exercise). Most of the rumor spreading protocols
studied in the asynchronous models rely either on the push/pull operations or on the push operations.
Indeed, pushing the information allows us to initiate the rumor very quickly but then struggles to reach the
few uninformed nodes. In contrast, the pull algorithm attracted very little attention because this operation
was long considered inefficient to spread a rumor within a large scale network [23]. It is actually very useful
in systems fighting against message saturation (see for instance [25]). The ineffectiveness of the pull protocol
stems from the fact that it takes some time before the rumor reaches a phase of exponential growth.

The objective of this paper is to further develop this line of inquiry by studying the k-pull protocol in
the continuous-time case. This protocol counterbalances the slow initiation of pull-based rumour spreading
protocols by increasing the chances of learning the rumor with each operation. A local clock following an
exponential distribution with rate λ is associated with each uninformed node of the system. Each time the
clock of an uniformed node rings, this node contacts k − 1, with k ≥ 2 distinct nodes, chosen at random
uniformly among the n − 1 other nodes. If at least one of these contacted nodes knows the rumor, the
initiator of the k-pull operation learns the rumor and clears its clock.

The remainder of the paper is organized as follows. In Section 2, we present the asynchronous k-pull
protocol and introduce the random variable Θk,nwhich represents the total amount of time needed for all
the nodes to know the rumor. We prove in Section 3 that the mean number of k-pull operations needed to
inform all the n nodes of the system, assuming that a single node initially knows the rumor, that is E(Θk,n),
is equivalent to k ln(n)/(k − 1)λ when the number of nodes n in the system tends to infinity. We also show
that the limiting variance of Θk,n is equal to (1 + 1/(k− 1)2)π2/6λ2 when n tends infinity. The distribution
of the rumor spreading time Θk,n is analyzed in Section 4. We provide explicit limiting distributions of
Θk,n −E(Θk,n) and Θk,n − k ln(n)/(k − 1)λ when n tends to infinity.
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2 The model

We recall in the next subsection the discrete-time model of the k-pull rumor spreading. This model, which
has been analyzed in [22], is important because the continuous-time model of the k-pull rumor spreading is
based on the discrete-time model, even if the analysis is, as we will see, much more complicated and needs
more refined results in continuous-time.

2.1 The discrete-time model

We consider a complete network of size n in which each node may be asked for a piece of information (pull
event). The algorithm starts with a single node informed of the rumor. At each discrete time m ≥ 1, a single
uninformed node s contacts k− 1 distinct nodes, chosen at random uniformly among the n− 1 other nodes.
If at least one of these k − 1 contacted nodes knows the rumor then node s learns it. Otherwise nothing
happens. This is a k-pull operation.

To analyze this k-pull model, we introduce the discrete-time stochastic process Y = {Ym, m ≥ 0}
where Ym represents the number of informed nodes at time m. The stochastic process Y is a discrete-time
homogeneous Markov chain with n states where states 1, . . . , n − 1 are transient and state n is absorbing.
From the description of the protocol, we deduce that when the Markov chain Y is in state i at time m, then
at time m+ 1, either it remains in state i if none of the k − 1 chosen nodes were informed of the rumor, or
it transits to state i+ 1 if at least one of the k − 1 chosen nodes were informed of the rumor. We denote by
P the transition probability matrix of Markov chain Y . The non zero entries of matrix P are thus Pi,i and
Pi,i+1, for any i = 1, . . . , n− 1. Obviously, we get, for any i = 1, . . . , n− 1, Pi,i = 1− Pi,i+1, where

Pi,i =



(
n− 1− i
k − 1

)
(
n− 1

k − 1

) if i ≤ n− k

0 otherwise.

Indeed, given that Yt = i, i.e., when i nodes are informed of the rumor at time t, we have Yt+1 = i if and
only if, at time t + 1, the set of k − 1 chosen nodes (i.e., k − 1 among n − 1) must be chosen among the
n− 1− i non informed nodes.

We denoted in [22] by Tk,n the random variable defined by

Tk,n = inf{t ≥ 0 | Ym = n}

which represents the spreading time, that is the total number of k-pull operations needed for all the nodes
in the network to know the rumor.

The spreading time distribution can thus be expressed as a sum of independent random variables Sk,n(i),
where Sk,n(i) is the sojourn time of Markov chain Y in state i. For all i = 1, . . . , n − k, Sk,n(i) follows a
geometric distribution with parameter pk,n(i) = 1− Pi,i and Sk,n(i) = 1, for i = n− k + 1, . . . , n− 1. Thus
Tk,n verifies

Tk,n =

n−1∑
i=1

Sk,n(i) = k − 1 +

n−k∑
i=1

Sk,n(i).

Observe that

pk,n(i) =


1−

k−1∏
h=1

(
1− i

n− h

)
if 1 ≤ i ≤ n− k

1 if n− k + 1 ≤ i ≤ n− 1.

