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ABSTRACT

This paper presents a single Monte-Carlo algorithm used to solve transient conductive and radiative heat
transfers in three-dimensional porous media. The complete methodology presented step by step herein enables
practical and efficient study of geometrical and multiphysical complexities. The code was validated against
results obtained by commercial software, analytical and semi-analytical solutions. Computation times were
found to be greatly reduced when radiative transfer is predominant compared with those obtained using a
deterministic solver. This kind of approach allows a probe calculation in the frame of linear thermal transfers
and is well suited for the numerical characterization of heterogeneous media. In this work a numerical
flash method was reproduced and enabled us to evaluate the effective total conductivity of the equivalent
homogenized medium. The influence of various parameters such as porosity, size of the unit cell, bulk
conductivity of the solid phase, reference temperature and emissivity was studied for a stack of Kelvin cells.
This tool enables the parametric investigation of geometric and thermal properties. The results are in good
agreement with those of the literature.
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Nomenclature

Latin symbols

Expectation of a random variable (-)
Temperature (K)

Reference temperature (K)

Averaged radiative temperature (K)

Time (s)

Location (=)

Number of Monte Carlo realization (-)
Cumulative density function of the az-
imuthal angle (-)

Cumulative density function of the polar
angle (-)

Cumulative density function of the time (-)
probability density function of a random
variable X (-)

Unitary outward normal vector (-)

u Direction of conductive propagation (-)

v Direction of incident intensity (-)

v, Direction of reflected intensity (-)

1 Radiant intensity (Wm~2sr~!)

H Heaviside step function (-)

Nrad Radiative exchange coefficient (Wm=2K~1)

Prad Probability of following a radiative path (-)

Peond Probability of following a conductive path
()

S Surface (m?)

Jj jth interaction with the excited face (-)

i it realization of the MC algorithm (-)

J; Number of excitation with the excited
surface of the /™ realization (-)

S; Source term of the i realization (K)

* Corresponding author.

E-mail address: gilles.parent@univ-lorraine.fr (G. Parent).




Dy Domain (-)

0D, Contour (-)

0Dy Contour with heat excitation (-)

0Dy Fluid/solid contour (diffusive wall) (-)
0D ¢ Contour of the rear face (-)

oD, Contour with periodic condition (-)
Thot Imposed hot temperature (K)

Teold Imposed cold temperature (K)

Bi Radiative Biot number (-)

H Heaviside function (-)

(0] Constant heat flux deposited (W m~2)
Deent Size of a unit cell (m)

Greek symbols

@ Transient heat excitation (W m~2)
a Thermal diffusivity (m?s~!)
/] Polar angle (rad)
1% Azimuthal angle (rad)
0, it realization of the MC algorithm (K)
T Time decrement (s)
1) Space jump (m)
&y Space jump at the boundary (m)
I Space jump to the boundary (m)
€ Emissivity (-)
3 Porosity (-)
Ag Bulk thermal conductivity (Wm~! K1)
o Stefan-Boltzmann constant
(5.67x 1078 Wm=2K™4)
4 directional-hemispherical reflectivity (-)
Supercripts
* Relating to dimensionless quantities
0 Blackbody
Subscripts
I Relating to the initial condition
b Relating to the boundary
i Relating to the intersection
y Relating to a given path
r Relating to the space of the paths
rf Relating to the rear face
cond Relating to conductive heat transfer
rad Relating to radiative heat transfer
eff Relating to effective heat transfer
eq Relating to total equivalent heat transfer
obs Relating to the probe computation location
max Relating to the maximum value

Other symbols

X Estimator of the quantity X

1. Introduction

Ceramic and metallic foams are commonly used in many engineer-
ing applications because of their interesting thermal, mechanical and
optical properties [1]. Improved manufacturing processes enable the
production of porous media with a very wide range of structural pa-
rameters such as porosity, cell size distribution, geometries or materials
used. These can thus be designed and used for several applications such

as catalysis, volumetric solar absorbers, insulators, heat exchangers or
gas-phase heat recovery. The foam structural and thermal parameters
play a key role in the efficiency of the studied systems because of the
coupling between the different physical phenomena involved such as
conduction in the fluid/solid phase, convection, transport, radiation
or chemical reaction. Their optimization necessarily requires better
knowledge of the link between the porous heterogeneous medium and
the coupled heat transfer mechanisms and this can be achieved by using
numerical and experimental tools.

Nowadays, combined heat transfers can be solved directly on com-
plex geometry at the sample scale, i.e. at a scale equal to a few (dozen
of) size of pores, but this becomes difficult at the scale of the system
itself. Therefore, it is very common for the thermal problem to be
simplified by considering foam as a homogeneous medium with equiva-
lent thermal properties, which represents the overall thermal transport
through the medium and has to be characterized. In this framework,
a unique Equivalent Thermal Conductivity (ETC), which can include
conduction, convection and radiation has been widely considered. In-
terested readers can refer to [2], which gives a broad overview of the
studied geometries in different scopes of validity. Analytical solutions
or numerical tools have been provided for the simplest geometries [3]
while numerical or experimental characterization procedures have been
developed to study 3D complex porous geometries. The thermal behav-
ior of metallic foams at ambient temperature were studied by Coquard
and Baillis [4] or by R. Wulf et al. [5] who used a numerical hot
guarded plate method from tomographic images. Zhao et al. [6], Fend
et al. [7] and Coquard et al. [8] used respectively an experimental
guarded hot plane, a transient plan source and a flash method. Such
studies can be used to explore the validity of the theoretical models
described above, validate employed characterization procedures and
highlight the main thermal or geometrical properties in heat transport.

Ceramic and metallic foams are particularly interesting for high-
temperature applications in which radiation transfer plays a major
role. The description of the radiative behavior in such media through
the identification of equivalent optical properties has mostly been
studied independently of the other modes of heat transport. Authors
like Tancrez and Taine [9], Guévelou et al. [10] or Loretz et al. [11]
proposed numerical methods based on ray-tracing approaches and
provided correlations from tomographic images while authors like
Hendricks and Howell [12] or Baillis et al. [13] performed a spectral
estimation of equivalent radiative properties from spectrometric mea-
surements. Characterization following an entirely numerical procedure
requires efficient modeling of the coupled thermal transfers directly
on the complex and 3D heterogeneous medium. Solving this problem
can remain quite tricky and time-consuming because of the different
nature of the two modes of heat transfer. Indeed, sufficiently finely
resolved and realistic geometry and optimized solvers for each of the
transport modes are required to achieve this. To our knowledge, very
few studies have focused on the numerical identification of equivalent
properties of foams with coupled conductive and radiative transfer.
Some authors like Mendes et al. [14] have proposed using a numerical
hot guarded plate applied to metallic foams at high temperature and
demonstrated the limits of using the Rosseland approximation to de-
scribe the equivalent radiative conductivity. Subsequently, these same
authors developed a complete numerical study [15] to determine the
possible bias generated by simplified radiative modeling of the medium
(heterogeneous, homogeneous, Rosseland...). Empirical laws were then
provided to make modeling these heterogeneous environments easier.
Very recently, Vignoles and Ortona [14] proposed an original stochastic
method to model both conduction and radiation in ceramic/metallic
foams and fibers and identified total equivalent properties.

Experimental measurements of the conductivity of foams at high
temperature are not common at all. The characterization procedure
requires the use of a fast and accurate coupled model. Zhao et al. [6],
Coquard and Baillis [16] and Mendes et al. [17] used the method



involving a hot guarded plate while Coquard et al. [18] used the hot-
wire to study coupled heat transfers in expanded polystyrene foams.
Niezgoda et al. [19] applied the flash method to the study of a silica
aerogel and other thermal insulators such as low density foams. How-
ever, due to a lack of sensitivity or to correlations between parameters,
the identification of equivalent radiative properties was difficult and
was performed separately. For the very first time, Coquard et al. [8] si-
multaneously characterized an equivalent conductivity and equivalent
absorbing and scattering coefficients for metallic and ceramic foams
(Zirconia, FeCr alloy, Mullite and NiCrAl) over a temperature range
between 296 K and 673 K. The authors of the present paper recently
reported this kind of characterization at temperatures up to 1000 K
applied to SiC and SiSiC foams taking into account a wide variety of in-
fluential parameters such as the geometry of cells, pore diameter, bulk
conductivity, the reference temperature and so on [20]. Nevertheless,
this kind of experimental characterization is always time-consuming
and costly, especially when aiming high temperatures. Moreover, the
large number of possible combinations of intrinsic parameters makes
a systemic parametric exploration difficult as this requires the right
samples to be available. A numerical approach is thus necessary to
assist with experimental characterization and anticipate needs.

