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Stability of higher order eigenvalues in dimension one

Jordan Serres*
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Abstract

We study stability of the eigenvalues of the generator of a one dimensional reversible
diffusion process satisfying some natural conditions. The proof is based on Stein’s method.
In particular, these results are applied to the Normal distribution (via the Ornstein-
Uhlenbeck process), to Gamma distributions (via the Laguerre process) and to Beta
distributions (via Jacobi process).

1 Introduction

A classical question in Spectral Geometry is to identify properties of a manifold from the knowledge
of eigenvalues of a canonical differential operator. The most extensively studied case is when the
differential operator is the Laplace-Beltrami operator of a Riemannian manifold. This problem has
been formulated by the famous ”Can one hear the shape of a drum?” by M.Kac [24]. We refer the
reader to [20, 21, 33] and to the survey [19]. The Hille-Yosida theory gives that under certain natural
conditions, a differential operator generates a contractive semigroup (see [40]). In particular, in the
case of the Laplace-Beltrami operator, it is the heat semigroup. In this range of ideas, Kato’s formula
implies comparison of semigroups and hence comparison of eigenvalues (see [7, 22, 36]). A large part
of the literature is also devoted to estimates of the growth of eigenvalues of Schrodinger operators.
These include the works of M.Bordoni [8], A.Laptev [26] and E.Lieb and W.Thirring [28, 29].

There are many classical comparison results involving only the first or second eigenvalues of
operators. Let us cite among them the celebrated Faber-Krahn inequality: balls uniquely minimize
the first Dirichlet eigenvalue of the Lapacian in R? among sets with given volum [14, 25], and the
Hong-Krahn-Szego inequality: disjoint pair of equal balls uniquely minimize the second Dirichlet
eigenvalue among sets with given volum [15, 23, 34].

In terms of functional inequalities, the first eigenvalue is encoded by the Poincaré constant. A
probability measure ;i on R? is said to satisfy a Poincaré inequality when for all functions f in the
Sobolev space H!(u),

1) Van(f) < Colp) [ 19

where Cp(p) denotes the smallest constant for which the above inequality holds. Poincaré inequalities
have many applications (see for instance the survey [1]). When p is reversible for a Markov process,
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the infinitesimal generator L of the Markov process is symmetric on L?(1) and the quantity A;(u) :=
m is then the spectral gap of the positive symmetric operator —L (see [5, section 4.2.1]).

Stability results for Poincaré constant began to appear in the late 80’s. Chen [12, Corollary 2.1]
showed that all isotropic probability measures on R? have sharp Poincaré constant greater than 1. He
proved furthermore that the standard Gaussian is the only one attaining 1. Then Utev [38] refined
this result in dimension one, quantifying the difference between Poincaré constants in term of total
variation distance:

1
Cp(v) 2 1+ gdrv(v, )

where v is a normalized probability measure on R, v is the standard Gaussian and dry is the
total variation distance. More recently, Courtade, Fathi and Pananjady [13|, extended it to the
multidimensional case with the Wasserstein-2 distance:

2) Cp(v) > 1+ W

where v is a centered probability measure on R, normalized such that [ |z|>dv = d, v denotes the
Gaussian .A47(0, I;) and W is the 2-Wasserstein distance (see [39, chapter 6]). This result has been
extended in a more abstract setting, for a general reference probability measure ;2 on a manifold
instead of the Gaussian on R%.

Theorem 1. /35, Theorem 16] Let L be a Markov reversible generator with respect to a probability
measure i, carré du champ operator T, and with spectral gap Cp(u)™" and associated eigenfunction
f1. If any other measure v satisfies the normalization conditions

/fldy:(), /ffdyzl, /F(fl)dugcpl(“),

and the Poincaré inequality

Vi, Var(f) < Cr() / I (f) dv,

then Cp(v) > Cp(p) and moreover the closeness between Cp(v) and Cp(p) bounds the 1-Wasserstein
distance between the laws of the pushforwards of i and v by fo:

Cp(l/)

1
3 Wi (fFw), fFw) < Const (mVCP(”) AR

(Cplv) - cp<u>>> .

The constant is finite when the generalized gradient T'(f1) of the eigenfunction satisfies some growth
conditions (see Proposition 10).

In this paper we will consider a diffusion process L on an interval with reversible probability
measure g and carré du champ operator I'. The reason why we obtain results only in dimension one
will appear clear in Section 4. However, the entire framework and results outlined up to section 4
remain valid in higher dimensions. We will derive a stability result for higher order eigenvalues of
the generator L. In [35], we used the following min-max theorem as definition of the first eigenvalue:



There are other min-max theorems for higher order eigenvalues, that require to change the functional
space over which the infimum in Formula (4) runs. This can be seen as improving the Poincaré
constant by decreasing the domain of the inequality. Despite the changes, we shall see that the main
ingredients used for the stability of the first eigenvalue can still by used to establish stability results
for higher order eigenvalues.

Let ke N k> 1and 0 < A(p) < Ag(p) < ... < Ap(p) < ... be the sequence of eigenvalues of —L,
counted without multiplicity, and let fj be a normalized eigenfunction associated with Ag(u), i.e.

“Lfi=Nfe [fedp=0. ad [ gau—t.

We set I, := Im(fy), ax := inf I} and by := sup Iy. Let v be another probability measure on M,
normalized so that

[rar=o. [gav=1. [r(r)ar < nw.

and satisfying the following improved Poincaré inequality

/ Pdv < %@) / D(f)dv Vf € H'(#) N (Spr(v) @ .. ® Sppa ()"

where Sp;(v) denotes the i-th eigenspace of v, A\;(v) denotes the k-th eigenvalue of v, and the
orthogonal complement is to be understood in the L?*(v) sense. We will show (see Lemma 4) that
under these normalization conditions, v satisfies

k—1

Me(v) < M) + () d(fr, Spi(v)) "),

=1

where d(fi, Sp;(v))*)? denotes the squared distance between f; and Sp;(v)t. We refine this by
proving the following stability result for the k-th eigenvalue.

Theorem 2. For all one dimensional probability measures v normalized as in (5), satisfying the
improved Poincaré inequalities (7), and the technical Assumption 1, it holds for some finite constant
C>0:

k—1

+Z(dek,3pz< )h)

|Ak(p) — Ar(v
Ar(v)

ST v Wiy, 1) < C [V () — )] +

J

where (I,Z)j are the images by fr of the connected components of the complementary of its critical
points, vy (resp. ;) is the pushforward of v (resp. ) restricted to Ij, constants C; are given by

Ci=vVXe(v) — Ni(v) + Aw(r) = Ai(v)

and d(fx, Spi(v)") is defined in Remark 1. The value C' = 3. C’%j suffices, with Cy, given in
Proposition 10.



