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Abstract

We propose a new method, that we call an allocation perturbation, to derive the optimal
nonlinear income tax schedules with multidimensional individual characteristics on which
taxes cannot be conditioned. It is well established that, when individuals differ in terms of
preferences on top of their skills, optimal marginal tax rates can be negative. In contrast,
we show that with heterogeneous behavioral responses and skills, one has optimal positive
marginal tax rates, under utilitarian preferences and maximin.
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I Introduction

Since Mirrlees (1971), the mechanism design method has been largely used to obtain opti-

mal tax formulas when individuals differ along a single dimension of heterogeneity, typically

skills, and when income taxation cannot be conditioned on this dimension of heterogeneity.1

In this paper, we extend Mirrlees (1971)’s mechanism design method to a situation where tax-

payers differ along many characteristics that are unobserved or on which taxation cannot be

conditioned.2 For instance, taxpayers with the same income level can differ in terms of un-

observed preferences for work, gender, number and age of the children, cultural background,

geographical area where one lives, ethnicity or age. Taxpayers can then exhibit heterogeneous

labor supply elasticities in addition to distinct skill levels.

In this paper, we develop a new method, that we call ”allocation perturbation”, to solve

multidimensional screening problems. We show that individuals of different groups pooled

at the same income level are characterized by the same marginal rate of substitution between

pre-tax and after-tax income. Intuitively, individuals of distinct groups who earn the same

income level face the same marginal tax rate. From the individual maximization program, we

know that identical marginal tax rates imply identical marginal rates of substitution. Using this

equality in marginal rates of substitution together with a single-crossing condition within each

group, we can fully characterize an incentive-compatible allocation. We then apply variational

calculus to small perturbations of this allocation and derive the necessary conditions of the

optimal allocation. To do so, we take the Gâteaux derivatives of the associated Lagrangian and

equate them to zero. Rearranging terms of these conditions gives the optimal tax formula.

In several recent papers, tax perturbation methods are proposed to solve multidimensional

screening problems (e.g., Hendren (2020) and Sachs et al. (2020) and Jacquet and Lehmann

(2020) for the most recent). In contrast to our approach, all these papers are built upon the tax

perturbation approach initiated by Piketty (1997) and Saez (2001) which consists in computing

all responses to small tax reforms, to sum them up and equate them to zero in order to obtain

the optimal tax schedule.

Tax perturbation approaches easily allow one to obtain optimal tax formulas in terms of

meaningful sufficient statistics. In contrast, we derive the optimal income tax schedule in terms

of policy invariant functions (i.e. skill density and the derivatives of the individual and social

utility functions) and rewrite it in terms of sufficient statistics. Just like the tax formula in

terms of sufficient statistics, our formula in terms of policy invariant functions is not closed-

form because it depends on the allocation where these functions are evaluated. We use it to

sign the optimal marginal tax rates. With multidimensional heterogeneity, the literature has

highlighted that negative marginal tax rates can be optimal. In Cuff (2000), Boadway et al.

1John Weymark has largely contributed to the literature on optimal income taxation, see e.g. Weymark (1986)
and Weymark (1987) and Brett and Weymark (2011).

2Our paper studies the optimal tax system when individual characteristics, despite being observable by the tax
authority, cannot be used as tags (Akerlof, 1978), due to legal and/or horizontal equity reasons.
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(2002b), Brett and Weymark (2003), Choné and Laroque (2010) and Lockwood and Weinzierl

(2015), individuals differ along their skills and preferences for leisure, and the social planner

has weighted utilitarian preferences. In this context, individuals who pool at the same income

level are characterized by different marginal social welfare weights. Therefore, the mean social

welfare weight may not be decreasing with income as it is the case with one dimension of

heterogeneity and e.g. utilitarian preferences. This opens the way to negative marginal tax

rates. One may wonder whether heterogeneous labor supply elasticities for individuals who

earn the same level of income could also open the way to negative marginal tax rates. We show

that, under utilitarian preferences, marginal tax rates are positive. This result also prevails

under maximin.

Our method can easily be extended to include participation decisions (Saez, 2002, Kleven

et al., 2009, Jacquet et al., 2013), migration decisions (Lehmann et al., 2014, Blumkin et al., 2015)

or sectoral decisions (Rothschild and Scheuer, 2013, Scheuer, 2014, Gomes et al., 2018), simply

following Jacquet et al. (2013). The tax formulas then simply incorporate new terms implied by

the participation margin.

The paper is organized as follows. In Section II, we present the model. In Section III, we

characterize any incentive compatible allocation thanks to a monotonicity constraint, a differ-

ential equation and a pooling function. In Section IV, we detail the allocation perturbation

method and derive the optimal tax schedule. In Section V, we give a sufficient condition for

optimal marginal tax rates to be positive. Section VI concludes.

II Model

II.1 Individuals

Taxpayers differ along their skill level w ∈ R∗+ and along some characteristics denoted

θ ∈ Θ. We call a group a subset of individuals with the same θ.3 We assume that the set

of groups Θ is measurable with a cumulative distribution function (CDF) denoted µ(·). The

set Θ can be finite or infinite and may be of any dimension and is compact. The distribution

µ(.) of the population across the different groups may be continuous, but it may also exhibit

mass points. Among individuals of the same group θ, skills are distributed according to the

conditional skill density f (·|θ) which is positive and differentiable over the support R∗+. The

conditional CDF is denoted F(w|θ) def≡
∫ w

0 f (x|θ)dx. We do not make any restriction on the

correlation between w or θ. We normalize to unity the total size of the population.

Every worker derives utility from consumption c ∈ R+ and disutility from effort. Effort

captures the quantity as well as the intensity of labor supply. More effort implies higher pre-

tax income y ∈ R+ (for short, income hereafter). The government levies a tax T(.) which

depends on income y only. Consumption c is related to income y through the tax function T(y)

according to c = y− T(y).

3Our definition of ”group” is identical to the one in Werning (2007, p.13).
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Assumption 1. The utility function is additively separable and takes the form:

U (c, y; w, θ) = u(c)− υ(y; w, θ) with : u′, υy, υy,y > 0 > υw , u′′ ≤ 0

The convexity of the indifference curve is ensured by assuming that υy,y > 0 ≥ u′′. Addi-

tive separability is standardly used in the adverse selection literature with multidimensional

heterogeneity, e.g., Rochet (1985), Wilson (1993), Rochet and Choné (1998), Rochet and Stole

(2002). As in the model with one-dimensional heterogeneity (Mirrlees, 1971), this assumption

is necessary to sign optimal marginal tax rates (Proposition 3). Note that additive separability

can be seen as a rather restrictive assumption, in a multidimensional context, since the group θ

matters only for the marginal disutility of income but not for the marginal utility of consump-

tion.

A worker of type (w, θ), facing y 7→ T(y), solves:

U(w, θ)
def≡ max

y
u(y− T(y))− υ(y; w, θ) (1)

We call Y(w, θ) the solution to program (1), C(w, θ) = Y(w, θ)− T(Y(w, θ)) the consumption of

a worker of type (w, θ) and U(w, θ) her gross utility (or maximized level of utility). When the

tax function is differentiable, the first-order condition associated to (1) implies that:

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (2)

where:

M (c, y; w, θ)
def≡

υy(y; w, θ)

u′(c)
(3)

denotes the marginal rate of substitution between income and consumption. For a worker of a

given type, the left-hand side of Equation (2) corresponds to the marginal gain of income after

taxation while the right-hand side corresponds to the marginal cost of income in monetary

terms.

We impose the single-crossing (Spence-Mirrlees) condition that, within each group of work-

ers endowed with the same θ, the marginal rate of substitution is a decreasing function of the

skill level, i.e. that higher-skilled workers find it less costly to increase their income y:

Assumption 2 (Within-group single-crossing condition). For each θ ∈ Θ, and each (c, y) ∈
R+ × R+, function w 7→ M (c, y; w, θ) is differentiable with ∀w ∈ R∗+, Mw < 0 i.e. υy,w < 0,

lim
w 7→0

M (c, y; w, θ) = +∞ and lim
w 7→∞

M (c, y; w, θ) = 0, i.e. lim
w 7→0

υy,w(y; w, θ) = +∞ and lim
w 7→∞

υy,w(y; w, θ) =

0.

