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Consider a Lotka-Volterra (LV) system of coupled differential equations: 9

x k " x k pr k ´xk `pBxq k q , x " px k q , 1 ď k ď n , where r " pr k q is a n ˆ1 vector and B a n ˆn matrix. Assume that the interaction matrix B is random and follows the elliptic model:

where A " pA ij q is a n ˆn matrix with N p0, 1q entries satisfying the following dependence structure piq the entries A ij on and above the diagonal are i.i.d., piiq for i ă j each vector pA ij , A ji q is standard gaussian with covariance ρ, and independent from the other entries; vector 1n stands for the n ˆ1 vector of ones. Parameters α, µ are deterministic and may depend on n.

Leveraging on Random Matrix Theory, we analyse this LV system as n Ñ 8 and study the existence of a positive equilibrium. This question boils down to study the existence of a (componentwise) positive solution to the linear equation:

xn " rn `Bnxn , depending on B's parameters pα, µ, ρq, a problem of independent interest in linear algebra.

In the case where no positive equilibrium exists, we provide sufficient conditions for the existence of a unique stable equilibrium (with vanishing components), and following Bunin [9], present a heuristics estimating the number of positive components of the equilibrium and their distribution.

.

Such LV systems are widely used in mathematical biology to model populations with interactions, and the existence of a positive equilibrium known as a feasible equilibrium corresponds to the survival of all the species x k within the system.

Introduction

Lotka-Volterra system of coupled differential equations. Lotka-Volterra (LV) systems are widely used in mathematical biology, ecology, chemistry to model populations with interactions or chemical reactions [START_REF] Gopalsamy | Global asymptotic stability in volterra's population systems[END_REF][START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF][START_REF] Kiss | Qualitative behavior of n-dimensional ratio-dependent predator-prey systems[END_REF][START_REF] Hering | Oscillations in lotka-volterra systems of chemical reactions[END_REF]. In the context of theoretical ecology (that we shall adopt hereafter without loss of generality), consider a given foodweb and denote by x t n " px k ptqq 1ďkďn the vector of abundances 1 of the various species at time t ě 0. In a LV system, the abundances are connected via the following coupled equations:

dx k ptq dt " x k ptq ˜rk ´xk ptq `n ÿ "1
B k x ptq ¸for k P rns :" t1, ¨¨¨, nu , where B n " pB k q stands for the interaction matrix, and r k stands for the intrinsic growth of species k. Notice that standard results yield that if the initial condition x 0 n " x n | t"0 is componentwise positive, then x t n remains positive for every t ą 0. At the equilibrium dxn dt " 0, the abundance vector x n " px k q kPrns is solution of the system:

x k ¨rk ´xk `ÿ Prns B k x '" 0 for x k ě 0 and k P rns .

An important question, which motivated recent developments [START_REF] Dougoud | The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate[END_REF][START_REF] Bizeul | Positive solutions for large random linear systems[END_REF], is the existence of a feasible solution x n to [START_REF] Akjouj | Feasibility of sparse large lotka-volterra ecosystems[END_REF], that is a solution where all the x k 's are positive, corresponding to a scenario where no species disappears. Notice that in this latter case, the system (1) takes the much simpler form:

x n " r n `Bn x n , r n " pr k q kPrns .

In this article, we will investigate the existence of an equilibrium, potentially feasible, for a large foodweb (n Ñ 8) whenever the interaction matrix B n is random.

In various models of interest for B n , Random Matrix Theory (RMT) provides an accurate description of the asymptotic properties of a large random matrix (its spectrum, spectral norm, etc.). We will leverage on RMT to infer the existence of an equilibrium in the case where B n follows a random elliptic model, to be described hereafter.

To simplify the analysis, we will consider the case where r n " 1 n .

Random elliptic model for the interaction matrix. In the spirit of May 2 , we model the interaction matrix B n as a non-centered random matrix with pairwise correlated entries:

B n " A n α n ? n `µ n 1 n 1 T n , (2) 
where A n " pA ij q i,jPrns is a random matrix satisfying the two conditions piq pA ij , i ď jq are standard Gaussian N p0, 1q independent and identically distributed (i.i.d.) random variables piiq for i ă j the vector pA ij , A ji q is a standard bivariate Gaussian vector, independent from the remaining random variables, with covariance covpA ij , A ji q " ρ with |ρ| ď 1. The sequence of positive numbers pα n q is either fixed or goes to infinity. Parameter µ is a fixed real number. As a consequence, the Gaussian entries of the interaction matrix B n admit the following moments:

EpB ij q " µ n , varpB ij q " 1 α 2 n , covpB ij , B ji q " ρ α 2 n pi ‰ jq .
1 A species abundance is a quantity proportional to the number of individuals for this species.

2 Beware that May did not consider LV systems but rather used a random matrix model for the Jacobian at equilibrium of a generic system of coupled differential equations.