The technical Assumption 1 (see Section 4.2.1) ensures the finiteness of the constant C' (see
Proposition 11), and asks that the carré du champ operator I'(f;) of the eigenfunction satisfies a
certain polynomial growth condition. The proof of Theorem 2 is based on an approximate integration
by parts formula satisfied by v with respect to the k-th eigenfunction f; (see Corollary 7) and the
use of Stein’s method to the pushforward of u by fi (see Section 4.2). Let us mention that the exact
integration by parts satisfied by the k-th Hermite polynomial in case of the Normal distribution,
was used in [16] to define the notion of higher order Stein’s kernels in the context of Gaussian
approximation.

Our result applies in particular to the normal distribution (see Section 5), Gamma distributions
on R, (see Section 6), and Beta distributions on [—1, 1] (see Section 7). Applying this to the second
Hermite polynomial, we obtain the following Chi-2 approximation result. For all measure v on R

normalized as
/xQdV =1, and /x4du =3,

it holds for some finite positive constant C' > 0:

Wi (% <><2—1>,v*) <C B_A—??(i”)ﬂwyd(% (xQ—l),Spl(V)lﬂ

where Y3 is the yo-distribution on R, , v* is the pushforward of v by the second Hermite polynomial

\/Li (z? — 1), the constant C, is given by C, = \/Aa(v) — Aﬂﬂ—i—%, and d (\% (22 —1), Spl(y)L>
1(v

quantifies the orthogonality error between \% (22 — 1) and the first eigenspace of v (see Section 2.1).

12— X (v)| +

Let us say a few words about stability results from a geometric setting. The Lichnerowicz theorem
asserts that among all Riemannian manifolds with Ricci curvature bounded by below by N — 1, unit
spheres of dimension N uniquely minimizes the first eigenvalue of the Laplace-Beltrami operator
[27]. The Bakry-Emery criterion [3, 4] extends this result to Gaussian spaces: if y = ¢ Vdz is a
probability distribution which is more log-concave than the Gaussian (i.e. HessV > ;) then its
Poincaré constant is smaller than 1 which is that of the Gaussian.

While the original proof of Bakry-Emery is based on the semigroup method, another power-
ful method is the contraction principle [32]: if p is the pushforward of v by a L-Lipshitz map,
then Cp(p) < LCp(v). In particular, Caffarelli’s contraction theorem [11] states that the optimal
transport between the Gaussian and a more log-concave distribution given by the Brenier map is
1-Lipschitz, recovering the Bakry-Emery criterion. E.Milman [32] pointed out that the contraction
principle does not only entail a comparison between the first eigenvalues, but a comparison between
the entire spectra. In that area of sprectral comparison by the contraction principle, let us cite the
recent works of D.Mikulincer and Y.Shenfeld [31, 30].

The question of stability of spectral estimates has been addressed in various works. We refer the
reader to the survey [9] by L.Brasco and G. De Philippis for a view of quantitative sharp inequalities
for first (and second) eigenvalues of the Laplacian in R?. Let us mention in particular the quantitative
form of Faber-Krahn inequality. L.Brasco, G. De Philippis and B.Velichkov proved in [10] that there
exists a constant o > 0 depending on the dimension such that for all Q C R¢ of volum 1,

A (Q) > M\ (B) + 0.9/ (Q)?2

where A\;(Q2) denotes the first Dirichlet eigenvalue of the Laplacian on €2, B denotes the unit ball in
R?, o7 (Q) is the Fraenkel asymetry of 2, and the exponent 2 is sharp.
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The study of the stability of the spectral gap of a diffusion operator falls within this framework.
Under the curvature-dimension condition, let us cite the work [6] of J.Bertrand and M.Fathi which
treats the case of the positive curvature and the infinite dimension. In particular, they show that any
RCD(1,00) space reaching almost the Bakry-Emery bound 1 for its spectral gap, admits approxi-
mately all integers in its spectrum. The stability is quantified in terms of a spectral comparison with
the Gaussian, since the integers are eigenvalues of the Ornstein-Uhlenbeck generator for which the
Gaussian is reversible. In case of the positive curvature and the finite dimension, the Lichnerowicz
theorem has been extended in the following way.

Theorem 3. [17, Theorem 1.1] Let (M,d, ) be an RCD(N — 1, N) space with N > 1 and spectral
gap M1 < N + ¢ for some ¢ > 0, with f an eigenfunction of the Laplacian, with eigenvalue \;
and normalized so that ||[T'(f)||s = N/(N 4+ 1). There is a constant C(N) > 0 (independent of M)
such that the 1-Wasserstein distance between the pushforward of pu by f and a symmetrized Beta
distribution with parameters (N/2,N/2) is smaller than C(N)e.

Let us emphasize that the stability is quantified in terms of W distance between pushforward by
the first eigenfunction, since the symmetrized Beta distribution with parameters (N/2, N/2) is the
distribution of the pushforward by a first eigenfunction of the reversible law of the Laplacian on a
sphere. Let us conclude this introduction by mentioning that under the normalisation approach used
in this paper, the spectral gap of the model space is maximal, whereas under the curvature condition
approach, it is minimal.

2 The space of normalized probability distributions v

In this section, we explicitly describe the space of normalized probability distributions on which our
stability result holds. We consider a probability measure v such that

(5) [rar=o. [gav=1 wd [T < n

Let us underline that these normalization conditions correspond to

[feav= [ fean. [ fpav= [ gan [riroar< [rig)an

But since f; is an eigenfunction associated to the k-th eigenvalue of u, we have [ fpdp = 0 and
JT(fx) dp = Me(p) [ f2dp, hence we normalize fi, by [ f2 =1 in order to make the conditions more
readable.

2.1 Eigenspaces of v

We define the eigenspaces of v in the following way: first

Sp(v) = {f e w0 v e '), [ faar =55 [T(00) du},

where

H'(v) := {feLQ(u)|/fdy:07/F(f)du<oo},

>



and

L(f

6 M(v) = inf f

( ) 1( ) FEH(W)\{0} j‘fg dV

This definition corresponds to eigenspace in a weak sense. It is clearly a linear space and a subset
of {f € H'(v)| [ f2dv = /\11(1/) JT(f)dv}. Moreover, if v is reversible for some generator L, with
carré du champ operator I', then the converse set inclusion holds and Sp;(v) is an eigenspace of L,
in the classical sense. We can then recursively define higher order eigenspaces in a similar way.