II.2 Government

The government’s problem consists in finding the tax schedule T(·) that maximizes a social

welfare function, ∫∫
θ∈Θ,w∈R∗+

Φ (U(w, θ); w, θ) f (w|θ)dw dµ(θ), (4)
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where Φ(U; w, θ) is an increasing transformation of individuals’ utility levels U. This welfarist

specification allows Φ to vary with type (w, θ) which makes it very general. Weighted utilitarian

preferences (as in Weymark (1987)) are obtained with Φ(U; w, θ) ≡ ϕ(w, θ) ·U with weights

ϕ(w, θ) depending on individual characteristics. The objective is utilitarist if ϕ(w, θ) is con-

stant and Φ(U; w, θ) ≡ U and it turns out to be maximin (or Rawlsian) if ϕ(w, θ) = 0 ∀w > 0.

When Φ(U; w, θ) does not vary with its two last arguments and is concave in individual util-

ity (ΦUU ≤ 0), we obtain a Bergson-Samuelson criterion which is a concave transformation of

utility.

When maximizing social welfare, the government takes into account the individual labor

supply decisions (1) and the budget constraint,∫∫
θ∈Θ,w∈R∗+

T (Y(w, θ)) f (w|θ)dw dµ(θ) = E, (5)

where E ≥ 0 is an exogenous amount of public expenditures. Let λ > 0 denote the shadow

price of public funds.

III Incentive constraints and pooling function

According to the taxation principle (Hammond, 1979, Guesnerie, 1995), it is equivalent for

the government to select a nonlinear tax schedule taking into account labor supply decisions

described in (1), or to directly select an allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies the

incentive constraints:

∀w, θ, w′, θ′ ∈ (R∗+ ×Θ)2 U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
. (6)

The incentive constraints (6) impose that workers of type (w, θ) prefer the bundle designed for

them rather than the bundles (C(w′, θ′), Y(w′, θ′)) designed for individuals of any other type

(w′, θ′).

With multidimensional heterogeneity, incentive constraints (6) can be rewritten as incen-

tive constraints within each group θ and incentive constraints across distinct groups. In a

first subsection, we show that the within-group incentive constraints can be reformulated as

a monotonicity constraint and a differential equation, as in the model with one dimension of

heterogeneity. In a second subsection, we show that, across groups, to guarantee incentive

compatibility, taxpayers from distinct θ-groups who earn the same level of income need to

face the same marginal rate of substitution between consumption and income. To satisfy this

equalization of marginal rates of substitution across groups, we define a pooling function that

describes the level of skill required in each θ group to obtain a given level of income. We show

that we have an incentive-compatible allocation under the additional condition that, for each

θ, the pooling function be smoothly increasing in skill.
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III.1 Incentive constraints within groups

An incentive-compatible allocation has to satisfy (6). It thus has to verify for each group θ

the following set of “within-group incentive constraints”.

∀(w, w̃, θ) ∈ R2
+ ×Θ U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(w̃, θ), Y(w̃, θ); w, θ) . (7)

Under the within-group single-crossing assumption 2, the set of within-group incentive con-

straints can be transformed into a monotonicity constraint and a differential equation that we

give in Lemmas 1 and 2 below.

Lemma 1. Under Assumption 2, the function w 7→ Y(w, θ) is nondecreasing for each θ ∈ Θ.

Assumption 2 (i.e. the within-group single-crossing assumption) implies that, in the same

group θ, the indifference curves of workers with a lower skill are steeper than the ones of work-

ers with a higher level of skill, as in one dimensional tax models. We therefore skip the proof

of Lemma 1 which is a simple reformulation of the usual proof in the one dimensional frame-

work. Note that Y(·; θ) being nondecreasing, it may exhibit discontinuities over a countable set

and it may also exhibit bunching if individuals in the same group but endowed with different

skill levels earn the same income. We follow a first-order approach and consider only smooth

allocations where these two pathologies do not arise.To do so, we make a smoothness assump-

tion. As a preamble, we define smoothly increasing functions4 and then give the smoothness

assumption.

Definition 1. A function a : R+ 7→ R is “smoothly increasing”if it is differentiable with ∀x ∈ R+,

a′(x) > 0, a′(0) = 0 and lim
x 7→∞

a′(x) = +∞.

Assumption 3 (Smooth allocations). In each group θ, w 7→ Y(w, θ) is smoothly increasing.

According to Assumption 3,5 for each income level y ∈ R+ and for each group θ ∈ Θ, there

exists a single skill level w such that only individuals of that skill level within group θ earn

income y = Y(w, θ). The following lemma provides the first-order incentive constraints within

group θ reformulated as a differential equation, where the dot above a variable stands for the

partial derivative of this variable with respect to skill w.

Lemma 2. Under Assumptions 1 and 3, for each θ, the mapping w 7→ U(w, θ) is differentiable with:

U̇(w, θ) = −vw (Y(w, θ); w, θ) . (8a)

Moreover, Equation (8a) is equivalent to:

Ċ(w, θ)

Ẏ(w, θ)
= M (C(w, θ), Y(w, θ); w, θ) . (8b)

4A smoothly increasing (decreasing) function is also called an increasing (decreasing) diffeomorphism for which
the derivative maps the positive real line onto itself.

5In Jacquet and Lehmann (2020, Proposition 5), we show that the assumption of a smoothly-increasing-in-types
allocation amounts to assuming: (i) twice differentiability of the tax function T(·), that (ii) for all (w, θ) ∈ R∗+ ×Θ,
the second-order condition associated to the individual maximization program holds strictly and that (iii) for all
(w, θ) ∈ R∗+ ×Θ, the function y 7→ U (y− T(y), y; w, θ) admits a unique global maximum over R+.
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We skip the proof since it simply consists in adapting that of the one-dimensional tax mod-

els, which consists in applying the envelope theorem to Equation (1), see e.g., Salanié (2011).

Integrating (8a) leads to:

U(w, θ) = U(0, θ)−
∫ w

0
vw (Y(x, θ); x, θ) dx. (8c)

The “first-order” approach we follow is usual in one-dimensional tax models (see e.g. Salanié

(2011)), since it takes into account the first-order incentive-compatibility constraints (8a) and

assumes the second-order incentive-compatibility constraints are satisfied (Assumption 3) as

standardly observed on data.6.

III.2 Incentive constraints across groups and pooling function

We now describe how the various within-group allocations ω 7→ (Y(ω, θ), C(ω, θ)) need to

be set to be mutually incentive-compatible and to verify the full set of incentive constraints (6).

This is the pooling issue that we now address.

Choose a reference group θ0 ∈ Θ, a skill level w and another group θ. Individuals of type

(w, θ0) earn income Y(w, θ0). According to the smoothness assumption 3, each group-specific

allocation Y(·, θ) : w 7→ Y(w, θ) is an increasing one-to-one function that maps the positive

real line onto itself. Therefore, there must exist a single skill level, hereafter denoted W(w, θ),

so that individuals of the other group θ endowed with that skill level W(w, θ) must get the

same income level Y(w, θ0) as individuals of type (w, θ0), i.e. Y(W(w, θ), θ) = Y(w, θ0). We call

W(., .) the pooling function. For each θ ∈ Θ, the pooling function combines two smoothly in-

creasing functions, namely ω
Y(·,θ0)7−→ Y(ω, θ0)

Y−1(·,θ)7−→ W(ω, θ). The pooling function is therefore

also a smoothly increasing function in skill w. It obviously verifies W(w, θ0) ≡ w. Provided

that the allocation is incentive-compatible, it is not possible from (6) that individuals of type

(W(w, θ), θ) and individuals of type (w, θ0) obtain the same income Y(w, θ0) but distinct con-

sumption levels. Therefore, for each (w, θ), we must simultaneously have

Y(W(w, θ), θ) ≡ Y(w, θ0) and C(W(w, θ), θ) ≡ C(w, θ0). (9)

Individuals who earn the same income level face the same marginal tax rate, according to

Equation (2), hence have the same consumption level. The skill levels of individuals who earn

a given income level are implicitly determined by the equality of their marginal rates of substi-

tution which is our pooling condition.

Lemma 3. Under Assumptions 2 and 3, along an incentive-compatible allocation, the bundle designed

for individuals of type (W(w, θ), θ) coincides with the bundle (C(w, θ0), Y(w, θ0)) designed for indi-

viduals of type (w, θ0), where W(w, θ) verifies the following pooling condition:

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); W(w, θ), θ) . (10)
6For instance, we never found cases where the second-order incentive-compatibility constraints were violated

in the large set of simulations we run on US data with taxpayers differing in terms of gender and labor supply
elasticities, see Jacquet and Lehmann (2020).
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Proof According to Assumption 2, M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); ω, θ)
admits exactly one solution in ω. Differentiating in w both sides of equalities in (9) and rear-
ranging terms leads to:

Ċ(W(w, θ), θ)

Ẏ(W(w, θ), θ)
=

Ċ(w, θ0)

Ẏ(w, θ0)
.