As explained above, the numerical resolution of coupled heat trans-
fers directly on complex geometry remains tricky and requires efficient
numerical tools. To our knowledge, deterministic methods are com-
monly used such as the Finite Element Method (FEM) for conduction
and the Discrete Ordinate Method for radiation [5,15,21,22]. Recently,
Fournier et al. [23] suggested the idea of solving multi-physical phe-
nomena with a single Monte-Carlo algorithm. They also showed that
this kind of algorithm can be constructed if the set of considered
equations can be written as a Fredholm equation of the second kind cor-
responding to the linear heat transfer framework. Based on an integral
formulation, a recursive (backward in time) algorithm computes the
temperature at a given time and at a given location (probe calculation)
of a complex 3D geometry. The different heat transfer modes are solved
at once so there is no need to couple two independent solvers. As this
method requires only a surface mesh, it is very practical to use and
convenient for dealing with geometric and multiphysical complexities.
Moreover, coupling this with tools developed by the image synthesis
community (such as hierarchical grids) means performance levels can
be increased by reducing computation times and through a demon-
strated insensitivity to the mesh refinement [24]. Caliot et al. [25]
applied this algorithm in a stationary case involving a structured foam
made of Kelvin cells. This approach has been validated for conductive
and radiative transfers by comparison with a deterministic method.
Ibarrart et al. [26] extended this to consider coupled conductive,
advective and radiative heat transfers while Penazzi et al. [27] studied
the case of a semi-transparent medium. Assuming the linearity of heat
transfers is a not limiting factor because only a small increase of the
equilibrium temperature of the medium is required in most of the
characterization methods, including the flash method. Moreover, recent
studies have shown that solutions can be found to manage nonlinear
problems [28]. Finally, the Monte-Carlo algorithm and in particular its
probe calculation aspect as proposed by Fournier et al. [23] appears
highly suitable to use in the field of thermal characterization as it
provides the solution to the direct model on the complex geometry. In
this paper, we propose to apply the algorithm to the particular case of
the flash method and to demonstrate the high potential of this approach
for the study of coupled transfers in a heterogeneous medium.

In the following, we shall first describe the thermal problem and
governing equations concerned by our work. Secondly, we shall go on
to describe the generic principle of the Monte-Carlo algorithm, which
allows geometrical and multiphysical complexities to be dealt with in
a very practical and efficient way. The complete methodology and the
particular configuration of the flash method are detailed. Compared to
previous studies [25-27], the present problem requires a transient solu-
tion. Thus, a validation case is provided for a 3D geometry which could

be useful as a benchmark case for further algorithmic improvements.
A comparison with a calculation performed by a commercial software
based on deterministic methods also helps highlight the interests of our
approach. Next the construction of the geometry of foams is presented
and the identification procedure based on the numerically obtained
thermograms is briefly described. Finally, a parametric study is pre-
sented. The influence of main parameters is studied including porosity,
size of the cells, bulk conductivity of the foam struts, the bulk emissivity
and the reference temperature on the total heat transfer.

2. Methods

As explained previously, the flash method is an efficient method
for measuring the total equivalent conductivity of a semi-transparent
medium. In addition, the transient nature of this characterization
method means it is possible to separate different contributions and the
authors successfully achieved this to characterize experimentally silicon
carbide foams at high temperature [20]. The idea of the present paper
is to replace an experimental flash method by an entirely numerical
one. Although the guarded hot plate or hot wire methods appear as
references and are also well suited for such an identification of thermal
properties, only the flash method is discussed here to benefit from the
previous experience developed and allow comparison. However, there
is no limit to the extension of the methodology described in this section
to other characterization techniques.

In the experimental flash method (cf. Fig. 1(a)), a sample at thermal
equilibrium T is excited with a short duration heat flux @(7) on its front
face. The transient evolution of the mean surface temperature of the
rear face T'(X,p,. 1) is measured with an infrared detector or an infrared
camera. It is common to place the sample between two soleplates or
to cover each face with a black coating [8,20] Here this is necessary
because of the semi-transparent nature of the sample and because of
the experimental configuration used. The first soleplate absorbs the
incident radiative heat flux and avoids the direct transmission of the
laser excitation to the detector. The second is useful to avoid measuring
volumetric emission. This means that a proper spatially averaged tem-
perature can be measured. Finally, the porous medium is considered
under vacuum, such that no natural convection or conduction through
the fluid phase can occur. This choice was only made to isolate and
identify conduction through the solid phase but no experimental or
numerical limitations prevent such study of the influence of the fluid
phase. After a presentation of the context of the study, the following
section is dedicated to the description of the methodology used to
provide the coupled direct model describing the heat transfer through
the heterogeneous medium.

2.1. Monte-Carlo Method: General case

Fundamentally, the Monte Carlo (MC) method is a method that
estimates integrals (and discrete sums) by interpreting them as ex-
pectations. Any quantity that can be expressed in an integral form
can be estimated using a MC algorithm, including differential prob-
lems that are initially formulated outside the framework of stochastic
processes [29,30]. In this paper, our work aimed to compute the
temperature at location x,,,s and at time 7, by following a large number
of paths crossing the complex geometry. The temperature T (X, ?) is
then the expectation of a random variable O(x. 1):

1 ch
~— 2O @

me =]

T(Xops: 1) = E[O(Xgpg: D] ~

with T(x,p,1) the Monte-Carlo estimator of T(Xgp?), © a random
variable and 0, the ith realization of this variable, which is determined
from the ith path inside the calculation domain. A path starts at the
location x,;,¢ and at the time  where and when the temperature needs
to be computed. A path stops when a known temperature such as
the initial condition or a Dirichlet boundary condition is reached. The
achieved temperature is retained as the weight of the ith realization of
the algorithm.
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(a) Thermal problem associated with the flash method with-
out convection/radiation at the wall

/ T(xObS7 t)
x
/3

oD,
et o
N
D, e

(b) Graphical representation of the path construction: mov-
ing to higher dimensions

Fig. 1. Principle of the flash method and walking technique for conduction.

2.2. Monte-Carlo Method: Conductive path

Concerning the conduction, the transient Energy Balance Equation
(EBE) is:
% =aV2T Vx € D, 2
One way to solve the given thermal problem is to use the finite
difference method. In the case of a unidirectional problem, using an
explicit Euler scheme (order 1) to approximate the time derivative,
and a centered scheme (order 2) for the spatial derivative, the EBE (cf.
Eq. (1)) becomes :
T(x,t)—T(x,t—
T =-Ti=7) (;12 [T(x+8,t—7)—2T(x,t—7)+T(x— 6,1 —7)] (3)
T
with § the spatial discretization step and z the temporal discretization
step. The temperature at position x and time ¢ is thus expressed as:

Tx,t)=uT(x+6,t—7)+ (1 =2)T (x,t —7) + uT(x — 6,t — 1) 4

with y = az/62. For this example, the Courant-Friedrichs-Lewis (CFL)
condition requires y < 1/2 for the explicit scheme to be stable.

Following this condition, Eq. (4) allows a probabilistic interpretation
and is used to construct propagation paths:

Tx,t)=p, T(x+6,t—=1)+p, T(x,t=7)+p, T(x—6,t—1) 5)

It is then possible to construct a walk based on the corresponding
1D regular mesh of step 6, with p,, p. and p, the probabilities associated
with a computation of the temperatures T'(x + §,¢ — 7) (on the right),
T(x,t —7) (in the center) and T(x — 6, — 7) (on the left), respectively.
Each move § requires a time decrement 7. If the temperature at a
new location at time ¢ — z is unknown, the process is thus continued
recursively until a known temperature such as a boundary (Dirichlet)
temperature or the temperature at the initial time is reached.