Such a matrix model is often called a random elliptic model for |ρ| ă 1 since the spectrum of matrix A n { ? n is asymptotically an ellipse, see Fig. 1, in the sense that the empirical distribution of the eigenvalues of A n { ? n converges towards the uniform distribution on the ellipsoid

E ρ " " z P C, Re 2 pzq p1 `ρq 2 `Im 2 pzq p1 ´ρq 2 ď 1 * .
Originally introduced by Girko [START_REF] Girko | Elliptic law[END_REF], this model has since been widely studied [START_REF] Girko | The elliptic law: ten years later i[END_REF][START_REF] Naumov | Elliptic law for real random matrices[END_REF][START_REF] Nguyen | The elliptic law[END_REF][START_REF] O'rourke | Low rank perturbations of large elliptic random matrices[END_REF]. The spectral norms of A n and

1 n 1 T n satisfy › › › › A n ? n › › › › " O p1q and › › › › 1 n 1 n 1 T n › › ›
› " 1 hence both the random and deterministic parts of the interaction matrix B n may have an impact as n Ñ 8.

Presentation of the main results. In this article, we address the following issues.

Feasibility. We first describe the conditions over parameters pρ, α n , µq for which system (1) admits a unique feasible equilibrium. We prove that feasibility is reached whenever α n " a 2 logpnq and µ ă 1, and that there is no feasibility otherwise, see Theorem 2.1. Notice that the correlation parameter ρ has no influence since the phase transition threshold is the same as in the i.i.d. case [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF]: the induced correlations between components x k 's of solution x n are too weak. Pushing this remark further, we prove that the same phase transition holds if we consider a covariance profile pρ ij , i ă jq where ρ ij " covpA ij , A ji q instead of a fixed covariance parameter ρ.

In [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF], Bizeul and Najim established the conditions for feasibility in the centered (µ " 0) model with i.i.d interactions pA ij q. In [START_REF] Akjouj | Feasibility of sparse large lotka-volterra ecosystems[END_REF], Akjouj and Najim studied a sparse model of interactions where only d n ě logpnq interactions are non-null in each row and column of A n . The study of the feasibility for an elliptic model completes this picture.

Stability without feasibility. If α is fixed, Dougoud et al. [START_REF] Dougoud | The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate[END_REF] showed that no feasible solution can arise. Under this assumption, we establish in Proposition 2.3 sufficient conditions for the existence of a unique stable equilibrium to system [START_REF] Akjouj | Feasibility of sparse large lotka-volterra ecosystems[END_REF]. In this case, some species will vanish (some of the components x k 's of solution x n are equal to zero). In order to proceed we combine results by Takeuchi [START_REF] Takeuchi | Global dynamical properties of Lotka-Volterra systems[END_REF] on stability of LV systems with Random Matrix Theory (RMT) results.

Estimating the number of surviving species. We finally conclude with an important question: given a set of parameters pρ, α, µq which yields to a unique stable equilibrium, is it possible to estimate the proportion of surviving species? From a mathematical point of view, this is an open question. At a physical level of rigor, Bunin [START_REF] Bunin | Ecological communities with lotka-volterra dynamics[END_REF] (relying on the cavity method) and Galla [START_REF] Galla | Dynamically evolved community size and stability of random Lotka-Volterra ecosystems[END_REF] (relying on generating functionals techniques) provide a closed-form system of equations to compute the proportion of surviving species. We state the open problem, recall Bunin's and Galla's equations and provide simulations.

In [START_REF] Clenet | Equilibrium and surviving species in a large lotka-volterra system of differential equations[END_REF], equations and simulations are provided in the simpler case where ρ " 0, together with heuristics supporting these equations.

Organisation of the article. Feasibility and stability results together with the open question on the estimation of the number of surviving species are presented in Section 2. Section 3 is devoted to the proof of the feasibility result, Theorem 2.1. Proof of the stability result, Proposition 2.3, is provided in Section 4. Simulations were performed in Python. All the figures and the code are available on Github [START_REF] Clenet | Feasibility in a large lotka-volterra system with pairwise correlated interactions[END_REF].

Notations. If A is a matrix A T stands for its transpose. We denote by logpxq the natural logarithm. If x " px i q iPrns is a vector, we denote by x ą 0 (resp. x ě 0) the componentwise positivity (resp. non-negativity), that is the fact that x i ą 0 (resp. x i ě 0) for every i P rns.

2.

Main results: Feasibility, stability and surviving species 2.1. Feasibility. To simplify the analysis, we consider the case where r k " 1 pk P rnsq. Hence, the LV system takes the following form in the sequel:

dx k ptq dt " x k ptq ¨1 ´xk ptq `ÿ Prns B k x ptq ' for k P rns . (3) 
In the next theorem, we describe the conditions to reach a feasible equilibrium. We either assume that matrix B is given by the elliptic model or has a more general covariance profile.

Theorem 2.1 (Feasibility for the elliptic model). Assume that matrix B n is given by the elliptic model (2), or that B n has a covariance profile, i.e.

B n "

Ãn

α n ? n `µ n 1 n 1 T n , (4) 
where Ãn is a n ˆn matrix with entries p Ãij , i ď jq i.i.d. N p0, 1q and where p Ãij , Ãji q is a standard bivariate gaussian vector for i ă j, independent from the remaining random variables, with covariance covp Ãij , Ãji q " ρ pnq ij , where pρ pnq ij ; i ă j; n ě 1q is a collection of deterministic real numbers in r´1, 1s.