According to Lemma 2, Equation (8b) holds, which implies (10). �

One can retrieve the entire incentive-compatible allocation for all groups if one knows the pool-

ing function W(·, ·) and the allocation ω 7→ (Y(ω, θ0), C(ω, θ0)) designed for the reference

group.

Thanks to the pooling condition, in the following lemma, we provide a sufficient condition

for the allocation to be incentive-compatible. The proof is in Appendix A.1.

Lemma 4. Under Assumption (2), let w 7→ (C(w, θ0), Y(w, θ0)) be a within-group allocation that

verifies Assumption 3 and the within-group incentive-compatible Equation (8b). For each w ∈ R+

and each group θ ∈ Θ, let W(w, θ) be the unique skill level ω that solves the pooling condition

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); ω, θ). There exists a unique incentive-compatible

allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) the restriction of which to group θ0 is w 7→ (C(w, θ0), Y(w, θ0))

and it verifies Assumption 3 if and only if, for each θ, w 7→W(w, θ) is smoothly increasing.

Lemma 4 guarantees that if w 7→ Y(w, θ) is smoothly increasing in w and if, for each θ, the pool-

ing function denoted W(w, θ) is also smoothly increasing in w, then the allocation is incentive-

compatible. Assumption 3 together with the assumption that W(·, θ) is smoothly increasing

plays here a role similar to the assumption that the second-order incentive compatibility con-

dition is satisfied with one dimension of heterogeneity. In what follows, we therefore select the

allocation only for the reference group θ0 and assume that the triggered allocations for the other

groups verify Assumption 3. From Assumption 1 and Equation (3), the pooling condition (10)

can be rewritten as:

vy (Y(w, θ0); w, θ0) = vy (Y(w, θ0); W(w, θ), θ) . (11)

The pooling function W(·, θ) that enables to retrieve (C(·, θ), Y(·, θ)) from the allocation of the

reference group (C(·, θ0), Y(·, θ0)) depends on Y(·, θ) and not on C(·, θ) thanks to the addi-

tive separability of the utility function. This is necessary to apply our allocation perturbation

method. Interestingly, the pooling function is endogenous so that individuals with the same

income level can have distinct behavioral elasticities. This is a major difference with the pre-

vious literature where characteristics are aggregated along a single dimension (which can en-

capsulate general equilibrium effects on the wage distribution for instance), e.g. Boadway et

al. (2002a), Brett and Weymark (2003), Rothschild and Scheuer (2013, 2016), Scheuer (2013) and

Gomes et al. (2018). Such an aggregation indeed prevents individuals who earn the same in-

come to differ in terms of behavioral elasticities.
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IV Allocation perturbation and optimal tax schedule

In this section, in order to obtain the necessary conditions for the optimal tax schedule,

we propose a new method that we call an ”allocation perturbation”. We first reformulate the

government problem taking into account the pooling function we introduced in the previous

section. We second motivate and summarize our methodology. We then present the optimal

tax schedule and the technical details behind its derivation. Eventually, we rewrite our optimal

tax formula in terms of sufficient statistics.

Let C (û, y; w, θ) denote the consumption level the government needs to provide to a worker

of type (w, θ) who earns y to ensure she enjoys a given utility level û. The function C (·, y; w, θ)

is the reciprocal of U (·, y; w, θ) and:

Cu(û, y; w, θ) =
1

u′ (c)
and Cy(û, y; w, θ) =

vy (y; w, θ)

u′ (c)
(12)

where the various derivatives are evaluated at c = C (û, y; w, θ). Define the Lagrangian associ-

ated to the planner’s problem as

L
def≡
∫∫ [

Y(w, θ)− C (U(w, θ), Y(w, θ); w, θ) +
Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ). (13)

where all terms are expressed in monetary units.

Under Assumption 3, thanks to Lemma 4, the government then simply chooses, among the

set of smooth allocations, the best one that verifies the first-order incentive constraint (8a) for

each group, and the pooling condition (10). When the pooling function associated with the

solution is, for each group θ, smoothly increasing in skill w, the found solution also solves the

problem with all incentive constraints.

To solve this type of problem with one-dimensional unobserved heterogeneity, one typi-

cally constructs a Hamiltonian and one applies the Pontryagin principle. In our multidimen-

sional environment, the pooling condition (10) induces constraints on state and control vari-

ables which hold at endogenous skill levels. In this context, we rather propose using the cal-

culus of variation and consider a set of perturbations of the allocation in the reference group.

The cornerstone of our method is the pooling condition (10) that we use to deduce how the

allocations in the other groups are perturbed.

IV.1 Allocation perturbation: Methodology

Consider a perturbation of the allocation for a given ”reference” group that preserves incen-

tive compatibility. In this group, change all incomes that correspond to a small interval of skills

(w− δ, w) and do not modify incomes outside this interval. More precisely, perturb incomes in

the reference group Y(x, θ0) to obtain Y(x, θ0)+ t ∆Y(x, θ0; δ) where ∆Y(·, θ0; δ) is a continuously

differentiable function defined on R+ such that ∆Y(·, θ0; δ) is positive for x ∈ (w − δ, w) and

is nil otherwise, and where t ∈ R is an algebraic magnitude. Thanks to the pooling function
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and Lemma 4, one can deduce the impact of this perturbation in all groups (within and outside

the skills interval where the perturbation takes place). Take the Gâteaux derivative of the per-

turbed Lagrangian associated to the government’s optimization problem with respect to t, at

t = 0, and equate it to zero. One obtains an equation that characterizes the optimal marginal tax

rates. The other necessary condition of the optimal tax schedule is obtained by perturbating the

government’s Lagrangian as follows. Uniformly modify utility (without modifying incomes)

of all taxpayers by an amount ∆. Then take the Gâteaux derivative of the perturbed Lagrangian

with respect to ∆, at ∆ = 0, and equate it to zero.

IV.2 Derivation of the optimal tax schedule

To save on notations, we from now on use the more compact notation [x, θ] when the vari-

ous functions are evaluated for types (x, θ) at income Y(x, θ), utility U(x, θ) and consumption

C(x, θ). The optimality condition with multidimensional heterogeneity is presented in the fol-

lowing proposition.

Proposition 1. Under Assumptions 1, 2 and 3, the optimal tax schedule verifies:

T′ (Y(w, θ0))

1− T′ (Y(w, θ0))

∫
θ∈Θ

vy [W(w, θ), θ]

−W(w, θ) vyw [W(w, θ), θ]
W(w, θ) f (W(y, θ)|θ) dµ(θ) (14a)

= u′ (C(w, θ0))
∫∫

θ∈Θ,x≥W(w,θ)

(
1

u′(C(x, θ))
− ΦU(U(x, θ); x, θ)

λ

)
f (x|θ)dx dµ(θ)

for all skill w and ∫∫
θ∈Θ,w∈R+

(
ΦU(U(w, θ); w, θ)

λ
− 1

u′(C(w, θ))

)
f (w|θ)dw dµ(θ) = 0. (14b)

Proof (Allocation perturbation)
To derive (14a) at a given skill level w, we consider a set of allocation perturbations, in-

dexed by t ∈ R and δ ∈ R+, that we denote Ĉ(w, θ; t, δ) ,Ŷ(w, θ; t, δ) and Û(w, θ; t, δ)
def≡

U
(
Ĉ(w, θ; t, δ), Ŷ(w, θ; t, δ); w, θ

)
) where t stands for the size of the perturbation, and δ is the

length of the skill interval where, in the reference group, the perturbation of incomes takes
place. Following Lemma 4, we define the allocation perturbations from their restriction to the
reference group θ0 and then study the impact of these perturbations on the allocation in every
other group. The perturbations of incomes in the reference group are defined by:

Ŷ(x, θ0; t, δ)
def≡ Y(x, θ0) + t ∆Y(x, θ0; δ)

where ∆Y(·, θ0; δ) is a continuously differentiable function defined on R+ such that ∆Y(·, θ0; δ) >
0 for x ∈ (w− δ, w) and ∆Y(·, θ0; δ) = 0 otherwise. Incomes in the reference group remain un-
changed outside the skill interval (w− δ, w) and are increased (decreased) inside the skill inter-
val (w− δ, w) if t > 0 (if t < 0), as illustrated in Figure 1. It is worth noting that the perturbed
income function remains differentiable with respect to skill w since ∆Y(·, ·, δ) is differentiable.
Moreover, from Assumption 3, Y(·, θ0) admits a positive derivative everywhere, so Ẏ(·, θ0) is
bounded away from 0 for all x ∈ [w− δ, w]. Therefore, provided that t is small enough, which
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x

Y(x, θ0)

w− δ w

Ŷ(x, θ0; t, δ)
def≡ Y(x, θ0)

+t∆Y(x, θ0; δ)

Initial allocation
Perturbed allocation

Figure 1: The perturbation of incomes in the reference group θ0

we assume in the rest of the proof, Ŷ(·, θ0; t, δ) has also a positive derivative everywhere and
therefore verifies Assumption 3.