The transition from this kind of walking technique to a three-
dimensional grid is straightforward. It was initially proposed by Haji-
Sheikh and Sparrow [31] and allow to simulate a Brownian motion
process. However, the previous example is described so that the pur-
pose of the walk building process can be better understood. This type
of walk is actually not practical when dealing with boundary conditions
which are different from Dirichlet in complex geometry because of the
derivative terms with respect to the normal. Therefore the same authors
proposed a walk based on a sphere. In a spherical coordinate system,
the formal solution of Eq. (1) at a given position x (here x is the position
in 3D and has thus 3 coordinates) and at time ¢ is:

1 1 t
T(x,t) = / / / T(x + 6u,t — 7)dF(p)dG(0)dH () (6)
F=0JG=0 J =0

{ F(¢) = /21, G(6) = 3(1 —cos(8)) -

H@) =1+237 (~1)exp(~ap*z*/6%)

with § the radius of a sphere centered in x, 6 the polar angle and ¢
the azimuthal angle. As in the previous example, Eqgs. (6) and (7) also
admit a probabilistic interpretation. The quantities F, G and H can
be regarded as cumulative density functions of the azimuthal angle ¢,
the polar angle 0 and the time decrement 7, respectively. The latter
expression can be thus rewritten:

T(x,1) =/ pU(u)clu/00 pr(0)dr [Ht—7<0) T,
4z 0
+ Hit—7>0) T(x+du,t—1)] (8)

with py(u) and py(z) the probability densities associated with the
sampling of a direction u and a time z, respectively. H is the Heaviside
function. Three random numbers uniformly distributed between 0 and
1 allow us to sample a direction u and a time 7. In the case of an
infinite medium, the corresponding algorithm to Eq. (8) is described
in algorithm 1:

Algorithm 1 Sampling of a conductive path (infinite medium)

Sample a direction of travel u according to py
Sample a time 7 according to p;

if t < 7 then

T(x,t) =T, (initial condition)
else

T(x,t) = T(x + éu,t — 7) (recursivity)
end if

Hence, if the initial condition is not reached, the path is placed
in x + 6u and the time ¢ associated with the path is decremented by
the quantity 7. A random walk based on the construction of a sphere
is generated through iteration as shown in Fig. 1(b). In the case of a
finite medium, the conductive path stops if the initial condition or if a
boundary where temperature is known is reached.

2.3. Monte-Carlo Method: radiative path

This paper only deals with the case of an opaque medium and
a transparent void phase to simulate experimental conditions of our
previous study [20]. However, the present method is not only limited
to this type of interface condition and can be extended, for example, to
the case of a semi-transparent medium or to a convective exchange.

In our case, the radiative transfer is thus limited to a surface-to-
surface exchange. The coupling between conduction and radiation is
thus carried out at the solid/void interface 0Dg. The balance of the
conductive and the radiative fluxes is written as follows:

n-AVT = [ |v-n]e(I°x,) = I(x,,—V)) dv 9
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fluid (vacuum)

a’Z)sf

Fig. 2. Conductive-radiative coupling, case of opaque surfaces: ray-tracing within the
fluid phase (vacuum).

with e the emissivity of the surface (uniform and hemispherical), n
the unitary outward vector normal to the surface, A, the thermal
conductivity of the solid, x, the position at the solid/void boundary,
v the direction, I° the blackbody intensity and I the intensity. For the
sake of simplicity, radiative quantities averaged on the whole spectrum
are considered.

As described in [25], the wall temperature is non-linearly dependent
on the blackbody intensity which means the latter must be linearized
around a reference temperature Ty

1°(x,) = %T“(xb)

~ %T4f + 4%Tr3ef(xb) (T(xp) — Tref) (10)

re!

with ¢ the Stefan-Boltzmann constant. As previously discussed, this
assumption does not pose particular problems in the case of the ther-
mal characterization methods used because of the low temperature
elevation of the sample (just a few Kelvin) relative to the equilibrium
temperature. As the void phase is transparent, the incident intensity
at the wall I(x,,—v) is equal to the intensity leaving from x; in the
direction —v:

I(xy, —v) = I(x3,—V)
=el%(x;) +/ PR Ve - | 1(xq, —v,)dv, 11
2z

with pg(x;)p’ the Bidirectional Reflectance Distribution Function, which
is the product of a probability density over the reflected directions v,
and the directional-hemispherical reflectivity. n; is the outward normal
at the location x;. According to Eq. (11), the incident intensity is there-
fore decomposed into an emission term and a reflection term integrated
over the directions v,. In this expression, the incident intensity I(x;, —v;)
can also be decomposed according to Eq. (11), which gives rise to
nested integrals and leads to an iterative algorithm. Finally, we can
express the incoming intensity as a function of an intensity emitted
from an unknown position x, . The latter intensity can reach the location
x, in the direction —v after zero, one or multiple reflections. For the
sake of clarity, the corresponding nested multiple integrals are simply
represented by one integral on the space of optical paths I':

I(xp,=V) = /F priNI°(x,)dy (12)

with p,(y) the probability density associated with an optical path y.
By injecting Egs. (10) and (12) (linearized) in Eq. (9), we can write:

—n- AVT = deoT?, <T(xb)— / %dv / prdyT(Xy)>
2z r

= Npag <T(xb)—/2 pv(v)dv/prdyT(x},)>
74 r

= hrad (T(Xb) - Trad(xb)) 13)

with a4 a radiative exchange coefficient. T,,4 represents an average
radiative temperature seen at the interface and due to the radiative

exchanges through the void phase. The latter quantity can be esti-
mated with the following algorithm (cf. algorithm 2), which is the
corresponding algorithmic interpretation of Egs. (12) and (13):

Algorithm 2 Sampling of a radiative path: estimate T},4(x;)

Sample a direction of travel v according to py
Evaluate a first intersection x;
Sample canonically a random number r in [0, 1]
if r < e then
T12da(xp) = T(x;) (absorbed)
else
Sample a new direction v, according to pg
Trad(Xp) = Traq(x;) (recursivity)
end if

Hence, an emission direction obeying a lambertian law is sampled
when evaluating the radiative temperature. Then, until an absorption
event is achieved, the path jumps through the void phase as represented
in Fig. 2. At each new reflection, a new direction according to the BRDF
is sampled. Each jump does not imply time decrementation because
of the very high velocity of radiative transfers compared to other heat
transfer modes such as conduction in the solid phase.

2.4. Monte-Carlo Method: Computation of the wall temperature

As was the case for the EBE, a finite difference scheme (order 1)
requiring the introduction of an infinitesimal length &, is used. The
conductive heat flux in Eq. (13) is therefore approximated as:

A
-n- AVl » —5—5 (T(xy) = T(x, — 5pm)) a4
b
By injecting Eq. (14) in Eq. (13), the wall temperature is expressed:
Nrad }”s/ 5y
_ T + —_—
A /5b + Nrad rad (%) }‘s/éb + Nrad
Hence, the temperature at the interface in Eq. (15) can be inter-

preted as the average of two temperatures weighed by two associated
probabilities p.,q and pgong:

T(x;) = T(x, — 5,n) (15)

hrad
=& 16a
Prad As/‘sb + hrad ( )

peang = —21%

)‘s/ 5b + hrad
The corresponding Monte-Carlo algorithm is straightforward as de-
scribed in algorithm 3:

(16b)

Algorithm 3 Computation of the wall temperature 7T'(x,)

Sample canonically a random number r in [0, 1]
if r <P, then

T(x,) = T(x;, — 6,n) = T(x,1) (conductive path cf. algorithm 1)
else

T(x,) = Traq(x,) (radiative path cf. algorithm 2)
end if

2.5. Monte-Carlo Method: Computation of the wall temperature (non dif-
fusive wall)

Considering a given non-emitting (¢ = 0) wall 0Dy, excited by a
transient heat flux @(r), the balance at the interface is:

n- AVT = &(1) a7
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Fig. 3. Random walks techniques : (a) Fixed random walk (b) Floating random walk.

As with the finite difference scheme described earlier, the wall temper-
ature can be expressed as:

T(xp. 1) = T(Xy — Sy, 1) + D)5,/ A 18)

This equation can be interpreted with a Monte-Carlo algorithm. If the
path reaches an interface with x, € 0Dy, it is put back at the location
x, — 6,0 and the Monte-Carlo weight is increased by a source term equal
to @(1)5,/As. This kind of procedure is repeated at each contact with
the excited surface. In the same manner, if the impacted wall is non-
diffusive and adiabatic (@(r) = 0), the path is simply put back at the
location x, — §,n and the Monte-Carlo weight is not increased.

2.6. Monte-Carlo Method: Random walk techniques

As discussed previously, the generation of the random walk requires
the introduction of two arbitrary lengths 6 and &, which respectively
correspond to a displacement within the solid volume and a replace-
ment at the interface. As for the deterministic methods, the computed
solution with the MC algorithm converges to the exact solution for
6 — 0 and 6, — 0. However, as the calculation time increases greatly
when the displacement steps are decreased, a compromise is therefore
required between the computing cost and precision of the solution.

