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Solving transient coupled conductive and radiative transfers in porous media1

with a Monte Carlo Method: characterization of thermal conductivity of foams2

using a numerical Flash method.3

Morgan Sansa, Olivier Fargesa, Vincent Schicka, Gilles Parenta,∗
4

aUniversité de Lorraine, CNRS, LEMTA, F-54000 Nancy, France5

Abstract6

This paper presents a single Monte-Carlo algorithm used to solve transient conductive and radiative heat transfers
in three-dimensional porous media. The complete methodology presented step by step herein enables practical and
efficient study of geometrical and multiphysical complexities. The code was validated against results obtained by
commercial software, analytical and semi-analytical solutions. Computation times were found to be greatly reduced
when radiative transfer is predominant compared with those obtained using a deterministic solver. This kind of
approach allows a probe calculation in the frame of linear thermal transfers and is well suited for the numerical
characterization of heterogeneous media. In this work a numerical flash method was reproduced and enabled us to
evaluate the effective total conductivity of the equivalent homogenized medium. The influence of various parameters
such as porosity, size of the unit cell, bulk conductivity of the solid phase, reference temperature and emissivity was
studied for a stack of Kelvin cells. This tool enables the parametric investigation of geometric and thermal properties.
The results are in good agreement with those of the literature.

Keywords: Monte-Carlo Method, Heat conduction, Thermal radiation, Flash Method, Equivalent thermal7

conductivity, Porous media8

1. Introduction9

Ceramic and metallic foams are commonly used in many engineering applications because of their interesting10

thermal, mechanical and optical properties[1]. Improved manufacturing processes enable the production of porous11

media with a very wide range of structural parameters such as porosity, cell size distribution, geometries or materials12

used. These can thus be designed and used for several applications such as catalysis, volumetric solar absorbers,13

insulators, heat exchangers or gas-phase heat recovery. The foam structural and thermal parameters play a key role14

in the efficiency of the studied systems because of the coupling between the different physical phenomena involved15

such as conduction in the fluid/solid phase, convection, transport, radiation or chemical reaction. Their optimization16

necessarily requires better knowledge of the link between the porous heterogeneous medium and the coupled heat17

transfer mechanisms and this can be achieved by using numerical and experimental tools.18

19

Nowadays, combined heat transfers can be solved directly on complex geometry at the sample scale, i.e. at a scale20

equal to a few (dozen of) size of pores, but this becomes difficult at the scale of the system itself. Therefore, it is very21

common for the thermal problem to be simplified by considering foam as a homogeneous medium with equivalent22

thermal properties, which represents the overall thermal transport through the medium and has to be characterized.23

In this framework, a unique Equivalent Thermal Conductivity (ETC), which can include conduction, convection and24

radiation has been widely considered. Interested readers can refer to [2], which gives a broad overview of the studied25

geometries in different scopes of validity. Analytical solutions or numerical tools have been provided for the simplest26
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Nomenclature

Greek Symbols
α Thermal diffusivity (m2 · s−1)
δ Space jump (m)
δb Space jump at the boundary (m)
δw Space jump to the boundary (m)
ε Emissivity (–)
λs Bulk thermal conductivity (W ·m−1 · K−1)
Φ Transient heat excitation (W ·m−2)
ρ′ directional-hemispherical reflectivity (–)
σ Stefan-Boltzmann constant (5.67 × 10−8 W ·m−2 · K−4)
τ Time decrement (s)
θ Polar angle (rad)
θi ith realization of the MC algorithm (K)
ε Porosity (–)
ϕ Azimuthal angle (rad)

Latin Symbols
Ds Domain (–)
E Expectation of a random variable (–)
H Heaviside function (–)
H Heaviside step function (–)
∂DΦ Contour with heat excitation (–)
∂Dfs Fluid/solid contour (diffusive wall) (–)
∂Dp Contour with periodic condition (–)
∂Drf Contour of the rear face (–)
∂Ds Contour (–)
n Unitary outward normal vector (–)
u Direction of conductive propagation (–)
v Direction of incident intensity (–)
vr Direction of reflected intensity (–)
x Location (–)
Bi Radiative Biot number (–)
Dcell Size of a unit cell (m)
F Cumulative density function of the azimuthal

angle (–)
G Cumulative density function of the polar an-

gle (–)
H Cumulative density function of the time (–)
hrad Radiative exchange coefficient (W ·m−2 · K−1)
I Radiant intensity (W ·m−2 · sr−1)
i ith realization of the MC algorithm (–)
j jth interaction with the excited face (–)

Ji Number of excitation with the excited sur-
face of the ith realization (–)

Nmc Number of Monte Carlo realization (–)
pX probability density function of a random

variable X (–)
pcond Probability of following a conductive path (–

)
prad Probability of following a radiative path (–)
Q Constant heat flux deposited (W ·m−2)
S Surface (m2)
S i Source term of the ith realization (K)
T Temperature (K)
t Time (s)
Tcold Imposed cold temperature (K)
Thot Imposed hot temperature (K)
Trad Averaged radiative temperature (K)
Tref Reference temperature (K)

Subscripts
Γ Relating to the space of the paths (–)
γ Relating to a given path (–)
I Relating to the initial condition (–)
b Relating to the boundary (–)
cond Relating to conductive heat transfer (–)
eff Relating to effective heat transfer (–)
eq Relating to total equivalent heat transfer (–)
i Relating to the intersection (–)
max Relating to the maximum value (–)
obs Relating to the probe computation location (–

)
rad Relating to radiative heat transfer (–)
rf Relating to the rear face (–)