Let α n ÝÝÝÑ nÑ8 8 and denote by α n " ? 2 log n. If µ ‰ 1 then the following equation

x n " 1 n `Bn x n almost surely admits a unique solution x n " px k q kPrns .

(1) (feasibility) If µ ă 1 and there exists ε ą 0 such that, for n large enough, α n ě p1 `εqα n then

P " min kPrns x k ą 0 * ÝÝÝÑ nÑ8 1 .
( Proof of Theorem 2.1 is established in Section 3 under the assumption that B n follows the elliptic model. The adaptations needed to cover the covariance profile case are provided in Appendix A.

2.2.

No feasibility but a unique stable equilibrium. Aside from the question of feasibility arises the question of stability: for a complex system, how likely a perturbation of the solution x n at equilibrium will return to the equilibrium? Gardner and Ashby [START_REF] Gardner | Connectance of large dynamic (cybernetic) systems: critical values for stability[END_REF] considered stability issues of complex systems connected at random. Based on the circular law for large random matrices with i.i.d. entries, May [START_REF] May | Will a large complex system be stable?[END_REF] provided a complexity/stability criterion and motivated the systematic use of large random matrix theory in the study of foodwebs, see for instance Allesina et al. [START_REF] Allesina | The stability-complexity relationship at age 40: a random matrix perspective[END_REF]. Recently, Stone [START_REF] Stone | The feasibility and stability of large complex biological networks: a random matrix approach[END_REF] and Gibbs et al. [START_REF] Gibbs | Effect of population abundances on the stability of large random ecosystems[END_REF] revisited the relation between feasibility and stability.

For a generic LV system

d y k ptq dt " y k pr k `pCyq k q , k P rns , (5) 
Takeuchi and Adachi provide a criterion for the existence of a unique equilibrium y ˚and the global stability of LV systems, see Theorem 3.2.1 in [START_REF] Takeuchi | Global dynamical properties of Lotka-Volterra systems[END_REF].

Theorem 2.2 (Takeuchi and Adachi 1980). If there exists a positive diagonal matrix ∆ such that ∆C `CT ∆ is negative definite, there is a unique non-negative equilibrium y ˚to [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF], which is globally stable:

@y 0 ą 0 , # yp0q " y 0 yptq satisfies (5) , yptq Ý ÝÝ Ñ tÑ8 y ˚.
Combining this result (setting I ´B " ´C) with results from Random Matrix Theory, we can guarantee the existence of a globally stable equilibrium x ˚of (3) for a wide range of parameters pρ, α, µq. Denote by

A " " pρ, α, µq P p´1, 1q ˆp0, 8q ˆR , α ą a 2p1 `ρq, µ ă 1 2 `1 2 c 1 ´2p1 `ρq α 2 * ( 6 
)
the set of admissible parameters. is eventually positive definite: with probability one, for a given realization ω, there exists N pωq such that for n ě N pωq, pI ´Bω q `pI ´Bω q T is positive definite. In particular, there exists a unique globally stable non-negative equilibrium x ˚.

Proof of Proposition 2.3 is provided in Section 4. For a fixed matrix of interactions B 10 with parameters pρ " 0, α " 2, µ " 0q P A, we consider two distinct initial conditions. Simulations show that the abundances converge in both cases toward the unique globally stable equilibrium x ˚predicted by Proposition 2.3. Notice that since α ă a 2 logp10q » 2.14, we witness vanishing species.

2.3.

Estimating the number of surviving species: Towards Bunin and Galla's equations. After giving conditions for the realization of a feasible equilibrium and investigating the existence and uniqueness of a stable sub-population (i.e some species vanish), we address the question of estimating the proportion of surviving species as a function of the model paramaters pρ, α, µq.

To our knowledge, this question has not received yet an answer at a mathematical level of rigor and remains open. However theoretical physicists/ecologists provided a solution to this problem supported by simulations. Tools from physics to study population dynamics in the context of Lotka-Volterra equations were first introduced by Opper et al. [START_REF] Diederich | Replicators with random interactions: A solvable model[END_REF][START_REF] Opper | Phase transition and 1/f noise in a game dynamical model[END_REF]. In 2017, Bunin [START_REF] Bunin | Ecological communities with lotka-volterra dynamics[END_REF] precisely answers the question of estimating the proportion of surviving species for the model under investigation (non-centered elliptic model B). He uses the dynamical cavity method (a review of which can be found in [START_REF] Barbier | The cavity method for community ecology[END_REF]). The key concept consists of assuming that a unique fixed point exists and introducing a new species with new interactions in the existing system. Provided the coherence of the assumption, an analogy between the properties of the solutions with n and n `1 species yields closed-form equations that we present hereafter.

Notice that recently, similar equations were obtained by Galla [START_REF] Galla | Dynamically evolved community size and stability of random Lotka-Volterra ecosystems[END_REF] using generating functional techniques.

The system of equations presented hereafter is a version of Bunin's equations without the carrying capacity. It is similar to the equations obtained by the replicator equations [START_REF] Diederich | Replicators with random interactions: A solvable model[END_REF][START_REF] Opper | Phase transition and 1/f noise in a game dynamical model[END_REF]. Notice that we mention but do not discuss the many implicit assumptions yielding the system of equations.