Speal)i={ £ € WY € H0)N Sp0) 00 S [ fadv = s [ (70w}
N(Spi(v) & ... ® Spr(v)) ",

where the orthogonal complement is to be understood in the L?(v) sense and

fF
* FEHL()N(SP1(V)&...®Spr (V) * ff2 dl/
f#0

Note that by construction, eigenspaces are pairwise orthogonal in L?(v), and eigenvalues are ordered:

A(v) < Aa(v) <--- < () <
Let us emphasize that the integration by parts formula

/fgduzf(y)/w,g)dv

when f is an eigenfunction can be interpreted as an ”isometry along f in Spx(v)” between the
L?(v)-norm and the H'(v)-norm. This property is the keystone of Lemma 4 and Theorem 5.

2.2 Improved Poincaré inequalities

By definition of eigenvalues and associated eigenspaces, the probability measure v always satifies the
following improved Poincaré inequalities.

(7) / fv< / D(f)dv Vf € B' (W) N (Spi(v) @ .. ® Spya(v))*
where fF
(V) = fGHl(V)ﬁ(Spl(iI)lé s fo dz/ > M1 (V).

Even if the eigenvalue A (v) is trivial (i.e. is zero), the 1mpr0ved Poincaré inequality becomes itself
trivial, but remains true.

2.3 Projection of the eigenfunction f; onto eigenspaces of v

The first idea used in the previous study on the spectral gap [35] was to evaluate the Poincaré
inequality satisfied by v with the first eigenfunction of u. We want to do the same in the general
case, however it is impossible to evaluate the improved Poincaré inequality (7) with f; since we

6



have no guarantee that f, € H'(v) N (Spy(v) @ ... ® Spr_1(v))". But this space is a linear subspace
of L*(v), hence it seems natural to think that (7) should not be evaluated with fi, but with the
L*projection of f, on (Sp1(v) @ ... ® Spe_1(v))™.

Let pi- be the L2(v) orthogonal projection of fj, onto (Spy(v) @ ... @ Spe_1(v))" and p; the L*(v)
orthogonal projection of fj onto Sp;(v) ® ... ® Spx_1(v). Hence we have the following formulas that
we will repeatedly use in the sequel:

(8) fe=pe+Di, P €SpW)® ... Spra(v), pp € (Spi(v)® ... ® Spkfl(l/))J-a
(9) p=pp+ .. +00 pL€Sm(Y), ., 0t € Sppa(v)

Let us point out that in the case of the spectral gap (i.e. k& = 1), p; would correspond to the
projection of f; onto the kernel of L, which is the set of constant functions, and p; would hence
be the projection of f; onto the set of centered functions. But since f; is centered, we would have
p1 = f1 and so this coincides with the general case where we will use pi- to evaluate in (7).

2.4 Eigenvalue comparisons

In this section, we will show that any probability distribution v normalized as (5) has its k-th eigen-

value A\;(v) controlled by Ak (u), some terms quantifying the distance between fy, and (Spy(v) @ ... ® Spr_1(v))
and the gap between succesive eigenvalues of v. This estimate holds without any additional assump-

tion on u.

Lemma 4. Let v be a probability distribution normalized as in (5). Then

k—1

(10) M) < M) + N [ 2 v

i=1
where pt. are the projections defined in (9).

Proof. The proof only consists in evaluating (7) with f = p;i, which actually belongs to the correct
space. On the one hand, using (9)

k—1 k—1
/(fk —pp)’dv = /f,?du—l—Z/(pZ)le/— Z/fkpkdl/ =1- Z/(pi)le/
i=1 i=1

On the other hand, using that all p} are eigenfunctions, Formula (8) and Formula (9),

/F(fk—pk)dy:/ (fr) dy+2/ du—Q/F(fk,pk)du
_z;/p

—gmmﬂm%/



— (v Z/ 22 dv < M) — . )\i(y)/(pZ)Qdy

which gives the result. O]

Let us point out that equality holds in (10) if v = p because in that case, fr belongs to
(Spr(v) @ ... ® Spe_1(v))" and thus p, = 0. The first natural question is then about rigidity of
inequality (10). What can we say about v if the inequality (10) is in fact an equality? We have seen
in case of the spectral gap (k = 1) that this implies the pushforward measures ff# w1 and fl# v to be
equal, but the measures p and v themselves can be different. We will see that for general k£ > 2,
the equality case also implies some link between the pushforward f,f 1 and flf v, which itself implies
equality of the pushforward measures in case where v allocate the same weight as u on each non
critical sets of fi (see Section 4.1).

Remark 1. The quantity [(p})*dv is the square distance between fy and Sp;(v)* (by definition of
the projection), and quantifies therefore the orthogonality error between fi, and eigenspaces of lower
orders of v. We denote it by d(fx, Sp;(v))*)2. Therefore (10) becomes:

k—1

(11) Ae(r) < M) + Y ) = X)) d(fr, Spi(0))*H)?

=1

3 Approximate Integration by Part formula

In this section, we derive approximate integration by parts formulas, for the measure v, with an
error term involving quantities appearing in the comparison (11) between the eigenvalues of p and
v. This approximate integration by parts formula will be the keystone to use Stein’s method in this
context. We shall proceed as for the spectral gap, with a difference: we now use p; instead of directly
using fi as minimizer in the improved Poincaré inequality. Hence, in a first step, we will derive an
approximate integration by parts formula with pi- and only valid on (Sp;(v) @ ... ® Spr_1(v))". In
a second step, we will replace pi- by fi, and finally in a third step we will extend it to the whole
space H'(v).

Theorem 5. We have the following inequality for all g € H'(v) N (Spr(v) @ ... ® Spe_r(v))",
(12)
%

[ wwinia - Tk 0) ] < [Akw = Xelr) + 3 () = M) d(fk,sw))ﬂ?] [

where py- is defined in (8).