Moreover, several walking techniques can be employed to mimic
the brownian motion [31]. The values of displacement steps 6 and
6, can be alternately fixed or floating. These two different techniques
are represented in Fig. 3. The first approach consists of setting a fixed
value for displacement step § as shown in Fig. 3 (a). At each iteration,
a direction of travel u is sampled according to py and the distance
5,, between the considered position x and the boundary 0D, in the
direction u is computed. If 6 < 6, the associated boundary condition is
processed and the wall temperature T(x,) is computed. If the path has
to be put back in the solid, a fixed value of 6, is used. If § > §,,, the path
is simply placed in x + éu with the associated time decrement. Hence,
the chosen displacement is computed in the form of § = min(é, §,,).

As Fig. 3 shows, the second technique is based on a floating value
of the displacement step 6. The idea is to compute the radius §;
corresponding to the inner circle. The displacement step is chosen in
the form of 6 = min(§,, 6;) with §, being an arbitrary value chosen to
prevent the displacement being too large. Then, a direction of travel u
is sampled and the jump is performed. If the considered position x is
located between the closest position x, to the boundary 0D and x,—5,n,
the associated boundary condition is treated. If the path has to be put
back in the solid, the same value of 6, is used and the path is placed in
x —§,n. Finally, each floating displacement 6 in the volume also implies
a time decrement according to the chosen value of 4.

Between these two described walking techniques, the floating ran-
dom walk was selected and was used to perform our modeling. Even
though the calculation of the inner sphere can be more time-consuming
than a fixed walk, it means we can avoid the introduction of a bias due
to a truncated sphere (represented in green in Fig. 3 (a)). The fixed
walk is also suitable for small values of 6 and §,.

Do~ T(%n. 1)
> |
»
—>
(1) o =0
— —> AV
z o > D, solid 0D \81)
— Z —> rf
y(&— i |
0D,~" ©=0 periodical V

Fig. 4. Detailed description of the computation of one realization of the transient
conductive-radiative MC algorithm : application to the flash thermogram.

2.7. Monte-Carlo Method: Complete formulation of the algorithm to the
calculation of the flash thermogram

All the different elements required to solve the considered problem
and the construction of the coupled walk in conduction and radiation
were described previously. This section is dedicated to the description
of the general architecture of the algorithm as implemented. Details are
given of certain specific elements to make these easier to understand.
The aimed configuration to solve is represented in Fig. 4. The solid
volume Dy is delimited by the surface 0D;, which is broken down by
the surfaces 9Dy, 0Dy, 0Dy and 0D, respectively corresponding to
the fluid(void)/solid surfaces (diffusive walls), the rear face surface,
the excited surface and the adiabatic surfaces (periodicity condition).
Periodicity is also applied in the void phase. Hence, each path reaching
this virtual wall (represented in blue) is simply specularly reflected.

2.7.1. Initialization
We aim to compute the transient mean surface temperature T¢(¢) of
the rear face, which is defined by:

1
T = % / T(Xgpe,?) dS Vxgp, € 0Dy 19
S

with § the surface of the rear face. The latter expression is rewritten
to allow a probabilistic interpretation:

Iy Iy
Tt = ! / / T (Xgps, 1) dxdy
lxl x=0J y=0
1

y
IX

= / px()dx / " py()dy T(Xops. 1) (20)
x= ¥

with [, I, px(x) = 1/1, and py(y) = 1/I, respectively the two lengths of
the defined rectangular surface and the two corresponding probability



densities. The initialization can then be easily performed following
algorithm 4:

Algorithm 4 Sampling of a spatially averaged temperature: Initializa-
tion

Sample location x according to py(x)

Sample location y according to py(»)

Set position X,

Ty(t) = T(Xops. 1) (recursivity)

2.7.2. Computation of the Monte-Carlo weight

All paths start at the time of interest + and at the position X,
sampled uniformly on the rear face (cf. Section 2.7.1). Let us define y, a
given path that reaches the location x;’ ) € 0D, (excited surface) for the
jth times. This path y, after a given number of jumps, has an associated
time 7 — rﬁj ) and the probability density associated with sampling such
a path is pY )(xobs)' Hence, in the space of the paths D, the rear face

r
temperature calculation can be summarized as:

Ti(t) = H(t ==V <O)X Ty + H(t — 7" > 0)

@t - 1,")3, 1)

S

D e (DY 5 (1D (1 _ _ D
X /Dmpr (xy )dxy |:T(xy opn, t T, )+
r

The present algorithm developed for describing the flash method has
two important characteristics.

+ A path stops only when the initial condition T; (the only known
temperature) is reached.

» As described in Section 2.5, the Monte-Carlo weight is incre-
mented when the path reaches the excited face. After this kind
of interaction, the walk continues as a conductive walk within
the solid phase.

Hence, the Monte-Carlo weight associated with the ith realization of
the algorithm can be simply written as:

J, ()
: o oa-s
0, =T, + Y Hit~70 > 0)+b (22)

Jj=1 S

Sy
with J; the number of interactions with the excited face of the ith
realization of the MC algorithm. Thus, the MC estimator Trf(t) at a given
time ¢ is:

ch

= 1
Trf(l) ~ N

mec ;=1
ch
=T+ >s, (23)
me j=|
with:
Jl
s;=Ys, 24)

the source term for the ith realization of the MC algorithm. In other
words, the temperature of the rear face at a time ¢ is simply the
temperature at the initial condition (t = 0) increased by a given amount
due to the energy the flash brings to the front face.

It should be noted that the computation is performed for a given and
a unique value of 7. Computing an entire thermogram thus requires time
discretization in N, values in the [0, ¢,,,,] interval and the calculation of
the temperature performed for each of these times. Efficient and correct
storage of the information generated thus far would mean computing

the entire thermogram using only the largest time ¢, could be carried
out with great rapidity but the results obtained for different times but
computed from the same paths would not be statistically independent.
Hence, a Monte-Carlo calculation composed of N paths for each
value of the time interval is preferable and thus was carried out in this
work.

2.7.3. Complete formulation of the algorithm

The complete formulation of the algorithm for one realization of the
algorithm is fully described in Fig. 5. It summarizes all the previous
described steps of the procedure. The interactions with walls (identi-
fied by a surface mesh) are added and ensure the transition between
conductive and radiative paths.

The starting point is to sample the starting position on the rear
face and to set the starting time (Input, cf. Section 2.7.1). Then,
the Monte-Carlo weight and estimator of the source are set at 0.
The loop starts with a test which consists in determining if the
considered position is on a boundary (TB). If this test is negative,
the conductive path is performed (C1-C5, cf.Section 2.2). Other-
wise, the algorithm determines which boundary is reached (TB1
and TB2). If the path is located on the excited face, the estimator
of the source S is increased (B1 and B2, cf.Section 2.5).

If the path is located on a diffusive wall, a Bernoulli test is
performed (B4-B5) to determine whether the path follows a
conductive path in the solid or a radiative path through the void
phase (cf. Section 2.4).

If the path follows a conductive path, it is simply put back
(B3) within the solid phase at a distance 6, from the boundary.
Otherwise, the walk continues as a radiative path (R1-R5, cf.
Section 2.3)

The path is stopped when the associated time becomes negative
(cf. Section 2.7.2). The resulting Monte-Carlo weight is stored for
this realization of the algorithm and a new path is initialized.

3. Validation on combined conductive and radiative transfers: 3D
heterogeneous geometry, benchmark configuration

The purpose of this section is to validate the methodology described
above as a direct model for its application in the framework of an
inversion procedure to identify equivalent thermophysical properties.
The interest of the method is highlighted, a step by step development of
the coupled thermal problems to be treated is described and benchmark
results are proposed. Firstly, in the case of a flash method configuration,
a purely conductive medium is considered. Then, both conductive and
radiative transfers are solved on a one-dimensional problem and an
effective thermal diffusivity is identified. For the sake of brevity, both
validation cases are provided in Appendix. Finally, a verification of
the solution by comparing with a commercial software like Comsol® is
provided on a 3D heterogeneous geometry.

