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Let us consider on R d m vector fields X i without divergence with bounded derivatives at each order which generate the space uniformly. Let us introduce the operator

L = -(-1) k X 2k i (1) 
It is an essentially selfadjoint negative operator which generates a contraction semi-group on L 2 (dx) and by ellipticity a semi-group P t on C b (R d ), the space of bounded continuous functions on R d endowed with the uniform topology.

Le us consider R d × G d l , where G d l is the group of invertible matrice on R d . On this enlarged space with generic element (x, g) , we consider

X tot = (X, ∂X ∂x g) (2) 
The vector fields are considered here as section of the tangent space of the enlarged space. Let us recall that the Lie algebra of the linear group G d l is constituted by matrices. Let us consider the enlarged vector fields as oneorder differential operators. We can consider the enlarged operator (which is not elliptic in the extra-variables):

L tot = -(-1) k (X tot i ) 2k (3) 
It is a negative symmetric operator densely defined on L 2 (dx ⊗ dg) where dg is the Haar measure on the group G d l . It has therefore by abstract theory a positive self-adjoint extension. This generates by abstract theory a contraction semi-group P tot t on L 2 (dx ⊗ dg). If h(x) is a one form on R d , we define h tot (x, g) = h(x).g which is a function from the enlarged space into R d . We can extend diagonally the semi group P tot t such that it takes its values in R d . We have Theorem 1.1. (Blagovenshchenkii -Freidlin-Malliavin) Let us suppose that f and df are smooth bounded

(dP t f ) tot = P tot t (df tot ) (4) 
Remark. Let us give the heuristic considerations which lead to this theorem. Over R m , we consider the operator

L f = -(-1) k m I ∂ 2k ∂y 2k i (5) where y = (y 1 , .., y m ) is the generic element of R m .
This operator generates a semi-group

P f t on C b (R m
). Associated to it, there is a formal pathintegral dQ f (w . ) on a "set" of paths w t = (w 1,t , .., w m,t ) starting from on such that if f belongs to C b (R m ) we have "formally"

P f t f (y) = f (w t + y)dQ f (w . ) (6) 
We introduce the "stochastic" differential equation issued from x:

dx t (x) = X i (x t (x))dw i,t (7) 
such that formally we should get

P t f (x) = f (x t (x))dQ f (w . ) (8) 
where f belongs to C b (R d ) This heuristic considerations lead to the the theorem. We refer to [START_REF] Léandre | Symmetry in ordinary and partial differential equations and applications[END_REF] for a rigorous approch.

In the case of diffusion, these considerations are not formal at all. It is the theory of Stratonovitch differential equations in Itô Calculus [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. But equation [START_REF] Léandre | Bismut's way of the Malliavin Calculus for non-Markovian semi-groups: an introduction[END_REF] has a solution in this case only almost surely defined. Blagoveschchenkii-Freidlin [START_REF] Blagoveshcenkii | Certain properties of diffusion processes depending on a parameter[END_REF] have done pioneering works in the derivation in the starting point of the solution almost surely defined, which were later considerably extended. See the expository paper Meyer [START_REF] Meyer | Flot d'une équation différentielle stochastique In Séminaire de Probabilités XV[END_REF] and the book of Kunita [START_REF] Kunita | Stochastic flows and jump diffusions Probability theory and stochastic modelling[END_REF] for that. We refer to the review papers [START_REF] Léandre | Stochastic analysis for a non-Markovian generator: an introduction[END_REF] and [START_REF] Léandre | Bismut's way of the Malliavin Calculus for non-Markovian semi-groups: an introduction[END_REF] for stochastic analysis for non-markovian semi-groups.