(1)
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2.2 The continuous-time model

Based on this discrete-time model, a local clock following an exponential distribution with rate λ is associated
with each uniformed node of the system. Each time the clock of an uniformed node s rings, this node contacts
k − 1, with k ≥ 2, distinct nodes, chosen at random uniformly among the n− 1 other nodes. If at least one
of these contacted nodes knows the rumor, node s learns it and clears its clock (i.e., s remains contactable
but does not contact other nodes). As in the discrete-time case, we suppose that the k-pull operation, i.e.,
the time for a node to contact k − 1 other nodes and to receive their response, is instantaneous.

Since the clock of an uninformed node rings after a time that is exponentially distributed with rate λ, we
naturally introduce the continuous-time Markov chain Z = {Zt, t ≥ 0}, where Zt represents the number of
informed nodes at continuous-time t ≥ 0. Specifically the transitions of Z occur at successive instants τ0 = 0,
τ1, . . ., where the τi − τi−1, i ≥ 1, are independent and exponentially distributed with rate (n − i)λpk,n(i),
and the pk,n(i) are given by (1). Hence the global clock of the process rings according to an exponential
distribution whose rate is proportional to the amount of uniformed nodes. Note that a jump of process Z
corresponds to a state change of process Y .

Observe also that the continuous-time model of the rumor spreading corresponds to a physical time, that
is the total amount of time needed for all the n nodes to learn the rumor, while the discrete-time model
stands for the total number of k-pull operations needed for all the n nodes to learn the rumor.

We denote by Θk,n the random variable defined by

Θk,n = inf{t ≥ 0 | Zt = n}

which represents the continuous-time model i.e., the total amount of time needed for all the nodes to know
the rumor. The spreading time Θk,n can thus be expressed as a sum of independent and exponentially
distributed random variables. Specifically, introducing the notation Uk,n(i) = τi − τi−1, for i ≥ 1 with
τ0 = 0, we have

Θk,n =

n−1∑
i=1

Uk,n(i), (2)

where Uk,n(1), . . . , Uk,n(n − 1) are independent and Uk,n(i) is exponentially distributed with rate (n −
i)λpk,n(i).

The authors of [22] used two technical lemmas to analyze the moments and the distribution of the rumor
spreading time in the discrete-time case. These lemmas allowed them to provide lower and upper bounds
for the probabilities pk,n(i). These bounds are sufficiently precise to deal with the sum of geometric random
variables with parameters pk,n(i), but they are not precise enough to deal with the sum of exponential
random variables with rates (n− i)pk,n(i) as in the continuous-time case. We thus consider here a different
method to analyze the problem.

3 Moments of the rumor spreading time

We analyze in this section the first two moments of the rumor spreading time by using appropriate lower and
upper bounds. Observe that the bounds obtained for pk,n(i) in [22] do not allow us to obtain the limiting
behavior of these first two moments in the continuous-time case. The following technical lemma is used to
obtain their asymptotic behavior.

Lemma 3.1 Let g be a C∞ (infinitely differentiable) function on interval [0, 1].

If g(0) 6= 0 then

n∑
i=1

1

i
g

(
i

n

)
∼

n−→∞
g(0) ln(n).

If g(1) 6= 0 then

n∑
i=1

1

i
g

(
1− i

n

)
∼

n−→∞
g(1) ln(n).
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Proof. Function g being C∞ on interval [0, 1], it is Lipschitz and so, for all x, y ∈ [0, 1], we have

|g(x)− g(y)| ≤ C|x− y|, where C = max
z∈[0,1]

|g′(z)|

and g′ is the derivative of function g. We then have, by taking x = i/n and y = 0,∣∣∣∣∣
n∑
i=1

1

i
g

(
i

n

)
− g(0)

n∑
i=1

1

i

∣∣∣∣∣ ≤
n∑
i=1

1

i

∣∣∣∣g( in
)
− g(0)

∣∣∣∣ ≤ C n∑
i=1

1

i

i

n
= C.

This, together with the fact that

n∑
i=1

1/i ∼
n−→∞

ln(n), implies that

n∑
i=1

1

i
g

(
i

n

)
∼

n−→∞
g(0)

n∑
i=1

1

i
∼

n−→∞
g(0) ln(n),

which completes the proof of the first equivalence. The same steps with x = 1− i/n and y = 1 lead to the
second equivalent.

3.1 Expected rumor spreading time

Using (1) and (2), the expected rumor spreading time writes

E(Θk,n) =
1

λ

n−1∑
i=1

1

(n− i)pk,n(i)
=

1

λ

n−k∑
i=1

1

(n− i)pk,n(i)
+

1

λ

k−1∑
i=1

1

i
. (3)

Using the fact that 0 ≤ h ≤ k in Relation (1), we easily get

1−
(

1− i

n

)k−1
≤ pk,n(i) ≤ 1−

(
1− i

n− k

)k−1
. (4)

Introducing the notation

αn =

n−k∑
i=1

1

(n− i)pk,n(i)
,

these inequalities lead to
γn ≤ αn ≤ βn, (5)

where

βn =

n−k∑
i=1

1

(n− i)

[
1−

(
1− i

n

)k−1] and γn =

n−k∑
i=1

1

(n− i)

[
1−

(
1− i

n− k

)k−1] .
In the following two lemmas, we obtain an equivalent for both βn and γn when n tends to infinity.