Let us in addition assume that the utility of the lowest skilled individuals in the reference
group U(0, θ0; t, δ) is not perturbed and write it as U(0, θ0). Therefore, according to (8c), the
perturbed utility function in the reference group is

Û(x, θ0; t, δ)
def≡ U(0, θ0)−

∫ x

0
υw
(
Ŷ(ω, θ0; t, δ); ω, θ0

)
dω. (15a)

From the pooling condition (10), as incomes Y(·, θ0; t, δ) in the reference group remain un-
changed outside the skill interval (w− δ, w), the pooling function W(·, θ0; t, δ) is not perturbed
outside the skill interval (w− δ, w). Therefore, incomes Y(·, θ; t, δ) in any group θ are not mod-
ified outside the skill interval (W(w− δ, θ), W(w, θ)), and we must have (See Figure 2)

Ŷ(x, θ; t, δ) = Y(x, θ) if x ∈ [0, W(w− δ, θ)] ∪ [W(w, θ),+∞) . (15b)

x

Y(x, θ)

W(w− δ, θ) W(w, θ)

For t > 0

Initial allocation
Perturbed allocation

Figure 2: The perturbation of incomes in the other groups

Since incomes in the reference group are not perturbed for all skill x below w− δ, the pool-
ing function is also unchanged below w − δ, so that the same types remain pooled together.
Hence we get in group θ that for all x ≤W(w− δ, θ):

Ĉ(x, θ; t, δ) = C(x, θ) and Û(x, θ; t, δ) = U(x, θ). (15c)

For all skills x > W(w− δ, θ), the change in utility obtained using the first-order incentive
constraint (8c) is:

Û(x, θ; t, δ)−U(x, θ) = −
∫ x

0

[
υw
(
Ŷ(ω, θ; t, δ); ω, θ

)
− υw (Y(ω, θ); ω, θ)

]
dω. (15d)
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Since incomes Ŷ(·, θ; t, δ) are only perturbed inside (W(w− δ, θ)), W(w, θ)), for all skills x that
belong to this interval, using (15b), we get:

Û(x, θ; t, δ)−U(x, θ) =
∫ x

W(w−δ,θ)

[
υw (Y(ω, θ); ω, θ)− υw

(
Ŷ(ω, θ; t, δ); ω, θ

)]
dω. (15e)

Moreover, for all skills x above W(w, θ), we have:

Û(x, θ; t, δ)−U(x, θ) =
∫ W(w,θ)

W(w−δ,θ)

[
υw (Y(ω, θ); ω, θ)− υw

(
Ŷ(ω, θ; t, δ); ω, θ

)]
dω. (15f)

Hence utility in the other group does not change below W(w − δ, θ) and changes by a uni-

w

U(x, θ)

W(w− δ, θ) W(w, θ)

For t > 0

Initial allocation
Perturbed allocation

Figure 3: The perturbation of utilities

form amount above W(w, θ), as illustrated in Figure 3. As incomes above skill W(w, θ) are
unchanged, this implies that, for all skill x above W(w, θ), the modifications in utility U(x, θ)
occur only through changes of the utility u(C(x, θ)) derived from consumption. Using (15f),
this utility therefore changes uniformly by:

u
(
Ĉ(x, θ; t, δ)

)
− u (C(x, θ)) =

∫ W(w,θ)

W(w−δ,θ)

[
υw (Y(ω, θ); ω, θ)− υw

(
Ŷ(ω, θ; t, δ); ω, θ

)]
dω (15g)

which determines the perturbation of consumption for skill levels above W(w, θ). We now
determine how the perturbations of incomes Y(·, θ) in each group within the skill interval
(W(w− δ, θ), W(w, θ)) need to be set to ensure that the perturbed allocations remain incentive-
compatible. For that purpose, we note that for all skill levels x above w, as incomes in the
reference group are not perturbed, the pooling function is also unchanged, so that the same
types remain pooled together. Hence, according to (9):

∀t, ∀x ≥ w Ŷ(W(x, θ), θ; t, δ) = Ŷ(x, θ0; t, δ) and Ĉ(W(x, θ), θ; t, δ) = Ĉ(x, θ0; t, δ).

This implies that, in all groups, the uniform change in utility that occurs for all skill lev-
els above W(w, θ) must be identical across groups, so that: u

(
Ĉ(x, θ0; t, δ)

)
− u (C(x, θ0)) =

u
(
Ĉ(W(x, θ), θ; t, δ)

)
− u (C(W(x, θ), θ)), and so, using (8c) and (15g), we obtain:∫ w

w−δ

[
υw
(
Ŷ(ω, θ0; t, δ); ω, θ

)
− υw (Y(ω, θ0); ω, θ)

]
dω (15h)

=
∫ W(w,θ)

W(w−δ,θ)

[
υw
(
Ŷ(ω, θ; t, δ); ω, θ

)
− υw (Y(ω, θ); ω, θ)

]
dω.

The latter equation links the perturbed incomes Ŷ(·, θ; t, δ) in all groups within the interval
of skills (W(w− δ, θ), W(w, θ)) and the perturbed incomes Ŷ(·, θ0; t, δ) in the reference group.
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The perturbed Lagrangian is:

L̂ (t, δ)
def≡
∫∫

θ∈Θ,w∈R+

[
Ŷ(w, θ; t, δ)− C

(
Û(w, θ; t, δ), Ŷ(w, θ; t, δ); w, θ

)
(16)

+
Φ
(
Û(w, θ; t, δ); w, θ

)
λ

]
f (w|θ)dw dµ(θ).

If the allocation is optimal, the derivative of this Lagrangian with respect to t must be nil at
t = 0. In Appendix A.2, we show that the limit of ∂L̂ /∂t when δ goes to zero leads to:

∫
θ∈Θ

1−
υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

υyw(Y(W(w, θ), θ); W(w, θ), θ)
f (W(w, θ)|θ) dµ(θ) (17)

=
∫∫

θ∈Θ,x≥W(w,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
f (x|θ)dx dµ(θ).

Using (2), (3), Y(W(w, θ), θ) ≡ Y(w, θ0) and C(W(w, θ), θ) ≡ C(w, θ0), we can rewrite (17) as:

T′(Y(w, θ0))
∫

θ∈Θ

1
υyw(Y(W(w, θ), θ); W(w, θ), θ)

f (W(w, θ)|θ) dµ(θ)

=
∫∫

θ∈Θ,x≥W(w,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
f (x|θ)dx dµ(θ).

Using again (2), (3) and (9) leads to (14a).

We now derive (14b). Consider a set of allocation perturbations indexed by ∆ ∈ R and de-

noted (C̃(w, θ; ∆), Ỹ(w, θ; ∆), Ũ(w, θ; ∆)
def≡ U

(
C̃(w, θ; ∆), Ỹ(w, θ; ∆); w, θ

)
), which consist, for

each type (x, θ) ∈ R+ ×Θ, in no change in Y(x, θ) and in a uniform change in U(x, θ), there-

fore in u(C(x, θ)) by an amount ∆. Hence, we get for each ∆ that Ũ(w, θ; ∆)
def≡ U(w, θ) + ∆,

Ỹ(w, θ; ∆)
def≡ Y(w, θ) and C̃(w, θ; ∆)

def≡ C
(
Ũ(w, θ; ∆), Ỹ(w, θ; ∆); w, θ

)
. These perturbations

preserve incentive-compatibility (6). According to (13), the perturbed Lagrangian can be writ-
ten as

L̃ (∆)
def≡
∫∫ [

Ỹ(w, θ; ∆)− C
(
Ũ(w, θ; ∆), Ỹ(w, θ; ∆); w, θ

)
+

Φ
(
Ũ(w, θ; ∆); w, θ

)
λ

]
f (w|θ)dw dµ(θ).

