
HAL Id: hal-03681657
https://hal.science/hal-03681657

Submitted on 30 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processing the Structure of Documents: Logical Layout
Analysis of Historical Newspapers in French

Nicolas Gutehrlé, Iana Atanassova

To cite this version:
Nicolas Gutehrlé, Iana Atanassova. Processing the Structure of Documents: Logical Layout Analysis
of Historical Newspapers in French. Journal of Data Mining and Digital Humanities, 2022. �hal-
03681657�

https://hal.science/hal-03681657
https://hal.archives-ouvertes.fr


Processing the Structure of Documents: Logical Layout Analysis of
Historical Newspapers in French

Nicolas Gutehrlé1 and Iana Atanassova1, 2

1Centre de Recherches Interdisciplinaires et Transculturelles (CRIT)
Université de Bourgogne Franche-Comté,

30 rue Mégevand, 25000, Besançon, France,
2Institut Universitaire de France (IUF)

Corresponding author: Nicolas Gutehrlé , nicolas.gutehrle@univ-fcomte.fr

Abstract
Background. In recent years, libraries and archives led important digitisation campaigns that opened
the access to vast collections of historical documents. While such documents are often available as
XML ALTO documents, they lack information about their logical structure. In this paper, we address
the problem of Logical Layout Analysis applied to historical documents in French. We propose a rule-
based method, that we evaluate and compare with two Machine-Learning models, namely RIPPER and
Gradient Boosting. Our data set contains French newspapers, periodicals and magazines, published in
the first half of the twentieth century in the Franche-Comté Region.

Results. Our rule-based system outperforms the two other models in nearly all evaluations. It has
especially better Recall results, indicating that our system covers more types of every logical label than
the other two models. When comparing RIPPER with Gradient Boosting, we can observe that Gradient
Boosting has better Precision scores but RIPPER has better Recall scores.

Conclusions. The evaluation shows that our system outperforms the two Machine Learning models, and
provides significantly higher Recall. It also confirms that our system can be used to produce annotated
data sets that are large enough to envisage Machine Learning or Deep Learning approaches for the task
of Logical Layout Analysis. Combining rules and Machine Learning models into hybrid systems could
potentially provide even better performances. Furthermore, as the layout in historical documents evolves
rapidly, one possible solution to overcome this problem would be to apply Rule Learning algorithms to
bootstrap rule sets adapted to different publication periods.

Keywords
Logical Layout Analysis, Historical Newspapers, Natural Language Processing, Rule-based system,
Rule-Learning, Machine-Learning

I BACKGROUND

One important challenge in digital humanities is the efficient exploitation and processing of
scanned textual documents (archives, documentary funds, ...). For example, historical docu-
ments such as newspaper archives are prime resources for historians [Tibbo, 2007]. Thanks to
the important digitisation campaigns led by libraries and archives, vast collections of historical
documents have been made easily accessible. However, the majority of these documents are
available only as scanned images (e.g. in PDF format) which makes them difficult to explore
in a text processing perspective. Extracting the text content from such documents requires at

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

1 http://jdmdh.episciences.org

http://jdmdh.episciences.org


least the following three steps: Optical Character Recognition (OCR), physical layout analysis
(PLA) and Logical Layout Analysis (LLA).

Physical layout analysis (PLA), which is also sometimes called document layout analysis, con-
sists in identifying physical regions of the document, with their text content and boundaries.
Such regions can correspond to sections and lines of text, but also to figures, tables, etc.
PLA also defines the reading order of the document, which corresponds to the linear order
in which the different regions appear. This is particularly important for documents that have
multi-column layouts. One commonly used output format of PLA is the XML ALTO format
(https://www.loc.gov/standards/alto/). Logical layout analysis (LLA), some-
times called logical structure derivation and structure understanding, consists in identifying the
document structure elements and their categories i.e. title, header, paragraph, table, etc. Such
logical elements can integrate one or more regions in the document that have been identified by
PLA. Physical and logical layout analyses are necessary steps in the processing of documents
for a large number of applications, including information retrieval, information extraction, table
of content extraction, text syntheses, and more broadly document understanding.

In this article we focus on the problem of Logical Layout Analysis (LLA). We describe a
methodology for Logical Layout Analysis, where logical labels are assigned to physical lay-
out entities. The input of our processing pipeline is the physical layout analysis of documents
in the XML ALTO format.

An important body of research around physical layout analysis of printed documents has been
produced in the end of the XXth century. Several algorithms have been proposed such as the X-
Y Cut algorithm [Nagy et al., 1992], the Docstrum algorithm [O’Gorman, 1993] or the Voronoi
diagram based algorithm [Kise et al., 1999]. Furthermore, the processing of handwritten doc-
uments requires specific techniques, such as the "droplet" technique to identify text line by
Bulacu et al. [2007], or neural networks as in Chen and Seuret [2017], where each pixel is
labelled as text or not.

Existing Logical Layout Analysis systems make use of various methods that go from heuristic
systems to more recent architectures using neural networks. Some heuristic systems use gram-
mars such as stochastic or attributed grammars, where the document is represented as a string of
symbols, e.g. Namboodiri and Jain [2007]. In their work, the grammar describes multiple pro-
duction rules, each associated with a logical label. The string of symbols is then parsed by the
grammar in order to extract logical labels. Other systems, such as LA-PDFText [Ramakrishnan
et al., 2012] or DeLoS [Niyogi and Srihari, 1995], use rules that state the condition a physi-
cal block must meet to be given a logical label. For instance, DeLoS system uses first-order
predicates in order to infer the logical category of a physical block.

While heuristic systems provide good results, they are often dedicated to specific layouts, and
need to be adapted to work on other layouts. To tackle this problem, Klampfl and Kern [2013]
created a system for Logical Layout Analysis on scientific articles in PDF format that combines
heuristic rules with unsupervised-learning models such as k-means or Hierarchical Agglomer-
ative Clustering (HAC). This system is made up of several detectors, each learning geometrical
and textual features from the document in order to identify a specific logical label. Some rules
using text occurrences are also used to help the model, such as finding the keywords "Table" or
"Fig." to identify table or figure blocks.

More recent works use neural networks for Logical Layout Analysis. As noted by Akl et al.
[2019], Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM) architec-

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

2 http://jdmdh.episciences.org

https://www.loc.gov/standards/alto/
http://jdmdh.episciences.org


tures work better than classical neural networks because of the sequential nature of the docu-
ments. This task also benefits from the use of word-embeddings such as GloVe [Pennington
et al., 2014], fastText [Bojanowski et al., 2016] or Flair [Akbik et al., 2018] which give a better
encoding of textual data than simple one-hot encoding, as in Zulfiqar et al. [2019]. Neural net-
work systems can be trained on big data sets such as the Publaynet data set [Zhong et al., 2019]
or the Medical Articles Record Groundtruth (MARG) for physical and Logical Layout Analysis
purposes.

Considering the task of processing historical documents, several small data sets exist such as
the DIVA-HISDB data set [Simistira et al., 2016] which contains 150 annotated pages of three
different medieval manuscripts or the European Newspapers Project data set [Clausner et al.,
2015] which contains 528 documents. Other data sets in non-European languages exist, such
as the PHIBD data set [Ayatollahi and Nafchi, 2013], which contains images of 15 Persian
historical and old manuscript, and the HJdata set [Shen et al., 2020], which contains 2271
Japanese newspapers published in 1953, which was generated in a semi-automatic way. All of
these data sets are too small to be used for Machine Learning or neural network approaches.

The works of Hébert et al. [2014] deal with the task of article segmentation by a Conditional
Random Field (CRF) model with heuristic rules to perform logical analysis. First the CRF
model labels pixel as titles, text lines, or horizontal and vertical separators, then heuristics rules
describing usual article layouts are applied to that classification. In both cases, bad results
were caused by the quality of the scan or the quality of the OCR output. On the other hand,
Riedl et al. [2019] deal with article segmentation by looking at the similarity between segments
of texts. These segments are computed either by using the Jaccard coefficient and their word
distribution or by computing the cosine similarity between word-embeddings. The similarity
between blocks is then computed using the TextTiling algorithm [Hearst, 1997].

Most common approaches to LLA are not suited for historical documents because the document
layout changes over time. For example, the layout and structure of an advertisement in the same
newspaper can display important changes over several years. Logical layout analysis systems
applied to historical documents must then account for the diachronic aspect of their layouts and
adapt to the changes. Barman et al. [2020] propose a system that goes beyond usual logical
labels by labelling physical block as either Serial, Weather Forecast, Death Notice and Stock
Exchange Table. To do so, their system combines visual and textual features using the word-
embedding representation of each word and its coordinates on the page. Their results show that
combining textual and visual features provide better results in most cases than using just one of
them. Textual features are also more efficient to deal with the diachronic aspect of documents
because they are more stable over time than visual features.