To validate the MC algorithm to compute the transient solution
in the case of a 3D complex geometry, solutions obtained by the
MC method are compared with more common approaches like the
deterministic methods used in commercial resolution software. As rep-
resented in Fig. 6(a), a heterogeneous 3D honeycomb geometry was
considered. This geometry was chosen to be simple enough to be
easily reproduced and used as a benchmark for further studies, but
also complex enough to be comparable to a porous structure made of
solid struts which is commonly studied in engineering science. It is
demonstrated in both Appendices A.1 and A.2 that taking a transient
heat flux or periodic boundary conditions into account does not cause
any particular difficulties. This kind of study can be easily reproduced
in future works on the development of the Monte-Carlo method for
combined transfers.

The thermal problem is represented in Fig. 6(b). z ., and x ., =
Ymax are the dimensions of the structure. Square channels with side 2 x
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Fig. 5. Detailed description of the computation of one realization of the transient conductive-radiative MC algorithm : application to the flash thermogram.
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Fig. 6. Studied benchmark case.

D, define the void phase while square channels with side Dg represent
the struts (solid phase). The solid is assumed to be opaque with a unit
emissivity. As described in Section 2, conduction only occurs in the
solid phase while radiative transfer only occurs in the void phase.

As represented in Fig. 6(b), the thermal boundary conditions are
Thor> the temperature imposed on the upper boundary, T4, the tem-
perature imposed on the lower boundary and 7, the ambient radiative
temperature (infinitely, far from the geometry). The structure is under
vacuum so that no natural convection can occur. Surfaces can exchange
with the environment through radiation. The reference temperature
and the ambient temperature are set so that Tyer = Ty = (Thor +Teo1d)/25
the average between the two imposed temperatures. At the initial time,
the entire structure is in equilibrium at 7q4.

Dimensionless temperature differences, radiative Biot number and
dimensionless temperature are defined as:

AT* = Thot — cold; Bi= hrad Zmax
Tref }'s
T* = T (xobs: ) = Teold (25)
Thot — Teold
The dimensionless lengths and time are defined such as z* = z/z,,,

Y = ¥/Vmax> X* = X/Xpay and * = (agt)/2z2,.. This problem was

solved both by the present Monte Carlo method and by COMSOL
multiphysics®. In the case of the latter, conduction is solved by a finite
element method and radiation by the radiosity method, which is well
suited to this problem involving surface-to-surface radiative exchanges.
Comsol simulation was carried out using 1900 mesh points forming
4563 tetrahedrons and 4008 triangles and automatic time step was
used.
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Fig. 7. Transient temperature along the z centerline for different values of Biot number
and for low temperature gradient AT* = 0.1.

In the case of the Monte-Carlo method, the associated algorithm
to solve such a configuration is easily deduced from the methodology
described in Section 2. All paths started at the time and position of
interest and then a combined conductive and radiative random walk
was performed. A path stopped when a known temperature such as
Teold> Thot O T, was reached and this temperature was retained as
a realization of the MC algorithm. Then, a new path was initialized.
A low dimensionless temperature gradient was deliberately chosen
(AT* = 0.1) to ensure the assumption of linearity of the radiative heat
exchanges to be valid.

Transient results obtained with the stochastic and deterministic
methods for different positions z* = [0.039,0.27,0.5,0.75,0.96] for x* =
y* = 0.5 (centerline position cf. Fig. 6(b)) are drawn in Fig. 7. Each
sub-figure corresponds to:

« Fig. 7(a), Bi = 7.4 1073 conduction is dominant

» Fig. 7(b), Bi = 1.6 conduction and radiation have a similar
influence

+ Fig. 7(c), Bi = 102 radiation is dominant

The dimensionless temperature as a function of the dimensionless time
is represented for each radiative Biot number and position in Fig. 8.
This figure shows a comparison between the Monte-Carlo method
and the deterministic method at the steady state. The dimensionless
temperature as a function of the dimensionless position along the
centerline is drawn. In all cases, a good level of agreement between
the two methods is observed, which validates the use of the stochastic
method described to provide a precise solution for a 3D complex
geometry and for the thermal problem targeted. The transient variation
of the temperature (thermogram) is correctly calculated with the MC
algorithm. We observe an increase in the rate of heat transfer (it should
be noted that the scale of time axis is significantly different for each
sub-graph) with the increase in radiation transfer, i.e. an increase in
the total equivalent diffusivity. Moreover, a decrease in the temperature
gradients in the volume due to the increase of radiative exchanges is
also noticed. These results are consistent with the literature on radiative
transfer in semi-transparent media.

Fig. 9 shows one of the main interests of the Monte-Carlo method
in our present case. In Section 2 we showed that the geometric com-
plexity can be easily handled with tools provided by the computer
graphics community (computation of the intersection between a path
and the surface mesh) while the complexity of the problem can be
easily managed thanks to the formulation of this kind of algorithm
(multiple heat transfer modes with a single path). Here, a reduction of
the computational time is observed when the role played by radiation
increases. For simple problems, the effort to perform a MC simulation
is more important than a deterministic one. Nevertheless, MC becomes
advantageous with the increase of radiative propagation through the
void phase.

This can be explained at the scale of one path. The calculation
time is only linked to the capacity of a given path to reach a known
temperature or heat sources and thus to end the random walk. Hence,
it is linked to the speed of propagation for a given time ¢ of the
heat transfer between the source and the position of interest (probe
computation). Assuming there is pure conduction, a path can only walk
through the solid following a Brownian motion until it reaches T,
or T,yq- This could be quite tricky, especially with thin struts, and
could require a great deal of computation time. In the case of coupled
conductive and radiative heat transfer, the paths can follow a radiative
path through the void phase, which allows them to travel along a
straight line between two interfaces. The distance traveled in one step
of the algorithm is very large, especially through large void channels,
compared to the distance traveled during one step of the conductive
random walks. Hence, a path can reach Ty, T.qq Or even T, in
a smaller number of iterations of the MC algorithm. Moreover, this
phenomenon increases with the increase of the probability to follow
a radiative path.

Fig. 9 represents the computing time and the dimensionless com-
puting time according to the position z* to perform a given number
of realizations of the Monte-Carlo algorithm and for three different
radiative Biot numbers on a single CPU Intel Xeon X5650. We note that:

» The computation time for a position at the center z* = 0.5
logically corresponds to a maximum. This position is indeed the
furthest from the known temperatures.

The computation times decrease when the radiative transfer in-
creases. This can be explained by the increase of the number of
sampled radiative paths as described previously.

The dimensionless computation times become insensitive to the
starting position with the increase of radiative transfers. This
can also be explained by the increase of the number of sampled
radiative paths. Paths would evolve preferentially in the void
phase and reach a known temperature with a low number of steps,
whatever the starting point.
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Fig. 9. Computing time.

Fig. 9(b) shows the computing time required to compute the temper-
ature for all the 11 positions for the same radiative Biot numbers in
Fig. 9(a) with the MC algorithm. It is compared to the computing time
required with the deterministic method (Comsol®) to obtain the whole
field of temperature. The number of realizations of the MC algorithm
was deliberately set to obtain a similar computing time between both
methods for Bi = 7.4x1073. As we have explained, it can be noted that
the computing time needed with the MC method strongly decreases
with the increase of the radiative transfers thus demonstrating better
performances in this case. The access of the whole temperature field
is not limiting as long as only a probe computation is required in the
case of a characterization procedure. This study thus provides advice
on choosing a method for a possible user. The deterministic method
is preferable for high porosity media and purely conductive transfer
while the Monte-Carlo method described was found to give better
performances with coupled transfers.

4. Application to the characterization of porous media

The purpose of this section is to apply the proposed procedure to
a numerical thermophysical characterization of heterogeneous struc-
tures. Firstly, the construction of the 3D surface mesh and the inversion
procedure are detailed. Then, a parametric investigation of the different
data of the problem is performed on Kelvin cells, which are commonly
used as the geometry of reference in the frame of foams.

4.1. Studied geometries and construction

3D foam geometries are constructed using 3D images defined by
structured grids of VXV, xV, voxels, which can be obtained numerically
(with a specific software) or experimentally with a scanning method
like X-ray tomography. This article deals with the case of purely nu-
merically generated foams with a structured matrix. They are based on



Fig. 10. Example of the studied geometry: four Kelvin cell sandwiched between two soleplates.

a repetition of a unitary tetrakaidecahedron (Kelvin cell) or of a cubic-
shaped cell as used in the validation section (cf. Section 3. Nevertheless,
as highlighted, the proposed method is easily expandable to a wide
range of geometries such as randomly distributed matrix foams, fibers,
packed spheres or even real X-ray tomographied foams. The initial raw
data were obtained from a foam generator software named GenMat®,
which was developed by LTEN (Heat Transfer and Energy Laboratory
at Nantes - UMR CNRS 6607) and IUSTI (Institut Universitaire des
Systémes Thermiques et Industriels - UMR CNRS 7343). Based on a
watershed marker-based method, foams numerically generated by this
software were validated by comparing with a reference SiC foam [10].

