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In this paper, we analyze a new asynchronous rumor spreading protocol to deliver a rumor to all the nodes of a large-scale distributed network. This protocol relies on successive pull operations involving k different nodes, with k ≥ 2, and called k-pull operations. Specifically during a k-pull operation, an uninformed node a contacts k -1 other nodes at random in the network, and if at least one of them knows the rumor, then node a learns it. We perform a detailed study in continuous-time of the total time Θ k,n needed for all the n nodes to learn the rumor. These results extend those obtained in a previous paper which dealt with the discrete-time case. We obtain the mean value, the variance and the distribution of Θ k,n together with their asymptotic behavior when the number of nodes n tends to infinity.

Introduction

Randomized rumor spreading or gossiping is an important communication mechanism that allows the dissemination of information in large-scale and open networks. A large-scale and open network comprises a collection of sequential computing entities (e.g., processes, processors, nodes, agents, peers) that join and leave the system at any time, and communicate with one another by exchanging messages. Randomized rumor spreading was initially proposed by Deemers et al. [START_REF] Demers | Epidemic algorithms for replicated database maintenance[END_REF] for the update of a database replicated at different sites, and has then been adopted in many applications due to its robustness and simplicity. In contrast to reliable communication broadcasts which must provide agreement on the broadcast value with possibly additional ordering guarantees on the delivery of updates from different sources, a randomized rumor spreading procedure provides reliability only with some probability. A randomized spreading rumor protocol describes the rules required for one or more pieces of information known by an arbitrary node in the network (we call such a node an informed node) to be spread to all the nodes of the network. The push and pull protocols are the basic operations used by the nodes to propagate an information over the entire network [START_REF] Demers | Epidemic algorithms for replicated database maintenance[END_REF][START_REF] Doerr | Randomized Rumor Spreading Revisited[END_REF]. With the push operation, an informed node contacts some randomly chosen node in the system, and gives it the rumor while with the pull operation, an uninformed node contacts some random node and asks for the rumor. Note that in both cases the contacted node may already know the rumor or not. The same node can perform both operations according to whether it knows or not the rumor, which corresponds to the push-pull protocol, or performs only one, either a pull or push operation, which corresponds to the pull or push protocols respectively. One of the important questions raised by these protocols is the spreading time, that is the time needed for the rumor to be known by all the nodes of the network.

To answer such a question, one first needs to specify how synchronized nodes are, or in other words whether we suppose that all the nodes of the system act in a synchronous way or not. In the former case, the system model is synchronous while in the latter case it is asynchronous. The most studied one is the synchronous model. This model assumes that all the nodes of the network act synchronously, which allows the algorithms designed in this model to divide time in synchronized rounds. During each synchronized round, each node a of the network selects at random one of its neighbors b and either sends the rumor to b if a knows it (push operation) or gets the rumor from b if b knows the rumor (pull operation). In this model, the spreading time of a rumor is defined as the number of synchronous rounds necessary for all the nodes to know the rumor. When the underlying graph is complete, it has been shown by Frieze [11] that the number of rounds divided by log 2 (n) converges in probability to 1 + ln(2) when the number n of nodes in the graph tends to infinity. Further results have been established (see for example [START_REF] Pittel | On spreading a rumor[END_REF][START_REF] Karp | Randomized rumor spreading[END_REF] and the references therein), the most recent ones resulting from the observation that the rumor spreading time is closely related to the conductance of the graph of the network, see [START_REF] Giakkoupis | Tight bounds for rumor spreading in graphs of a given conductance[END_REF]. Investigations have also been done in different topologies of the network as in [START_REF] Chierichetti | Rumor spreading in social networks[END_REF][START_REF] Daum | Rumor spreading with bounded indegree[END_REF][START_REF] Fountoulakis | Rumor spreading on random regular graphs and expanders[END_REF][START_REF] Panagiotou | Randomized rumor spreading: the effect of the network topology[END_REF], in the presence of link or nodes failures as in [START_REF] Feige | Randomized broadcast in networks[END_REF], in dynamic graphs as in [START_REF] Clementi | Rumor spreading in random evolving graphs[END_REF], and in general graphs in terms of vertex expansion [START_REF] Giakkoupis | Tight bounds for rumor spreading with vertex expansion[END_REF]. Another alternative consists in letting the nodes make more than one call during the push or pull operations [START_REF] Panagiotou | Faster rumor spreading with multiple calls[END_REF]. The authors show that the push-pull protocol takes O (log n/ log log n) rounds in expectation if the number of neighbors of a node is chosen independently according to a power law distribution with exponent β ∈ (2, 3).