Lemma 3.2 For all k ≥ 2, we have

βn ∼
n−→∞

k ln(n)

k − 1
.

Proof. For all k ≥ 2 and y ∈ R, using the identity

1− yk−1 = (1− y)
(
1 + y + · · ·+ yk−2

)
,
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and introducing the function fk is defined, for all x ∈ [0, 1] by

fk(x) =
1

1 + (1− x) + (1− x)
2

+ · · ·+ (1− x)
k−2 ,

we obtain

βn =

n−k∑
i=1

fk

(
i

n

)
(n− i)

[
1−

(
1− i

n

)] =

n−k∑
i=1

n

i(n− i)
fk

(
i

n

)

=

n−k∑
i=1

(
1

i
+

1

n− i

)
fk

(
i

n

)
(6)

=

n−k∑
i=1

1

i
fk

(
i

n

)
+

n−1∑
i=k

1

i
fk

(
1− i

n

)

=

n∑
i=1

1

i
fk

(
i

n

)
+

n∑
i=1

1

i
fk

(
1− i

n

)

−
n∑

i=n−k+1

1

i
fk

(
i

n

)
−
k−1∑
i=1

1

i
fk

(
1− i

n

)
− 1

n
fk(0).

Observing that

lim
n−→∞

[
n∑

i=n−k+1

1

i
fk

(
i

n

)
+

k−1∑
i=1

1

i
fk

(
1− i

n

)
+

1

n
fk(0)

]
= fk(1)

k−1∑
i=1

1

i
,

we obtain

βn =

n∑
i=1

1

i
fk

(
i

n

)
+

n∑
i=1

1

i
fk

(
1− i

n

)
− fk(1)

k−1∑
i=1

1

i
+ ε(n), (7)

where ε(n) is such that limn−→∞ ε(n) = 0. Since the function fk is C∞ on interval [0, 1] and verifies
fk(0) = 1/(k − 1) 6= 0 and fk(1) = 1 6= 0, k being fixed, we obtain, using Lemma 3.1,

βn ∼
n−→∞

(fk(0) + fk(1)) ln(n) =
k ln(n)

k − 1
,

which completes the proof.

We consider now the term γn.

Lemma 3.3 For all k ≥ 2, we have

γn ∼
n−→∞

k ln(n)

k − 1
.

Proof. Using the function fk defined in the proof of Lemma 3.2, we obtain easily

γn =

n−k∑
i=1

fk

(
i

n− k

)
(n− i)

[
1−

(
1− i

n− k

)] = (n− k)

n−k∑
i=1

1

i(n− i)
fk

(
i

n− k

)

=
n− k
n

n−k∑
i=1

(
1

i
+

1

n− i

)
fk

(
i

n− k

)
(8)
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The function fk being C∞ on interval [0, 1], defining Ck = maxz∈[0,1] |f ′k(z)| where f ′k is the derivative of fk,
we get, using Relations (6) and (8),∣∣∣∣γn − n− k

n
βn

∣∣∣∣ ≤ n− k
n

n−k∑
i=1

(
1

i
+

1

n− i

) ∣∣∣∣fk ( i

n− k

)
− fk

(
i

n

)∣∣∣∣
≤ Ck

n− k
n

n−k∑
i=1

(
1

i
+

1

n− i

)
ik

n(n− k)

≤ Ck
k

n

(
n−k∑
i=1

1

i
+

n−1∑
i=k

1

i

)
.

This bound tends to 0 when n tends to infinity. We thus have, from Lemma 3.1,

lim
n−→∞

∣∣∣∣γn − n− k
n

βn

∣∣∣∣ = 0 and
n− k
n

βn ∼
n−→∞

βn ∼
n−→∞

k ln(n)

k − 1
,

which completes the proof.

Theorem 3.4 For all k ≥ 2, we have

E(Θk,n) ∼
n−→∞

k ln(n)

(k − 1)λ
.

Proof. Relations (3) and (5) give

γn
λ

+
1

λ

k−1∑
i=1

1

i
≤ E(Θk,n) ≤ βn

λ
+

1

λ

k−1∑
i=1

1

i
.

The use of Lemma 3.2 and Lemma 3.3 leads to the desired result.

We now show that the following refined analysis of the term βn leads to a precise description of the
asymptotic behavior of the expected rumor spreading time E(Θk,n). We need the following lemma in which
γ is the Euler-Mascheroni constant given by γ ≈ 0.5772156649.

Lemma 3.5 Let g be a C∞ function on interval [0, 1].

If g(0) 6= 0 then
n∑
i=1

1

i
g

(
i

n

)
= g(0) ln(n) + γg(0) +

∫ 1

0

g(x)− g(0)

x
dx+ ε(n).