GenMat® provides a stack of grayscale images corresponding to
the desired foams. Two stacks of plain material corresponding to the
two soleplates (cf. Section 1) were added. Then, the surface mesh was
generated with a robust marching-cube method available in 3DSlicer®
(open-source software). Smoothing algorithms (surface preserved) or
decimation algorithms (reducing the mesh refinement) can be also used
and are available in Meshlab® and Blender® (open-source softwares).
Finally, a good quality closed mesh was obtained as shown in Fig. 10.

4.2. Inversion of the thermogram — equivalent properties of the medium

The transient evolution of the temperature on the rear face is treated
exactly as if it were an experimental thermogram. As the thermogram
was obtained using a stochastic approach, the temperature calculated
at any time is affected by a random error. It should also be noted
that the standard deviation associated to each point is easy to obtain,
which is one of the strengths of the Monte Carlo methods [32]. This
standard deviation is proportional to the inverse of the square root of
the number of Monte Carlo realizations (or of the computation time,
this one being proportional to the number of calculated random walks
in the medium). From the inversion point of view, this error is similar
to the noise observed in an experimental thermogram obtained with a
flash method (cf. Appendix A.1).

The inversion of the thermogram requires a direct model of the
equivalent homogeneous media like any kind of inverse problem. Here
the direct model aims to calculate the thermogram at the rear face
of a homogeneous sample sandwiched between two soleplates. This
thermogram is indeed the quantity provided by the Monte-Carlo al-
gorithm. The thickness and thermal properties of the two soleplates
are known and correspond to the values used in the Monte-Carlo code.
The homogeneous medium representing the foam is characterized by
its total equivalent thermal conductivity and equivalent specific heat.
The direct model used for the inversion procedure is a 1D three-
layer purely conductive model. The thermal problem is solved with
a quadrupole method [33], which provides a simple semi-analytical
solution. The equivalent total thermal diffusivity of the foam can be
identified using this inverse method. The total equivalent conductivity
can be deduced from the knowledge of the specific heat of the foam
and its porosity. A Levenberg-Marquardt algorithm [34] was used
to obtain the best match between the thermogram calculated on the
actual sample structure (foam struts) with the Monte Carlo algorithm
presented above and the thermogram calculated with the equivalent
homogeneous medium. More details about inversion procedure can be
found in the authors’ paper devoted to characterization of foams at high
temperature by using the Flash method [20].

4.3. Parametric study and discussions

4.3.1. Influence of the reference temperature

The algorithm described in Section 2 and validated herein above
was applied to a porous medium composed of a stack of five Kelvin
cells between two soleplates as depicted in Fig. 10. Periodic boundary
conditions were applied along the x and y directions such that an
infinite medium was actually considered along these two directions (cf.
Fig. 4).

The conductivity of the solid phase was fixed at 4, = SOWm™ K~!
(which is close to the thermal conductivity of SiC at 1000K), the
diameter of the cell was D.; = 10mm, the porosity of the foam was
e = 80%, the investigated range of the reference temperature was
between 300 K and 2500 K. The specific heat of the solid was set at
106 Jm—3K~! and the duration of the heat flux flash was set so that
ty = tmax/50 (cf. Eq. (27)). Let us note that taking constant thermal
properties of the strut material along the whole temperature range from
ambient to 2500 K is nonphysical. However, the goal of this study was
not to describe the variation of the total equivalent conductivity of
a real foam but to conduct a parametric study aiming at separating
the influence of the different parameters (temperature, porosity, cell
size, bulk conductivity and emissivity), that involves rightly to keep
all parameters constant except the parameter of interest. Such study is
easily feasible numerically whereas it is difficult to be carried out ex-
perimentally due to sample availability or due to correlations between
parameters and reference temperature.

Fig. 11 shows the different numerical thermograms obtained with
the MC algorithm and corresponding best fits after the estimation pro-
cedure based on the three-layer purely conductive and homogeneous
model. A good level of agreement is observed. This figure shows clearly
the acceleration of the thermograms when the reference temperature
increases because of the increasing role of radiation. It should be noted
that the temperature reached at the steady state is the same for all
reference temperatures because the deposited energy was the same.
Each thermogram was computed using 2000 Monte-Carlo realizations
per time interval and 50 time intervals (thus 10° total random walks
were computed in total).

The right part and left parts of Fig. 11 show an example of random
walk in the structure at a low reference temperature (for which heat
transfer is almost purely conductive) and at a high reference temper-
ature (T = 2500K) (for which radiation plays a significant role),
respectively. As previously stated, when the reference temperature
increases, the probability of following a radiative path increases. Thus
an increasing number of paths (blue lines in insets in Fig. 11) cross
the void phase. This travel is quasi instantaneous (due to the high
velocity of light), so the mean celerity (i.e. the total equivalent thermal
diffusivity) of the heat transfer increases. Hence, the increasing role
played by the radiative transfer means the steady state is reached more
quickly. This means the starting time of the paths can be decreased
which causes a strong decrease in computation time as explained in
Section 3. With a single CPU Intel Xeon X5650, a gain of a factor of 50
is observed between a pure conduction calculation and a calculation
performed with T, = 2500K. Hence, the MC algorithm is of interest
when radiative heat transfer plays an important role, as was already ex-
plained in the previous section. An opposite trend is generally observed
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Fig. 11. Numerical thermograms (symbols) and corresponding thermogram fits (plain lines) obtained with the three-layer purely conductive and homogeneous model (cp). Right
and left insets: representation of random walk paths (blue lines) inside the structure. Right inset: 300 K temperature, radiation is negligible most of the random walk stays inside
the struts. Left inset: 2500 K temperature, the random walk can jump straightly from one strut to another strut.

following deterministic methods for conduction-radiation algorithms
which slow down when the radiation contribution increases due to
error control.

For each reference temperature value, fitting the computed ther-
mogram makes it possible to obtain a total equivalent diffusivity of
the porous medium. In the following subsections, the influence of
the foam’s morphological (number of cells, porosity, cell size) and
thermophysical (bulk thermal conductivity, emissivity) properties on
the equivalent diffusivity are presented. For the sake of brevity, the
thermograms will no longer be shown.

4.3.2. Influence of the number of pores in the thickness

The variation of the pore number in the thickness allows us to
address the question of the validity of the diffusion approximation to
describe the radiative transfer. This assumption is based on the idea
that radiative transfer is comparable to a diffusive transfer such as
conduction. This means the radiative transfer can be described by the
simple definition of a “radiative” conductivity A.,4. In the case of an
optically thick participating medium, Rosseland’s law [35] is commonly
used:

166T3 .
re: (26)

Arad 3Pett
The effect of increasing the number of pores in the thickness is that
the equivalent optical thickness of the porous medium also increases
and thus, the diffusion approximation according to Rosseland becomes
valid.

Five foams were generated which were exactly identical in terms
of porosity and pore size. These foams differ simply by the number of
patterns present in the thickness such as represented in Fig. 12. The
conductivity of the solid was decreased to 1 Wm™' K~! to increase the
role of the radiative transfer. For these five foams, the total equivalent
estimated conductivity was drawn according to the reference temper-
ature. First, when the reference temperature is low, the equivalent
total conductivity is identical between the different structures. This is
due to the fact that in pure conduction the equivalent conductivity is
independent of the number of patterns. A single cell is sufficient to
be representative of the transfers. Secondly, with the increase of the
radiative transfer, the total equivalent conductivity increases with the
number of pores.

The Rosseland’s law given in Eq. (26) predicts that the equivalent
“radiative” conductivity, for a given reference temperature, does not
vary with the thickness. Thus, if the medium is optically thick, the
transfer by radiation only depends on the equivalent extinction coef-
ficient and the reference temperature. We can observe graphically that
the equivalent total conductivity for a foam with 3 cells and 4 cells
are very close to that of a foam with 5 cells. This suggests, at least

graphically, the validity of the diffusion approximation and a radiative
behavior in agreement with the Rosseland prediction for the chosen
set of parameters and investigated range of reference temperature. The
proposed tool enables the quantification of an equivalent radiative con-
ductivity, an exploration of the validity of the diffusion approximation
and a simplification in the modeling. In the following, only foams with
at least 4 cells along the thickness are considered.