If the allocation is optimal, the above perturbations do not affect the Lagrangian. Thus, by
equating the Gâteaux derivative of the Lagrangian in the direction described by the above
perturbations (i.e. the derivative of the perturbed Lagrangian L̃ (·) with respect to ∆, at ∆ = 0)
to zero, we obtain an equation that characterizes the optimal tax system. Using the first equality
in (12), this Gâteaux derivative of the Lagrangian is

L̃ ′(0) =
∫∫

θ∈Θ,x∈R+

(
ΦU (U(x, θ); x, θ)

λ
− 1

u′ (C(x, θ))

)
f (x|θ)dx dµ(θ).

Equating this derivative to zero leads to (14b).

�

The tax formula (14a) of Proposition 1 generalizes the Mirrlees (1971) formula and ABC

formula described in Diamond (1998) to multidimensional individual characteristics with an
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efficiency, an equity and a distribution term. Using the Hamiltonian method, we show in Ap-

pendix A.3 that, under a single dimension of heterogeneity w, Equations (14a) and (14b) sim-

plify to (18a)-(18b).

Lemma 5. When the unobserved heterogeneity has only one dimension, the optimal tax schedule satis-

fies:

T′(Y(w))

1− T′(Y(w))
·

vy [w]

−w vyw [w]
w f (w) = u′ [w]

∫ ∞

w

(
1

u′ [x]
− ΦU [x]

λ

)
f (x) dx (18a)

0 =
∫ ∞

0

(
1

u′ [x]
− ΦU [x]

λ

)
f (x) dx. (18b)

Comparing these equations with Equations (14a) and (14b) makes clear that reducing the

tax problem to one dimension of heterogeneity implies that the integrals over θ-groups disap-

pear. With multidimensional heterogeneity, one needs to aggregate the terms of the formula for

individuals of the different groups who pool at the same level of income. This is made possible

thanks to our characterization of the pooling function in Lemmas 3 and 4.

Comparing Proposition 1 with Lemma 5 makes it clear that, with multidimensional hetero-

geneity, the composition of the population at each income level plays a role through the weight

W(y, θ) f (W(y, θ)|θ) dµ(θ). This weight is not simply the density of people in each group θ

who earn the relevant level of income but the product of the skill levels W(y, θ) times the cor-

responding densities f (W(y, θ)|θ) dµ(θ). We know that taxpayers who earn the same income

come from distinct groups θ have distinct skill levels W(y, θ). Moreover, at each income level,

the composition of the population (e.g. the proportion of men versus women) usually varies

between the actual economy where it is estimated and the optimal economy. Therefore, the

weights W(y, θ) f (W(y, θ)|θ) dµ(θ) take distinct values in the actual and optimal economies. In

Jacquet and Lehmann (2020), we show that ignoring these so-called composition effects signif-

icantly biases the optimal income tax schedule.

IV.3 Rewriting the optimal tax schedule in terms of sufficient statistics

In this section, we rewrite the optimal tax formula of Proposition 1 in terms of meaningful

sufficient statistics. To obtain the latter, we first define a set of individual elasticities. For this

purpose, we assume that the tax function T(·) is twice differentiable which ensures that the

first-order condition associated to the individual maximization program (1) is differentiable.

We also assume that, for all (w, θ) ∈ R∗+ × Θ, the second-order condition associated to the

individual maximization program holds strictly which guarantees it is invertible in y. This

allows one to apply the implicit function theorem to the first-order condition associated to the

individual maximization program. We also assume that, for all (w, θ) ∈ R∗+ ×Θ, the function

y 7→ U (y− T(y), y; w, θ) admits a unique global maximum over R+. This ensures that after a

change in the marginal tax rate or a change in skill, the maximum remains global.

Along the nonlinear income tax schedule, we define the compensated elasticity of earnings

with respect to the marginal retention rate 1− T′(.) as the elasticity of earnings for individuals

13



of type (w, θ) to a change in the marginal retention rate by a constant amount τ, while leaving

unchanged the level of tax at y = Y(w, θ), i.e.:

ε(w, θ)
def≡ 1− T′ (Y(w, θ))

Y(w, θ)

∂Y
∂τ

c
(19a)

which is positive as shown in Appendix A.4 and where the superscript “c” stands for “com-

pensated”.

Along the nonlinear income tax schedule, the income effect is defined as the behavioral re-

sponse to a lump-sum change m in tax liability:

η(w, θ)
def≡ ∂Y

∂m

i
(19b)

where the superscript ”i” stands for ”income effect”. We have η(w, θ) < 0 if leisure is a normal

good (see appendix).

Let us use the dot above a variable for the partial derivative of this variable with respect to

skill w. One can define the elasticity α(w; θ) of earnings with respect to the skill level:

α(w, θ)
def≡ w

Y(w, θ)
Ẏ(w, θ). (19c)

which is positive thanks to Assumption 2. We can note that ε(w, θ), η(w, θ) and α(w, θ) denote

total responses of earnings since they take into account the nonlinearity of the tax schedule as

in Jacquet et al. (2013), see also Scheuer and Werning (2016).

We define the social marginal welfare weights associated with workers of type (w, θ) ex-

pressed in terms of public funds by:

g (w, θ)
def≡ ΦU (U (w, θ) ; w, θ)Uc (C(w, θ), Y(w, θ); w, θ)

λ
. (20)

The government values giving one extra dollar to a worker (w, θ) as a gain of g(w, θ) dollar(s)

of public funds.

Let h(y|θ) denote the conditional income density within group θ at income y and H(y|θ) def≡∫ y
0 h(z|θ)dz the corresponding conditional income CDF. According to (19c) and Assumption 2,

income Y(·, θ) is strictly increasing in skill within each group. We then have H (Y(w, θ)|θ) ≡
F(w|θ) for each skill level w. Differentiating both sides of this equality with respect to w and

using (19c), the two densities are linked by:

h (Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h (Y(w, θ)|θ) = w f (w|θ)
α(w, θ)

. (21)

The unconditional income density at income Y(w, θ0) is given by:

ĥ(Y(w, θ0))
def≡
∫

θ∈Θ
h(Y(W(w, θ), θ)|θ) dµ(θ). (22a)

The mean (total) compensated elasticity at income level y = Y(w, θ0) is:

ε̂(Y(w, θ0)) =
∫

θ∈Θ
ε (W(w, θ), θ)

h(Y(W(w, θ), θ)|θ)
ĥ(Y(w, θ0))

dµ(θ). (22b)
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where each within-group compensated elasticity of earnings is timed by the relative proportion

h(y|θ)/ĥ(y) of individuals in the corresponding group among individuals who earn y. The

mean (total) income effect at income level Y(w, θ0) is:

η̂(Y(w, θ0)) =
∫

θ∈Θ
η (W(w, θ), θ)

h(Y(W(w, θ), θ)|θ)
ĥ(Y(w, θ0))

dµ(θ). (22c)

Finally, the mean marginal social welfare weight at income level y = Y(w, θ0) is:

ĝ(Y(w, θ0)) =
∫

θ∈Θ
g (W(w, θ), θ)

h(Y(W(w, θ), θ)|θ)
ĥ(Y(w, θ0))

dµ(θ). (22d)

As shown in Appendix A.4, we can now rearrange the first-order conditions (14a) and (14b)

displayed in Proposition 1 to obtain the optimal marginal tax rate in terms of sufficient statis-

tics, more precisely in terms of the mean compensated elasticity, mean income effect, mean

marginal social weights and the unconditional income density.

Proposition 2. Under assumption 2, with a twice differentiable T(.), with the second order condition

of the individual maximization program that holds strictly and the function y 7→ U (y− T(y), y; w, θ)

that admits a unique global maximum, the optimal tax schedule satisfies:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
· 1− Ĥ(y)

yĥ(y)
·
(

1−

∫ ∞
y [ĝ(z) + η̂(z) · T′(z)] · ĥ(z)dz

1− Ĥ(y)

)
(23a)

1 =
∫ ∞

0

[
ĝ(z) + η̂(z) · T′(z)

]
· ĥ(z)dz. (23b)

The optimal tax rate given in Equation (23a) depends now on three terms that encapsu-

late sufficient statistics only: (a) the behavioral responses to taxes denoted by 1/ε̂(y), which,

in the vein of Ramsey (1927), is the inverse of the mean compensated elasticity; (b) the social

preferences and income effects 1−
(∫ ∞

y

[
ĝ(z) + η̂(z) T′(z)

]
ĥ(z)dz

)
/ (1− Ĥ(y)), which indi-

cates the distributional benefits of increasing the tax liability by one unit for all workers with

incomes above y and (c) the shape of the income distribution measured by the inverse of the

local Pareto parameter (1− Ĥ(y))/(y ĥ(y)) of the income distribution. In Equation (23a), the

sufficient statistics’ optimal tax formula of Saez (2001) is generalized to the multidimensional

context.