In large scale networks, that is in networks involving several thousands of nodes, assuming that all nodes act synchronously is a very strong assumption. Thus several authors, including [START_REF] Giakkoupis | How asynchrony affects rumor spreading time[END_REF][START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF][START_REF] Acan | On the push & pull protocol for rumour spreading[END_REF][START_REF] Doerr | Experimental analysis of rumor spreading in social networks[END_REF][START_REF] Pourmiri | Brief announcement: Ultra-fast asynchronous randomized rumor spreading[END_REF], suppose an asynchronous model, that is a model in which nodes asynchronously trigger operations with randomly chosen nodes in the system, either to push, pull or push-pull information. The asynchronous gossip protocol is usually modeled by a time-continuous stochastic (Markovian) process [START_REF] Giakkoupis | How asynchrony affects rumor spreading time[END_REF][START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF][START_REF] Acan | On the push & pull protocol for rumour spreading[END_REF][START_REF] Doerr | Experimental analysis of rumor spreading in social networks[END_REF][START_REF] Pourmiri | Brief announcement: Ultra-fast asynchronous randomized rumor spreading[END_REF]. This type of stochastic processes belongs to the death process category, which has many applications in demography, queuing theory, performance engineering, epidemiology, biology and many other distributed applications. For instance, in [START_REF] Daley | Epidemic Modelling: An Introduction[END_REF], an analysis of the SI (Susceptible-Infected) model -corresponding to an asynchronous push-pull model-allows us in some cases to explicit the state probabilities by using the Laplace transform on the Kolmogorov forward equation. However, these techniques prove ineffective when the transition rate is non-linear (Laplace transform inversion becomes a tricky exercise). Most of the rumor spreading protocols studied in the asynchronous models rely either on the push/pull operations or on the push operations. Indeed, pushing the information allows us to initiate the rumor very quickly but then struggles to reach the few uninformed nodes. In contrast, the pull algorithm attracted very little attention because this operation was long considered inefficient to spread a rumor within a large scale network [START_REF] Sanghavi | Gossiping with multiple messages[END_REF]. It is actually very useful in systems fighting against message saturation (see for instance [START_REF] Yao | A pull model IPv6 duplicate address detection[END_REF]). The ineffectiveness of the pull protocol stems from the fact that it takes some time before the rumor reaches a phase of exponential growth.

The objective of this paper is to further develop this line of inquiry by studying the k-pull protocol in the continuous-time case. This protocol counterbalances the slow initiation of pull-based rumour spreading protocols by increasing the chances of learning the rumor with each operation. A local clock following an exponential distribution with rate λ is associated with each uninformed node of the system. Each time the clock of an uniformed node rings, this node contacts k -1, with k ≥ 2 distinct nodes, chosen at random uniformly among the n -1 other nodes. If at least one of these contacted nodes knows the rumor, the initiator of the k-pull operation learns the rumor and clears its clock.

The remainder of the paper is organized as follows. In Section 2, we present the asynchronous k-pull protocol and introduce the random variable Θ k,n which represents the total amount of time needed for all the nodes to know the rumor. We prove in Section 3 that the mean number of k-pull operations needed to inform all the n nodes of the system, assuming that a single node initially knows the rumor, that is E(Θ k,n ), is equivalent to k ln(n)/(k -1)λ when the number of nodes n in the system tends to infinity. We also show that the limiting variance of Θ k,n is equal to (1 + 1/(k -1) 2 )π 2 /6λ 2 when n tends infinity. The distribution of the rumor spreading time Θ k,n is analyzed in Section 4. We provide explicit limiting distributions of Θ k,n -E(Θ k,n ) and Θ k,n -k ln(n)/(k -1)λ when n tends to infinity.

The model

We recall in the next subsection the discrete-time model of the k-pull rumor spreading. This model, which has been analyzed in [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF], is important because the continuous-time model of the k-pull rumor spreading is based on the discrete-time model, even if the analysis is, as we will see, much more complicated and needs more refined results in continuous-time.

The discrete-time model

We consider a complete network of size n in which each node may be asked for a piece of information (pull event). The algorithm starts with a single node informed of the rumor. At each discrete time m ≥ 1, a single uninformed node s contacts k -1 distinct nodes, chosen at random uniformly among the n -1 other nodes. If at least one of these k -1 contacted nodes knows the rumor then node s learns it. Otherwise nothing happens. This is a k-pull operation.

To analyze this k-pull model, we introduce the discrete-time stochastic process Y = {Y m , m ≥ 0} where Y m represents the number of informed nodes at time m. The stochastic process Y is a discrete-time homogeneous Markov chain with n states where states 1, . . . , n -1 are transient and state n is absorbing. From the description of the protocol, we deduce that when the Markov chain Y is in state i at time m, then at time m + 1, either it remains in state i if none of the k -1 chosen nodes were informed of the rumor, or it transits to state i + 1 if at least one of the k -1 chosen nodes were informed of the rumor. We denote by P the transition probability matrix of Markov chain Y . The non zero entries of matrix P are thus P i,i and P i,i+1 , for any i = 1, . . . , n -1. Obviously, we get, for any i = 1, . . . , n -1, P i,i = 1 -P i,i+1 , where

P i,i =                n -1 -i k -1 n -1 k -1 if i ≤ n -k 0 otherwise.
Indeed, given that Y t = i, i.e., when i nodes are informed of the rumor at time t, we have Y t+1 = i if and only if, at time t + 1, the set of k -1 chosen nodes (i.e., k -1 among n -1) must be chosen among the n -1 -i non informed nodes. We denoted in [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF] by T k,n the random variable defined by

T k,n = inf{t ≥ 0 | Y m = n}
which represents the spreading time, that is the total number of k-pull operations needed for all the nodes in the network to know the rumor. The spreading time distribution can thus be expressed as a sum of independent random variables S k,n (i), where