In the first part of this paper, we give the algebraic manipulations which lead to the theorem. In the second part, we solve the problem that we consider a linear test function in the extra-variable which is not bounded by using a Volterra expansion for the semi group in the extra variables. In order to show that the Volterra expansion converges, we use rough estimates of the heat kernel associated to the original operator. 2. Algebraic proof of the theorem Lemma 2.1. Let Y 1 , ..Y l be a collection of vector fields on R d . We associate the collection of vector fields Y tot 1 , .., Y tot l on the enlarged space. Then

(dY 1 ..Y l f ) tot = Y tot 1 ..Y tot l (df ) tot (9) 
Proof of the lemma:We proceed by induction on l. We have

(dY f ) tot (x, g) =< dY f (x), g >= < ∇ 2 f (x), Y, g > + < ∇f ∂ ∂x Y, g >= Y tot (df tot )(x, g) (10) because ∇ 2 f is symmetric.Therefore < dY 1 ..Y l f, g >= Y tot 1 (dY 2 ..Y l ) tot (x, g) = Y tot 1 ...Y tot l (df tot )(x, g) (11)
Algebraic proof of the theorem We have

∂ ∂t P t f = LP t f (12) such that ∂ ∂t (dP t )f tot = dL(P t )f tot = L tot (dP t f ) tot (13) 
In the expression dP t f we take only derivatives in the initial space. Moreover

∂ ∂t (P tot t (df tot )) = L tot (P tot t (df tot )) (14)
It is the same parabolic equations with the same starting condition df (x).g = df tot (x, g).

Estimates: the Volterra expansion

Let us write

L tot = L + R ( 15 
)
where R is a differential operator in x of order strictly smaller than 2k in the original variables and a differential operator which is a polynomial in the A i g where A i constitute a basis in the matrice in R d independent of x.

Basic fact P t has an heat kernel p t (x, y) Let us suppose by induction on n that

P t f (x) = R d p t (x, y)f (y)dy (16) such that |R 1 x p t (x, y)| < C t 1-1/2k 1 t d/2k exp[- |y -x| t 1/k ] (17) if R 1 is a differential
RP t1 RP t2 ..R tn df tot = R t1,..,tn g (19) 
where R t1,..,tn is a one form with supremum norm smaller than

C n t 1-1/2k i df ∞ . ( df ∞ denotes the supremum norm of df ).
It is still true at the order n + 1 by the basic fact. In order to show that the Volterra expansion converges, it remains to study if α = -1 + 1/2k

I n (t) = 0<s1<..<sn<t s α 1 (s 2 -s 1 ) α ...(t -s n ) α ds 1 ..ds n = C n t n/2k (20)
where

C n = 0<s1<..<sn<1 s α 1 (s 2 -s 1 ) α ...(t -s n ) α ds 1 ..ds n = C n-1 0<s<1 s n/2k (1 -s) α ds = C n-1 α n (21) But α n ≤ n -α 0<s<1/n s n/2k ds + (1/n) 1+α ≤ Cn -1/2k (22) 
Therefore by induction

C n ≤ C n (n!) -1/2k (23) 
and the Volterra expansion converges.

Proof of the basic fact

This estimate is more or less classic in analysis (See [START_REF] Davies | Uniformly elliptic operators with measurable coefficients[END_REF]) in the measurable case). We will give a simple proof based on the Greiner rescaling [START_REF] Greiner | An asymptotic expansion for the heat equation[END_REF] and the Davies gauge transform.

We do on R d the change of variable y → x t 1/2k (We operate in x = 0) such the vector t 1/2k X(y) are transformed in X t (x) and tL is transformed in L t which is an operator uniformy elliptic and which don't degenerate when t → 0. By elliptic theory, L t generates a semi-group P t s and P t 1 has an heat-kernel p t 1 (x , y) which behaves well when t → 0. We have

R d p t 1 (0, y)f (y)dy = R d p t (0, y)f ( y t 1/2k )dy (24) 
such that p t (0, y) = t -d/2k p t 1 (0, y t 

We do for that the Davies gauge transform associated to Ψ i (f )(y) = exp[Cy i ]f (y). We get

Lt = (Ψ i ) -1 L t Ψ i = L t + Lt 1 ( 27 
)
where Lt 1 is a differential operator of order strictly smaller than 2k, with bounded derivarive at each order. Lt generates a semi group P t s which has an heat-kernel with bounded derivatives at each order P t s (x, y) and pt 1 (0, y) = p t 1 (0, y) exp[Cy i ] (28) Therefore the result.

RemarkWe correct an error in the estimate of [START_REF] Léandre | The stochastic flow theorem for an operator of order four[END_REF].