Equations (23a) and (23b) can also be obtained, in a straightfoward way, using the tax per-

turbation approach as in Jacquet and Lehmann (2020). Thanks to these equations, which char-

acterize the optimal tax schedules in terms of incomes, we know the weight that multiplies

each sufficient statistic. In (23a), the unconditional income density ĥ(Y(w, θ0)) is the weight

that multiplies each mean marginal social welfare weight and each mean income effect. In

contrast, the weights that are used in the optimal tax formulas in terms of skills (i.e. Equa-

tions (14a) and (14b)) are distinct. These weights are the conditional skill densities times the

corresponding skill.7

7More precisely, in the left-hand side of Equation (14a), the term − vy [w,θ]
w·vyw [w,θ] which is equal to the ratio of

ε(w, θ) and α(w, θ) (see Equation (35) in the appendix), is weighted by the conditional density times the skill,
W(w, θ) f (W(y, θ)|θ). And, in the right-hand side of (14a), which encapsulates the mechanical and income effects,
the weights are the conditional skill densities.
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V Signing optimal marginal tax rates

In the literature, it has been highlighted that, with multidimensional heterogeneity, negative

marginal tax rates can be optimal. In Cuff (2000), Boadway et al. (2002a), Brett and Weymark

(2003), Choné and Laroque (2010) and Lockwood and Weinzierl (2015), individuals differ along

their skills and preferences for leisure, and the social planner has weighted utilitarian prefer-

ences. In this context, individuals who pool at the same income level are characterized by dif-

ferent marginal social welfare weights, ΦU(U(w, θ); w, θ)u′(C(w, θ))/λ. Therefore, the mean

marginal social welfare weight,
∫∫

θ∈Θ,w∈R+

(
ΦU(U(w,θ);w,θ)u′(C(w,θ))

λ

)
f (w|θ)dw dµ(θ), may not be

decreasing with income which opens the way to negative marginal tax rates. One may wonder

whether heterogeneous behavioral responses for individuals who earn the same level of in-

come could also open the way to negative marginal tax rates. We now show that this is not the

case (if the population earning a given income level remains homogeneous in terms of social

welfare weights).

Proposition 3. Under utilitarian or maximin social preferences, optimal marginal tax rates are positive.

Proposition 3 generalizes to the multidimensional case Mirrlees (1971)’s result of positive

optimal tax rates (which was obtained under additively separable preferences).8 The proof,

which relies on Proposition 1, can be found in Appendix A.5. Proposition 3 emphasizes that

optimal marginal tax rates are positive as soon as all individuals who earn the same income

y are characterized (i) by the same marginal utility of consumption, which is ensured by the

additive separability assumption and (ii) by the same marginal social welfare Φu, which is

ensured by utilitarian or maximin social objective. In such a case, all individuals who earn the

same income are characterized by the same welfare weights. Therefore, the cause of negative

marginal tax rates due to decreasing mean marginal social welfare weights emphasized in Cuff

(2000) and follow-up papers does not apply.9

VI Concluding Comments

In this paper, we have proposed an allocation perturbation method to derive optimal non-

linear income tax schedules when taxpayers differ along several characteristics and when tax-

ation cannot be conditioned on them. In this context, we have shown that marginal tax rates

are positive under utilitarian preferences and maximin.

To illustrate the generality of our results in this concluding section, we now provide alter-

native tax problems that one can easily solve in our framework. For each of them, we explain

8In Hellwig (2007), under a utilitarian criterion, positive optimal tax rates are obtained with more general pref-
erences.

9If the utility function u(·) in (1) were parameterized by type w and θ while v(·) were simply parameterized by
w, individuals who earn the same income would have distinct social marginal welfare weights. This could drive
negative marginal tax rates. Similarly, if both u(·) and v(·) were parameterized by w and θ, one would also expect
negative marginal tax rates. Let us stress that our method could not be used in this framework since the pooling
function (10) cannot depend simultaneously on Y and C.
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what y, w, θ represent so that the interpretation of the results is straightforward.

Optimal joint taxation of labor and non-labor income

Consider individuals that have two sources of taxable income: a non-labor income z and a

labor income y− z. Those incomes are jointly taxed and the tax function does not distinguish

between both incomes. This applies, for instance, in countries like France where income re-

ceived from renting property and entrepreneurial income are jointly taxed with labor income.

As explained in Scheuer (2014), a single nonlinear tax schedule is also the system that is in place

for employed workers and self-employed small business owners in many countries, including

the U.S.. In this case, y is the total taxable income and we interpret θ as the ability to earn

non-labor income z and w as the skill. Individuals of type (w, θ) solve:

max
y,z

U (y− T(y), y− z, z; w, θ)

where two decision variables appear instead of one variable in the core of our paper. This

program can be solved sequentially, the first step being the choice of non-labor income z for

a given taxable income y which leads to U (c, y; w, θ)
def≡ max

z
U (c, y− z, z; w, θ). The second

step is the choice of y as in Equation (1). In the process, one simply needs to ensure the semi-

indirect utility function U (·, ·; w, θ) verifies Assumption 2.

Optimal joint income taxation of couples

The joint income taxation of couples is a variant of the previous application, in which y− z

is the labor income of one individual and z is the one of his/her partner. The tax does not

distinguish between y− z and z and only depends on the sum of both incomes, y (as in France,

Germany and the US). We redefine w and θ as the respective skill level of each member of the

couple. The optimal tax schedules derived in this paper are then interpreted as the optimal tax

schedules when the couple is the tax unit and each partner decides along the intensive margin.

So far, previous attempts in the literature (Kleven et al. (2009) and Cremer et al. (2012)) have

stopped short of obtaining these nonlinear tax schedules.

Optimal income taxation with tax avoidance

In this application, w is the skill and θ is the ability to avoid taxation. We assume that tax

enforcement (penalty, monitoring, etc.) is given. We denote z the sheltered labor income (i.e.

income that is not taxed at all) and y + z the (total) labor income. The tax only depends on the

taxable income y. Consumption becomes c + z, with c = y− T(y) being the after-tax income.

All results obtained in this paper are valid in this context when one simply makes sure that

Assumption 2 holds.

A Appendix

A.1 Proof of Lemma 4

Proof The proof consists of two steps. In step (i), we show that there exists at most one
incentive-compatible allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies Assumption 3 and
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such that (C(w, θ0), Y(w, θ0)) = (C(w, θ0), Y(w, θ0)). In step (ii), we show that this allocation
verifies the whole set of incentive constraints (6).

Step (i). To build up the entire incentive-compatible allocation (w, θ) 7→ (C(w, θ), Y(w, θ)),
we must choose (C(w, θ0), Y(w, θ0)) = (C(w, θ0), Y(w, θ0)) at any skill level. For each group θ,
Y(·, θ) verifies Assumption 3 if and only if its reciprocal Y−1(·; θ) is smoothly increasing. Let
y ∈ R+ be an income level. As Y(·, θ0) is smoothly increasing from Assumption 3, there exists
a unique skill level w such that y = Y(w, θ0). Then according to Lemma 3, among individuals
of group θ, only those of skill W(w, θ) must be assigned to the income level y = Y(w, θ0) to
verify incentive-compatibility.10 Therefore, Y−1(·, θ) must be defined by:

Y−1(·, θ) : y
Y−1(·,θ0)7−→ w = Y−1(y, θ0)

W(·,θ)7−→ Y−1(y, θ).

Y−1(·, θ) is then smoothly increasing as a combination of two smoothly increasing functions.
Moreover, since for each type (ω, θ), there exists a single skill level ω such that Y(ω, θ) =
Y(w, θ0), incentive compatibility requires that C(ω, θ) also needs to be equal to C(w, θ0). This
ends the proof of step (i).

Step (ii). Note that the allocation (w, θ) 7→ (Y(w, θ), C(w, θ)) is built in such a way that
one has Y(ω, θ) = Y(w, θ0) and C(ω, θ) = C(w, θ0) if and only if ω = W(w, θ) and (10) holds.
Differentiating in w both sides of these two equations and rearranging terms, we obtain

Ċ (w, θ0)

Ẏ (w, θ0)
=

Ċ (W(w, θ), θ0)

Ẏ (W(w, θ), θ0)
.

As w 7→ (C(w, θ0), Y(w, θ0)) is assumed to verify the within-group incentive constraints in
Equation (8b), we know that the left-hand side of the above equation is equal to

M (C(w, θ0), Y(w, θ0); w, θ0).