S k,n (i) is the sojourn time of Markov chain Y in state i. For all i = 1, . . . , n -k, S k,n (i) follows a geometric distribution with parameter p k,n (i) = 1 -P i,i and S k,n (i) = 1, for i = n -k + 1, . . . , n -1. Thus T k,n verifies T k,n = n-1 i=1 S k,n (i) = k -1 + n-k i=1 S k,n (i). Observe that p k,n (i) =          1 - k-1 h=1 1 - i n -h if 1 ≤ i ≤ n -k 1 if n -k + 1 ≤ i ≤ n -1.
(1)

The continuous-time model

Based on this discrete-time model, a local clock following an exponential distribution with rate λ is associated with each uniformed node of the system. Each time the clock of an uniformed node s rings, this node contacts k -1, with k ≥ 2, distinct nodes, chosen at random uniformly among the n -1 other nodes. If at least one of these contacted nodes knows the rumor, node s learns it and clears its clock (i.e., s remains contactable but does not contact other nodes). As in the discrete-time case, we suppose that the k-pull operation, i.e., the time for a node to contact k -1 other nodes and to receive their response, is instantaneous. Since the clock of an uninformed node rings after a time that is exponentially distributed with rate λ, we naturally introduce the continuous-time Markov chain Z = {Z t , t ≥ 0}, where Z t represents the number of informed nodes at continuous-time t ≥ 0. Specifically the transitions of Z occur at successive instants τ 0 = 0, τ 1 , . . ., where the τ i -τ i-1 , i ≥ 1, are independent and exponentially distributed with rate (n -i)λp k,n (i), and the p k,n (i) are given by [START_REF] Acan | On the push & pull protocol for rumour spreading[END_REF]. Hence the global clock of the process rings according to an exponential distribution whose rate is proportional to the amount of uniformed nodes. Note that a jump of process Z corresponds to a state change of process Y .

Observe also that the continuous-time model of the rumor spreading corresponds to a physical time, that is the total amount of time needed for all the n nodes to learn the rumor, while the discrete-time model stands for the total number of k-pull operations needed for all the n nodes to learn the rumor.

We denote by Θ k,n the random variable defined by

Θ k,n = inf{t ≥ 0 | Z t = n}
which represents the continuous-time model i.e., the total amount of time needed for all the nodes to know the rumor. The spreading time Θ k,n can thus be expressed as a sum of independent and exponentially distributed random variables. Specifically, introducing the notation

U k,n (i) = τ i -τ i-1 , for i ≥ 1 with τ 0 = 0, we have Θ k,n = n-1 i=1 U k,n (i), (2) 
where U k,n (1), . . . , U k,n (n -1) are independent and U k,n (i) is exponentially distributed with rate (ni)λp k,n (i). The authors of [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF] used two technical lemmas to analyze the moments and the distribution of the rumor spreading time in the discrete-time case. These lemmas allowed them to provide lower and upper bounds for the probabilities p k,n (i). These bounds are sufficiently precise to deal with the sum of geometric random variables with parameters p k,n (i), but they are not precise enough to deal with the sum of exponential random variables with rates (n -i)p k,n (i) as in the continuous-time case. We thus consider here a different method to analyze the problem.

Moments of the rumor spreading time

We analyze in this section the first two moments of the rumor spreading time by using appropriate lower and upper bounds. Observe that the bounds obtained for p k,n (i) in [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF] do not allow us to obtain the limiting behavior of these first two moments in the continuous-time case. The following technical lemma is used to obtain their asymptotic behavior.

Lemma 3.1 Let g be a C ∞ (infinitely differentiable) function on interval [0, 1]. If g(0) = 0 then n i=1 1 i g i n ∼ n-→∞ g(0) ln(n). If g(1) = 0 then n i=1 1 i g 1 - i n ∼ n-→∞ g(1) ln(n).
Proof. Function g being C ∞ on interval [0, 1], it is Lipschitz and so, for all x, y ∈ [0, 1], we have

|g(x) -g(y)| ≤ C|x -y|, where C = max z∈[0,1] |g (z)|
and g is the derivative of function g. We then have, by taking x = i/n and y = 0,

n i=1 1 i g i n -g(0) n i=1 1 i ≤ n i=1 1 i g i n -g(0) ≤ C n i=1 1 i i n = C.
This, together with the fact that

n i=1 1/i ∼ n-→∞ ln(n), implies that n i=1 1 i g i n ∼ n-→∞ g(0) n i=1 1 i ∼ n-→∞ g(0) ln(n),
which completes the proof of the first equivalence. The same steps with x = 1 -i/n and y = 1 lead to the second equivalent.