The rest of the article is organised as follows: Section II presents our train and test data sets, the
methodology that we propose and describe the three models compared in this article. Section
III proposes an evaluation of the three models and compares their results. Finally, we propose
our conclusion in Section IV.

II METHODS

Our aim is to attribute logical layout labels to both TextBlock and TextLine tags in documents.
For our experiment, first we design a rule-based system to perform the Logical Layout Analysis.
This system is created using ad hoc rules and observations on the documents of the data set.
Then we compare the results of this rule-based system with those of a Rule Learning model and
a Machine Learning model.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

3 http://jdmdh.episciences.org

http://jdmdh.episciences.org


In the following section we present our data set. Section 2.2 presents the tagset that is used,
and section 2.3 presents the features set that we have defined for the TextBlock and TextLine
elements. Then, section 2.4 explains the general processing pipelines. Section 2.5 explains the
construction of the rule-based system, while sections 2.6 and 2.7 present the Rule Learning and
Machine Learning models that we used.

2.1 Data set

We have processed a data set of press and magazine documents published in the first half of the
twentieth century from the "Fond régional: Franche-Comté" catalogue, available on Gallica,
the digital archive of Bibliothèque Nationale de France (https://gallica.bnf.fr). The
previous study by Gutehrlé and Atanassova [2021] uses the same data set. Figure 1 shows an
example of the first page of a newspaper with complex physical layout. It contains the header of
the first page and several articles with titles and text content. From this catalogue, we selected
documents that had an OCR quality measure greater than 90%. This data set was then split into
a train and a test data set.

Figure 1: Excerpt of the first page of the second issue of the communist newspaper Le Semeur published
on the 23rd of April 1932

The train and test data sets are designed to cover as much as possible the various physical
layouts that exist in the "Fond régional: Franche-Comté" catalogue. We have divided them into
three layout types:

1c : documents where the text is displayed in one column, as in books;
2c : documents where the text is displayed into two columns;
3c : documents where there are at least 3 columns of text, as in newspapers.

As shown in Table 1, our train set contains 15 collections of documents, which amount to a total
of 48 documents, whereas the test set contains 6 collections and a total of 6 documents. Table 2
shows the distribution of documents in the train and test data sets across the three layout types.

The documents in the corpus cover three general topics: Catholicism, Resistance and News.
The documents of the Catholic topic were published between 1900 and 1918. Most of them,
such as Bulletin paroissial de Censeau or Petit Écho de Sainte-Madeleine, are bulletins of small
parishes. As such, they focus mainly on the local religious life, although they sometimes discuss

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

4 http://jdmdh.episciences.org

https://gallica.bnf.fr
http://jdmdh.episciences.org


Table 1: Description of the train and test data sets

Data set Newspapers Issues Text blocks Text lines Words Pages
Train 15 48 4 608 51 815 338 583 368
Test 6 6 1 445 8 836 63 343 52

Table 2: Number of documents per layout in the train and test data sets

Data set / Layout 1c 2c 3c+ Total
Train 18 5 25 48
Test 2 2 2 6

national and international events such as WWI. The documents from the Resistance topic, such
as La Haute-Saône libre or La Franc-Comtoise, were published between 1939 and 1945 by
Resistance fighters. As such, their main goal is to relay information about the ongoing local and
international events of WWII. Finally, the documents of the News topic were published in the
1930s and focus on local and national events. Some are apolitical such as Le Franc-Comtois
de Paris, while others have a political label. For instance, Le Semeur and Le Front Comtois are
left-wing newspapers whereas Vers l’Avenir is a right-wing Catholic newspaper.

The French language used in these documents is not very different from modern French. How-
ever, we notice some variations in the written styles between the three topics. The written style
in the Catholic document is formal and literary and uses many religious metaphors. On the other
hand, the written style in the News document is mostly standard, although sometimes formal.
Sentences are shorter and use simpler tenses than the Catholic documents. This simplification
of the writing style is even more prominent in Resistance documents. The difference in the writ-
ing style between documents can first be explained by their domain: religious text should be
more literary than newspapers or Resistance periodicals. This difference can also be explained
by the size of the documents. Catholic documents are the longest in the corpus, with more than
10 pages on average. As such, their text can be more elaborate. On the other hand, News and
Resistance documents are respectively four and two pages long on average. Their text is factual
and concise in order to convey a lot of information in the limited space they have.

All the documents are stored in the XML ALTO format, which contains descriptions of their
physical layout and the text content obtained from OCR. As such, the files already provide
the physical layout analysis and the reading order of the documents. The XML ALTO format
provides the text content and physical layout of documents in the following manner: the OCR
output for the whole document is available in a PrintSpace tag. Lines of text are contained in
TextLine tags, which in their turn contain String tags for words and SP tags for spaces. TextLine
tags are grouped into blocks in TextBlock tags. Sometimes, TextBlock tags are also grouped
into ComposedBlock tags. TextBlock and TextLine tags have the following attributes:

Id : the tag’s identifier;
Height, Width : the text height and width;
Vpos : the vertical position of the text on the page. The higher the value, the

lower the word is on the page;
Hpos : the horizontal position of the text on the page. The higher the value, the

further on the right the text is on the page;
Language : the language of the text (only for TextBlock tags).

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

5 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Besides the attributes listed above, a small portion of the TextBlock tags also have a Type
attribute. This attribute is useful, when present, as it contains the logical labels of the lines in
the block. It appears most often for tables or advertisements. However, the Type attribute is
rarely present in our data set. As shown on Table 3, nearly 98 % of the TextBlock tags in the
train and the test data sets do not have a Type attribute.

Table 3: Type attribute distribution on TextBlock tags in the train and test data sets

Train Test
Type attribute Count Percentage Count Percentage
No attribute 4 514 97.96 1 423 98.48
illegible 79 1.71 15 1.04
titre1 15 0.33 0 0
advertisement 0 0 4 0.28
table 0 0 2 0.14
textStamped 0 0 1 0.07

2.2 Logical Layout Tagset

To perform the Logical Layout Analysis of the documents, we define the following annotation
tagset:

TextBlock labels : Text, Title, Header, Other
TextLine labels : Text, Firstline, Title, Header, Other

The label "Firstline" must be understood as "first line of the paragraph". Thus, any TextLine tag
labelled Firstline will indicate the beginning of a paragraph. A small portion of the TextBlock
and TextLine tags correspond to elements that are not relevant for our study, such as images,
tables or advertisement. Those elements were labelled as "Other" and are ignored for the eval-
uation.

The whole data set was manually annotated by a single annotator, then split into a train and a test
data set. Table 4 shows the label distribution in the data sets. The train set was used to produce
the rule set of our rule-based system, and also to train the Rule-learning and Machine-learning
algorithms. The test set was used for the final evaluation of the system.

Table 4: TextBlock and TextLine tags label distribution over the train and test data sets

Train Test
Label Count Percentage Count Percentage

Te
xt

B
lo

ck Text 2 064 45.724 1 102 80.203
Title 429 9.503 90 6.550
Header 333 7.377 53 3.857
Other 1 686 37.35 128 9.314

Te
xt

L
in

e Text 36 272 70.138 6 648 75.881
Firstline 9 785 18.921 1 563 17.840
Title 1 820 3.519 234 2.670
Header 740 1.430 115 1.312
Other 3 098 5.989 201 2.293

2.3 TextBlock, TextLine and Document features

The first step of our processing pipelines consists in extracting and calculating sets of features
from XML ALTO documents. These features describe three levels: TextLine, TextBlock and

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

6 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Document level. Table 5 presents all the features with their descriptions and levels. The infor-
mation on these features for all document elements, in the form of matrices, is used as input for
the three models presented in Sections 2.5, 2.6, 2.7.