Using the definition of W(·, θ), we have that w 7→ (C(w, θ), Y(w, θ)) also verifies Equation
(8b). From Lemma 2, it thus verifies the within-group incentive constraints (7). We now check
whether the inequality (6) is verified for any (w, w′, θ, θ′) ∈ R2

+ × Θ2. We know there exists
ω ∈ R+ such that Y(ω, θ) = Y(w′, θ′) and C(ω, θ) = C(w′, θ′). The incentive constraints in (6)
are therefore equivalent to:

U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(ω, θ), Y(ω, θ); w, θ) .

The latter inequality is verified as w 7→ (C(w, θ), Y(w, θ)) satisfies Equation (8b). �

A.2 Derivation of Equation (17)

Proof
To derive (17), we must compute the various Gâteaux derivatives at t = 0. For A = C, Y, U

and a given δ, the Gâteaux derivative of A in the direction ∆Y(·, ·; δ) at t = 0 is denoted
ˆ̂A(x, θ; δ). Let us remind its definition:

ˆ̂A(x, θ; δ)
def≡ lim

t 7→0

Â(x, θ; t, δ)− A(w, θ)

t
.

By definition we get: ˆ̂Y(x, θ0; δ) = ∆Y(x; δ), and from (15b) we obtain:

ˆ̂Y(x, θ; δ) = 0 if x ∈ [0, W(w− δ, θ)] ∪ [W(w, θ),+∞) . (24a)

10Hence function W(·, θ) coincides with the pooling function W(·, θ).
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Equations (15c) imply that the Gâteaux derivatives of utilities are nil for skill below W(w− δ, θ).
For skills x between W(w− δ, θ) and W(w, θ), Equation (15e) implies:

ˆ̂U(x, θ; δ) = −
∫ x

W(w−δ,θ)
υyw (Y(ω, θ0); ω, θ0)

ˆ̂Y(ω, θ0; δ) dω. (24b)

For skill x above W(w, θ), according to (15f), we have:

ˆ̂U(x, θ; δ) = −
∫ W(w,θ)

W(w−δ,θ)
υyw (Y(ω, θ0); ω, θ0)

ˆ̂Y(ω, θ0; δ) dω. (24c)

Moreover, Equation (15h) implies that the Gâteaux derivatives of income must verify:∫ w

w−δ
υyw (Y(ω, θ0); ω, θ) ˆ̂Y(ω, θ0; δ) dω =

∫ W(w,θ)

W(w−δ,θ)
υyw (Y(ω, θ); ω, θ) ˆ̂Y(ω, θ; δ) dω. (24d)

Using Equations (12), (24a) and (24c), the Gâteaux derivative of the Lagrangian (16) is:

∂L̂

∂t
(0; δ) =

∫
θ∈Θ

{∫ W(w,θ)

W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx (25)

+
∫ W(w,θ)

W(w−δ,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
ˆ̂U(x, θ; δ) f (x|θ)dx

−
(∫ W(w,θ)

W(w−δ,θ)
υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

)
×

(∫ ∞

W(w,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
f (x|θ)dx

)}
dµ(θ).

Dividing the first-order condition ∂L̂
∂t (0; δ) = 0 by

∫ w
w−δ υyw (Y(x, θ0); x, θ0)

ˆ̂Y(x, θ0; δ) dx im-
plies, using (24b) and (24d), that

∫
θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ) = (26)

∫
θ∈Θ


∫ W(w,θ)

W(w−δ,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

) ∫ x
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx∫ W(w,θ)
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

f (x|θ)dx +

∫ ∞

W(w,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
f (x|θ)dx

 dµ(θ).

We finally take the limit of the latter equality when δ tends to 0. Let us consider the first term
in the right-hand side of (26). Since∫ x

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx∫ W(w,θ)
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

∈ [0, 1]

we get that:∣∣∣∣∣∣
∫

θ∈Θ

∫ W(w,θ)

W(w−δ,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

) ∫ x
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx∫ W(w,θ)
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

f (x|θ)dxdµ(θ)

∣∣∣∣∣∣
≤
∣∣∣∣∫

θ∈Θ

∫ W(w,θ)

W(w−δ,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
f (x|θ)dxdµ(θ)

∣∣∣∣ .
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As the right hand-side of the latter inequality tends to 0 when δ tends to 0, the limit of (26)
when δ tends to zero leads to:

lim
δ 7→0

∫
θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ) (27)

=
∫∫

θ∈Θ,x≥W(w,θ)

(
ΦU [x, θ]

λ
− 1

u′[x, θ]

)
f (x|θ)dx dµ(θ).

By continuity, the variations of f (x|θ), υy(Y(x, θ); x, θ), υyw(Y(x, θ); x, θ) and u′(c(x, θ)) within
the skill intervals [W(w − δ, θ), W(w, θ)] are of second-order when δ tends to 0. As Θ and
intervals [W(w− δ, θ), W(w, θ)] are compact, for any small e > 0, there always exists δ̃(e) such
that for all (x, θ) ∈ [W(w− δ̃(e), θ), W(w, θ)]×Θ, one has:(

1− υy[W(w, θ), θ]

u′(C(W(w, θ), θ)
f (W(w, θ)|θ)− e

)
ˆ̂Y(x, θ; δ) ≤

(
1− υy[W(x, θ), θ]

u′(C(W(x, θ), θ)
f (x|θ)

)
ˆ̂Y(x, θ; δ)

≤
(

1− υy[W(w, θ), θ]

u′(C(W(w, θ), θ)
f (W(w, θ)|θ) + e

)
ˆ̂Y(x, θ; δ)

and(
υyw[W(w, θ), θ]− e

) ˆ̂Y(x, θ; δ) ≤ υyw[W(x, θ), θ] ˆ̂Y(x, θ; δ) ≤
(
υyw[W(w, θ), θ] + e

) ˆ̂Y(x, θ; δ) < 0

so that for all δ < δ̃(e):

∫
θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ) + e

υyw(Y(W(w, θ), θ); W(w, θ), θ)− e

∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ)dx∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ) dx
dµ(θ)

≤
∫

θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ)

≤
∫

θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ)− e

υyw(Y(W(w, θ), θ); W(w, θ), θ) + e

∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ)dx∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ) dx
dµ(θ)

and therefore, for all δ < δ̃(e):

∫
θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ) + e

υyw(Y(W(w, θ), θ); W(w, θ), θ)− e
dµ(θ)

≤
∫

θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ)

≤
∫

θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ)− e

υyw(Y(W(w, θ), θ); W(w, θ), θ) + e
dµ(θ)

Hence, left-hand side of (27) is equal to the left-hand side of (17). �
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A.3 Proof of Lemma 5

With one-dimensional heterogeneity, we only consider within-group incentive constraints.
Adopting a first-order approach, only (8a) is considered when building up the Hamiltonian:(

Y(w, θ)− C (Y(w, θ), U(w, θ); w, θ) +
Φ (U(w, θ); w, θ)

λ

)
· f (w|θ)− q(w|θ) · vw (Y(w, θ); w, θ) .

where Y(w, θ) and U(w, θ) are the control and state variables respectively. Using (12), the
necessary conditions are:

0 =

(
1−

vy [w, θ]

u′ [w, θ]

)
· f (w|θ)− q(w|θ) · vyw [w, θ] (28a)

−q̇ (w|θ) =

(
ΦU [w, θ]

λ
− 1

u′ [w, θ]

)
· f (w|θ) (28b)

0 = q(0|θ) (28c)
0 = lim

w 7→∞
q(w|θ). (28d)

Combining (28b) with (28d) leads to

q(w|θ) =
∫ ∞

w

(
ΦU [w, θ]

λ
− 1

u′ [w, θ]

)
· f (ω|θ)dω. (28e)

Combining (3), (2), (28a) and (28e) leads to (18a). Combining (28c) with (28e) leads to (18b).