Expected rumor spreading time

Using ( 1) and ( 2), the expected rumor spreading time writes

E(Θ k,n ) = 1 λ n-1 i=1 1 (n -i)p k,n (i) = 1 λ n-k i=1 1 (n -i)p k,n (i) + 1 λ k-1 i=1 1 i . (3) 
Using the fact that 0 ≤ h ≤ k in Relation (1), we easily get

1 -1 - i n k-1 ≤ p k,n (i) ≤ 1 -1 - i n -k k-1 . ( 4 
)
Introducing the notation

α n = n-k i=1 1 (n -i)p k,n (i) , these inequalities lead to γ n ≤ α n ≤ β n , (5) 
where

β n = n-k i=1 1 (n -i) 1 -1 - i n k-1 and γ n = n-k i=1 1 (n -i) 1 -1 - i n -k k-1 .
In the following two lemmas, we obtain an equivalent for both β n and γ n when n tends to infinity. Lemma 3.2 For all k ≥ 2, we have

β n ∼ n-→∞ k ln(n) k -1 .
Proof. For all k ≥ 2 and y ∈ R, using the identity

1 -y k-1 = (1 -y) 1 + y + • • • + y k-2 ,
and introducing the function f k is defined, for all x ∈ [0, 1] by

f k (x) = 1 1 + (1 -x) + (1 -x) 2 + • • • + (1 -x) k-2 ,
we obtain

β n = n-k i=1 f k i n (n -i) 1 -1 - i n = n-k i=1 n i(n -i) f k i n = n-k i=1 1 i + 1 n -i f k i n (6) = n-k i=1 1 i f k i n + n-1 i=k 1 i f k 1 - i n = n i=1 1 i f k i n + n i=1 1 i f k 1 - i n - n i=n-k+1 1 i f k i n - k-1 i=1 1 i f k 1 - i n - 1 n f k (0). Observing that lim n-→∞ n i=n-k+1 1 i f k i n + k-1 i=1 1 i f k 1 - i n + 1 n f k (0) = f k (1) k-1 i=1 1 i ,
we obtain

β n = n i=1 1 i f k i n + n i=1 1 i f k 1 - i n -f k (1) k-1 i=1 1 i + ε(n), (7) 
where ε(n) is such that lim n-→∞ ε(n) = 0. Since the function f k is C ∞ on interval [0, 1] and verifies f k (0) = 1/(k -1) = 0 and f k (1) = 1 = 0, k being fixed, we obtain, using Lemma 3.1,

β n ∼ n-→∞ (f k (0) + f k (1)) ln(n) = k ln(n) k -1 ,
which completes the proof.

We consider now the term γ n .

Lemma 3.3 For all k ≥ 2, we have

γ n ∼ n-→∞ k ln(n) k -1 .
Proof. Using the function f k defined in the proof of Lemma 3.2, we obtain easily

γ n = n-k i=1 f k i n -k (n -i) 1 -1 - i n -k = (n -k) n-k i=1 1 i(n -i) f k i n -k = n -k n n-k i=1 1 i + 1 n -i f k i n -k (8) 
The function

f k being C ∞ on interval [0, 1], defining C k = max z∈[0,1] |f k (z)
| where f k is the derivative of f k , we get, using Relations ( 6) and ( 8),

γ n - n -k n β n ≤ n -k n n-k i=1 1 i + 1 n -i f k i n -k -f k i n ≤ C k n -k n n-k i=1 1 i + 1 n -i ik n(n -k) ≤ C k k n n-k i=1 1 i + n-1 i=k 1 i .
This bound tends to 0 when n tends to infinity. We thus have, from Lemma 3.1,

lim n-→∞ γ n - n -k n β n = 0 and n -k n β n ∼ n-→∞ β n ∼ n-→∞ k ln(n) k -1 ,
which completes the proof.

Theorem 3.4 For all k ≥ 2, we have

E(Θ k,n ) ∼ n-→∞ k ln(n) (k -1)λ .
Proof. Relations (3) and ( 5) give

γ n λ + 1 λ k-1 i=1 1 i ≤ E(Θ k,n ) ≤ β n λ + 1 λ k-1 i=1 1 i .
The use of Lemma 3.2 and Lemma 3.3 leads to the desired result.

We now show that the following refined analysis of the term β n leads to a precise description of the asymptotic behavior of the expected rumor spreading time E(Θ k,n ). We need the following lemma in which γ is the Euler-Mascheroni constant given by γ ≈ 0.5772156649.

Lemma 3.5 Let g be a C ∞ function on interval [0, 1]. If g(0) = 0 then n i=1 1 i g i n = g(0) ln(n) + γg(0) + 1 0 g(x) -g(0) x dx + ε(n). If g(1) = 0 then n i=1 1 i g 1 - i n = g(1) ln(n) + γg(1) + 1 0 g(1 -x) -g(1) x dx + ε(n), where ε(n) is such that lim n-→∞ ε(n) = 0.
Proof. Using the integral form of the remainder for the Taylor series of function g, we get

g(x) -g(0) = xG(x), where G(x) = 1 0 g (tx)dt,
function g being the derivative of g. We then have

n i=1 1 i g i n -g(0) n i=1 1 i = n i=1 1 i i n G i n = 1 n n i=1 G i n -→ n→∞ 1 0 G(x)dx,
since the last term is a Riemann sum. We then use the following well-known development of the harmonic sum

n i=1 1 i = ln(n) + γ + ε(n),
where ε(n) is such that lim n-→∞ ε(n) = 0. In the same way, we have

g(1 -x) -g(1) = -xG(x), where G(x) = 1 0 g (1 -tx)dt
and we obtain

n i=1 1 i g 1 - i n -g(1) n i=1 1 i = - n i=1 1 i i n G i n = - 1 n n i=1 G i n -→ n→∞ - 1 0 G(x)dx.
Again the development of the harmonic sum completes the proof.

The following theorem gives a more precise description of the asymptotic behavior of β n .