If g(1) 6= 0 then

n∑
i=1

1

i
g

(
1− i

n

)
= g(1) ln(n) + γg(1) +

∫ 1

0

g(1− x)− g(1)

x
dx+ ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0.

Proof. Using the integral form of the remainder for the Taylor series of function g, we get

g(x)− g(0) = xG(x), where G(x) =

∫ 1

0

g′(tx)dt,

function g′ being the derivative of g. We then have

n∑
i=1

1

i
g

(
i

n

)
− g(0)

n∑
i=1

1

i
=

n∑
i=1

1

i

i

n
G

(
i

n

)
=

1

n

n∑
i=1

G

(
i

n

)
−→
n→∞

∫ 1

0

G(x)dx,

7



since the last term is a Riemann sum. We then use the following well-known development of the harmonic
sum

n∑
i=1

1

i
= ln(n) + γ + ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0. In the same way, we have

g(1− x)− g(1) = −xG(x), where G(x) =

∫ 1

0

g′(1− tx)dt

and we obtain

n∑
i=1

1

i
g

(
1− i

n

)
− g(1)

n∑
i=1

1

i
= −

n∑
i=1

1

i

i

n
G

(
i

n

)
= − 1

n

n∑
i=1

G

(
i

n

)
−→
n→∞

−
∫ 1

0

G(x)dx.

Again the development of the harmonic sum completes the proof.

The following theorem gives a more precise description of the asymptotic behavior of βn.

Lemma 3.6 For all k ≥ 2, we have

βn =
k ln(n)

k − 1
+

γk

k − 1
−
k−1∑
i=1

1

i
− ln(k − 1)

k − 1
+ ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0.

Proof. Since fk(0) = 1/(k − 1) and fk(1) = 1, Relation (7) and Lemma 3.5 give

βn =
k ln(n)

k − 1
+

γk

k − 1
−
k−1∑
i=1

1

i
+

∫ 1

0

(
fk(1− x) + fk(x)

x
− k

(k − 1)x

)
dx+ ε(n).

We need to compute the quantity

I :=

∫ 1

0

(
fk(1− x) + fk(x)

x
− k

(k − 1)x

)
dx.

Coming back to the definition of fk, we introduce the polynomial

qk(x) = 1 + x+ · · ·+ xk,

so that fk(x) = 1/qk−2(1 − x) and fk(1 − x) = 1/qk−2(x). On top of that, we observe that k/(k − 1) =
1 + 1/(k − 1) = fk(0) + fk(1). These two observations lead to

I =

∫ 1

0

1

x

(
1

qk−2(x)
− 1

qk−2(0)
+

1

qk−2(1− x)
− 1

qk−2(1)

)
dx,

and the variable change x := 1− x to deal with the second difference leads to

I =

∫ 1

0

[
1

x

(
1

qk−2(x)
− 1

qk−2(0)

)
+

1

1− x

(
1

qk−2(x)
− 1

qk−2(1)

)]
dx.

Now the whole point in order to compute this integral is to factorize x in the first difference 1/qk−2(x) −
1/qk−2(0), and to factorize 1−x in the second difference 1/qk−2(x)−1/qk−2(1), so as to remove the apparent
singularities and to recover computable quantities.
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Concerning the first difference, we observe that

qk−2(0)− qk−2(x) = −x− x2 − · · · − xk−2 = −xqk−3(x),

which gives
1

x

(
1

qk−2(x)
− 1

qk−2(0)

)
= − qk−3(x)

qk−2(0)qk−2(x)
= −qk−3(x)

qk−2(x)
.

The other difference requires slightly more attention. We claim that the following formula holds

qk−2(1)− qk−2(x) = (1− x)
[
(k − 2)qk−3(x)− xq′k−3(x)

]
. (9)

Admitting the result for the time being, we obtain

1

1− x

(
1

qk−2(x)
− 1

qk−2(1)

)
=

(k − 2)qk−3(x)− xq′k−3(x)

qk−2(1)qk−2(x)

=
(k − 2)qk−3(x)− xq′k−3(x)

(k − 1)qk−2(x)
.

Eventually, this provides

I =

∫ 1

0

[
−qk−3(x)

qk−2(x)
+

(k − 2)qk−3(x)− xq′k−3(x)

(k − 1)qk−2(x)

]
dx

= − 1

k − 1

∫ 1

0

qk−3(x) + xq′k−3(x)

qk−2(x)
dx

= − 1

k − 1

∫ 1

0

qk−3(x) + xq′k−3(x)

xqk−3(x) + 1
dx,

where the last equality comes from the observation qk−2(x) = xqk−3(x) + 1. As a final result, we recover,
since (xqk−3(x) + 1)

′
= xq′k−3(x) + qk−3(x), the value

I = − ln (pk−3(1))

k − 1
= − ln (k − 1)

k − 1
.