Table 5: Features used by the algorithm. The features marked with an * are used exclusively by the
rule-based algorithm

Feature Description Te
xt

L
in

e

Te
xt

B
lo

ck

D
oc

um
en

t

1 page page number of the page containing the element X X
2 blockType type of the block X X
3 wordCount number of words X X
4 precedingSpace, follow-

ingSpace
spaces above and below the element X X

5 height, width height and width values of the line X
6 hpos, vpos coordinates of the line on the page, i.e. its hori-

zontal and vertical position
X

7 diffHpos difference between hpos and the median hpos
value in the block

X

8 firsthpos, firstvpos coordinates of the first line of the block X
9 lasthpos, lastvpos coordinates of the last line of the block X
10 linecount number of lines X
11 wordRatio number of words by line X
12* medHeight, medWidth median line height and line width X X
13* medHpos, medVpos median hpos and vpos values in the block X
14* medWordCount, medLineS-

pace
median number of words by line and the median
space between lines in the block

X X

15* medBlockHeight, medBlock-
Width

median line height and block height and width X

16* medBlockSpace median space value between blocks X
17* thirdQuartileLineSpace third quartile of line space values in the docu-

ment
X

18* medWordRatio, med-
LineCount

median number of words by line and median
number of line by block in the document

X

19 capitalProp, digitProp proportion of capital letters and digits X X
nonAlphaProp proportion of non-alphanmeric characters

20 stwCapital, stwDigit True if the line starts either by a capital letter or
a number, False otherwise

X

21 endsPunct True if the line ends with a punctuation, False
otherwise

X

22 headerMark1 True if the element contains the word "Page" or
a dash sign. False otherwise.

X X

23 headerMark2 True if the element contains a date, a currency,
an address. False otherwise.

X X

24 simTitle similarity of the line with the title of the docu-
ment, calculated by the Levenshtein distance

X

25 simHeaderSet highest similarity of the line with the words
contained in the header words set, calculated by
the Levenshtein distance

X

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

7 http://jdmdh.episciences.org

http://jdmdh.episciences.org


The header words set is used for the calculation of the simHeaderSet feature. It has been created
by observing the different types of headers in the data sets and consists of the following words
or phrases: Rubrique Locale, Gérant, Publicité, Abonnement, Envoyez les fonds, Conservez
chaque numéro, Rédacteur, Directeur, Numéro, Chèque postal, Dépôt, Achat-Vente-Echange,
Annonce, Imprimerie, En vente partout, Paraissant.

2.4 Processing pipelines

In this section we present the two pipelines that we propose for the processing of XML ALTO
documents for Logical Layout analysis. First, we present the rule-based system, and then we
explain how it can integrate the Rule Learning or Machine Learning models.

The first step of the processing pipeline consists in the extraction of features from the XML
ALTO document at the TextLine, TextBlock and Document levels, as described in Section 2.3.
We store these features into two matrices for TextLine and TextBlock features and in a dic-
tionary for Document features. Each row in the matrices represents either a TextLine or a
TextBlock tag and each column is a corresponding feature.

2.4.1 Rule-based system

For the rule-based system, the second step attributes logical labels to TextBlock tags. Labelling
TextBlock before TextLine is important because the presence of a Type attribute in TextBlocks
can help label the lines inside these blocks. The goal of this step is to add a Type attribute to
every TextBlock. To do so, we process the TextBlock feature matrix from the previous step
by applying sets of annotation rules, one for each possible logical label. A TextBlock is only
processed if it doesn’t already have a Type attribute. Because the sets of rules are applied
independently from each other, a same TextBlock can obtain multiple labels. Another set of
rules is then applied to solve such conflicts and keep only one possible logical label for each
TextBlock, which is then set as the value of the Block’s Type attribute in the feature matrix.

The third step attributes logical labels to TextLine tags. Every TextLine is by default labelled
as Text. The system then applies rules to identify the other labels. First, any TextLine in a Title
or a Header block inherits the same label. Then, any TextLine contained in a TextBlock is pro-
cessed by a set of rules in order to identify Firstlines and possible missing Titles. Similarly to
the previous step, rules are applied independently from each other, resulting sometimes in con-
flicting predictions. The TextLine feature matrix is processed a second time to solve conflicting
predictions and keep only one possible label for each TextLine tags. This step also controls
that any line that follows a Title is labelled as Firstline and that the first line of the document is
labelled as Title if it not already labelled as Header.

The rule set of our rule-based system uses all features presented in Table 5. The algorithm finally
outputs the three feature matrices, where the TextBlock and TextLine matrices are updated with
the annotations of steps 2 and 3. Figure 2 shows the main steps of this pipeline.

2.4.2 Rule Learning and Machine Learning pipelines

The processing pipeline which integrates the Rule Learning and Machine Learning methods
differs from the rule-based one as follows. The second step attributes logical labels to TextBlock
tags and updates the feature matrices accordingly. The last step attributes logical labels to
TextLine tags and outputs the final updated matrices. The steps 2 and 3 rely on Rule Learning
or Machine Learning models. Unlike our rule-based system, however, there is no need for

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

8 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Figure 2: Processing pipeline of the rule-based system

conflict resolution steps, as the Rule Learning and Machine Learning algorithms output the
final prediction. Figure 3 shows the main steps of this pipeline.

To train the Rule Learning and Machine Learning algorithms, we use the same set of features,
but we exclude features 12 to 18. These features contain values that are calculated using the
data of the other features. They are used only by the rule-based system, and not by the other
algorithms as they do not provide any new data.

2.5 Rule-based system

To construct the rule-based system, we define sets of rules for the annotation of TextBlock and
TextLine tags. To design the rules, we used heuristics and observations that we made on the
train data set. For instance, we observed that the biggest titles in the documents start with a
capital letter and are surrounded by important spaces. Then, we translated these patterns into
rules in the form of conditions on the values of the features that must be that must be verified to
trigger the annotation of the element with the corresponding label. The obtained set of rules is
applied to documents regardless of the layout category they belong to.

Identifying Text and Title blocks relies on geometric and morphological features, whereas iden-
tifying Header blocks relies on semantic features. While designing the rules for the annotation
of TextBlock elements we have taken into consideration the following observations:

• Text blocks contain relatively more lines and more words than other blocks (titles or
headers) in the document.

• Title blocks are TextBlock tags that contain few lines, usually not more than 3. The role
of a title is to introduce the topic of a text section, thus a Title block should be surrounded
by Text blocks. The space around that block should also be important, in order to stand
out with the surrounding blocks.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

9 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Figure 3: Processing pipeline of the Rule Learning and Machine Learning algorithms

• A Text block should have a smaller height than a Title block. As such, if there is a
confusion between Text and Title block, we use the height of the block to distinguish
between the two.

• Headers contain very specific information about the document, such as its title, its price, a
date or the publisher’s name. This information is displayed with keywords and sentences
that are recurrent across multiple pages and documents.

• Header blocks are only located at the top of a page, generally in the first four lines of a
page. Small blocks at the top of a page are most likely to be Headers.

• On the first page of a document, the header can be much longer because it contains more
information. We consider that it can be up to 30 lines.

Naturally, TextLine tags that are contained in a Title or Header block inherit this annotation.
TextLine tags that appear between two Header lines are also annotated as Header. Furthermore,
to find Firstline and Title lines that have not yet been identified, we apply sets of rules that rely
on geometric and morphological features, taking into account the following observations:

• The first line of a page or immediately after a Title should be labelled Firstline, if it starts
with a capital letter.

• The first line of a paragraph always starts with a capital letter, and is often indented, i.e.
with Hpos value greater than the other TextLines in the block.

• Firstlines that are not indented can be identified if the line that precedes them is shorter,
indicating the end of the previous paragraph.

• Title lines are surrounded by relatively more space in order to stand out from other text
sections. The smaller the title is, the less important the space around it is.

• Small titles (e.g. sections in an article) usually contain more capital letters then the rest
of the text and are center-aligned.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

10 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Tables 6 and 7 present all annotation rules for TextBlock and TextLine tags and their corre-
sponding annotation labels, where B is a TextBlock in a document D and L is a TextLine in B.
The last two rules in each table solve conflicting annotations.