Proof Let t € Rand g € H'(v) N (Sp1(v) & ... ® Spr_1(v))". Let us apply (7) to a := pl +tg €



H' ()N (Sp1(v) @ ... ® Spr_1(v)) . Computing
Var, (o) = /(pk +tg)*d /(p ) du+2t/pﬁgdu+t2/g2du

/(fk—pk 2dV+2t/pkng+t2/g dv
:1—/pde+2t/ping+t /g dv

k—1

=1- p )2 dv + 2t | plgdy + t? 2dy
Z (pr) kY 9
i=1
k—1

1 i

1

and
/F(a)dz/ = /I‘(pﬁ)du—l—%/F(pi,g)dl/jttz/f‘(g)dz/
_ /F(fk—pk) du+2t/r(p,§,g)dy+t2/r(g)dy
= (1) +/F(pk) dv—2/F(fk,pk) dv+2t/F(pé>g)dV+t2/F(g)dV
= A\n(p) —/F(pk)dy+2t/F(p$,g)dl/+t2/F(g)dV

- kzi/l“(pz) dv + Qt/F(pﬁ,g)dl/%—tQ/F(g)dl/,
i=1
where we have used at line 4 that, since all p} are eigenfunctions,

f rtmads =3 [k o+ X [Tk do
= ZMV) /pkpk dv + ZA /pip?; dv
=Y A0 [ e
=Y [T
= /F(Pk) dv,

we get that for all ¢ € R, the degree two polynomial

(—/F(g) du) 242 (/ (M()peg —T(pi, 9)) du) t+ (Ak(y) ~ () 4+ :1 (1 B ik((s))) /F(p
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is non positive. Hence its discriminant is non positive:

1( [ woiwia - Tk ) av) 4 [T (mu) “n+ X (1- 5347 [roh du> <0
which gives the result since [T'(pF)dv = N (v) [(p})*dv = Ni(v) d(fx, Spi(v)) )2 O

Now it is easy to see that one can replace pj by fi without any additional cost.

Corollary 6. We have the following inequality for all g € H' (v) N (Spy1(v) & ... & Spk_l(z/))L,
(13)

‘ [ Oulw) g = TG v

k-1

< [W) )+ 3 ) = M) d(fi, sm@%f] / D(g) dv

=1

Proof Use the fact that p; = fx — px in Theorem 5 and both [ p,gdv =0 and [T'(py,g)dv =0
since py € Sp1(V) ® ... & Spr_1(v) and g € H'(v) N (Sp1(v) & ... Spk_l(y))L. O

Finally, one can extend the approximate integration by parts (13) on the whole H'(v) and it only
adds a term which is again controled by the orthogonal error of the eigenfunction.

Corollary 7. We have the following inequality for all g € H'(v):

k—1
) ’/ M) fieg = T(fio9)) dv| < m(u)—Ak<u>|+Zcid<fk,spi<u>ﬂ] [r@a
where
(15) €= VIN) a0 + 2 )

Remark 2. We cannot avoid the absolute value under the square root because we only know that
(11) holds, which does not imply \p(v) < \p(n) except for k= 1.

Proof Let g € H'(v). Let g = gp + g1 with g, € H'(v) N (Sp1(v) & ... ® Spy_1(v)) and
gL € H'(1) N (Sp1(v) & ... & Spr_1(v))". We have:

/ () feg = T(firg)) dv = / ) fi 99— T(for gp) dv + / () fage = T(fug0)) du

We apply (13) to the second term in the sum. For the first one, since g, = Zf:_ll g; €ESpv)® ...

10



Spr—1(v), we have

k—1

/(Ak(’/)fk 9 = D(frs 9p)) dv = (\e(w) — /\z‘(V))/fk gy dv

=1

_Z (v )/p;C g, dv using (8)

—Z (A(v v)) / pi. gy dv using (9)

< Z ) = Ai(v) \/ / <pz>2du\/ [y ar

1 .
_Z (A (v v)) d( fr, Spi(v) )\/W/F(gp) dv
),

Ae(v
—Z \/—) d( fr, Spi(v)*h) /F(g)dy.

which allows to conclude. O

4 Stability result in dimension one

From now on, our results will only apply when L is a one-dimensional diffusion operator on a (possibly
infinite) interval. We will prove the following stability result for the k-th eigenvalue of —L.

Theorem 8. Let L be a diffusion generator on an interval M C R, let 0 < Aj(u) < Aa(p) < ... <
Mie(p) be its k > 1 first eigenvalues, counted without multiplicity, and let fi, be an eigenfunction
associated with A\.(u), satisfying Assumption 1. Let Crit(fy) be the set of all critical points of f.
Then for all probability measures v on M normalized as in (5) and satisfying the improved Poincaré
inequalities (7), it holds for some finite constant C' > 0:

> v Wiy, ) < C |V I(p) = ()] + Ak (1) — Akl

; () +ZC”’“’S“( ")

where (Ii;)j are the images by fy, of the connected components of M \ Crit(fy), vj (resp. w;) is the
pushforward of v (resp. u) restricted to I, constants C; are given by

)\k(l/) — )\Z(l/)

OZ': /\kV—/\iV
W =N+ ==

b

and d(fy, Sp;(v)t) is defined in Remark 1. The value C = > C,%j suffices, with Cy,; given in
Proposition 10.
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Let us point out that Theorem 8 implies that if A\,(v) = Ax(p) and if f is orthogonal in L*(v)
to all lower order eigenspaces of v, then the conditional pushforward of v and p are all equal : Vj,
v; = ;. In this case, one can compute that for all bounded ¢ : I — R,

[otryar— [otnydn=3 ( /J g - /J o) dﬂ>

-3 ( / V() vy — / u(Jj)¢du§>
=3 W) - ) /fﬁ‘“‘;'

We then deduce the following corollary.

Corollary 9. Let v and v such as required in Theorem 8. If moreover
o (V) = Me(p),
o Vi <k, fr. LSpi(v) in L*(v), and
o Vj, v(J;) = u(J;),

then the pushforwards by fi are the same, that s

fitv=fin.

When k = 1 the last two conditions are trivially satisfied, so we recover the result in [35].

4.1 Taking the pushforward by f;

In [35], after obtaining the approximate integration by parts formula, we pushforwarded it by the
first eigenfunction f;. The integration by parts formula then became a one dimensional ODE that
we explicitely solved. But taking the pushforward was possible because we assumed that the carré
du champ of the first eigenfunction I'(f;) could be factorize as I'(fi) = h o f; for some non-negative
function h : Iy — R,. We justified this assumption by the fact that in case of dimension one,
where M C R is an interval, all first eigenfunctions are known to be strictly monotone, and hence
injective, so one can simply take h := I'(f;) o f;''. In a multidimensional space M, f, cannot be
injective. However, we have the classical example of eigenfunctions on Spheres which also satisfy this
factorization assumption. Hence this assumption does not seem so odd.