Let pρ, α, µq P A and x ˚given by Proposition 2.3. We first introduce the following quantities:

φ " Cardtx i ą 0, i P rnsu n , xxy " 1 n n ÿ j"1 x j , @ x 2 D " 1 n n ÿ j"1 px j q 2 . ( 7 
)
Denote by Z " N p0, 1q and set ∆ " p1 `xxy µq α a xx 2 y .

The following system of 4 equations has 4 unknowns, among which the (supposedly existing) asymptotic limits of φ, xxy , @ x 2 D , denoted (by abuse of notations) by the same notations. The fourth unknown v is a parameter essentially related to the dynamical cavity method. This system is supposed to admit a unique solution:

φ " 1 ? 2π ż `8 ´∆ e ´z2 2 dz (8) 
xxy "

φ 1 ´ρv α ˜p1 `xxy µq `axx 2 y α EpZ|Z ą ´∆q ¸(9) @ x 2 D " ˆ?φ 1 ´ρv α ˙2 ˆp1 `xxy µq 2 `2p1 `xxy µq a xx 2 y α EpZ|Z ą ´∆q `@x 2 D α 2 EpZ 2 |Z ą ´∆q ˙(10) v " φ ˆ1 α ´ρv ˙(11)
The theoretical solutions of system ( 8)-( 11) are compared with the empirical values obtained by Monte-Carlo experiments. As shown in Fig. 5, the matching is remarkable. The impact of the correlation ρ on the proportion of the surviving species is shown in Figure 6.

Remark 2.4. From a theoretical ecology point of view, notice that a negative correlation (prey-predator) seems to slow down the decline of the surviving species, whereas a positive correlation (mutualism and competition) reverses the trend. These types of results are similar to Allesina and Tang [START_REF] Allesina | Stability criteria for complex ecosystems[END_REF] where they notice that preypredator interactions seem to stabilize the system. Figure 6. Effect of the correlation ρ and the interaction strength α on the proportion of surviving species φ. Each curve is plotted by resolving the system ( 8)-( 11) in the centered case µ " 0.

3. Feasibility: Proof of Theorem 2.1 assume that matrix B n is given by (2) (elliptic model). The case where matrix B n is given by (4) (covariance profile model) needs extra arguments which are provided in Appendix A.

Preliminary results.

Extreme Value Theory (EVT) and the Normal Comparison Lemma. Let pZ k q kPN be a sequence of i.i.d. N p0, 1q random variables and denote:

# M n " max kPrns Z k | M n " min kPrns Z k , α n " a 2 log n , β n " α n ´1 2α n logp4π log nq . ( 12 
)
Let Gpxq " e ´e´x be the Gumbel cumulative distribution function, then classical EVT results (see for instance [26, Theorem 1.5.3]) yield that for every x P R,

P tα npM n ´βn q ď xu ÝÝÝÑ nÑ8 Gpxq , P ! α np | M n `βn q ě ´x) ÝÝÝÑ nÑ8 Gpxq . ( 13 
)
We consider the following dependent framework: Let pZ k,n q kPrns be a Gaussian vector whose components are N p0, 1q with covariance cov pZ k,n ; Z ,n q " ρ n , |ρ| ď 1 , k ‰ .

We are interested in the behaviour of M n " max kPrns Z k,n and | M n " min kPrns Z k,n , and shall prove the counterpart of ( 13) with the help of the Normal Comparison Lemma (NCL): Theorem 3.1 (Theorem 4.2.1, [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]). Suppose that pξ i , i P rnsq is a gaussian vector where the ξ i 's are standard normal variables, with covariance matrix Λ 1 " `Λ1 ij ˘. Similarly, let pη i , i P rnsq be a gaussian vector where the η i 's are standard normal, with covariance matrix

Λ 0 " `Λ0 ij ˘. Denote by ρ ij " max |Λ 0 ij |, |Λ 1 ij |
( and let pu i , i P rnsq be real numbers. Then: |P tξ j ď u j , j P rnsu ´P tη j ď u j , j P rnsu| ď 1 2π

ÿ 1ďiăjďn ˇˇΛ 1 ij ´Λ0 ij ˇˇ`1 ´ρ2 ij ˘´1{2 exp ˜´1 2 pu 2 i `u2 j q 1 `ρij ¸. ( 14 
)
Corollary 3.2. Recall the definition of pZ k, q kPrns , M n and | M n above, then

P tα npM n ´βn q ď xu ÝÝÝÑ nÑ8 Gpxq , P ! α np | M n `βn q ě ´x) ÝÝÝÑ nÑ8 Gpxq . ( 15 
)
Proof. We apply the NCL to pZ k q kPrns and pZ k,n q kPrns . Let ρ ij " |ρ| n and u n pxq "

x α n `βn , then |Ptα npM n ´βn q ď xu ´Ptα npM n ´βn q ď xu| " |PtZ j ď u n pxq , j P rnsu ´PtZ j,n ď u n pxq , j P rnsu| ,

ď 1 2π npn ´1q 2 |ρ| n ˆ1 ´ρ2 n 2 ˙´1 2 exp ˜´u 2 n pxq 1 `|ρ| n ¸ď K n exp ˆ´u 2 n pxq 1 `1 n ˙.
Now eventually u n pxq " α n p1 `op1qq ě κα n for any κ ă 1 and eventually n exp

ˆ´u 2 n pxq 1 `1 n ˙ď n exp ˆ´2κ 2 logpnq 1 `1 n ˙" n ´´2κ 2 1`ρ{n ´1¯.
This last term goes to zero as n Ñ 8 for a well-chosen κ sufficiently close to one. This concludes the proof for M n . The proof for | M n can be handled similarly with minor modifications.