Table 6: TextBlock annotation rules and conflict resolution rules of the rule-based system

Rule Condition Label
1 (B.linecount > D.medLineCount) or (B.wordCount > D.medWordCount/3) Text
2 Previous and next TextBlocks are Text and (B.linecount < D.medLineCount) and

(B.medHeight < D.medBlockHeight)
Text

3 Previous and next TextBlocks are Text and B is not Text and (B.linecount
< 4) and (B.precedingSpace > D.medBlockSpace) or (B.followingSpace >
D.medBlockSpace)

Title

4 B.page = 1 and for any of the first 30 lines of B: simHeaderSet > 0.9 or simTitle
> 0.9 or headerMark1 or headerMark2 or ctnTotal

Header

5 B.page > 1 and for any of the first 4 lines of B: simHeaderSet > 0.9 or simTitle
> 0.9 or headerMark1

Header

6 Conflicting annotation: Header and (Text or Title):
(B.linecount < 15) and (B.wordCount < 50) Header
Otherwise Text / Title

7 Conflicting annotation: Text and Title:
B.medHeight > D.medBlockHeight / 2 Title
Otherwise Text

Table 7: TextLine annotation rules and conflict resolution rules of the rule-based system

Rule Condition Label
1 L.precedingSpace = 0 and L.followingSpace > D.medLineSpace and L.simTitle <

60 and L.simHeaderSet < 60 and L.stwCapital
Title

2 L.wordCount < B.medWordCount and L.precedingSpace >
D.thirdQuartileLineSpace and L.followingSpace > D.thirdQuartileLineSpace

Title

3 L.capitalProp > 10 and L.wordCount < B.medWordCount and L.height
< B.medHeight and (L.precedingSpace > D.thirdQuartileLineSpace or
L.followingSpace > D.thirdQuartileLineSpace)

Title

4 L.diffHpos > 104 and L.capitalProp > 0 and L.precedingSpace > D.medLineSpace
and L.followingSpace > D.medLineSpace

Title

5 L.hpos > B.medHpos and L.diffHpos < 105 and (L.stwCapital or L.stwDigit) Firstline
6 L.width < B.medWidth and L.wordCount < B.medWordCount and L.hpos <

B.medHpos
Lastline

7 Previous TextLine is LastLine and L.stwCapital and L.followingSpace <
B.medLineSpace

Firstline

8 Previous TextLine is not Lastline and L.stwCapital and L.precedingSpace >
B.medLineSpace and L.followingSpace < B.medLineSpace

Firstline

9 Previous TextLine is not Lastline and L.stwCapital and L.hpos > B.medHpos Firstline
10 None of the rules 1-9 above is True Text
11 Conflicting annotation: Header and other label:

Previous TextLine is Header and next TextLine is Header Header
12 Conflicting annotation: Title and FirstLine:

L.followingSpace < B.medLineSpace and L.capitalProp < 15 Title
Otherwise Firstline

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

11 http://jdmdh.episciences.org

http://jdmdh.episciences.org


2.6 Rule Learning

Rule Learning algorithms are Machine Learning algorithms that aim at identifying rules from
a data set. In a classification task, a rule-learning model induces from the data set the rules
that allow to classify a particular sample. For our experiment, we have selected the RIPPER
algorithm for two reasons: firstly, it is considered to be the state of the art of rule-induction
systems [Sammut and Webb, 2017], and secondly, for its ability to produce human-readable
rule sets.

2.6.1 Description of the RIPPER algorithm

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [Cohen, 1995] is a rule
induction algorithm which improves upon the Incremental Reduced Error Pruning algorithm
(IREP) [Fürnkranz and Widmer, 1994]. RIPPER discovers rules in a sequential covering man-
ner: for a positive class P , it identifies the rules that best cover the examples of P in the data
set. Every element in the data set covered by the rule, be it positive or negative, is then removed.
These operations are repeated until the rule set cannot grow any more or another condition is
met.

In order to construct the rule set, RIPPER first randomly divides the training set into a growing
and a pruning set. The growing set is used to identify rules and corresponds roughly to 2/3 of
the training set. The pruning set is used to test the rules and prune them. Building a rule consists
of the two following steps: Growing and Pruning.

Rules in RIPPER are sets of conditions combined using the AND operator. The growing step
of a rule starts with an empty rule. The algorithm loops over every possible condition in the
data set, i.e. every possible value for each given feature. It then adds the condition which
provides the highest information gain to the rule. The information gain is calculated with the
same metric used by the First Order Inductive Learner (FOIL) algorithm [Quinlan, 2005]. The
algorithm keeps adding conditions to the rule until it only covers examples of the positive class.
Once a rule has stopped growing, its quality is evaluated with the following metric:

ruleQuality = (P −N)/(P +N)

where P and N are respectively the number of positive and negative examples covered by the
pruned rule in the pruning set.

The pruning step is then initiated. It consists in removing one by one every condition in the rule,
from the newest to the oldest, while evaluating its quality with the same metric. The version of
the rule having the best quality is kept.

When a rule is grown and pruned, RIPPER computes the description length (DL) of the new
rule. The DL indicates the complexity of a rule and corresponds to the sum of the number of
bits required to encode the rule and the examples of the positive class the rule fails to cover.
Finally, every example in the growing set covered by the newly built rule is removed. These
steps are repeated until one of the following conditions is met:

• the rule set covers every instance of the positive class;
• the error rate is above 50 % since the addition of the last rule;
• the rule has reached a specified complexity threshold.

The complexity threshold is reached when the DL of the last added rule is d bits bigger than the
smallest DL in the rule set. By default, d is 64 bits. After creating the rule set, RIPPER iterates

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

12 http://jdmdh.episciences.org

http://jdmdh.episciences.org


from the newest to the oldest rule in the rule set and checks if the rule can be removed without
increasing the total description length.

Finally, the optimisation step is initiated. It consists in creating two new versions of each rule:
a replacement rule and a revision rule. The replacement is a completely new rule whereas the
revision rule is created by adding new conditions to the existing rule. The algorithm then selects
the version of the rule with the smallest description length. The optimisation step may be run k
times, where k = 2 by default.

For our experiment, we used the python library wittgenstein which implements the RIPPER
algorithm. The main hyperparameters of this implementation are:

prune_size : the size of the prune set. The default value is .33
k : the number of optimisations to run. The default value is 2
dl_allowance : the allowed size for description length. The default value is 64
n_discretize_bins : specific to the wittgenstein implementation. It automatically detects

and discretises continuous features in the training set. This hyperpa-
rameter controls the size of each bin. The default value is 10.

As the wittgenstein’s implementation of RIPPER can only deal with binary classification, we
trained one model for each label in our data set for both the TextBlock and TextLine annotation
tasks. For each RIPPER model, we performed a GridSearch with the following combination to
find the best hyperparameter values:

prune_size : .25, .33, .50
k : 1, 2
dl_allowance : 32, 64, 128
n_discretize_bins : 5, 10, 20, 30

Table 8 shows the best hyperparameter combinations for each RIPPER model we trained for
the TextBlock and TextLine annotation tasks.

For each logical label in the TextBlock or TextLine annotation task, we use the corresponding
RIPPER model to predict the probability that the TextBlock or TextLine tag belongs to that
logical label. The most probable label is then assigned to the tag.

Table 8: Best hyperparameter combinations for the RIPPER algorithm on each class for TextBlock and
Textline annotation tasks

Hyperparameter Header Title Firstline Text

Te
xt

B
lo

ck prune_size .5 .33 .25
k 2 1 2
dl_allowance 64 64 64
n_discretize_bins 10 10 10

Te
xt

L
in

e prune_size .33 .25 .33 .5
k 1 1 1 2
dl_allowance 64 64 64 64
n_discretize_bins 10 10 10 10

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

13 http://jdmdh.episciences.org

http://jdmdh.episciences.org


2.7 Machine Learning

Machine Learning represents the family of algorithms such as Support Vector Machine or Gra-
dient Boosting which are able to learn patterns from the data on their own. Machine Learning
algorithms are often quicker to train than rule-based systems. However, they are also harder to
interpret as they do not output rules, nor explain their reasoning to classify a specific sample.

In order to select the algorithm which is best suited for TextBlock and TextLine classification,
we compared the performances of the following Machine Learning algorithms: Support Vec-
tor Machine (SVM), Bagging, Random Forest, AdaBoost and Gradient Boosting. We used the
scikit-learn implementation of these algorithms [Pedregosa et al., 2011], with their default hy-
perparameters on the same feature set that was used to train the RIPPER algorithm. Table 9
and Figure 4 compare the initial results obtained by these algorithms. The best result in each
column is shown in bold.

Table 9: Results of Machine Learning models for TextBlock and TextLine annotation

TextBlock TextLine
Algorithm Precision Recall F1 Precision Recall F1
SVM 0.750 0.644 0.688 0.717 0.578 0.572
Bagging 0.833 0.712 0.740 0.732 0.657 0.683
RandomForest 0.712 0.689 0.697 0.773 0.628 0.662
AdaBoost 0.775 0.647 0.664 0.720 0.672 0.687
Gradient Boosting 0.847 0.719 0.727 0.806 0.687 0.720

Figure 4: Comparison of initial results of Machine Learning algorithms for TextBlock (left) and TextLine
(right) annotations

This initial comparison shows that Gradient Boosting is the best algorithm for both TextBlock
and TextLine annotation in every evaluation except one. From these results, we trained two
Gradient Boosting classifiers, one for TextBlock annotation and another for TextLine annota-
tion. We performed a GridSearch for each task with the following sets of hyperparameters in
order to find the optimal combination:

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

14 http://jdmdh.episciences.org

http://jdmdh.episciences.org


n_estimators : 100, 150, 200
learning_rate : 0.01, 0.005, 0.001
max_leaf_nodes : 2,3,4,5,6,7
min_samples_split : 10, 20, 40, 60, 100
min_samples_leaf : 1,3,5,7,9
max_features : 2,3,4,5,6,7
subsample : 0.7,0.75,0.8,0.85,0.9,0.95,1

Table 10 shows the best hyperparameter combinations for the Gradient Boosting algorithm
identified by GridSearch for both tasks.