But now considering higher order eigenfunctions, in dimension one we no longer have monotonic-
ity, and no injectivity either, so the obvious choice h := I'(f;) o f, !'is no longer available. Let us
nevertheless point out that in our classical examples (i.e. the Normal, Gamma and Beta distribu-
tions), the second eigenfunctions of the Normal and Beta distributions still satisfy this factorization
assumption, despite being non-injective. This is due to the symetry of the Gaussian and Beta distri-
butions. There is no other such eigenfunctions of any order in these three examples which factorize.
However, between critical points, the derivative of any eigenfunction is obviously either positive or
negative, and hence we have a local injectivity between critical points, so a local factorization of the
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carré du champ. Our approach is then to locally take the pushforward of (14) on each connected
component of M \ %}, where we denote the set of critical points of f by %.
Let
6 ={x € M CR|I(fr)(x) =0} = Crit(fx)

be the set of critical points of f; and assume this set to be finite. This is always the case in classical

examples, where €, has k—1 elements. Let then (J;); be the connected components of M \ €}. Hence

we have that for all index j, J; = (inf J;, sup J;) and inf .J;, sup J; € ;. Recall that in dimension

one, the carré du champ operator takes the form T'(f)(z) = a(z)f’(z)* with a function a positive in

the interior of M. So %} corresponds to the classical notion of critical points in the interior of M.
We now split off the integration by parts formula as follows:

/M M) g = T(fig) v = 3 /J Nelo)fig T (i) do

Taking g € H'(v) of the form g = ¢ o f; with ¢ : I — R, the above expression becomes:

Z/J (W) fr o(fi) = T(fu)¢' (i) dv

On each Jj, fi is injective since its derivative has constant sign by construction. Hence one can
define h; : I] — Ry by

(16) hi () = T(fi) (fi); (1)

where ],z = frx(J;). So we get that on each J;, I'(fx) = h; o fi. Therefore it is possible to take the
pushforward by f; on each integral on J;, and the integration by parts formula is transformed into

2 / M) G(1) = oy (1) (1)

where v; 1= ( fk)fi(l/) is the pushforward of v restricted to J; by fx. Note that v; is not necessarily

a probability distribution (it has a total mass v(.J;)).
Using the reasoning above, Corollary 7 can be pushforwarded by f; and turns into

(17
5 [ witote) = o) 0yt

< [\/Ikk(u) — Ak(v)] +ici d(fk,Sp,;(y)L)] \/Z /I]- hj¢' dv;

where h is defined in Formula (16) and v; := ( fk)ﬁé,j(u) is the pushforward of v restricted to J; by f.

Let us emphasize an important feature: while the sets .J; are pairwise disjoint (by construction),
their images I are not disjoint (because fj is not necessarily injective). Hence the distributions v;
do not have disjoint supports in general.

4.2 Implementing Stein’s method

Inequality (17) will allow us to implement Stein’s method. The difference with the usual method is
that we will now implement Stein’s method on each subinterval (I});, and not globally on Ij.

13



Since the Stein equation only depends on the target distribution p, the quantity Ax(v) must not
appear anymore on the left hand side of Inequation (17). That is why we begin with writing

/M M) fieg — T, fo) dv = /M M) fieg — T(g, fe) dv + () — M) /M fegdv

But using the Cauchy-Schwarz inequality, the normalization condition (5) and the Poincaré in-

equality (7) with k£ = 1, we have
< / f,?du/ g2dv < ! / ['(g) dv
M M vaw) VI

i
[Ae(p) — A (v

A (V)

Hence we have
(18)

\ [ Mo~ rto. v

< [ww) )]+ Iy Zcidmﬂpi(u)ﬂ] [r@a

Hence for each j, ¢ — \o(u)t ¢(t) — h;(t) ¢/(t) is a good candidate to be a Stein operator on I}

for the probability distribution
1
* #
Wy o= Je)l (1)
! M(Jj)( )Uj( )

Let us point out that p} corresponds to the pushforward by the eigenfunction f; of the probability

distribution p restricted to J;. Our strategy is to implement Stein’s method on each I, ,Z and then use
the approximate integration by parts formula (18) to deduce a more global result on I.

4.2.1 Stein’s method on I} = (a;,b;)

On [ ,g, the probability measure y} is invariant with respect to the diffusion process

Li()(t) = hy ()" () = Me(p) LY/ (), Vo € G(I}).

As one can see with a classical integration by parts argument, 4] has therefore the following density
with respect to the Lebesgue measure on I:

1 Lo
Z;0) (‘A’*“) |5 d“) &

where Z; is a normalization constant. Indeed, let ¢ € %Q(I,i) be compactly supported. Then

foeo (glgms (o [ o)
= [w’(t) exp <—)\k(,u) /a]- h;(iu) du) . + /Ii Aw(p) t'(t) (hjl(t) eXp <_>\k(ﬂ) /a th(LU) du)) o

= /]j Ak(p) £’ (t) (hjl(t) exp (—)\k(ﬂ) / h;(tu) du)) dt,

k J

dp(t) =

bj

14



We will then use h;(t)y)'(t) — A\p () t1(t) as a Stein operator for i} and the uniqueness of the invariant
probability measure for the diffusion process with generator L()(t) = h; ()" (t) =i (p) t ' (t) allows
us to conclude.

Let g; : I,f; — R be 1-Lipschitz, and ; : I,Z — R given by

(19) Y;(t) == exp ()\k /a iZTduu)) /a (9;(y) — H;‘(gj)) %exp <—/\k /: %) dy.

J J

Then one can easily verify that v; is solution of the Stein equation on I ,i

hjth" = M)t = g — / 95dh;.-
Uit
The following estimate holds:
Proposition 10. [35, Proposition 18] Let g; : I] — R be in C*(I})N L' (u¥), and let ¢; the associated

solution (19). Then
1V hitillee < Ch, 1lgjllo0,

where

Ch, :=sup
tel;

1—zj<1—qj<t>>xk<u>texp(m d“)‘ 0] / 4y
+ 1+quj<x>Ak<u>texp(Ak< “‘h‘)‘ NG / dy]

and q; is the cumulative distribution function of ;.

The issue of finiteness of the constant C}; is adressed in the following variant of [35, Proposition
25].