Random Matrix Theory. Let B n be given by model [START_REF] Allesina | Stability criteria for complex ecosystems[END_REF]. Lemma 3.3. Let A n a n ˆn matrix with i.i.d. N p0, 1q entries for i ď j and pA ij , A ji q a standard bivariate Gaussian vector with covariance ρ for i ă j, then the following estimate holds true: almost surely,

lim sup nÑ8 › › › › A n ? n › › › › ď ? 2 ´a1 `ρ `a1 ´ρ¯ď 2 ? 2 .
Proof. The proof relies on two arguments: the classical estimate of the asymptotic spectral norm of a Wigner matrix [4, Th. 5.1] and the following decomposition of matrix A n { ? n as linear combination of Hermitian Wigner matrices:

A n ? n " A n `AT n 2 ? n ´i " i `An ´AT n ˘‰ 2 ? n , pi 2 " ´1q . ( 16 
)
Notice that both matrices W 1 n "

An`A T n 2 ? n and W 2 n " ripAn´A T n qs 2 ? n
are Wigner matrices, with off-diagonal variances pi ă jq:

var ˜" A n `AT n 2  ij ¸" 1 `ρ 2 and var ¨« i `An ´AT n 2 ff ij '" 1 ´ρ 2 .
Hence,

lim sup n › › › › A n ? n › › › › ď lim sup n }W 1 n } `lim sup n }W 2 n } " 2 ˜c 1 `ρ 2 `c 1 ´ρ 2 
An elementary analysis yields ? 2p ? 1 `ρ `?1 ´ρq ď 2 ? 2 for |ρ| ď 1.

3.2. Proof of Theorem 2.1 -the centered case µ " 0.

Some preparation and strategy of proof. We first prove Theorem 2.1 in the case where µ " 0 and focus on the equation

x n " 1 n `An α n ? n x n . (17) 
By Lemma 3.3, lim sup n }A n { ? n} is a.s. bounded hence › › › › A n α n ? n › › › › a.s. ÝÝÝÑ nÑ8 0 .
As a consequence, the resolvent Q n " pI n ´An {pα n ? nqq ´1 is a.s. eventually welldefined and the solution x n " px k q kPrns of (17) writes x n " Q n 1 n . Denote by e k the kth canonical vector of R n . The following representation holds true (we shall often drop index n in the following)

x k " e T k x " e k Q1 " 8 ÿ "0 e T k ˆA α ? n ˙ 1 , " 1 `1 α e T k ˆA ? n ˙1 `1 α 2 e T k ˆA ? n ˙2 Q 1 . (18) 
Denote by

Z k,n " e T k ˆA ? n ˙1 " 1 ? n ÿ i A ki and R k,n pAq " e T k ˆA ? n ˙2 Q 1 . (19) 
Notice that the Z k,n 's are standard N p0, 1q however they are not independent as

covpZ k,n , Z ,n q " 1 n covpA k , A k q " ρ n , k ‰ .
Introducing M n " max kPrns Z k,n and | M n " min kPrns Z k,n , we proved in Corollary 3.2 that

P tα npM n ´βn q ď xu , P ! α np | M n `βn q ě ´x) ÝÝÝÑ nÑ8 Gpxq . (20) 
In the sequel, we often drop n and simply write R k pAq instead of R k,n pAq. Following the same strategy as in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF], we notice that (18) yields

# min kPrns x k ě 1 `1 α | M `1 α 2 min kPrns R k pAq min kPrns x k ď 1 `1 α | M `1 α 2 max kPrns R k pAq , which we can rewrite min kPrns x k ě 1 `αn αn ´| M `βn α n ´βn α n `min kPrns R k pAq α n αn " 1 `αn αn ´´1 `oP p1q `min kPrns R k pAq α n αn ¯,
where we have use the fact that M `βn α n " op1q, cf. [START_REF] Gopalsamy | Global asymptotic stability in volterra's population systems[END_REF]. Similarly, we have:

min kPrns x k ď 1 `αn α n ˆ´1 `oP p1q `max kPrns R k pAq α nα n ˙(21)
The proof in the centered case follows then from the following lemma: The remaining of the section is devoted to the proof of Lemma 3.4.