Table 10: Best hyperparameter combinations for Gradient Boosting for TextBlock and TextLine annota-
tion

Hyperparameter TextBlock TextLine
n_estimators 200 100
learning_rate 0.005 0.01
max_leaf_nodes 7 7
min_samples_split 40 100
min_samples_leaf 5 7
max_features 6 7
subsample 0.85 1

III RESULTS AND DISCUSSION

To evaluate our rule-based system, as well as the Rule Learning and Machine Learning algo-
rithms, we have run the three models on the test data set. In this section we present the results
in terms of Precision, Recall and F1-score. Considering the Rule learning algorithm, we also
present the set of rules that were obtained by the algorithm and compare this set with the one
that we have defined in our rule-based system. Finally, we compare the results of all systems.

3.1 Evaluation of the rule-based system

Table 11 shows the Precision, Recall and F1 scores for the TextBlock and TextLine classification
of the rule-based system.

Table 11: Precision, Recall and F1 score for TextBlock and TextLine annotation with the rule-based
system

Text Title Firstline Header
Cat P R F1 P R F1 P R F1 P R F1

Te
xt

B
lo

ck 1c 0.947 0.938 0.942 0.312 0.357 0.333 0.679 0.373 0.476
2c 0.973 0.989 0.981 0.899 1.000 0.947 1.000 0.271 0.411
3c+ 0.958 0.973 0.965 0.589 0.560 0.551 0.500 0.250 0.333
Mean 0.959 0.966 0.962 0.600 0.639 0.610 0.726 0.298 0.406

Te
xt

L
in

e 1c 0.979 0.986 0.983 0.354 0.720 0.473 0.943 0.854 0.895 0.909 0.598 0.721
2c 0.961 0.995 0.978 0.746 0.765 0.747 0.955 0.859 0.902 1.000 0.118 0.197
3c+ 0.975 0.992 0.983 0.703 0.702 0.702 0.952 0.877 0.913 0.500 0.400 0.444
Mean 0.969 0.991 0.979 0.595 0.733 0.639 0.949 0.861 0.902 0.803 0.348 0.435

TextBlock annotation rules perform best on documents from the 2c layout category. Title classi-
fication for TextBlocks performs with F1 score of 0.61 on average and 0.94 on documents from
the 2c category. Header classification for TextBlocks provides a good Precision score (0.726)
but with a low Recall (0.298).

Similarly to TextBlock annotation rules, TextLine annotation rules perform best on documents
from the 2c category. Title identification performs worse on 1c documents, and obtains overall

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

15 http://jdmdh.episciences.org

http://jdmdh.episciences.org


F1 score of 0.639 for all layouts. Firstline identification performs fairly well with an F1 score
above 0.9. Header identification obtains a good Precision score (0.803) but with a Recall of
0.348. This means that header identification rules are insufficient and need to be completed to
capture the various types of headers.

A first type of error comes from errors in the Block classification step. As any line in a Title
or Header block inherits that annotation, the Precision of TextBlock annotation is an important
factor for the overall performance of the algorithm.

A second type of error is the confusion between Titles and First lines. Most Titles mislabelled
as Firstline are short subsection titles. As such, they are similar to other text lines in terms of
typography, and are hard to detect with the features we use. This confusion happens mainly
in documents from the 2c and 3c+ categories. Other mislabelled Titles are one-line paragraphs
such as greetings or signatures, or the beginning of a text section. Such lines have properties
similar to Titles, being surrounded by important spaces and being either center or right-aligned.
Extracting features about the font style of the line (bold, italics) and its alignment (left, center,
right-aligned) could help solve this confusion.

3.2 Comparison of RIPPER’s annotation rules and the rule-based system

In this section we present a comparison between the rules that are used in our rule-based system
and the annotation rules that were learned by the RIPPER algorithm. We examine the sizes of
the two rule sets and the overlap that exists between them.

3.2.1 TextBlock annotation rules

Table 12 presents all annotation rules discovered by the RIPPER algorithm for TextBlock tags
and their corresponding annotation labels, where B is a TextBlock in a document D. Overall,
RIPPER produced 26 rules, while in the rule-based system we produced 7, including the conflict
resolution rules.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

16 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Table 12: TextBlock annotation rules produced by the RIPPER algorithm

Rule Condition Label
1 B.capitalProp => 55 and 80 <= B.followingSpace <= 135 and 135 <= B.width <=

368.25
Title

2 B.height => 95 and 801.25 <= B.width <= 985 and 5 <= B.capitalProp <= 12.5 Title
3 B.capitalProp => 55 and 940 <= B.firstvpos <= 1545 and B.height <= 30 Title
4 B.height => 95 and 485 <= B.firstvpos <= 940 Title
5 B.linecount <= 2 and B.height => 95 and 940 <= B.firstvpos <= 1545 and 79 <=

B.wordRatio <= 96
Title

6 B.capitalProp => 55 and B.wordRatio => 149 and B.digitProp <= 5 and B.lastvpos
<= 900

Title

7 B.capitalProp => 55 and 80 <= B.followingSpace <= 135 and B.linecount <= 2
and 4 <= B.wordCount <= 9

Title

8 B.linecount <= 2 and B.digitProp <= 5 and B.height => 95 and 175 <=
B.followingSpace <= 225

Title

9 B.linecount <= 2 and B.digitProp <= 5 and 135 <= B.followingSpace <= 175 and
65 <= B.height <= 95

Title

10 B.linecount <= 2 and B.digitProp <= 5 and 65 <= B.height <= 95 Title
11 B.linecount <= 2 and B.capitalProp => 55 and 595 <= B.lasthpos <= 1130 Title
12 B.linecount <= 2 and B.digitProp <= 5 and B.capitalProp => 55 and 80 <=

B.followingSpace <= 135 and 5849 <= B.firstvpos <= 7470
Title

13 B.linecount <= 2 and B.digitProp <= 5 and B.followingSpace => 225 and B.height
=> 95 and 4 <= B.wordCount <= 9 and B.precedingSpace <= 5

Title

14 B.height => 95 and B.followingSpace => 225 and 940 <= B.firstvpos <= 1545 and
4 <= 4 B.wordCount <= 9

Title

15 B.linecount <= 2 and B.digitProp <= 5 and B.followingSpace => 225 and B.height
=> 95 and 61 <= B.wordRatio <= 70

Title

16 B.linecount <= 2 and B.digitProp <= 5 and 135 <= B.followingSpace <= 175
17 B.linecount <= 2 and B.digitProp <= 5 and B.followingSpace => 225 and B.height

=> 95 and 5 <= B.capitalProp <= 12.5
Title

18 B.lastvpos <= 900 and 5 <= B.digitProp <= 80 Header
19 B.lastvpos <= 900 and 3015 <= B.firstHpos <= 3640 and B.capitalProp >= 55 Header
20 B.lastvpos <= 900 and 135 <= B.width <= 368.25 and B.firstvpos <= 485 Header
21 B.lastvpos <= 900 and B.digitProp => 80 Header
22 B.lastvpos <= 900 and 12.5 <= B.capitalProp <= 55 and 595 <= B.lasthpos <=

1130
23 B.digitProp <= 5 and B.capitalProp <= 5 and B.wordCount => 272 Text
24 50 <= B.wordCount <= 272 Text
25 23 <= B.wordCount <= 50 and B.capitalProp <= 5 Text
26 B.digitProp <= 5 and B.capitalProp <= 5 and 45 <= B.precedingSpace <= 80 Text

To identify Title blocks, RIPPER produced 17 different rules whereas our rule-based system
only used one. We can see that linecount and height are the two most frequently used features,
as they occur in 11 rules. A recurring condition is that linecount must be inferior to three,
which is similar to the condition in our rule-based system, where a block must have no more
than four lines. This confirms our intuition that a small number of lines is an important factor
to detect Title blocks. As in our system, followingSpace is also an important feature, as it
appears in nine rules and must always be above a certain threshold. However, RIPPER never
uses the precedingSpace attribute, suggesting that only one of them is necessary to identify

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

17 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Title blocks. capitalProp and digitProp are also important features identified by RIPPER,
as they respectively appear in eight and nine rules. The first one must always be above 50 %
whereas the second one must always be inferior or equal to 5 %.