Proposition 11. Assume that one of the two following conditions is verified at a;:
o cither a; = —o0 and ¢ [t]** 2 < h;(t) < eolt]|® fort = —oo with a < 2 and ¢1, c3 > 0,
e ora; > —o0 and c(t — a;)* < hy(t) < eo(t — aj) fort — a; with ¢y, ¢y >0,
and one of these two conditions is satisfied at b;:
e cither b; = +00 and 112> < h;(t) < ot for t — +oo with a < 2 and ¢y, ¢3 > 0,
o orb; < +oo and c1(b; —t)* < hj(t) < ca(bj — t) for t — b~ with ¢1, cg > 0.
Then the constant Cy, defined in Proposition 10 is finite.

In order to ensure the finiteness of these constants Cj;, we are lead to make the following as-
sumption.

Assumption 1. All h; satisfy the requirements of Proposition 11.

15



4.2.2 Proof of Theorem 8§

For any j, let ¢; be the Stein solution given by (19) and define

ZlJ )V (fi(z

On the one hand,

/M M) fir = T(6, fi)dv = 3 /J N it () = Dy (i) do

3 / ()t () — hy (D)) (8) duy (8),

and by construction,
5 [ ) = h w0 ) =3 [ 0,0 pita) 0
j = vilg) — vi(I) e (g))
=2 v (v (9:) = 15(95)) -

where

N
v;(1;,)

is now a probability distribution on I,Z. This is the pushforward by the eigenfunction f; of the
probability distribution v restricted to J;. Let us point out that v;(I]) = v(J;).
On the other hand,

3 [ MO0 =3 [ b)) o
:Z/J]. () @) dv(a)
- [ r@)@ dvia),

hence Proposition 10 gives

| @@t < S vt < 3¢,

So taking g = ¢ in (18), one gets

[Ar(p) = A(v

<C
)\1(V>

V() = A ()| +

sup Z vi(I}) (v (95) — 13(g5))

(95);

+ch fi> Spi(v)")
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where the supremum runs over all (#%)-uple of functions (g;); with for all j, g; : [,g — R being
1-Lipschitz, and C := Zj C,%i. Finally

sup
(95);

S ur(1d) (13009 — () | S ) W )
J

J

Indeed, the inequality ”<” easily follows from the triangle inequality. To see the other direction
">7, let € > 0 small enough and for all j, pick a 1-Lipschitz function g; such that 1(g;) — vi(g;) >
Wi (vi, ;) — €. Then

Z vi(L0) (1 (g5) — V}‘(gj))' = i) (15 (95) — v (97))

J

> Zl/j I] Wl(V]*,ILL;k) —5)
_Zyj ]7/’%)

Letting ¢ go to zero concludes the proof.

5 Application to the Gaussian distribution

In this section, we consider the case of the one dimensional Ornstein-Uhlenbeck operator, where
M=R, Lf =f"—zf and p =~ := A4(0,1) is the equilibrium distribution. The carré du champ
operator is I'(f,g) = f'¢’. The eigenvalues are all integers: A\;(7) = k, with multiplicity 1, and the
associated normalized eigenfunctions are the Hermite polynomials Hy, k > 1 given by

where Py(z) =1, P(z) = = and
Pyii(x) = zH,(x) — nP,_1(x).

Note that the polynomial Hy := Py = 1 (which is not centered) corresponds to the zero-th eigenvalue
Ao = 0, so only the Hj with £ > 1 are relevant.

5.1 The second eigenvalue

The case of the second eigenvalue \y = 2, and fo(z) = \/Li (#? — 1), is quite specific. Indeed, the

pushforward measure f () = \% (x2 — 1) corresponds to a translation of the Chi-2 distribution. Let
us mention that Chi-2 approximation have been investigated through the tools of the Stein-Malliavin
method in [2, 18].

Let us apply our result. One could directly apply Theorem 8: zero is the only critical point, so we
can inverse fo on the connected components R_ and R, and deduce factorizations for I'(f) = 222
on each of these connected components, allowing to implement Stein’s method after taking the
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pushforward by f;. One can then see that Assumption 1 is satisfied, and deduce the split stability
estimate of Theorem 8.
However, in this case, though fs is not injective, I'(f2) can anyway be globally factorized on R.

Actually, T'(f2)(x) = 227 = 2\/_< (22 —1) + L) =22 <f2(:c) + \/Li) Hence h : [— ﬁ,oo) —
R, given by h(t) = 2v2(t + ) globaly factorizes I'(fz). So from the approximate integration
by parts formula (14), instead of using the method of Section 4.1, we can proceed as for the first

eigenfunction and taking the gloal pushforward by f; on all R. The following Stein operator is
obtained:

, F00).

2t f(t) — 2v/2 (t+ %) F(t) on (-

Let us underline that this generator of the f2# (v) = \/Li (x2 — 1) distribution corresponds to the one
used in [18]. One can see that this h satisfies the conditions required by Proposition 11. Indeed h
is an affine function, so the vanishing rate condition at a = —\% is obvously satisfied, and o =1 is
a suitable choice for the growth condition at b = +00. Moreover, the normalization conditions (5)
are here reduced to the following two normalizations on the moments of order 2 and 4: v is asked to
have the same moments of order 2 and 4 than the standard normal distribution.

So the following is proven:

Theorem 12. For all measure v on R normalized as

/I'Qdy =1, and /934 dv =3,

and satisfying an improved Poincaré inequality with sharp constant
positive constant C' > 0:

" (V), it holds for some finite

1 * 2 = Aa(v)] Lo L
Wy (E(Xg—l),V) <C ‘Q_AZ(V)’+W+CVCZ(E (2 —1),Sm(v) )]

where xo 1S the xo-distribution on Ry, v* is the pushforward of v by f2 = \%(ﬁ 1), Wy is
the 1-Wasserstein distance, the constant C, is given by C, = /A ) + 1t ’\I(V , and

*

d (75 (22 = 1) ,Spl(y)L> quantifies the orthogonality error between \/Li (2% — 1) and the ﬁrst eigenspace

5.2 The k-th eigenvalue, k£ > 3

As soon as k > 3, the global factorization I'(fy) = h o fi does not hold anymore. We are therefore
led to use the method explained in Section 4.1. Since

(20) Vn>0, H, ., =Vn+1H,,

one gets that the critical points are €, = {Hi_1 = 0}. So the connected components of R \ %} are
the k nodal sets of Hj_;. The eigenfunction Hj, is injective on each of the connected component, J;,
so I'(Hy,) factorizes as T'(Hy,) = h; o Hy. Since I'(Hy) = (H})* = k H? | we get

== k‘H,g_l ¢] (Hk)[]j
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k

Let us show that these functions h; satisfy Assumption 1. At an infinite boundary, since Hy(z) ~ j_y’

we get h;(t) ~c tQ%, where f ~¢ g means that % tends to a constant. Therefore a = 2% is a
suitable choice in Proposition 11. Let us now treat the case of a finite boundary. We start by showing
the following fact for Hermite polynomials:

Fact. For alln > 0, if xy € {inf J;,sup J;} and yo := H,41(20), then fory € [,Z close enough to yo,

one has
(Hut1)17,(9) = vo| < vy — o,
for some ¢ > 0.