Lemma 3.4. Let R k,
Lipschitziannity and Gaussian concentration. We first introduce a truncated version of R k,n pAq. Let η P p0, 1q and ϕ : R `Ñ r0, 1s a smooth function satisfying:

ϕpxq "

# 1 if x P r0, 2 ? 2 `ηs 0 if x ě 4 , (22) 
decreasing from 1 to 0 gradually as x goes from 2 ? 2 `η to 4. Let r R k,n pAq " ϕ n R k,n pAq where

ϕ n " ϕ ˆ› › › › A n ? n › › › › ˙. (23) 
Notice that r R k pAq differs from R k pAq if ϕ n ă 1 which happens with vanishing probability as P tϕ n ă 1u " P s n ą 2 ? 2 `η( ÝÝÝÑ nÑ8 0 by Lemma 3.3. The following lemma is a first step towards Gaussian concentration. Lemma 3.5. Let r R k defined by [START_REF] Janson | Gaussian hilbert spaces[END_REF] and M an n ˆn matrix. Then the function

M Þ Ñ r R k pM q " e T k ˆM ? n ˙2 ˆI ´M α ? n ˙´1 1 is K-Lipschitz, i.e. ˇˇr R k pM q ´r R k pN q ˇˇď K }M ´N } F ( 24 
)
where M, N are n ˆn matrices,

}M } F " b ř ij |M ij | 2
is the Frobenius norm and K a constant independent from k and n.

The second step is to notice that r R k pAq (where A has Gaussian entries but with off-diagonal pairwise correlations) can be in fact expressed as a Lipschitz function of i.i.d. N p0, 1q entries. Lemma 3.6. Consider the linear function Γ : R nˆn Ñ R nˆn defined by

Γ ii pXq " X ii and $ & % Γ ij pXq " b 1`ρ 2 X ij `b 1´ρ 2 X ji pi ă jq , Γ ji pXq " b 1`ρ 2 X ij ´b 1´ρ 2 X ji pi ă jq . Then (1) We have }ΓpXq} F ď K ρ }X} F where K ρ " 2 a 1 `|ρ| hence Γ is K ρ - Lipschitz.
(2) If matrix X n " pX ij q has i.i.d. N p0, 1q entries, then A n " ΓpX n q has i.i.d.

N p0, 1q entries on and above the diagonal (i ď j) and each vector pA ij , A ji q is a standard bivariate Gaussian vector with covariance ρ for i ă j.

The proof is straightforward and is thus omitted. A consequence of this lemma is that r R k pAq " r R k pΓpXqq is K ˆKρ -Lipschitz. Applying Tsirelson-Ibragimov-Sudakov inequality [8, Theorem 5.5] finally yields: Proposition 3.7. Let K the Lipschitz constant of Lemma 3.5 and

K ρ " 2 a 1 `|ρ|. Then E max kPrns ´r R k pAq ´E r R k pAq ¯ď 2 K ρ K a log n .
Details of the proof are similar to those in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] and are thus omitted.

Remark 3.8. Notice that ϕ n ď 1 and that ϕ n " 0 if }A{ ? n} ě 4. In particular,

ϕ n › › › › A ? n › › › › ď 4 and ϕ n }Q} ď 1 1 ´4α ´1 ď 2
for n large enough. For the latter estimate, write

Q " ´I ´A α ? n ¯´1 , Q ´1Q " I and Q " I `A α ?
n Q, then apply the triangular inequality.

Proposition 3.9. The following estimate E r R k pA n q " Op1q holds true, uniformly for k P rns.

Proof. We shall prove that the variables r R k have a common distribution for k P rns, which in particular implies that

E r R k " E r R i , @k, i P rns and E r R k " 1 n ÿ iPrns E r R i . (25) 
Once this fact is established, the proof is straightforward:

ˇˇE r R k ˇˇ" ˇˇˇˇˇ1 n ÿ iPrns E r R i ˇˇˇˇˇ" ˇˇˇˇ1 n Eϕ n 1 T ˆA ? n ˙2 Q1 ˇˇˇˇď › › › › 1 ? n › › › › 2 Eϕ n › › › › A ? n › › › › 2 }Q} " Op1q ,
where the last equality follows from the arguments developed in Remark 3.8.

Let us now establish [START_REF] Lata La | Some estimates of norms of random matrices[END_REF]. Denote by ∆ σ the matrix associated to the permutation σ : rns Þ Ñ rns and defined by

r∆ σ s ij " # 1 if i " σpjq 0 else .
Notice in particular that ∆ σ e i " e σpiq , ∆ σ ∆ τ " ∆ στ for σ, τ two permutations and ∆ σ ´1 " ∆ T σ . Denote by pijq the transposition swapping i and j, i.e. pijqi " j, pijqj " i and pijq " otherwise. We consider q A " ∆ pijq A∆ pijq , that is q A is obtained by swapping A's ith and jth column, then the ith and jth row. Observe that A and q A have the same distribution and so is the case for R k pAq and R k p q Aq.

We have ∆ 2 pijq " I n , implying that q A k " ∆ pijq A k ∆ pijq and then

R i p q Aq " e T i ÿ kě2 ˜q A α ? n ¸k 1 " e T i ∆ pijq ÿ kě2 ˆA α ? n ˙k ∆ pijq 1 " e T j ÿ kě2 ˆA α ? n ˙k 1 " R j pAq .
This proves that R i pAq, R i p q Aq, R j pAq have the same law, hence the same expectation. Eq.( 25) is established, which concludes the proof.

We are now in position to prove Lemma 3.4.