To identify Header blocks, RIPPER produced five rules, while we produced two. The condition
lastvpos <= 900 is present in every rule, indicating that the block must be on the top part of the
document. Other used features such as digitProp, which is always greater than 5 %, suggest
that a Header blocks always contain numbers. To detect Headers, RIPPER relies exclusively
on geometric and morphological features, unlike our system which mostly relies on semantic
features such as simHeaderset, simTitle, headerMark1 or headerMark2.

Finally RIPPER produced four rules to identify Text blocks, while we produced two. The most
important feature used is wordCount which appears in three rules. Similarly to our system, this
feature must be greater than a small threshold which is 23 words here. Unlike our system, RIP-
PER never uses the linecount feature to detect Text blocks. Instead, it uses the capitalProp and
digitProp features, which respectively appear in three and two rules. In every rule they appear,
they must be lower or equal than 5 %. Finally, RIPPER uses in one rule the precedingSpace
feature, which must be lower or equal than 80 pixels, suggesting that the space before a Text
block must be small.

3.2.2 TextLine annotation rules

Table 13 presents all annotation rules discovered by the RIPPER algorithm for TextLine tags
and their corresponding annotation labels, where L is a TextLine in a document D and B is
the TextBlock that contains L. Overall, RIPPER produced 19 rules whereas we produced 12,
including the conflict resolution rules.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

18 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Table 13: TextLine annotation rules identified by the RIPPER algorithm

Rule Condition Label
1 L.followingSpace => 75 and L.stwCapital is True and L.blockType=title and 745

<= L.width <= 970 and L.vpos <= 985
Title

2 L.followingSpace => 75 and L.stwCapital is True and L.blockType=title and
L.capitalProp <= 5

Title

3 L.followingSpace => 75 and L.stwCapital is True and L.blockType=title Title
4 L.precedingSpace => 75 and L.followingSpace => 75 and 335 <= L.width <= 645

and 20 <= L.simTitle <= 29
Title

5 L.followingSpace => 75 and L.stwCapital is True and L.endsPunct is False and
L.capitalProp <= 5 and 745 <= L.width <= 970 and L.nonAlphaProp <= 5

Title

6 L.precedingSpace => 75 and L.followingSpace => 75 and L.stwCapital is True
and 335 <= L.width <= 645

Title

7 L.capitalProp => 10 and 335 <= L.width <= 645 and L.height <= 35 and 505 <=
L.hpos <= 1070 and L.stwCapital is True

Title

8 L.precedingSpace => 75 and L.followingSpace => 75 and 745 <= L.width <= 970 Title
9 L.precedingSpace => 75 and L.followingSpace => 75 and and L.stwCapital is True

and 645 <= L.width <= 745
Title

10 L.capitalProp => 10 and L.vpos <= 985 and L.blockType=header Header
11 L.capitalProp => 10 and L.simHeaderSet => 85.5 and L.followingSpace => 75

and 335 <= L.width <= 645
Header

12 L.capitalProp => 10 and L.vpos <= 985 and 54 <= L.simHeaderSet <= 60 and
L.precedingSpace <= 35

Header

13 L.capitalProp => 10 and L.simTitle => 42.86 and L.nonAlphaProp <= 5 and
L.precedingSpace <= 35 and 2550 <= L.hpos <= 3419

Header

14 L.capitalProp => 10 and L.vpos <= 985 and L.simTitle => 42.86 and
L.nonAlphaProp <= 5 and 335 <= L.width <= 645

Header

15 505 <= L.hpos <= 1070 and L.simHeaderSet => 85.5 and 335 <= L.width <=
645

Header

16 L.stwCapital is True and 970 <= L.width <= 1010 Firstline
17 L.stwCapital is True and L.capitalProp <= 5 Firstline
18 L.stwCapital is False and L.stwDigit is False Text
19 1030 <= L.width <= 1050 Text

Nine rules have been produced by RIPPER to identify Title lines, where we produced four. The
most important feature is followingSpace, as it is used in eight rules. Similarly to our system,
it must always be greater than a specific threshold, here 75 pixels. precedingSpace seems to
be a less important feature with RIPPER than with our system, as it is only used in four rules.
This would suggest that, as for Title block annotation, the space following a block is more
important than the one preceding it. Our rules relied mostly on the blockType, precedingSpace
and followingSpace features to identify Titles, whereas RIPPER uses these features alongside
others, especially stwCapital and width which are both present in seven rules. stwCapital
is always True whereas width is always smaller or equal than a specific threshold, suggesting
Title lines are shorter than most lines in the document.

RIPPER produced six rules to identify Header lines. In our system, a line is labelled as Header
if it is contained in a Header block. The main feature used by RIPPER is capitalProp which is
present in 5 rules and is always greater or equal than 10 %. This suggests that Header lines have
more capital letters than common lines. The other main features used are vpos, simHeader and

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

19 http://jdmdh.episciences.org

http://jdmdh.episciences.org


width. vpos is always below 985 pixels, which means that the Header must be on the highest
part of the document. Depending on the rules, simHeader must be greater than 55 % or 85
% percent, suggesting the importance of the header word set. The width of the line is always
set in a small range between 335 and 645 pixels, suggesting Header lines are smaller than most
lines of text in the document.

Firstline annotation is the only case where RIPPER produced fewer rules than us: we produced
five rules where RIPPER produced two. Similarly to our system, the main condition is that
stwCapital is True. The first line of a paragraph is also often indented. To detect that, our
rule-based system used the hpos feature whereas RIPPER uses the width feature. Finally,
RIPPER uses two rules to detect Text line whereas this is the default annotation in our system.
In RIPPER, the main condition is that stwCapital and stwDigit are False or the width of the
line is average.

The use of the blockType attribute is the main difference between our rule-based rule set and
RIPPER’s. In our system, the blockType attribute is an important feature, as any line contained
in a Header or Title block inherits this label. RIPPER also uses this feature but to a lesser extent.
It is only used in three rules for Title annotation and in one rule for Header annotation, and is
always used alongside other features.

3.3 Evaluation of the RIPPER system

An important question is which of the two sets of rules provides better results in terms of
F1 score: RIPPER’s rules or our manually designed rule set. To evaluate the rules produced
by RIPPER, we have run the model through the test data set. Table 14 shows the results of
TextBlock and TextLine annotation as performed by the RIPPER algorithm.

Table 14: Precision, Recall and F1 score for TextBlock and TextLine annotation with RIPPER
Text Title Firstline Header

Cat P R F1 P R F1 P R F1 P R F1

Te
xt

B
lo

ck 1c 0.819 0.990 0.897 0.500 0.625 0.550 0.857 0.333 0.480
2c 0.851 1.000 0.920 0.500 0.444 0.471 0.462 0.250 0.324
3c+ 0.852 0.999 0.920 0.679 0.297 0.413 0.000 0.000 0.000
Mean 0.841 0.996 0.912 0.560 0.455 0.480 0.440 0.194 0.268

Te
xt

L
in

e 1c 0.871 0.881 0.876 0.600 0.290 0.391 0.644 0.777 0.704 0.667 0.053 0.098
2c 0.923 0.947 0.935 0.710 0.268 0.389 0.754 0.877 0.811 0.667 0.065 0.118
3c+ 0.876 0.908 0.892 0.610 0.207 0.309 0.614 0.709 0.658 0.000 0.000 0.000
Mean 0.890 0.912 0.901 0.640 0.255 0.363 0.671 0.788 0.724 0.444 0.039 0.072

TextBlock annotation performs the best on the 1c layout category. The annotation of Text
elements provides the best results with an F1 score of 0.912 on average. Title and Header
annotations perform much worse with F1 scores of 0.48 and 0.26 respectively. The main cause
of error is a confusion between Header and Title blocks. Every Header block mislabelled as
Title contained fewer than three lines, and vice versa. This suggests that more conditions are
required to distinguish between small Header blocks and Titles. Finally, many Header blocks
were mislabelled as Text, suggesting a lack of rules to detect them.