Proof Since inf J; and sup J; are critical points of H, 1, this fact is equivalent to the fact that
H, .1 is quadratic at the neighborhood of all of its critical points, i.e. there is some non zero ¢
such that H,1(x) — Hpy1(z0) = c(x — x0)? + o(x — x0)? for all critical points zg. To show this we
are reduced to check that H,  (zo) # 0. But using again formula (20), this is true because two
consecutive Hermite polynomials never have a common root. O]

Then, since I'(Hy) = k H?_, and since the roots of Hermite polynomials have only multiplicity

one, we deduce that at all finite boundaries of I ,z, the function h; vanishes at a linear rate. Finally
the requirement of Proposition 11 is satisfied, so that Assumption 1 is satisfied. Therefore in this
case the normalization conditions (5) take the form

/del/:(), /ledl/: 1 and /ng_ldl/: 1.

Unlike what happened for the first and the second eigenfunctions, these three conditions can not be
reduced to two. For example, for k = 3, they are:

/(x3 —3z)dv =0, /(gv6 — 62" + 92%) dv = 6 and /(x4 —22%)dv = 1.

The requirements of Theorem 8 being satisfied, we can then apply it and get the following stability
result for higher order eigenvalues of the one dimensional normal distribution.

Theorem 13. Let k > 3 and Hy (resp. Hyp_1) be the k-th (resp. (k — 1)-th) Hermite polynomial.
Then for all probability measures v on M normalized as

/Hk dv =0, /H,fdu =1 and /H,fldy =1,

and satisfying the improved Poincaré inequalities (7), it holds for some finite constant C' > 0:

\/ ‘k} — )\k(V)| + w -+ iC’l d(Hk, SpZ<V)J')

> () Wi,y < C (V)

J

where (J;); are the connected components of the complementary of critical points of Hy, i (resp.
;) is the pushforward of v (resp. vy) restricted to Hy(J;), constants C; are given by

Ci = () = ) + ) = Al),

)\Z(V)

and d(Hy, Sp;(v)*) is defined in Remark 1 and quantifies the orthogonality error between Hy and
eigenspaces of lower orders of v.
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6 Application to Gamma distributions

In this section, we consider the case of the Laguerre operator, where M =R, Lf = 2 f" + (s — ) [’

—””}_(;ef 1g,, where I' denotes the

Euler I" function. The carré du champ operator is I'(f,g) = = f’ ¢’. The eigenvalues are \x(u) = %,
with multiplicity 1, and the associated normalized eigenfunctions are the generalized normalized
Laguerre polynomials Ly, s given by

(21) Lk’s($) = %lk,s (g)

and p is the I'(s, 6) distribution on R given by the density du(z) =

where [y () =1, l; s(z) = s — z, and

s—2—x 5§—2
> — (242277 ‘
Vn>1, lyps(2) <2 — ) lns(2) (1 - 1) ln—1s(2)

Moreover,

(22) L) = ) L)

So the critical points ¢, = {x € Ry |'(Lys)(x) = 0} of Ly s are the zeros of Ly_1 11 and 0. This
means that there are k connected components J; of Ry \ %, which are the nodal sets of Ly_q ;1.
The eigenfunction Ly s is injective on each connected component .J;, so I'(Ly ) factorizes as

['(Ly,s) = hj o Ly, Since T'(Ly) () = = (L, [(x))* = 2 (Ly—1,541(x))* we get

(23) i(t) = oy (L) () (L © (L)1)

Let us show that these functions h; satisfy Assumption 1. At 400, since Ly () ~ eik &‘;frss)) zF, we

get

1, 2(k—1) 9_1
k

hi(t) ~o tvtTF =1t

Therefore o = 2 — % is a suitable choice for « in Proposition 11. Let us treat now the case of a finite
boundary. In the same way as for Hermite polynomials, we can see the following.

Fact. Let n > 0, let vy € {inf J;,sup J;} such that L;, [(x0) = 0, and set yo := Ln s(x0). Then for
Yy € [,g close enough to yo, one has

(Lns)‘}j(y) — Y| < VY — Yo,

for some ¢ > 0.

Proof This fact is equivalent to the fact that L, s is quadratic at the neighborhood of all of its
critical points, i.e. there is some non zero ¢ such that L, s(x) — L, s(x0) = c(x—x0)* +0(x—x¢)? for all
critical points zy. To show this we are reduced to check that L; (z¢) # 0. But using Formula (22),
this would imply that z, is a root of L,_; s41 with multiplicity at least two. However, all Laguerre
polynomials only have roots with multiplicity one. So the fact is proven. O
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Using the above fact and Formulas (22) and (23), we get that at avery finite boundary of / ,Z, the
function h; vanishes at a linear rate. Hence Assumption 1 is satisfied.
Moreover in this case the normalization conditions (5) takes the form

/Lk,s dv =0, /Li,sd’/ =1 and /SL’ (Li_1511(2))*dv = sb,

where I' is the Euler Gamma function, and ! denotes the factorial. For £ = 1 these three conditions
reduced to only two, but as soon as k > 2 it is not the case anymore. For example, if £ = 2, and
s =0 =1 (in that case p is the exponential distribution), then these three conditions are:

2 4
/%—Qxduzl, /%—2x3+5x2—4xdu:0, and /w3—4x2+4xd,u:2.

The requirements of Theorem 8 being satisfied, we can then apply it and get the following stability
result for higher order eigenvalues of the Gamma distributions I'(s, 8) on R,.