Lemma 3.6 For all k ≥ 2, we have

β n = k ln(n) k -1 + γk k -1 - k-1 i=1 1 i - ln(k -1) k -1 + ε(n), where ε(n) is such that lim n-→∞ ε(n) = 0.
Proof. Since f k (0) = 1/(k -1) and f k (1) = 1, Relation (7) and Lemma 3.5 give

β n = k ln(n) k -1 + γk k -1 - k-1 i=1 1 i + 1 0 f k (1 -x) + f k (x) x - k (k -1)x dx + ε(n).
We need to compute the quantity

I := 1 0 f k (1 -x) + f k (x) x - k (k -1)x dx.
Coming back to the definition of f k , we introduce the polynomial

q k (x) = 1 + x + • • • + x k , so that f k (x) = 1/q k-2 (1 -x) and f k (1 -x) = 1/q k-2 (x). On top of that, we observe that k/(k -1) = 1 + 1/(k -1) = f k (0) + f k (1)
. These two observations lead to

I = 1 0 1 x 1 q k-2 (x) - 1 q k-2 (0) + 1 q k-2 (1 -x) - 1 q k-2 (1)
dx, and the variable change x := 1 -x to deal with the second difference leads to

I = 1 0 1 x 1 q k-2 (x) - 1 q k-2 (0) + 1 1 -x 1 q k-2 (x) - 1 q k-2 (1)
dx.

Now the whole point in order to compute this integral is to factorize x in the first difference 1/q k-2 (x) -1/q k-2 (0), and to factorize 1 -x in the second difference 1/q k-2 (x) -1/q k-2 (1), so as to remove the apparent singularities and to recover computable quantities.

Concerning the first difference, we observe that

q k-2 (0) -q k-2 (x) = -x -x 2 -• • • -x k-2 = -xq k-3 (x), which gives 1 x 1 q k-2 (x) - 1 q k-2 (0) = - q k-3 (x) q k-2 (0)q k-2 (x) = - q k-3 (x) q k-2 (x) .
The other difference requires slightly more attention. We claim that the following formula holds

q k-2 (1) -q k-2 (x) = (1 -x) (k -2)q k-3 (x) -xq k-3 (x) . ( 9 
)
Admitting the result for the time being, we obtain

1 1 -x 1 q k-2 (x) - 1 q k-2 (1) = (k -2)q k-3 (x) -xq k-3 (x) q k-2 (1)q k-2 (x) = (k -2)q k-3 (x) -xq k-3 (x) (k -1)q k-2 (x) .
Eventually, this provides

I = 1 0 - q k-3 (x) q k-2 (x) + (k -2)q k-3 (x) -xq k-3 (x) (k -1)q k-2 (x) dx = - 1 k -1 1 0 q k-3 (x) + xq k-3 (x) q k-2 (x) dx = - 1 k -1 1 0 q k-3 (x) + xq k-3 (x) xq k-3 (x) + 1 dx,
where the last equality comes from the observation q k-2 (x) = xq k-3 (x) + 1. As a final result, we recover, since (xq k-3 (x) + 1) = xq k-3 (x) + q k-3 (x), the value

I = - ln (p k-3 (1)) k -1 = - ln (k -1) k -1 .
There remains to prove formula [START_REF] Feige | Randomized broadcast in networks[END_REF]. The formula can easily be proved using a recursion procedure. Alternatively, one may write, using the fact that 1 -

x j = (1 -x) j-1 =0 x , the relations q k-2 (1) -q k-2 (x) = k-2 j=1 1 -x j = (1 -x) k-2 j=1 j-1 =0 x = (1 -x) k-3 =0 k-2 j= +1 x = (1 -x) k-3 =0 (k -2 -)x = (1 -x) (k -2)q k-3 (x) -xq k-3 (x) ,
which completes the proof.

The following theorem will be used in Corollary 4.4 to get an asymptotic behavior of the distribution of Θ k,n . Theorem 3.7 For all k ≥ 2, we have

E(Θ k,n ) = 1 λ k ln(n) k -1 + γk k -1 - ln(k -1) k -1 + ε(n), where ε(n) is such that lim n-→∞ ε(n) = 0.
Proof. Relations (3) and ( 5) give

γ n λ + 1 λ k-1 i=1 1 i ≤ E(Θ k,n ) ≤ β n λ + 1 λ k-1 i=1 1 i .
Using Lemma 3.6 and the fact that lim n-→∞ (γ n -β n ) = 0 (see the end of the proof of Lemma 3.3), we easily get the desired result.

Variance of the rumor spreading time

The following lemma is needed to obtain the limiting value of the variance of Θ k,n when n tends to infinity.

Lemma 3.8 Let g be a C ∞ function on interval [0, 1]. If g(0) = 0 then lim n-→∞ n i=1 1 i 2 g i n = g(0) π 2 6 . If g(1) = 0 then lim n-→∞ n i=1 1 i 2 g 1 - i n = g(1) π 2 6 .
Proof. Function g being C ∞ on interval [0, 1], it is Lipschitz and so, for all x, y ∈ [0, 1], we have

|g(x) -g(y)| ≤ C|x -y|, where C = max z∈[0,1] |g (z)|
and g is the derivative of function g. We then have, by taking x = i/n and y = 0,

n i=1 1 i 2 g i n -g(0) n i=1 1 i 2 ≤ n i=1 1 i 2 g i n -g(0) ≤ C 1 n n i=1 1 i ∼ n-→∞ C ln(n) n .
This means that lim

n-→∞ n i=1 1 i 2 g i n = g(0) ∞ i=1 1 i 2 = g(0) π 2 6 .
The same steps with x = 1 -i/n and y = 1 lead to the second result.