There remains to prove formula (9). The formula can easily be proved using a recursion procedure. Alter-

natively, one may write, using the fact that 1− xj = (1− x)
∑j−1
`=0 x

`, the relations

qk−2(1)− qk−2(x) =

k−2∑
j=1

(
1− xj

)
= (1− x)

k−2∑
j=1

j−1∑
`=0

x` = (1− x)

k−3∑
`=0

k−2∑
j=`+1

x`

= (1− x)

k−3∑
`=0

(k − 2− `)x` = (1− x)
[
(k − 2)qk−3(x)− xq′k−3(x)

]
,

which completes the proof.

The following theorem will be used in Corollary 4.4 to get an asymptotic behavior of the distribution of
Θk,n.

Theorem 3.7 For all k ≥ 2, we have

E(Θk,n) =
1

λ

(
k ln(n)

k − 1
+

γk

k − 1
− ln(k − 1)

k − 1

)
+ ε(n),

where ε(n) is such that limn−→∞ ε(n) = 0.
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Proof. Relations (3) and (5) give

γn
λ

+
1

λ

k−1∑
i=1

1

i
≤ E(Θk,n) ≤ βn

λ
+

1

λ

k−1∑
i=1

1

i
.

Using Lemma 3.6 and the fact that limn−→∞(γn − βn) = 0 (see the end of the proof of Lemma 3.3), we
easily get the desired result.

3.2 Variance of the rumor spreading time

The following lemma is needed to obtain the limiting value of the variance of Θk,n when n tends to infinity.

Lemma 3.8 Let g be a C∞ function on interval [0, 1].

If g(0) 6= 0 then lim
n−→∞

n∑
i=1

1

i2
g

(
i

n

)
= g(0)

π2

6
.

If g(1) 6= 0 then lim
n−→∞

n∑
i=1

1

i2
g

(
1− i

n

)
= g(1)

π2

6
.

Proof. Function g being C∞ on interval [0, 1], it is Lipschitz and so, for all x, y ∈ [0, 1], we have

|g(x)− g(y)| ≤ C|x− y|, where C = max
z∈[0,1]

|g′(z)|

and g′ is the derivative of function g. We then have, by taking x = i/n and y = 0,∣∣∣∣∣
n∑
i=1

1

i2
g

(
i

n

)
− g(0)

n∑
i=1

1

i2

∣∣∣∣∣ ≤
n∑
i=1

1

i2

∣∣∣∣g( in
)
− g(0)

∣∣∣∣ ≤ C 1

n

n∑
i=1

1

i
∼

n−→∞
C

ln(n)

n
.

This means that

lim
n−→∞

n∑
i=1

1

i2
g

(
i

n

)
= g(0)

∞∑
i=1

1

i2
= g(0)

π2

6
.

The same steps with x = 1− i/n and y = 1 lead to the second result.

Using (1) and (2), the variance of the rumor spreading time writes

V(Θk,n) =
1

λ2

n−1∑
i=1

1

(n− i)2p2k,n(i)
=

1

λ2

n−k∑
i=1

1

(n− i)p2k,n(i)
+

1

λ2

k−1∑
i=1

1

i2
. (10)

As we did for the expected rumor spreading time and introducing the notation

δn =

n−k∑
i=1

1

(n− i)2p2k,n(i)
,

we obtain
ηn ≤ δn ≤ ζn, (11)

where

ζn =

n−k∑
i=1

1

(n− i)2
[

1−
(

1− i

n

)k−1]2 , ηn =

n−k∑
i=1

1

(n− i)2
[

1−
(

1− i

n− k

)k−1]2 .
In the following two lemmas, we obtain the limiting value of both ζn and ηn when n tends to infinity.
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Lemma 3.9 For all k ≥ 2, we have

lim
n−→∞

ζn =

(
1 +

1

(k − 1)2

)
π2

6
−
k−1∑
i=1

1

i2
.

Proof. Using again the function fk introduced in the proof of Lemma 3.2, we obtain

ζn =

n−k∑
i=1

f2k

(
i

n

)
(n− i)2

[
1−

(
1− i

n

)]2 =

n−k∑
i=1

n2

i2(n− i)2
f2k

(
i

n

)
. (12)

Observing that
n2

i2(n− i)2
=

1

(n− i)2
+

1

i2
+

2

n

(
1

i
+

1

n− i

)
, (13)

we have

ζn =
n−k∑
i=1

1

(n− i)2
f2k

(
i

n

)
+

n−k∑
i=1

1

i2
f2k

(
i

n

)
+

2

n

n−k∑
i=1

(
1

i
+

1

n− i

)
f2k

(
i

n

)
.

We denote respectively by ζn,1, ζn,2 and ζn,3 these three sums. Concerning ζn,3, we have

n−k∑
i=1

(
1

i
+

1

n− i

)
f2k

(
i

n

)
=

n−k∑
i=1

1

i
f2k

(
i

n

)
+

n−1∑
i=k

1

i
f2k

(
1− i

n

)
.