A.4 Proof of Proposition 2

Define a reform of a tax schedule y 7→ T(y) with its direction, which is a differentiable
function y 7→ R(y) defined on R+, and with its algebraic magnitude m ∈ R. After a reform,
the tax schedule becomes y 7→ T(y)−m R(y) and the utility of an individuals of type (w, θ) is:

UR(m; w, θ)
def≡ max

y
u(y− T(y) + m R(y))− υ(y; w, θ). (29)

We denote by YR(m; w, θ) the income of workers of types (w, θ) after the reform and her con-
sumption becomes CR(m; w, θ) = YR(m; w, θ) − T(YR(m; w, θ)) + m R(YR(m; w, θ)). When
m = 0, we have YR(0; w, θ) = Y(w, θ) and CR(0; w, θ) = C(w, θ). Applying the envelope
theorem to (29), we get:

∂UR

∂m
(m; w, θ) = uc

(
CR(m; w, θ)

)
R(y). (30)

Using (3), the first-order condition associated to (29) equalizes to zero the following expression:

Y R(y, m; w, θ)
def≡ 1− T′(y) + m R′(y)−M (y− T(y) + m R(y), y; w, θ) . (31)

For simplicity, we drop the superscript R and write Yy(Y(w, θ); w, θ) for Y R
y (Y(w, θ), 0; w, θ).11

We define behavioral responses to tax reforms of direction R by applying the implicit function
theorem to Y R(y, m; w, θ) = 0 at m = 0, which yields:

∂YR

∂m
(0; w, θ) = −Y R

m (Y(w, θ), 0; w, θ)

Yy(Y(w, θ), 0; w, θ)
(32)

11Indeed, at m = 0, Y R
y does no longer depend on the direction R of the tax reform.
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where:

Y R
y (y, m; w, θ) = −T′′(y)−My(y− T(y) + m R(y), y; w, θ) (33a)

− M (y− T(y) + m R(y), y; w, θ) Mc(y− T(y) + m R(y), y; w, θ),
Y R

m (y, m; w, θ) = R′(y)− R(y) Mc(y− T(y) + m R(y), y; w, θ). (33b)

Using (2) and plugging R(Y(w, θ)) = 0 and R′(Y(w, θ)) = 0 into (33b), the compensated elas-
ticity of earnings (19a) can be rewritten as:

ε(w, θ) =
M (C(w, θ), Y(w, θ); w, θ)

−Y(w, θ) Yy(Y(w, θ); w, θ)
> 0 (34a)

which is positive since Yy (Y(w, θ); w, θ) < 0. Plugging R(Y(w, θ)) = 1 and R′(Y(w, θ)) = 0
into (33b), the income effect (19b) can be rewritten as:

η(w, θ) =
Mc(C(w, θ), Y(w, θ); w, θ)

Yy(Y(w, θ); w, θ)
(34b)

which is negative if leisure is a normal good, since then Mc > 0. The elasticity α(w; θ) of
earnings with respect to the skill level can be expressed as:

α(w, θ) =
w Mw(C(w, θ), Y(w, θ); w, θ)

Y(w, θ) Yy(Y(w, θ); w, θ)
> 0. (34c)

Dividing (34a) by (34c) we get:

ε(w, θ)

α(w, θ)
= −

vy [w, θ]

w · vyw [w, θ]
. (35)

Plugging (34a) into (34b) leads to:

η(w, θ) = Y(w, θ) · u′′ [w, θ]

u′ [w, θ]
· ε(w, θ).

It is then straightforward to obtain:

η̂(Y(w, θ0)) = Y(w, θ0) ·
u′′ [w, θ0]

u′ [w, θ0]
· ε̂(Y(w, θ0)). (36)

Let y ∈ R+. Since Yy (Y(w, θ); w, θ) < 0, there exists a single skill level w such that y =
Y(w, θ0). From (2), we know that:

1− T′ [w, θ] =
vy [w, θ]

u′ [w, θ]
. (37)

The term in the left-hand side integral of (14a) can be rewritten as:

vy [W(w, θ), θ]

−W(w, θ) vyw [W(w, θ), θ]
W(w, θ) f (W(w, θ)|θ) =

ε (W(w, θ), θ)

α (W(w, θ), θ)
·W(w, θ) f (W(w, θ)|θ)

= ε (W(w, θ), θ) Y(w, θ0) h(Y(w, θ0)|θ).

The first equality is obtained using Equation (35). The second equality uses (21). It implies with
(22b) that Equation (14a) can be rewritten as:

T′ [w, θ0]

1− T′ [w, θ0]
· ε̂ (Y(w, θ0)) ·Y(w, θ0) · ĥ(Y(w, θ0)) = J(w) (38)

22



where J(w) is defined by the right-hand side of (14a). J(·) admits for derivative J̇(w) where:

J̇(w) = Ċ(w, θ0)
u′′ [w, θ0]

u′ [w, θ0]
J(w) +∫

θ∈Θ

{
ΦU [W(w, θ), θ] u′ [W(w, θ), θ]

λ
− 1
}

Ẇ(w, θ) f (W(w, θ)|θ) dµ(θ)

=
∫

θ∈Θ
{g (W(w, θ), θ)− 1} · Ẇ(w, θ) · f (W(w, θ; θ0)|θ) · dµ(θ) + Ċ(w, θ0) ·

u′′ [w, θ0]

u′ [w, θ0]
· J(w)

where (20) has been used. Deriving with respect to the skill w both sides of (9) and of C(w, θ0) =
Y(w, θ0)− T (Y(w, θ0)), we obtain:

Ẇ(w, θ) =
Ẏ (w, θ0)

Ẏ (W(w, θ), θ)
and Ċ(w, θ0) =

(
1− T′ (Y(w, θ0))

)
Ẏ(w, θ0).

We thus obtain:

J̇(w) =

 ∫
θ∈Θ

{g (W(w, θ), θ)− 1} f (W(w, θ)|θ)
Ẏ(W(w, θ), θ)

dµ(θ) +
(
1− T′ [w, θ0]

) u′′ [w, θ0]

u′ [w, θ0]
J(w)

 Ẏ(w, θ0).

Using (21) and (38), J̇(w) can be rewritten as:

J̇(w) =

 ∫
θ∈Θ

{g (W(w, θ), θ)− 1} h (Y(w, θ0)|θ) dµ(θ)

+ T′ (Y(w, θ0))Y(w, θ0)
u′′ (C(w, θ0))

u′ (C(w, θ0))
ε̂(Y(w, θ0))ĥ(Y(w, θ0))

)
Ẏ(w, θ0).

Using (36) and (22d), we get:

− J̇(w) =
{

1− ĝ(Y(w, θ0))− η̂(Y(w, θ0)) · T′ (Y(w, θ0))
}
· ĥ (Y(w, θ)) · Ẏ(w, θ0).

As J(w) =
∫

x≥w(− J̇(x))dx, we get

J(w) =
∫

x≥w

{
1− ĝ(Y(x, θ0))− η̂(Y(x, θ0)) · T′ (Y(x, θ0))

}
· ĥ (Y(x, θ)) · Ẏ(x, θ0) · dx.

Changing variables by posing z = Y(x, θ0), we get

J(w) =
∫

z≥Y(w,θ0)

{
1− ĝ(z)− η̂(z) · T′ (Y(z))

}
· ĥ (Y(x, θ)) · dz. (39)

Plugging (39) into (38) gives (23a). Combining (14b) and (39) leads to (23b).

A.5 Proof of Proposition 3

Let us denote

K(w)
def≡

∫∫
θ∈Θ,x≥W(w,θ)

(
1

u′(C(x, θ))
− ΦU(U(x, θ); x, θ)

λ

)
f (x|θ)dx dµ(θ) (40)

the ratio of the right-hand side of (14a) at the skill level w divided by u′ (Y(w, θ0)− T(Y(w, θ0))).
According to Proposition 1, Equation (14a) and υy > 0 > υyw, the sign of T′(Y(w, θ0)) is the
sign of K(w).
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Under utilitarian preferences, Φu = 1. Changing variable in (40) from x to t such that
x = W(t, θ), (i.e. Y(x, θ) ≡ Y(t, θ0) and C(x, θ) ≡ C(t, θ0) according to (9)), we get:

K(w) =
∫

t≥w

(
1

u′(C(t, θ0))
− 1

λ

) (∫
θ∈Θ

Ẇ(t, θ) f (W(t, θ)|θ) dµ (θ)

)
dt

The derivative of K(w) has the sign of 1/λ− 1/u′(C(w, θ0)), which is decreasing in w because
of the concavity of u(·). Moreover, lim

w 7→∞
K(w) = 0 and Equation (14b) implies that K(0) = 0.

Therefore, K(·) first increases and then decreases. It is thus positive for all (interior) skill levels.
So, optimal marginal tax rates are positive.

Under maximin, one has U(x, θ) > U(0, θ) for all x > 0 from (8a). Therefore, within each
group, the most deserving individuals are those whose skill w = 0. The maximin objective
implies ΦU [x, θ] = 0 for all x > 0. Hence, Equation (40) simplifies to:

K(w) =
∫∫

θ∈Θ,x≥W(w,θ)

1
u′(C(x, θ))

f (x|θ)dx dµ(θ)

for all w > 0, which is always positive, thereby leading to positive optimal marginal tax rates.
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