4.3.3. The influence of the porosity

In this section the influence of the porosity and shape of the solid
matrix on the coupled heat transfer is presented. Two kinds of cell
geometries were considered: Kelvin cell and honeycomb cell (cubic-
shaped cell) as represented in Fig. 13. Cell size is set to 2 mm. A
stack of 4 cells along the heat transfer axis was considered. For each
structure, the porosity value of both structures varied from 0.2 to 0.8.
The evolution of the total equivalent conductivity as a function of the
reference temperature is drawn.

For a given porosity, a logical linear increase in the total equivalent
conductivity with the third power of the reference temperature is
observed (cf. Rosseland relation Eq. (26) or according to other laws
dedicated to radiative conductivity [36]). At a low temperature, heat
transfer arises from conduction only and a very well-known result is
observed [2], i.e. the higher the porosity, the smaller the conductivity.
Conversely at high temperature, the higher the porosity, the higher the
conductivity is because the emptier the structure, the easier radiation
can take place and transfer heat. We notice that the conductivity
depends little on the porosity at a given temperature near 1200K (4673
= 400 Wm=2K~!) in this example, except for the lowest porosities.
Moreover, the influence of the shape of the matrix is highlighted. For
the same set of parameters, the total effective conductivity of the cubic-
shaped cell is greater than the Kelvin cell. This leads to the idea that
a cubic shaped foam is more transparent than a Kelvin cell foam, i.e.
it has a lower effective extinction coefficient. The slope of the curve
presented in Fig. 13 means a radiative coefficient equivalent to the
porous medium could be extracted following a judicious choice of an
equivalent radiative law.

These results seem logical and expected. The proposed procedure
involves retrieving the classic results from the literature to explore the
influence of parameters like porosity and carry out a better quantifi-
cation of the major heat transfer mechanism for a given structure. In
the case of pure conduction, the estimated conductivity is compared
to the one proposed by Pabst et al. [37] for a Kelvin cell with the
same morphological parameters. As presented in Fig. 14, a good level
of agreement is found which meant the result could be validated with
a high level of confidence in the proposed method.
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4.3.4. The influence of cell size

This section focuses on the influence of cell size. The geometry
studied was composed of four Kelvin cells with a fixed porosity equal to
80%. We varied the cell size between 1 mm and 10 mm. The equivalent
conductivity as a function of the third power of reference temperature
is represented in Fig. 15. In pure conduction (low temperature), the
equivalent conductivity does not depend on cell size. The solid matrix
is organized in exactly the same way and the amount of material
(porosity) is the same which means there is no reason to observe an
influence of cell size. This is a well-known result in foam literature [2].
When the temperature increases, radiation transfers increase too and
we observe that the larger the cell size, the higher the total equivalent
conductivity of the homogeneous medium. As noted in the previous
section, this result is logical. The mean free radiative path is indeed

greater for larger cells, which corresponds to a lower extinction coeffi-
cient. It should be noted that, in theory, the equivalent optical thickness
is the same for all these different structures. However, as the sample
thickness increases when the size of the cell increases, this corresponds
to a decrease in the extinction coefficient g (the optical thickness being
defined by r = fe) and thus an increase in radiative conductivity as
predicted, for example, by the Rosseland model.

4.3.5. Influence of the bulk conductivity of struts

In Fig. 16, the results obtained for a stack of 4 Kelvin cells with a
porosity equal to 0.8 and bulk conductivity of the struts varying from
0.1 Wm™'K~! to 100 Wm~! K~! are described. This study illustrates
how conduction and radiation through the porous medium are in a
competition to become the major heat transfer mechanism.
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The ratio Aeq /A, is presented in Fig. 16(a). If the temperature is
low enough for heat transfer to be due to conduction alone, then
the equivalent conductivity is proportional to the bulk conductivity
and consequently the ratio e/ 4, is logically independent of the ther-
mal conductivity of the solid. This ratio only depends on structural
properties such as porosity and the shape of the solid matrix. When
the temperature increases, the ratio is no longer independent on the
bulk conductivity because of the increasing role of radiation transfer,
which becomes quickly the main transport mode when the thermal
conductivity is low.

Fig. 16(b) presents the ratio of the radiative thermal conductivity
by the total equivalent conductivity (percentage) as a function of
the reference temperature for different conductivities of the bulk is
represented. For a low bulk conductivity (e.g 4, = 0.1Wm™1K™1),
radiation transfer very quickly becomes the main transfer method,
even for low reference temperatures. For example, for T,os = 500K,
radiation accounts for already almost 60% of the total transfer. On
the other hand, for A, = 100Wm~!K~!, conduction transfer remains
predominant over radiation transfer even at high temperatures.

These observations can be understood through the scope of the
stochastic method developed in this paper. Indeed, the competition
between the two heat transfer modes appears because of the probability
of following a radiative path P,,4. If the conduction term 4,/§, is very
large compared to the radiative term #,,4, then the problem is purely
conductive and it is weakly sensitive to radiative transfer and thus to
temperature. On the other hand, considering an extreme case in which
the radiation is very large in comparison to the conduction, the total
heat transfer does not depend on the conductivity of the solid.

4.3.6. The influence of emissivity

In this section, the influence of the emissivity of struts on the
total equivalent heat transfer is studied. In all previous cases, the
emission of radiation was hemispherical (lambertian or isotropic on the
hemisphere) and the emissivity was chosen equal to 1. On a structure
composed of a stack of five Kelvin cells along the direction of heat
transfer, simulations were performed for an emissivity and a reference
temperature varying between 0 to 1 and 300K to 2500 K, respectively.
Fig. 17 shows the ratio A.q/4, as a function of the reference tem-
perature. In this work, perfectly diffuse reflection was implemented.
Nevertheless, it is possible to take specular reflection or combined
specular/diffuse reflection into account using the proposed stochastic
approach.

When transfers by radiation are weak, the emissivity logically has
no influence on the equivalent total conductivity because conduction
is the main mode of transfer. Then, with the increase of the reference
temperature (i.e. radiation), an increase of the equivalent conductivity
with the emissivity and, logically, with the temperature considered, is
observed. For the asymptotic case € = 0, no radiative transfer can occur.
Then, a rapid increase in total equivalent conductivity between ¢ = 0
and ¢ = 0.25 is observed and reaches its maximum for ¢ = 1. In the

case of an optically thick medium, this kind of phenomenon cannot be
explained by the influence of the emission of the intern part of the two
soleplates alone. An effective optical thickness of the porous medium,
which can be seen as the statistical mean free paths traveled within the
fluid phase and thus depends only on the morphological properties of
the foam, appears here to depend on the emissivity. Evidence on this
kind of result was also given by Vignoles [14], Patel et al. [21] or Li
and Wang [38]. The latter also showed that the specular/diffuse mode
of reflection has a major role on the effective extinction coefficient. This
aspect could usefully be explored in more detail in further studies.

5. Conclusion

In this paper, a new tool for modeling and characterizing cou-
pled transfers in complex geometric media such as porous media was
proposed. The recent developments of the Monte-Carlo method make
it possible to imagine, in the framework of linear thermal transfers,
to solve coupled and multiphysics transfers with a single algorithm.
This method is very interesting for the characterization of complex
media for two reasons. Firstly its capacity to handle the increasing
complexity of the solved physics (directional dependency of emission,
semi-transparent medium, frequency dependence, anisotropy of the
solid phase, etc.) without an increase in computation time. Secondly
the calculation performances allowed by using tools from the graphic
community (insensitivity of the refinement of the mesh, parallelization,
etc.) make it an effective option as well. Moreover, the probe compu-
tation aspect, the statistical interpretation of the space of paths and
the approach’s capacity to simulate the combined heat propagation
are very appropriate in the context of study and understanding of
coupled mechanisms. For the first time, a numerical reproduction of the
flash method in the case of coupled conductive and radiative transfers
(opaque surfaces) was performed.

Firstly, the methodology was fully described. This highlighted the
proposed formulation’s various positive aspects such as its practical
implementation and the understanding it provides of the intrinsic
thermophysical properties through probabilities. However, the method
requires the introduction of arbitrary lengths to generate the walk.
Future studies will focus precisely on determining a time/accuracy
trade-off for these parameters.