Using (1) and ( 2), the variance of the rumor spreading time writes

V(Θ k,n ) = 1 λ 2 n-1 i=1 1 (n -i) 2 p 2 k,n (i) = 1 λ 2 n-k i=1 1 (n -i)p 2 k,n (i) + 1 λ 2 k-1 i=1 1 i 2 . (10) 
As we did for the expected rumor spreading time and introducing the notation

δ n = n-k i=1 1 (n -i) 2 p 2 k,n (i) 
,

we obtain η n ≤ δ n ≤ ζ n , (11) 
where

ζ n = n-k i=1 1 (n -i) 2 1 -1 - i n k-1 2 , η n = n-k i=1 1 (n -i) 2 1 -1 - i n -k k-1 2 .
In the following two lemmas, we obtain the limiting value of both ζ n and η n when n tends to infinity. Lemma 3.9 For all k ≥ 2, we have

lim n-→∞ ζ n = 1 + 1 (k -1) 2 π 2 6 - k-1 i=1 1 i 2 .
Proof. Using again the function f k introduced in the proof of Lemma 3.2, we obtain

ζ n = n-k i=1 f 2 k i n (n -i) 2 1 -1 - i n 2 = n-k i=1 n 2 i 2 (n -i) 2 f 2 k i n . (12) 
Observing that

n 2 i 2 (n -i) 2 = 1 (n -i) 2 + 1 i 2 + 2 n 1 i + 1 n -i , (13) 
we have

ζ n = n-k i=1 1 (n -i) 2 f 2 k i n + n-k i=1 1 i 2 f 2 k i n + 2 n n-k i=1 1 i + 1 n -i f 2 k i n .
We denote respectively by ζ n,1 , ζ n,2 and ζ n,3 these three sums. Concerning ζ n,3 , we have

n-k i=1 1 i + 1 n -i f 2 k i n = n-k i=1 1 i f 2 k i n + n-1 i=k 1 i f 2 k 1 - i n .
Applying Lemma 3.1 with function g = f 2 k , we obtain

n-k i=1 1 i f 2 k i n + n-1 i=k 1 i f 2 k 1 - i n ∼ n-→∞ f 2 k (0) + f 2 k (1) ln(n) = 1 + 1 (k -1) 2 ln(n) which implies that lim n-→∞ ζ n,3 = lim n-→∞ 2 1 + 1 (k -1) 2 ln(n) n = 0.
Concerning ζ n,2 , since we have

ζ n,2 = n-k i=1 1 i 2 f 2 k i n , applying Lemma 3.8 with function g = f 2 k , we obtain lim n-→∞ ζ n,2 = f 2 k (0) π 2 6 = 1 (k -1) 2 π 2 6 .
Finally, for term ζ n,1 , we have

ζ n,1 = n-k i=1 1 (n -i) 2 f 2 k i n = n-1 i=k 1 i 2 f 2 k 1 - i n
Applying again Lemma 3.8 with function g = f 2 k , we obtain

lim n-→∞ ζ n,1 = f 2 k (1) ∞ i=k 1 i 2 = π 2 6 - k-1 i=1 1 i 2 .
Putting these three limits together leads to lim n-→∞

ζ n = 1 + 1 (k -1) 2 π 2 6 - k-1 i=1 1 i 2 ,
which completes the proof.

We analyze now the limiting value of η n when n tends to infinity.

Lemma 3.10 For all k ≥ 2, we have

lim n-→∞ η n = 1 + 1 (k -1) 2 π 2 6 - k-1 i=1 1 i 2 .
Proof. Using again the function f k introduced in the proof of Lemma 3.2, we obtain

η n = n-k i=1 f 2 k i n -k (n -i) 2 1 -1 - i n -k 2 = (n -k) 2 n 2 n-k i=1 n 2 i 2 (n -i) 2 f 2 k i n -k . ( 14 
)
The function f k being Lipschitz on interval [0, 1], defining

C k = max z∈[0,1] |(f 2 k ) (z)| where (f 2 k ) is the derivative of f 2
k , we get, using Relations ( 12) and ( 14),

η n - (n -k) 2 n 2 ζ n ≤ (n -k) 2 n 2 n-k i=1 n 2 i 2 (n -i) 2 f 2 k i n -k -f k i n ≤ C k (n -k) 2 n 2 n-k i=1 n 2 i 2 (n -i) 2 ik n(n -k) ≤ C k k(n -k) n 2 n-k i=1 n 2 i 2 (n -i) 2 .
Using Relation [START_REF] Giakkoupis | Tight bounds for rumor spreading with vertex expansion[END_REF], we have

lim n-→∞ n-k i=1 n 2 i 2 (n -i) 2 = ∞ i=1 1 i 2 + ∞ i=k 1 i 2 = π 2 3 - k-1 i=1 1 i 2 .
It follows that lim

n-→∞ η n - (n -k) 2 n 2 ζ n = 0.
This result together with the result of Lemma 3.9 leads to lim n-→∞

η n = lim n-→∞ ζ n = 1 + 1 (k -1) 2 π 2 6 - k-1 i=1 1 i 2 ,
which completes the proof.