TextLine annotation performs the best on the 2c layout category. Here again, the annotation
of Text elements provides the best results with an F1 score of 0.901 on average. Firstline
annotation comes second with an average F1 score of 0.724. Title and Header annotations are
also disappointing, with respectively 0.36 and 0.07 of F1 scores on average. Like in TextBlock
annotation, many Title lines were mislabelled as Header. Most Title and Header lines were
mislabelled as Text because of their width. This suggests either that the rules to detect these

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

20 http://jdmdh.episciences.org

http://jdmdh.episciences.org


two labels are not precise enough, or that there are not enough rules in RIPPER’s rule set. There
is a confusion between Text lines and Firstline: 519 of Text lines were incorrectly labelled as
Firstline because they started with a capital letter. A similar amount of Firstline was mislabelled
as Text because of a low-quality OCR.

Overall, we can observe that RIPPER’s TextLine annotation obtains lower F1 scores than its
TextBlock annotation. This result is on the opposite of the evaluation of our rule-based system.
TextBlock annotation is designed as an intermediary step that should facilitate the TextLine
annotation, which is the final result of the algorithm. Unlike our rule-based system however,
RIPPER uses only sparsely the TextBlock annotations to obtain the TextLine annotations. This
would explain its poor final results on TextLine annotation.

3.4 Evaluation of the Gradient Boosting algorithms

Table 15 shows the results for TextBlock and TextLine annotation performed by the Gradient
Boosting algorithms on the test set.

Table 15: Precision, Recall and F1 score for TextBlock and TextLine annotation with Gradient Boosting
Text Title Firstline Header

Cat P R F1 P R F1 P R F1 P R F1

Te
xt

B
lo

ck 1c 0.863 0.962 0.910 0.500 0.375 0.429 0.667 0.222 0.333
2c 0.891 0.989 0.937 0.706 0.667 0.686 0.625 0.208 0.312
3c+ 0.967 0.863 0.912 0.789 0.234 0.361 0.000 0.000 0.000
Mean 0.907 0.938 0.920 0.665 0.425 0.492 0.431 0.144 0.215

Te
xt

L
in

e 1c 0.778 0.983 0.868 0.667 0.194 0.300 0.641 0.207 0.312 1.000 0.211 0.348
2c 0.905 0.949 0.926 0.758 0.305 0.435 0.727 0.756 0.741 0.875 0.113 0.200
3c+ 0.856 0.950 0.901 0.941 0.264 0.413 0.667 0.483 0.560 0.000 0.000 0.000
Mean 0.846 0.961 0.898 0.788 0.254 0.383 0.678 0.482 0.538 0.625 0.108 0.183

For TextBlock annotation, the model performs best on the 2c category. The annotation of Text
elements provides the best results with a F1-score of 0.92 on average. The performance for Title
annotation is average with a mean F1-score of 0.49, but with a mean Precision of 0.66. Finally,
Header annotation performs the worst with a mean F1 score of 0.21 and an average Precision
of 0.43. Most errors are Header blocks mislabelled as Title (23 %) and Text blocks mislabelled
as Header (17 %). Most mislabelled Title and Header blocks were labelled as Text, suggesting
the model only covers a few instances of both labels.

For TextLine annotation, the model also performs the best on the 2c category, except for Header
annotation where it performs the best on the 1c category. As for TextBlock annotation, Text
lines annotation has the best performance with a mean F1 score of 0.89 and a Recall of 0.96.
Firstline annotation is average, with a mean F1 score of 0.53 and an average Precision of 0.67.
Both Header and Title annotation have bad performances with a mean F1 score of 0.18 and
0.38, but an average Precision score of 0.62 and 0.78 respectively. Every mislabelled Text line
was labelled as Firstline. On the other hand, most mislabelled Firstline, Title and Header lines
were labelled as Text, indicating the model only covers a few instances of these labels, as for
TextBlock annotation.

3.5 Final comparison between the models

Table 16 presents the mean Precision, Recall and F1 scores of the three systems for TextBlock
and TextLine annotation on the test set: the rule-based system, the RIPPER algorithm and the
Gradient Boosting algorithm. Figure 5 shows the average F1 scores of the three models for
TextBlock and TextLine annotations.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

21 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Table 16: Mean Precision, Recall and F1 scores of the three systems on the TextBlock and TextLine
annotation tasks

Text Title Firstline Header
Cat P R F1 P R F1 P R F1 P R F1

Te
xt

B
lo

ck Rule-based 0.959 0.966 0.962 0.600 0.639 0.610 0.726 0.298 0.406
RIPPER 0.841 0.996 0.912 0.560 0.455 0.480 0.440 0.194 0.268
Gradient Boosting 0.907 0.938 0.920 0.665 0.425 0.492 0.431 0.144 0.215

Te
xt

L
in

e Rule-based 0.969 0.991 0.979 0.595 0.733 0.639 0.949 0.861 0.902 0.803 0.348 0.435
RIPPER 0.890 0.912 0.901 0.640 0.255 0.363 0.671 0.788 0.724 0.444 0.039 0.072
Gradient Boosting 0.846 0.961 0.898 0.788 0.254 0.383 0.678 0.482 0.538 0.625 0.108 0.183

All three models have good performances for Text blocks annotation, with the minimum reach-
ing an average F1 score of 0.91. Our rule-based system has the best Precision and F1 score,
whereas RIPPER has the best Recall score. The performances for Title block annotation are
average for all three models. Gradient Boosting has the best mean Precision score with 0.66,
while our rule-based system has the best mean Recall and F1 score. Furthermore, our system
seems more stable, as Precision, Recall and F1 are nearly equal, unlike the other two models.
Finally, the performances for Header block annotation go from bad to good. Every system has
a much better Precision score than a Recall, suggesting that defining exhaustive rules to detect
Header is a difficult task. However, our system has the best performances in Precision, Recall
and F1 score once again.

Similarly to Text blocks annotation, all three models have very good performances for Text line
annotation. Our rule-based system has the best results in each three metrics. The performances
for Title line annotation go from bad to very good. Like Title block annotation, Gradient Boost-
ing has the best mean Precision score. However, our system has the best mean Recall and F1
score by far. The performances for Firstline annotation go from average to very good. Our
system has the best scores in every metric, followed by the RIPPER system. Surprisingly, Gra-
dient Boosting only reaches an average F1 score of 0.53, suggesting that paragraphs are easier
to detect with simple rules. Finally, the performance for Header line annotation go from very
bad to very good. Similarly to TextBlock annotation, every system has a much better Precision

Figure 5: Mean F1 score of the three models for TextBlock (left) and TextLine (right) annotations

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

22 http://jdmdh.episciences.org

http://jdmdh.episciences.org


than Recall. In this case as well, our system reaches the best scores in each metric.

Our rule-based system outperforms the two other models in nearly all evaluations. It has espe-
cially better Recall results, indicating that our system covers more types of every logical label
than the other two models. When comparing RIPPER with Gradient Boosting, we can observe
that Gradient Boosting has better Precision scores but RIPPER has better Recall scores.

Despite its disappointing performances, RIPPER can produce very precise rules which are
sometimes better than our manually crafted rules. Furthermore, RIPPER has better Precision
than Recall scores on average, suggesting this algorithm is better at producing fine-grained rules
than general ones. As producing rules by hand is a time-consuming task, it would be interesting
in future works to first use RIPPER in an exploratory manner to produce a base rule set with
high Precision scores. This rule set could then be manually updated in order to improve the
performances of the rules.

Similarly, Gradient Boosting can reach very high Precision scores, as seen with Title lines
annotation. Thus, it would be interesting to produce a hybrid system which would either use
rules or Machine Learning algorithms to identify a specific logical label.

IV CONCLUSION

In this article, we have compared the performances of three systems for Logical Layout Anal-
ysis applied on XML ALTO: a rule-based system, the RIPPER Rule Learning algorithm and
Gradient Boosting. All three of them are used in the same general pipeline: a set of features
is first extracted from the document, and the system is then used to assign logical labels to
TextBlock and TextLine elements.

The comparison between the performances of the three systems shows that our rule-based sys-
tem outperforms the two other models in nearly all evaluations. Its higher Recall scores suggest
that this system covers more types of every logical label than the other two models. The eval-
uation also confirms that our system can be used to produce annotated data sets that are large
enough to envisage Machine Learning or deep learning approaches. However, both RIPPER
and Gradient Boosting can reach very high Precision scores. Combining rules and Machine
Learning models into hybrid systems could potentially provide even better performances. Thus,
we plan in future works to produce such hybrid systems and evaluate them.