Next the proposed MC algorithm and its use as a numerical measur-
ing instrument were validated by comparison with deterministic solvers
such as FlexPde®, Comsol® or a semi-analytical solution provided
by the quadrupole method. A validation of the transient solution was
provided on a 3D heterogeneous benchmark case. The results showed a
very good level of agreement with deterministic solvers and highlighted
the interest of using the present method in the case of an increasing
influence of the radiative transfer. New transport modes such as advec-
tion, conduction in the fluid phase and participating solid phase can be
added.

Finally, this code was used to reproduce the usual flash method
applied to experimentally determine the diffusivity of foams, as was
recently performed by the authors. The thermal response of a foam
sample sandwiched between two soleplates and submitted to a heat
radiative flux flash was computed. The thermogram obtained numer-
ically were fitted against the thermogram obtained with a direct model
involving a homogeneous medium between the same soleplates. A
total equivalent diffusivity (conduction+radiation) for the foam was
thus obtained. The proposed procedure and its coupling with recently
developed tools such as GenMat® (foam generator) enabled us to
propose a parametric study of how morphological and thermophysical
parameters influence the equivalent total conductivity of the foam. Our
results showed a good level of agreement with the associated literature.
The proposed method can be adapted to new geometries and to new
characterization configuration. Further studies could focus on new
heterogeneous structures such as X-ray tomographied foams, numeri-
cal foams, packed sphere or fibers and new characterization methods



Deep = Imm T T

L Deey = 10mm
% Deen = Smm
x Deen = 4mm
Do = 3mm ik Do = 3mm
\@ 6k L~ Deey = Imm
5]
/<

KH

Deep = 4mm

600 800

4o Tr?éf

1000

(W >

1200

K

1400 1600 1800

Fig. 15. Influence of cell size on the total heat transfer: Kelvin cell — A, = 1Wm™' K™, £ = 80%.

12 i : .

A = 100 W.(m.K)™" ,}
10 W (LK) /
— x A = 50 W.(m.K) ¥,
~ sl A =10 W.(mK)™" ,/
< A=1W.(mK)™ S
;
T3 6f| < A =01 W.(mK)" 7
[ s
~ 4 <
/X
,l L
//X/
0 R M St gl e T ]
500 1000 1500 2000
ref

(a) Ratio equivalent thermal conductivity / bulk conductivity as a
function of the temperature

Fig. 16. Influence of the bulk conductivity for a structure composed of 4 Kelvin cells — & = 70%,

100

~— 80

2000

(b) Ratio equivalent radiative conductivity / total conductivity as a
function of the temperature

D, = 2 mm.

0.8 . T f T T
x € = —1
=45 A =50 W.(m.K) P
o6l | ce=05 5 pores g ,
- e =025
< 04r /,%,//,/ .
’5 o wT
X7
021 __ooTicE T i
777777 &klﬁ_%s=a;z£5%:” € = O
0 | | | | |
0 500 1000 1500 2000 2500 3000
Tref (K)
Fig. 17. Influence of the emissivity of struts — A, =50Wm™' K™!, ¢ = 70%, D,y = 2 mm.

such as the hot-guarded plate or the hot-wire method used to study
combined heat transfer. Hence, correlations of effective equivalent
properties of such media could be provided in parallel of experimental
developments.
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Appendix

A.1. Purely conductive case: Flash configuration

For this first case, a purely conductive homogeneous solid medium
(no radiation) was considered. A transient heat flux was applied on the
front face such that:

D) =0 (H@>0)-H{E—1,>0)) 27)

with 7, the time duration of the excitation and Q the constant heat
flux deposited. The parameters were set as 4, = | Wm™ ' K™, « = 1
mm?s~! and ¢ » = 10 s. Studied geometries were simply a square and a
cube whose sides had a length of 10 cm. Fig. 18 shows thermograms
computed with the described MC method and with the finite elements
method (commercial software Flexpde®). A dimensionless temperature
such as T* = (Ty(t) — T;)/(Tmax — T;) was introduced with Tp,,, the
maximum temperature of the thermogram.

In Fig. 18(a), on a square 2D geometry, the thermogram was dis-
cretized in 1000 time intervals and 10° realizations of the MC algorithm
were performed for each time value. Convective losses on the front and
rear face were considered (A = 5 Wm~2K) with a fluid temperature
set to the initial temperature 7;. The other boundaries were adiabatic.
Thus, the heat transfer was unidirectional. A good level of agreement
was observed between the two methods and the well-known shape of
the rear face thermogram for the flash configuration was successfully
obtained. In Fig. 18(b), on a cube 3D geometry, the thermogram was
also discretized in 1000 time intervals but only 5000 realizations of
the MC algorithm were performed. Convective losses were removed so
the system reached a new temperature equilibrium at steady-state. In
that case, a good level of agreement was also found between the two
methods. Nevertheless, the solution computed with the Monte-Carlo
method appears noisier than in the previous case due to a low number
of realizations of the MC algorithm per time.

We would like to simply stress at this point the fact that the
uncertainty associated with a MC computation is dependent on the
number of realizations performed. The solution computed by the Monte
Carlo algorithm and its associated error can be compared to the ther-
mogram obtained by a measuring instrument. For the Monte Carlo
algorithm, the associated uncertainty simply depends on the number
of paths followed and, therefore, on the calculation time. The solution
obtained by Monte Carlo tends towards the solution obtained by the
deterministic solver with the increase of the number of realizations.
This noise is independent and centered on the solution which means it

can be taken into account during the inversion procedure (like during
an experimental measurement) and implies an error in the estimated
parameters. It is therefore possible to reduce computation time with
the present approach but with reduced precision in the estimated
parameters.

A.2. Coupled conductive and radiative transfers: 1D flash configuration,
opaque parallel plates separated by void phase

The previous example only dealt with the simple case of pure con-
duction in a homogeneous medium. The more complex case of coupling
between conduction and radiation is considered here. This academic
case was studied by Vignoles [14] to validate his coupled conductive
and radiative stochastic method and to identify the equivalent thermal
diffusivity of foams [39]. The problem is defined by solid plates of
thickness L; which are homogeneous, parallel and opaque with a given
emissivity e. Each plate is separated by a void phase of thickness
L — L, and are assumed infinite in the other two directions. Thus,
the considered thermal problem is unidirectional.

This thermal problem has an analytical solution. By writing the
balance of the conductive and radiative fluxes (cf. Eq. (9)) at the
interface, the equivalent diffusivity between two separated plates can
be written as:

-1

_ o5 2—¢
et = "1y (1+ Bi ) 28

with a.¢ the equivalent diffusivity, IT = 1- L, /L, the volume fraction
and Bi the radiative Biot number defined such as:

ho L, 4esT3 L,
Bi= ra; 1 _ Aref (29)
s s

The simulation with the MC algorithm was performed on the geometry
represented in Fig. 19(a). The simulation of the coupled heat transfer
of the equivalent homogeneous medium was based on the quadrupole
method [33], which is very convenient for simulation of multi-layer
and one dimensional heat transfer. A bi-layer medium was thus mod-
eled. The first layer was defined with a thermal diffusivity a.g, which
accounts for the first soleplate and the void phase while the second,
defined with «g, accounts only for the second soleplate. The inverse
procedure aims to identify the value a.4 of the homogeneous model
that allows the best match with the thermogram obtained with the 3D
simulation computed with MC.

In Fig. 19(b), the estimated values of the equivalent diffusivity are
represented as a function of the radiative Biot number for a given value
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of volume fraction I7. These values and their associated uncertain-
ties are compared with the analytical solution given in Eq. (28). For
Bi > 0.1, a good level of agreement was found between our estimated
equivalent diffusivity and the analytical solution. Given the associated
uncertainty, the results are statistically compatible. This means we
can have great confidence in the described procedure involving direct
modeling with combined MC algorithm and inversion based on the use
of a homogeneous equivalent model.

Computation with the MC algorithm becomes difficult in the case
of a low radiative Biot number (little body assumption Bi < 0.1) which
constitutes a limit of the present MC algorithm. For low value of &g,
the probability of a path located at the boundary to jump through
the void phase is very low and therefore many attempts are required
to allow a given path to reach the front face, location of thermal
excitation. This means the computation time needed to build a usable
thermogram is increased too much. Convergence issues are highlighted
even in this simple 1D case. Solutions exist like the introduction of
arbitrary probabilities but have not been considered in the case of the
described MC algorithm and could be the subject of further studies.
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