Theorem 3.11 For all k ≥ 2, we have

lim n-→∞ V(Θ k,n ) = 1 + 1 (k -1) 2 π 2 6λ 2 .
Proof. Relations [START_REF] Fountoulakis | Rumor spreading on random regular graphs and expanders[END_REF] and [START_REF] Frieze | The shortest-path problem for graphs with random arc-lengths[END_REF] give

η n λ 2 + 1 λ 2 k-1 i=1 1 i 2 ≤ V(Θ k,n ) ≤ ζ n λ 2 + 1 λ 2 k-1 i=1 1 i 2 .
The use of Lemma 3.9 and Lemma 3.10 leads to the desired result.

Distribution of the rumor spreading time

This section provides explicit limiting distributions such as Θ k,n -E(Θ k,n ) when n tends to infinity. We introduce the notation µ k,n (i) = λ(n -i)p k,n (i). Recall that U k,n (i) is exponentially distributed with rate µ k,n (i) and that

Θ k,n = n-1 i=1 U k,n (i).
The main result of this section is Theorem 4.2 whose proof needs the following lemma. 

1 i 2 p 2 k,2n+1 (2n + 1 -i) = 0. Proof. Introducing the notation ∆ m,n (k) = n i=m 1 (2n + 1 -i) 2 1 -1 - i 2n + 1 k-1 2
we obtain, using inequality (4),

n i=m 1 (2n + 1 -i) 2 p 2 k,2n+1 (i) ≤ ∆ m,n (k).
Using the function f k defined in the proof of Lemma 3.2 we write

∆ n,m (k) = n i=m (2n + 1) 2 (2n + 1 -i) 2 i 2 f 2 k i 2n + 1 .
Observing that function f k is increasing on interval [0, 1] and that f k (1) = 1, we obtain using Relation [START_REF] Giakkoupis | Tight bounds for rumor spreading with vertex expansion[END_REF], with 2n + 1 instead n,

∆ n,m (k) ≤ n i=m (2n + 1) 2 (2n + 1 -i) 2 i 2 = n i=m 1 (2n + 1 -i) 2 + n i=m 1 i 2 + 2 2n + 1 n i=m 1 i + 1 2n + 1 -i = 2n+1-m i=n+1 1 i 2 + n i=m 1 i 2 + 2 2n + 1 n i=m 1 i + 2n+1-m i=n+1 1 i = 2n+1-m i=m 1 i 2 + 2 2n + 1 2n+1-m i=m 1 i ≤ 2n+1-m i=m 1 i 2 + 2(1 + ln(2n + 1 -m) 2n + 1 .
The lim m-→∞ lim sup n-→∞ of both terms is 0 because i 1/i 2 is a converging series. This proves the first relation.

Concerning the second relation, introducing the notation

Λ m,n (k) = n i=m 1 i 2 1 -1 - 2n + 1 -i 2n + 1 k-1 2
we obtain in the same way, using inequality (4),

n i=m 1 i 2 p 2 k,2n+1 (2n + 1 -i) ≤ Λ m,n (k) 
and, using function

f k , Λ n,m (k) = n i=m (2n + 1) 2 (2n + 1 -i) 2 i 2 f 2 k 1 - i 2n + 1 .
As we did for term ∆ n,m (k), we have

Λ m,n (k) ≤ n i=m (2n + 1) 2 (2n + 1 -i) 2 i 2 ,
which in turn leads to the same result. We are now able to prove the following theorem. Theorem 4.2 Let (Z i ) i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and let W be defined by

W = ∞ i=1 Z i -1 i .
We then have 2) as n -→ ∞ where W (1) and W (2) are i.i.d. with the same distribution as W .

Θ k,n -E(Θ k,n ) L --→ 1 (k -1)λ W (1) + 1 λ W ( 
Proof. Recalling that µ k,n (i) = λ(n -i)p k,n (i), we have, for all n ≥ 2, i ∈ {1, . . . , n -1} and x ≥ 0,

P{µ k,n (i)U k,n (i) > x} = P{U k,n (i) > x/µ k,n (i)} = e -x .
Thus if Z i is exponentially distributed with rate 1, we have µ k,n (i)U k,n (i) L = Z i . Moreover since the (U k,n (i)) i∈{1,...,n-1} are independent, the (Z i ) i≥1 are also independent.