Proof of lemma 3.4. Recall that E r R k pAq " E r R 1 . Since max kPrns r R k pAq ´r R 1 pAq ě 0, Markov inequality yields: nq} Ñ 0 a.s. We shall also rely on the fact that }Q ´I} ÝÝÝÑ Denote by x and x the vectors solutions of the equations:

P # max kPrns r R k pAq ´r R 1 pAq α ? 2 log n ě ε + ď E ´max kPrns r R k pAq ´r R 1 pAq εα ? 2 log n , " E ´max kPrns r R k pAq ´E r R k pAq εα ? 2 log n , " E ´max kPrns ´r R k pAq ´E r R k pAq ¯εα ? 2 
x " 1 `B x " 1 `ˆA α ? n `µuu T ˙x and x " 1 `A α ? n x .

The following representations hold:

x " pI ´Bq ´1 1 and x " ˆI ´A α ? n ˙´1 1 .

Recall that Q " pI ´A{pα ? nqq ´1. By rank one perturbation identity (Woodbury), we have:

pI ´Bq ´1 " Q `Quu T Q 1 ´µu T Qu and
x "

Q1p1 ´µu T Quq `µQuu T Q1 1 ´µuTQu " x 1 ´µu T Qu .

If µ ă 1 and α ě p1 `εqα ˚then eventually, x has positive components. This is no longer the case if µ ą 1 or α ď p1 ´εqα ˚. This concludes the proof of Theorem 2.1. ˙.

We will rely on the following condition:

2I ´pB `BT q is positive definite ô λ max pB `BT q ă 2 .

Notice that pA `AT q{α is a symmetric matrix with independent N p0, 2p1 `ρq{α 2 q entries above the diagonal (the diagonal entries have a different distribution from the off-diagonal entries, with no asymptotic effect). In this case, it is well known that the largest eigenvalue of the normalized matrix (or equivalently its spectral norm since the matrix is symmetric) almost surely converges to the right edge of the support of the semi-circle law (see [ ˙.

In the centered case (i), condition [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF] asymptotically occurs whenever α ą a 2p1 `ρq. Before studying subcases (ii) and (iii), we recall a result on small rank perturbations of large random matrices.

Notice that the rank-one perturbation matrix P " 2µ n 11 T admits a unique non zero eigenvalue 2µ. Denote by Ǎ " A`A T α ? n . We are concerned with the top eigenvalue

5 Figure 1 . 2 p1`ρq 2 ỳ2p1´ρq 2 "

 51222 Figure 1. Spectrum of non-Hermitian matrix B n (n " 500) in the centered case (µ = 0) with distinct parameter ρ P t´0.5, 0, 0.5u. The solid line represents the ellipse tz " x `iy P C, x 2 p1`ρq 2 ỳ2 p1´ρq 2 " 1u which is the boundary of the support of the limiting spectral distribution for an elliptic model.

  ) If µ ą 1 or there exists ε ą 0 such that, for n large enough, α n ď p1 ´εqα

Figure 2 .

 2 Figure 2. Transition towards feasibility for the elliptic model (2). For each κ on the x-axis, we simulate 1000 matrices B n of size n " 1000 and compute the solution x n of Theorem 2.1 at the scaling α n pκq " κ a logpnq. Each curve represents the proportion of feasible solutions x n obtained for the 1000 simulations. Three distinct values ρ P t´0.5, 0, 0.5u are used. The dotdashed vertical line corresponds to κ " ? 2 i.e. the critical scaling α n " ? 2 a logpnq.

Figure 3 .

 3 Figure 3. Representation of the set of admissible parameters A by a heat map. The set A given by (6) yields the existence of a unique (random) globally stable equilibrium x ˚. The x-axis corresponds to ρ, the y-axis to σ and the intensity of the color µ.

  (a) Initial conditions drawn in p0, 2q, (b) Initial conditions equal to 1.

Figure 4 .

 4 Figure 4. Representation of the dynamics of a ten-species system. For a fixed matrix of interactions B 10 with parameters pρ " 0, α " 2, µ " 0q P A, we consider two distinct initial conditions. Simulations show that the abundances converge in both cases toward the unique globally stable equilibrium x ˚predicted by Proposition 2.3. Notice that since α ă a 2 logp10q » 2.14, we witness vanishing species.

Figure 5 .

 5 Figure 5. Theoretical values of φ, xxy and xx 2 y (solid line) obtained by solving the system (8)-[START_REF] Clenet | Feasibility in a large lotka-volterra system with pairwise correlated interactions[END_REF] given the parameters (µ " 0.2, ρ " 0.5), compared to the empirical values (dots) obtained by Monte-Carlo simulations (size of matrix n " 500, number of random samples P " 200). The x-axis corresponds to the interaction strength α.

ÝÝÝÑ

  

  n pAq be defined as in[START_REF] Girko | The elliptic law: ten years later i[END_REF] and recall that α n Ý ÝÝÝÝ Ñ

					nÑ`8	`8,
	then:				
	max kPrns R k,n pAq α n ? 2 log n	P ÝÝÝÑ nÑ8	0	and	min kPrns R k,n pAq α n ? 2 log n

P ÝÝÝÑ nÑ8 0 .