As stated earlier, the layout in historical documents evolves rapidly, especially in newspapers.
It is then necessary to develop systems dedicated to a specific publication period. Although
RIPPER’s performances are disappointing, it is a valuable tool to explore a data set and quickly
create a rule set, which can then be updated manually. As such, we plan in future works to
use Rule Learning algorithms such as RIPPER to help creating rule sets adapted to specific
publication periods.

COMPETING INTEREST

The authors declare that they have no competing interests.

LIST OF ABBREVIATIONS

OCR : Optical Character Recognition
PLA : Physical Layout Analysis
LLA : Logical Layout Analysis
HAC : Hierarchical Agglomerative Clustering

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

23 http://jdmdh.episciences.org

http://jdmdh.episciences.org


CNN : Convolutional Neural Network
LSTM : Long Short-Term Memory
MARG : Medical Articles Record Groundtruth
CRF : Conditional Random Field
RIPPER : Repeated Incremental Pruning to Produce Error Reduction
IREP : Incremental Reduced Error Pruning
FOIL : First Order Inductive Learner
DL : Description Length
SVM : Support Vector Machine

AUTHORS’ CONTRIBUTIONS

All authors contributed equally to the study conception and design. Nicolas Gutehrlé carried
out the background description, the creation and annotation of the data set, the construction of
the rule-based system, the training of the Rule-Learning and Machine-Learning algorithm, the
evaluation of the three systems and drafted the manuscript. Iana Atanassova supervised all of
the above tasks and participated in improving the manuscript and the presentation of the results.
All authors read and approved the final manuscript.

AUTHOR’S INFORMATION

Nicolas Gutehrlé is currently a PhD Student in Natural Language Processing at the CRIT labora-
tory at Université de Bourgogne Franche-Comté, under the supervision of Dr. Iana Atanassova.

Dr. Iana Atanassova is associate professor in Natural Language Processing at the CRIT lab-
oratory at Université de Bourgogne Franche-Comté and at the Institut Universitaire de France
(IUF). She supervises the EMONTAL project (Extraction and Ontology Modeling of Subjects
and Places for the Exploitation of the Documentary Funds of Bourgogne Franche-Comté, 2020–
2023) funded by the Région Bourgogne Franche-Comté, France.

ACKNOWLEDGMENTS

This research is supported by the Région Bourgogne Franche-Comté, France, as part of the
EMONTAL project (Extraction and Ontology Modeling of Subjects and Places for the Ex-
ploitation of the Documentary Funds of Bourgogne Franche-Comté, 2020–2023).

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for sequence labeling. In COL-

ING 2018, 27th International Conference on Computational Linguistics, pages 1638–1649, 2018.
Hanna Abi Akl, Anubhav Gupta, and Dominique Mariko. FinTOC-2019 shared task: Finding title in text blocks.

In Proceedings of the Second Financial Narrative Processing Workshop (FNP 2019), pages 58–62, Turku,
Finland, September 2019. Linköping University Electronic Press. URL https://www.aclweb.org/
anthology/W19-6408.

S.M. Ayatollahi and Hossein Nafchi. Persian heritage image binarization competition (phibc 2012). pages 1–4, 03
2013. ISBN 978-1-4673-6204-7. doi: 10.1109/PRIA.2013.6528442.

Raphaël Barman, Maud Ehrmann, S. Clematide, S. Oliveira, and F. Kaplan. Combining visual and textual features
for semantic segmentation of historical newspapers. ArXiv, abs/2002.06144, 2020.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword
information. arXiv preprint arXiv:1607.04606, 2016.

Marius Bulacu, Rutger van Koert, Lambert Schomaker, and Tijn van der Zant. Layout analysis of handwrit-
ten historical documents for searching the archive of the cabinet of the dutch queen. In Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), volume 1, pages 357–361, 2007. doi:
10.1109/ICDAR.2007.4378732.

Kai Chen and Mathias Seuret. Convolutional neural networks for page segmentation of historical document images,

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

24 http://jdmdh.episciences.org

https://www.aclweb.org/anthology/W19-6408
https://www.aclweb.org/anthology/W19-6408
http://jdmdh.episciences.org


2017.
Christian Clausner, Christos Papadopoulos, Stefan Pletschacher, and Apostolos Antonacopoulos. The enp image

and ground truth dataset of historical newspapers. In 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pages 931–935, 2015. doi: 10.1109/ICDAR.2015.7333898.

William W Cohen. Repeated incremental pruning to produce error reduction. In Machine Learning Proceedings
of the Twelfth International Conference ML95, 1995.

Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error pruning. In Machine Learning Proceedings
1994, pages 70–77. Elsevier, 1994.

Nicolas Gutehrlé and Iana Atanassova. Dataset for Logical-layout analysis on French historical newspapers, Oc-
tober 2021.

Marti A. Hearst. Texttiling: Segmenting text into multi-paragraph subtopic passages. Comput. Linguist., 23(1):
33–64, March 1997. ISSN 0891-2017.

David Hébert, Thomas Palfray, Stéphane Nicolas, Pierrick Tranouez, and Thierry Paquet. Automatic article ex-
traction in old newspapers digitized collections. ACM International Conference Proceeding Series, 05 2014.
doi: 10.1145/2595188.2595195.

K. Kise, M. Iwata, and Keinosuke Matsumoto. On the application of voronoi diagrams to page segmentation.
1999.

S. Klampfl and Roman Kern. An unsupervised machine learning approach to body text and table of contents
extraction from digital scientific articles. In TPDL, 2013.

G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis system for technical journals.
Computer, 25:10–22, 1992.

Anoop Namboodiri and Anil Jain. Document Structure and Layout Analysis, pages 29–48. 03 2007. ISBN
978-1-84628-501-1. doi: 10.1007/978-1-84628-726-8_2.

D. Niyogi and S.N. Srihari. Knowledge-based derivation of document logical structure. In Proceedings of 3rd
International Conference on Document Analysis and Recognition, volume 1, pages 472–475 vol.1, 1995. doi:
10.1109/ICDAR.1995.599038.

L. O’Gorman. The document spectrum for page layout analysis. IEEE Trans. Pattern Anal. Mach. Intell., 15:
1162–1173, 1993.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word representation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/
D14-1162. URL https://aclanthology.org/D14-1162.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266, 2005.
Cartic Ramakrishnan, Abhishek Patnia, Eduard Hovy, and Gully Burns. Layout-aware text extraction from full-text

pdf of scientific articles. Source code for biology and medicine, 7:7, 05 2012. doi: 10.1186/1751-0473-7-7.
Martin Riedl, Daniela Betz, and Sebastian Padó. Clustering-based article identification in historical newspapers.

In Proceedings of the 3rd Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, pages 12–17, Minneapolis, USA, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W19-2502.

Claude Sammut and Geoffrey I. Webb, editors. Encyclopedia of Machine Learning and Data Mining. Springer,
2017. ISBN 978-1-4899-7685-7. doi: 10.1007/978-1-4899-7687-1.

Zejiang Shen, Kaixuan Zhang, and Melissa Dell. A large dataset of historical japanese documents with complex
layouts. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
2336–2343, 2020.

Fotini Simistira, Mathias Seuret, Nicole Eichenberger, A. Garz, M. Liwicki, and R. Ingold. Diva-hisdb: A precisely
annotated large dataset of challenging medieval manuscripts. 2016 15th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pages 471–476, 2016.

H. Tibbo. Primarily history in america: How u.s. historians search for primary materials at the dawn of the digital
age. American Archivist, 66:9–50, 2007.

Xu Zhong, J. Tang, and Antonio Jimeno-Yepes. Publaynet: Largest dataset ever for document layout analysis.
2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1015–1022, 2019.

Annus Zulfiqar, Adnan Ul-Hasan, and Faisal Shafait. Logical layout analysis using deep learning. In 2019 Digital
Image Computing: Techniques and Applications (DICTA), pages 1–5, 2019. doi: 10.1109/DICTA47822.2019.
8946046.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

25 http://jdmdh.episciences.org

https://aclanthology.org/D14-1162
http://jdmdh.episciences.org

	Background
	Methods
	Data set
	Logical Layout Tagset
	TextBlock, TextLine and Document features
	Processing pipelines
	Rule-based system
	Rule Learning and Machine Learning pipelines

	Rule-based system
	Rule Learning
	Description of the RIPPER algorithm

	Machine Learning

	Results and Discussion
	Evaluation of the rule-based system
	Comparison of RIPPER's annotation rules and the rule-based system
	TextBlock annotation rules
	TextLine annotation rules

	Evaluation of the RIPPER system
	Evaluation of the Gradient Boosting algorithms
	Final comparison between the models

	Conclusion