Observing now that for each fixed i and k, we have, from Relation (1),

p k,n (i) = i k-1 h=1 1 n -h + o(1/n), we obtain lim n-→∞ µ k,n (i) = λ lim n-→∞ (n -i)p k,n (i) = (k -1)λi.
From Relation (1), we also trivially get

lim n-→∞ µ k,n (n -i) = λi lim n-→∞ p k,n (n -i) = λi. Defining R k,n (i) = U k,n (i) -E(U k,n (i)) we obtain, since E(U k,n (i)) = 1/µ k,n (i), R k,n (i) = U k,n (i) -E(U k,n (i)) = µ k,n (i)U k,n (i) -1 µ k,n (i) L --→ Z i -1 (k -1)λi as n -→ ∞. (15) 
In the same way, we get

R k,n (n -i) = µ k,n (n -i)U k,n (n -i) -1 µ k,n (n -i) L --→ Z i -1 λi as n -→ ∞. (16) 
Suppose that n is odd, i.e., that n = 2 + 1. Defining

V k, = i=1 R k,2 +1 (i) and V k, = i=1 R k,2 +1 (2 + 1 -i), we have Θ k,2 +1 -E(Θ k,2 +1 ) = 2 i=1 [U k,2 +1 (i) -E(U k,2 +1 (i))] = 2 i=1 R k,2 +1 (i) = V k, + V k, . (17) 
Observe that the random variables V k, and V k, are independent. The rest of the proof consists in checking the hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [START_REF] Stroock | Probability Theory: An Analytic View[END_REF]. We introduce the notation

V k, ,m = m-1 i=1 R k,2 +1 (i) and V k, ,m = m-1 i=1 R k,2 +1 (2 + 1 -i).
Using the fact that E(R k,n (i)) = 0 and that the R k,n (i) are independent, we have

E (V k, -V k, ,m ) 2 = E   i=m R k,2 +1 (i) 2   = V i=m R k,2 +1 (i) = i=m V(R k,2 +1 (i)) = i=m V(U k,2 +1 (i)) = i=m 1 µ 2 k,2 +1 (i) = 1 λ 2 i=m 1 (2 + 1 -i) 2 p 2 k,2 +1 (i)
and, in the same way, Using now the Markov inequality, we obtain, for all ε > 0,

E (V k, -V k, ,m ) 2 = i=m 1 µ 2 k,2 +1 (2 + 1 -i) = 1 λ 2 i=m 1 i 2 p 2
P{|V k, -V k, ,m | ≥ ε} = P{(V k, -V k, ,m ) 2 ≥ ε 2 } ≤ E((V k, -V k, ,m ) 2 ) ε 2
and

P{ V k, -V k, ,m ≥ ε} = P{(V k, -V k, ,m ) 2 ≥ ε 2 } ≤ E((V k, -V k, ,m ) 2 ) ε 2 .
Putting together these results, we deduce that for all ε > 0, we have Using ( 15) and ( 16) and the fact that the R k,n (i) are independent, we have

V k, ,m L --→ W k,m and V k, ,m L --→ W k,m as -→ ∞. ( 19 
)
The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [START_REF] Stroock | Probability Theory: An Analytic View[END_REF] are properties [START_REF] Panagiotou | Randomized rumor spreading: the effect of the network topology[END_REF] and [START_REF] Panagiotou | Faster rumor spreading with multiple calls[END_REF].

We can thus conclude that

V k, L --→ 1 (k -1)λ W and V k, L --→ 1 λ W as -→ ∞.
This means, from Relation [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF], that 2) as -→ ∞,

Θ k,2 +1 -E(Θ k,2 +1 ) L --→ 1 (k -1)λ W (1) + 1 λ W ( 
where W (1) and W (2) are independent and identically distributed as W . The same reasoning applies in the case where n = 2 . which completes the proof.

Lemma 4 . 1

 41 For all k ≥ 2, we have lim

  k, -V k, ,m ) 2 ) = lim k, -V k, ,m ) 2 ) = 0.

  k, -V k, ,m | ≥ ε} = lim m-→∞ lim sup -→∞ P{ V k, -V k, ,m ≥ ε} = 0.

Corollary 4 . 3 1 Z 2 0 P Z 1

 431201 For all x ∈ R and k ≥ 2, we havelim n-→∞ P {Θ k,n -E(Θ k,n ) ≤ x} = ∞ 0 exp -t -t -(k-1) e -(k-1)λx-kγ dt.Proof. L. Gordon has proved in[START_REF] Gordon | Bounds for the distribution of the generalized variance[END_REF] that i ) are i.i.d. exponential with rate 1. Thus, by definition of W in Theorem 4.2, we haveW L = -γ -ln(Z 1 ).Introducing W (1) L = -γ -ln(Z 1 ) and W (2) L = -γ -ln(Z 2 ), we obtain from Theorem 4.2, for all x ∈ R,lim n-→∞ P {Θ k,n -E(Θ k,n ) > x} = P ≥ e -λx-kγ/(k-1) = ∞ ≥ t -(k-1) e -(k-1)λx-kγ e -t dt = ∞ 0 exp -t -t -(k-1)e -(k-1)λx-kγ dt, which completes the proof.

Corollary 4 . 4

 44 For all x ∈ R and k ≥ 2, we havelim n-→∞ P Θ k,n -k ln(n) (k -1)λ ≤ x = ∞ 0 exp -t -t -(k-1) e -(k-1)λx k -1 dtProof. Observe first that we haveP Θ k,n -k ln(n) (k -1)λ ≤ x = P Θ k,n -E(Θ k,n ) ≤ x + k ln(n) (k -1)λ -E(Θ k,n ) .From Theorem 3.7, we have limn-→∞ k ln(n) (k -1)λ -E(Θ k,n ) = -γk -ln(k -1) (k -1)λ . It follows from Corollary 4.3 that lim n-→∞ P Θ k,n -k ln(n) (k -1)λ ≤ x = ∞ 0 exp -t -t -(k-1)e -(k-1)λx k -1 dt.