Applying Lemma 3.1 with function g = f2k , we obtain

n−k∑
i=1

1

i
f2k

(
i

n

)
+

n−1∑
i=k

1

i
f2k

(
1− i

n

)
∼

n−→∞

(
f2k (0) + f2k (1)

)
ln(n) =

(
1 +

1

(k − 1)2

)
ln(n)

which implies that

lim
n−→∞

ζn,3 = lim
n−→∞

2

(
1 +

1

(k − 1)2

)
ln(n)

n
= 0.

Concerning ζn,2, since we have

ζn,2 =

n−k∑
i=1

1

i2
f2k

(
i

n

)
,

applying Lemma 3.8 with function g = f2k , we obtain

lim
n−→∞

ζn,2 = f2k (0)
π2

6
=

1

(k − 1)2
π2

6
.

Finally, for term ζn,1, we have

ζn,1 =

n−k∑
i=1

1

(n− i)2
f2k

(
i

n

)
=

n−1∑
i=k

1

i2
f2k

(
1− i

n

)
Applying again Lemma 3.8 with function g = f2k , we obtain

lim
n−→∞

ζn,1 = f2k (1)

∞∑
i=k

1

i2
=
π2

6
−
k−1∑
i=1

1

i2
.
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Putting these three limits together leads to

lim
n−→∞

ζn =

(
1 +

1

(k − 1)2

)
π2

6
−
k−1∑
i=1

1

i2
,

which completes the proof.

We analyze now the limiting value of ηn when n tends to infinity.

Lemma 3.10 For all k ≥ 2, we have

lim
n−→∞

ηn =

(
1 +

1

(k − 1)2

)
π2

6
−
k−1∑
i=1

1

i2
.

Proof. Using again the function fk introduced in the proof of Lemma 3.2, we obtain

ηn =

n−k∑
i=1

f2k

(
i

n− k

)
(n− i)2

[
1−

(
1− i

n− k

)]2 =
(n− k)2

n2

n−k∑
i=1

n2

i2(n− i)2
f2k

(
i

n− k

)
. (14)

The function fk being Lipschitz on interval [0, 1], defining Ck = maxz∈[0,1] |(f2k )′(z)| where (f2k )′ is the
derivative of f2k , we get, using Relations (12) and (14),∣∣∣∣ηn − (n− k)2

n2
ζn

∣∣∣∣ ≤ (n− k)2

n2

n−k∑
i=1

n2

i2(n− i)2

∣∣∣∣f2k ( i

n− k

)
− fk

(
i

n

)∣∣∣∣
≤ Ck

(n− k)2

n2

n−k∑
i=1

n2

i2(n− i)2
ik

n(n− k)

≤ Ck
k(n− k)

n2

n−k∑
i=1

n2

i2(n− i)2
.

Using Relation (13), we have

lim
n−→∞

n−k∑
i=1

n2

i2(n− i)2
=

∞∑
i=1

1

i2
+

∞∑
i=k

1

i2
=
π2

3
−
k−1∑
i=1

1

i2
.

It follows that

lim
n−→∞

∣∣∣∣ηn − (n− k)2

n2
ζn

∣∣∣∣ = 0.

This result together with the result of Lemma 3.9 leads to

lim
n−→∞

ηn = lim
n−→∞

ζn =

(
1 +

1

(k − 1)2

)
π2

6
−
k−1∑
i=1

1

i2
,

which completes the proof.

Theorem 3.11 For all k ≥ 2, we have

lim
n−→∞

V(Θk,n) =

(
1 +

1

(k − 1)2

)
π2

6λ2
.

Proof. Relations (10) and (11) give

ηn
λ2

+
1

λ2

k−1∑
i=1

1

i2
≤ V(Θk,n) ≤ ζn

λ2
+

1

λ2

k−1∑
i=1

1

i2
.

The use of Lemma 3.9 and Lemma 3.10 leads to the desired result.
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4 Distribution of the rumor spreading time

This section provides explicit limiting distributions such as Θk,n − E(Θk,n) when n tends to infinity. We
introduce the notation µk,n(i) = λ(n − i)pk,n(i). Recall that Uk,n(i) is exponentially distributed with rate
µk,n(i) and that

Θk,n =

n−1∑
i=1

Uk,n(i).

The main result of this section is Theorem 4.2 whose proof needs the following lemma.

Lemma 4.1 For all k ≥ 2, we have

lim
m−→∞

lim sup
n−→∞

n∑
i=m

1

(2n+ 1− i)2p2k,2n+1(i)
= 0.

and

lim
m−→∞

lim sup
n−→∞

n∑
i=m

1

i2p2k,2n+1(2n+ 1− i)
= 0.

Proof. Introducing the notation

∆m,n(k) =

n∑
i=m

1

(2n+ 1− i)2
[

1−
(

1− i

2n+ 1

)k−1]2
we obtain, using inequality (4),

n∑
i=m

1

(2n+ 1− i)2p2k,2n+1(i)
≤ ∆m,n(k).