Theorem 14. Let k> 1, s >0, 6 > 0, and Ly be the Laguerre polynomials defined in (21). Then
for all probability measures v on R, normalized with

/Lkﬁ dv =0, /Li,st =1 and /x (Li_1.511(2))*dv = sb),

where I' is the Euler Gamma function, and satisfying the improved Poincaré inequalities (7), it holds
for some finite constant C' > 0:

5 = ()]

k
S < € |y [ = et + o2

J

k-1
+ Z Cid(Ly,s, Spi(v)*)
i—1

where (I,{)j are the images by Ly s of the connected components of the complementary of its critical
points, vi (resp. i) is the pushforward of v (resp. p) restricted to I, constants C; are given by

)\k(l/) — )\Z(l/)

OZ': )\kV—/\iV
V=AW + ==

)

and d(Ly s, Spi(v)*) is defined in Remark 1.

7 Application to ( ) distributions

27 2

In this section, we consider the case of the Jacobi operator, where M = [—1, 1],
Lf(z) = (1 —a*)f"(z) = Naf'(z),

and p is the 8 (%, %) distribution on [—1, 1] given by the density

1
dp(z) = (1 —a*)7dr,

where




is the normalization constant and I' denotes the Euler function. The carré du champ operator is given
by I'(f,9)(z) = (1 — 22)2 L f'(x)g'(z). The eigenvalues are A (1) = k(k + N — 1), with multiplicity
one, and the associated normalized eigenfunctions are the normalized Gegenbauer polynomials (see
[37]) given by

k+N—2>‘12k+N—1

(24) GNJC([L') = ( k N1 PN7k(I'),

where Pyo(z) =1, Pyi(z) = (N — 1)z, and

1

2x N -3
( ]{}(k + N — B)PNJC,Q((E).

PNJC(l’) = ? ]{ -+ T) PN’kfl(l’)

The Jacobi operator corresponds to the Laplace-Beltrami operator on the sphere S projected on
one coordinate and normalized to stay in [—1,1]. The Gegenbauer polynomials are particular case
of Jacobi polynomials, when the two parameters of Jacobi polynomials are equals.

7.1 The second eigenvalue

Similarly to the case of the Normal distribution, the global factorization condition of the carré du
champ is satisfied for £ = 1 and k£ = 2. Indeed, the second Gegenbauer polynomial is

Gno(z) = % (z2v) (N +3)((N+1)2*—1),

SO we can compute

[(Gna)(z) = K2(1 — a2)a? = K [1 - NLH (%GN,2(:U> + 1)] . (iGN,Q(x) + 1) ,

N

where K = <2

)_1 (N 4+ 3)(N +1). Hence I'(Gn2)(x) = h(Gn2(x)), with

W) = N[il (N]—VH N K(Nt+1)) (%H)'

As in the Gaussian case, this is due to the fact that the only critical point is zero, and the carré du
champ is symetric. This h satisfies the vanishing rate requirements (it vanish at linear speed), so we
have the following stability result.

Theorem 15. For all measure v on R satisfying

/xQdy—; and /x4d1/—; 4 N 2(N+3)72+1
- N+1 - N+1 2

and an improved Poincaré inequality with sharp constant ——, it holds for some finite positive con-

A2 (v)?
stant C' > 0 that

Wi (L ((N+1)B% —1),v%)
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20N +1)— X\

2N+ 1) =N,
\/)\1(V

where By is the 3 ( R 7) distribution on [—1, 1], v* is the pushforward of v by fo = L ((N + 1)z* — 1),

N
2

)
WT?I)’ and d (L (N+1)p% —1),Sp (v L) quantifies the orthogonality error between fo and the
1

first eigenspace of v.

<C [m(zv F1) = )]+ (L((N+1)pR =1),Sp(v)")

-1
the constant L is given by L = ( ) (N +3), the constant C,, is given by C, = \/A2(v) — A1 (V) +

7.2 The k-th eigenvalue, k£ > 3

As soon as k > 3, the global factorization does not hold anymore. So we apply the general method
presented in Section 4.1. We have

(2) = (") (M) N 1) G (2)

So the critical points 6 = {x € Ry |['(Gyx)(x) = 0} of Gy are the zeros of Gyyop—1 and —1
and 1. This means that there are k connected components J; of [—1,1] \ €} which are the nodal
sets of Gy k1. The eigenfunctions Gy are injective on each of this connected component J;, so

['(Gn ) factorizes as I'(Gyx) = hj o Gy . Since I'(Gyi) = C(1 — 22)(Gnyax—1(x))? where

C(k+N-=1\’[(k+N-2\" )
(Y (2 e

we get

(26) (1) = € (1= (G, (1)) (Crvaaicr 0 Gl (1))

In order to Theorem 8 to apply, we have to verify that these functions h; satisfy Assumption 1.
Gegenbauer polynomials do not vanish at —1 and 1, so the rate at which h; vanishes at boundaries
Gni(—1) and Gyg(1) is linear. We have then to treat the case of critical points in the interior
of [-1,1]. The reasonning is the same as for Laguerre polynomials: since Gegenbauer polynomials
have only roots of multiplicity one, by a Taylor expansion we see that the functions h; vanishes at
boundaries of their domains of definition with linear rate.

Moreover, in this case, the normalization conditions (5) take the form

/GN,k: dp =0, /G?v,kdﬂ =1,

k+N—1\" (k+N -2\ k(k+N —1)
and /(1_132)G?V+2,k—1d“:< E—1 ) ( k )N——i—l

Finaly, Theorem 8 can be applied, and one gets the following.

Theorem 16. Let N > 1, u be the 3 ( R 2) distribution on [—1,1], and Gny be the Gegenbauer
polynomials defined in (24). Then for all probability measures v on [—1,1] normalized such that

/GN,k d,u = O, /G?Vykd/dt = 1,



k+N—1\"" (k+N—2\ k(k+N—1)
and /(1_332)G?V+2,k—1d/l:( E—1 ) < L )N—H’

and satisfying the improved Poincaré inequalities (7), it holds for some finite constant Cz > 0:

k-1

4 > Cid(Ly,s, Spi(v)*h)
=1

|k(k+N —1) — \e(v)
)\1(1/)

> v () Wiy ) < Cs | VIk(k+ N —1) = A(v)] +

J

where ([,g)j are the images by Gy of the connected components of the complementary of its critical
points, v; (resp. ) is the pushforward of v (resp. u) restricted to I}, constants C; are given by

(V) — Ni(v)

Ci: )\kV—AiV
WA+ =

Y

and d(Gy x, Spi(l/)J‘> is defined in Remark 1 and quantifies the orthogonality error between Gy and
eigenspaces of lower orders of v.
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