  The arguments are similar to those in[START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] Section 2.3]. Proof of the second assertion of Lemma 3.4 can be done similarly. This concludes the proof.3.3.Proof of Theorem 2.1 -the non centered case. Recall that α Ñ 8 as n Ñ 8. Denote by u n " 1 ? n 1 n and notice that the spectrum of I n ´µu n u T n is t1´µ, 1u, the eigenvalue 1 with multiplicity n´1. Notice in particular that if µ ‰ 1, then I ´µuu T is invertible. So is (eventually) I ´A α

					ď	?	2K ˆKρ εα	,	log n	,
	where the last inequality follows from Proposition 3.7.
	This implies that				
			max kPrns r R k pAq ´r R 1 pAq α ? 2 log n	P ÝÝÝÑ nÑ8	0 .
	It remains to prove that			
	α	r R 1 pAq ? 2 log n	P ÝÝÝÑ nÑ8	0	and	max kPrns R k pAq α ? 2 log n
							?	n ´µuu T as }A{pα	?

P ÝÝÝÑ nÑ8 0 .

4 .

 4 Stability: Proof of Proposition 2.3

	Proof. We have			
	I ´B `I ´BT " 2I ´pB `BT q " 2I	´ˆA `AT α ? n	`2µ n	11 T

  5, Theorem 5.2]):

	λ max	ˆA `AT α ? n	˙a.s. ÝÝÝÑ nÑ8	2	a 2p1 `ρq α	.	(27)
	Suppose that pρ, α, µq P A. Notice that in this case,
	? α 1 ? `ρ 2		ă	1 2	ă	1 2 `1 2	c 1	´2p1 `ρq α 2	.
	We consider three subcases					
	(i) µ " 0, (ii) µ ď ? 1`ρ α ? 2 ,							
	(iii) µ P ˆ?1`ρ α ? 2 , 1 2 `1 2	b	1 ´2p1`ρq α 2		

of the symmetric matrix Ǎ `P . Based on a result by Capitaine et al. [START_REF] Capitaine | The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations[END_REF]Theorem 2.1], we have:

2p1`ρq α else.

Consider now subcase (ii), then λ max p Ǎ `P q a.s. , which is strictly lower than 2 since pρ, α, µq P A. Hence λ max p Ǎ `P q is eventually strictly lower than 2 in this case. We finally consider subcase (iii). In this case,

We shall prove that 2µ `1`ρ

An elementary study of the polynomial ΩpXq " 2α 2 X 2 ´2α 2 X `1 `ρ yields that Ω's discriminant is positive if α ą a 2p1 `ρq and Ω's roots are given by

Also remark that Ω ´?1`ρ α ?

2 ¯ă 0, so that ? 1`ρ α ?

2 P pµ ´, µ `q. In particular condition (28) is fulfilled for µ P ´?1`ρ α ?

2 , µ `¯, which is precisely subcase (iii). Hence a.s. lim sup nÑ8 λ max p Ǎ `P q ă 2. We can then rely on Theorem 2.2 to conclude.
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In this section, we provide the arguments to prove Theorem 2.1 in the case where matrix B follows the model (4), i.e.

B "

Ãn

where Ãn 's entries are i.i.d. N p0, 1q on and above the diagonal (i ď j), and p Ãij , Ãji q is a standard bivariate Gaussian vector pi ă j) with covariance covp Ãij , Ãji q " ρ ij , and independent from the remaining random variables.

There are essentially 3 issues to resolve, to fully adapt the proof developed in Section 3 to the covariance profile case:

(1) The decomposition [START_REF] Gardner | Connectance of large dynamic (cybernetic) systems: critical values for stability[END_REF] (2) The Lipschitz property for r R k,n p Ãn q. Essentially, we need the counterpart of Lemma 3.6 to the context of a covariance profile.

(3) The control of the term E r R k,n p Ãq.

A.1. Proof of issue 1: Control of the spectral norm of a Hermitian matrix with a variance profile. Applying Lata la's theorem [START_REF] Lata La | Some estimates of norms of random matrices[END_REF], we easily show that

matrix X n " pX ij q is a Wigner matrix with i.i.d. N p0, 1q entries on and above the diagonal, and ˝stands for the Hadamard product, i.e. Υ n ˝Xn " pΥ ij X ij q. Notice that ? nW 1 n is 1-Lipschitz with respect to the Frobenius norm

Hence by Gaussian concentration, we have

Taking δ " ε ? n, we obtain

The same holds for W 

2 X ji pi ă jq . and to modify accordingly the Lipschitz constant by r

To address this issue, we provide a quick argument which relies on Isserlis' theorem also called Wick's formula (see [START_REF] Janson | Gaussian hilbert spaces[END_REF]Th. 1.28]), highly dependent on the Gaussiannity of the entries.

where the sum is over all the partitions Π of rns into pairs ti, ju, and the product over all the pairs contained in Π.

Recall that:

Consider a matrix A n where the pairwise covariance covpA ij , A ji q " 1. Denote by 

From this, we deduce that |C | ď C , hence |E r R k p Ãq| ď E r R k pAq. This gives the desired bound since E r R k pAq " Op1q.