Using the function fk defined in the proof of Lemma 3.2 we write

∆n,m(k) =

n∑
i=m

(2n+ 1)2

(2n+ 1− i)2i2
f2k

(
i

2n+ 1

)
.

Observing that function fk is increasing on interval [0, 1] and that fk(1) = 1, we obtain using Relation (13),
with 2n+ 1 instead n,

∆n,m(k) ≤
n∑

i=m

(2n+ 1)2

(2n+ 1− i)2i2

=

n∑
i=m

1

(2n+ 1− i)2
+

n∑
i=m

1

i2
+

2

2n+ 1

n∑
i=m

(
1

i
+

1

2n+ 1− i

)

=

2n+1−m∑
i=n+1

1

i2
+

n∑
i=m

1

i2
+

2

2n+ 1

(
n∑

i=m

1

i
+

2n+1−m∑
i=n+1

1

i

)

=

2n+1−m∑
i=m

1

i2
+

2

2n+ 1

(
2n+1−m∑
i=m

1

i

)
≤

2n+1−m∑
i=m

1

i2
+

2(1 + ln(2n+ 1−m)

2n+ 1
.

The limm−→∞ lim supn−→∞ of both terms is 0 because
∑
i 1/i2 is a converging series. This proves the first

relation.
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Concerning the second relation, introducing the notation

Λm,n(k) =

n∑
i=m

1

i2

[
1−

(
1− 2n+ 1− i

2n+ 1

)k−1]2
we obtain in the same way, using inequality (4),

n∑
i=m

1

i2p2k,2n+1(2n+ 1− i)
≤ Λm,n(k)

and, using function fk,

Λn,m(k) =

n∑
i=m

(2n+ 1)2

(2n+ 1− i)2i2
f2k

(
1− i

2n+ 1

)
.

As we did for term ∆n,m(k), we have

Λm,n(k) ≤
n∑

i=m

(2n+ 1)2

(2n+ 1− i)2i2
,

which in turn leads to the same result. We are now able to prove the following theorem.

Theorem 4.2 Let (Zi)i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and
let W be defined by

W =

∞∑
i=1

Zi − 1

i
.

We then have

Θk,n −E(Θk,n)
L−−→ 1

(k − 1)λ
W (1) +

1

λ
W (2) as n −→∞

where W (1) and W (2) are i.i.d. with the same distribution as W .

Proof. Recalling that µk,n(i) = λ(n− i)pk,n(i), we have, for all n ≥ 2, i ∈ {1, . . . , n− 1} and x ≥ 0,

P{µk,n(i)Uk,n(i) > x} = P{Uk,n(i) > x/µk,n(i)} = e−x.

Thus if Zi is exponentially distributed with rate 1, we have µk,n(i)Uk,n(i)
L
= Zi. Moreover since the

(Uk,n(i))i∈{1,...,n−1} are independent, the (Zi)i≥1 are also independent.
Observing now that for each fixed i and k, we have, from Relation (1),

pk,n(i) = i

k−1∑
h=1

1

n− h
+ o(1/n),

we obtain
lim

n−→∞
µk,n(i) = λ lim

n−→∞
(n− i)pk,n(i) = (k − 1)λi.

From Relation (1), we also trivially get

lim
n−→∞

µk,n(n− i) = λi lim
n−→∞

pk,n(n− i) = λi.

Defining Rk,n(i) = Uk,n(i)−E(Uk,n(i)) we obtain, since E(Uk,n(i)) = 1/µk,n(i),

Rk,n(i) = Uk,n(i)−E(Uk,n(i)) =
µk,n(i)Uk,n(i)− 1

µk,n(i)

L−−→ Zi − 1

(k − 1)λi
as n −→∞. (15)
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In the same way, we get

Rk,n(n− i) =
µk,n(n− i)Uk,n(n− i)− 1

µk,n(n− i)
L−−→ Zi − 1

λi
as n −→∞. (16)

Suppose that n is odd, i.e., that n = 2`+ 1. Defining

Vk,` =
∑̀
i=1

Rk,2`+1(i) and V k,` =
∑̀
i=1

Rk,2`+1(2`+ 1− i),

we have

Θk,2`+1 −E(Θk,2`+1) =

2∑̀
i=1

[Uk,2`+1(i)−E(Uk,2`+1(i))]

=

2∑̀
i=1

Rk,2`+1(i) = Vk,` + V k,`. (17)

Observe that the random variables Vk,` and V k,` are independent.
The rest of the proof consists in checking the hypothesis of the principle of accompanying laws of Theorem

3.1.14 of [24]. We introduce the notation

Vk,`,m =

m−1∑
i=1

Rk,2`+1(i) and V k,`,m =

m−1∑
i=1

Rk,2`+1(2`+ 1− i).

Using the fact that E(Rk,n(i)) = 0 and that the Rk,n(i) are independent, we have

E
(
(Vk,` − Vk,`,m)2

)
= E

[∑̀
i=m

Rk,2`+1(i)

]2 = V

(∑̀
i=m

Rk,2`+1(i)

)

=
∑̀
i=m

V(Rk,2`+1(i)) =
∑̀
i=m

V(Uk,2`+1(i)) =
∑̀
i=m

1

µ2
k,2`+1(i)

=
1

λ2

∑̀
i=m

1

(2`+ 1− i)2p2k,2`+1(i)

and, in the same way,

E
(
(V k,` − V k,`,m)2

)
=
∑̀
i=m

1

µ2
k,2`+1(2`+ 1− i)

=
1

λ2

∑̀
i=m

1

i2p2k,2`+1(2`+ 1− i)

Using Lemma 4.1, we have

lim
m−→∞

lim sup
`−→∞

E((Vk,` − Vk,`,m)2) = lim
m−→∞

lim sup
`−→∞

E((V k,` − V k,`,m)2) = 0.

Using now the Markov inequality, we obtain, for all ε > 0,

P{|Vk,` − Vk,`,m| ≥ ε} = P{(Vk,` − Vk,`,m)2 ≥ ε2} ≤ E((Vk,` − Vk,`,m)2)

ε2

and

P{
∣∣V k,` − V k,`,m∣∣ ≥ ε} = P{(V k,` − V k,`,m)2 ≥ ε2} ≤ E((V k,` − V k,`,m)2)

ε2
.

15



Putting together these results, we deduce that for all ε > 0, we have

lim
m−→∞

lim sup
`−→∞

P{|Vk,` − Vk,`,m| ≥ ε} = lim
m−→∞

lim sup
`−→∞

P{
∣∣V k,` − V k,`,m∣∣ ≥ ε} = 0. (18)

Let us introduce the notation

Wk,m =
1

(k − 1)λ

m−1∑
i=1

Zi − 1

i
and W k,m =

1

λ

m−1∑
i=1

Zi − 1

i
.

Using (15) and (16) and the fact that the Rk,n(i) are independent, we have

Vk,`,m
L−−→Wk,m and V k,`,m

L−−→W k,m as ` −→∞. (19)

The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [24] are properties (18) and (19).
We can thus conclude that

Vk,`
L−−→ 1

(k − 1)λ
W and V k,`

L−−→ 1

λ
W as ` −→∞.

This means, from Relation (17), that

Θk,2`+1 −E(Θk,2`+1)
L−−→ 1

(k − 1)λ
W (1) +

1

λ
W (2) as ` −→∞,

where W (1) and W (2) are independent and identically distributed as W . The same reasoning applies in the
case where n = 2`.

Corollary 4.3 For all x ∈ R and k ≥ 2, we have

lim
n−→∞

P {Θk,n −E(Θk,n) ≤ x} =

∫ ∞
0

exp
(
−t− t−(k−1)e−(k−1)λx−kγ

)
dt.

Proof. L. Gordon has proved in [15] that

−γ +

+∞∑
i=1

1− Zi
i

L
= ln(Z1),

where (Zi) are i.i.d. exponential with rate 1. Thus, by definition of W in Theorem 4.2, we have

W
L
= −γ − ln(Z1).

Introducing W (1) L= −γ − ln(Z1) and W (2) L= −γ − ln(Z2), we obtain from Theorem 4.2, for all x ∈ R,

lim
n−→∞

P {Θk,n −E(Θk,n) > x} = P

{
1

(k − 1)λ
W (1) +

1

λ
W (2) > x

}
= P

{
− 1

λ

(
kγ

k − 1
+

ln(Z1)

k − 1
+ ln(Z2)

)
≤ x

}
= P

{
ln(Z1)

k − 1
+ ln(Z2) ≥ −λx− kγ

k − 1

}
= P

{
Z

1/(k−1)
1 Z2 ≥ e−λx−kγ/(k−1)

}
=

∫ ∞
0

P

{
Z1 ≥ t−(k−1)e−(k−1)λx−kγ

}
e−tdt

=

∫ ∞
0

exp
(
−t− t−(k−1)e−(k−1)λx−kγ

)
dt,

which completes the proof.
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Corollary 4.4 For all x ∈ R and k ≥ 2, we have

lim
n−→∞

P

{
Θk,n −

k ln(n)

(k − 1)λ
≤ x

}
=

∫ ∞
0

exp

(
−t− t−(k−1)e−(k−1)λx

k − 1

)
dt

Proof. Observe first that we have

P

{
Θk,n −

k ln(n)

(k − 1)λ
≤ x

}
= P

{
Θk,n −E(Θk,n) ≤ x+

k ln(n)

(k − 1)λ
−E(Θk,n)

}
.

From Theorem 3.7, we have

lim
n−→∞

(
k ln(n)

(k − 1)λ
−E(Θk,n)

)
= −γk − ln(k − 1)

(k − 1)λ
.

It follows from Corollary 4.3 that

lim
n−→∞

P

{
Θk,n −

k ln(n)

(k − 1)λ
≤ x

}
=

∫ ∞
0

exp

(
−t− t−(k−1)e−(k−1)λx

k − 1

)
dt.

which completes the proof.
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