Superscripts
∗ Relating to dimensionless quantities (–)
0 Blackbody (–)

Other Symbols
X Estimator of the quantity X (–)

geometries [3] while numerical or experimental characterization procedures have been developed to study 3D complex27

porous geometries. The thermal behavior of metallic foams at ambient temperature were studied by Coquard and Bail-28
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lis [4] or by R. Wulf et al. [5] who used a numerical hot guarded plate method from tomographic images. Zhao et al.29

[6], Fend et al.[7] and Coquard et al. [8] used respectively an experimental guarded hot plane, a transient plan source30

and a flash method. Such studies can be used to explore the validity of the theoretical models described above, val-31

idate employed characterization procedures and highlight the main thermal or geometrical properties in heat transport.32

33

Ceramic and metallic foams are particularly interesting for high-temperature applications in which radiation trans-34

fer plays a major role. The description of the radiative behavior in such media through the identification of equivalent35

optical properties has mostly been studied independently of the other modes of heat transport. Authors like Tancrez36

and Taine [9], Guévelou et al [10] or Loretz et al. [11] proposed numerical methods based on ray-tracing approaches37

and provided correlations from tomographic images while authors like Hendricks and Howell [12] or Baillis et al.[13]38

performed a spectral estimation of equivalent radiative properties from spectrometer measurements. Characterization39

following an entirely numerical procedure requires efficient modelling of the coupled thermal transfers directly on the40

complex and 3D heterogeneous medium. Solving this problem can remain quite tricky and time-consuming because41

of the different nature of the two modes of heat transfer. Indeed, sufficiently finely resolved and realistic geome-42

try and optimized solvers for each of the transport modes are required to achieve this. To our knowledge, very few43

studies have focused on the numerical identification of equivalent properties of foams with coupled conductive and44

radiative transfer. Some authors like Mendes et al. [14] have proposed using a numerical hot guarded plate applied45

to metallic foams at high temperature and demonstrated the limits of using the Rosseland approximation to describe46

the equivalent radiative conductivity. Subsequently, these same authors developed a complete numerical study [14] to47

determine the possible bias generated by simplified radiative modeling of the medium (heterogeneous, homogeneous,48

Rosseland...). Empirical laws were then provided to make modeling these heterogeneous environments easier. Very49

recently, Vignoles and Ortona [15] proposed an original stochastic method to model both conduction and radiation in50

ceramic/metallic foams and fibers and identified total equivalent properties.51

52

Experimental measurements of the conductivity of foams at high temperature are not common at all. The charac-53

terization procedure requires the use of a fast and accurate coupled model. Zhao et al. [6], Coquard and Baillis [16]54

and Mendes et al. [17] used the method involving a hot guarded plate while Coquard et al. [18] used the hot-wire55

to study coupling heat transfers in expanded polystyrene foams. Niezgoda et al.[19] applied the flash method to the56

study of a silica aerogel and other thermal insulators such as low density foams. However, due to a lack of sensitivity57

or to correlations between parameters, the identification of equivalent radiative properties was difficult and was per-58

formed separately. For the very first time, Coquard et al.[8] simultaneously characterized an equivalent conductivity59

and equivalent absorbing and scattering coefficients for metallic and ceramic foams (Zirconia, FeCr alloy, Mullite60

and NiCrAl) over a temperature range between 296 K and 673 K. The authors of the present paper recently reported61

this kind of characterization at temperatures up to 1000 K applied to SiC and SiSiC foams taking into account a62

wide variety of influential parameters such as the geometry of cells, pore diameter, bulk conductivity, the reference63

temperature and so on [20]. Nevertheless, this kind of experimental characterization is always time-consuming and64

costly, especially when aiming high temperatures. Moreover, the large number of possible combinations of intrinsic65

parameters makes a systemic parametric exploration difficult as this requires the right samples to be available. A66

numerical approach is thus necessary to assist with experimental characterization and anticipate needs.67

68

As explained above, the numerical resolution of coupled heat transfers directly on complex geometry remains69

tricky and requires efficient numerical tools. To our knowledge, deterministic methods are commonly used such as70

the Finite Element Method (FEM) for conduction and the Discrete Ordinate Method for radiation [14, 5, 21, 22].71

Recently, Fournier et al.[23] suggested the idea of solving multi-physical phenomena with a single Monte-Carlo al-72

gorithm. They also showed that this kind of algorithm can be constructed if the set of considered equations can be73

written as a Fredholm equation of the second kind corresponding to the linear heat transfer framework. Based on an74

integral formulation, a recursive (backward in time) algorithm computes the temperature at a given time and at a given75

location (probe calculation) of a complex 3D geometry. The different heat transfer modes are solved at once so there is76

no need to couple two independent solvers. As this method requires only a surface mesh, it is very practical to use and77

convenient for dealing with geometric and multiphysical complexities. Moreover, coupling this with tools developed78

by the image synthesis community (such as hierarchical grids) means performance levels can be increased by reducing79

computation times and through a demonstrated insensitivity to the mesh refinement [24]. Caliot et al. [25] applied80
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this algorithm in a stationary case involving a structured foam made of Kelvin cells. This approach has been validated81

for conductive and radiative transfers by comparison with a deterministic method. Ibarrart et al.[26] extended this82

to consider coupled conductive, advective and radiative heat transfers while Penazzi et al. [27] studied the case of a83

semi-transparent medium. Assuming the linearity of heat transfers is a not limiting factor because only a small in-84

crease of the equilibrium temperature of the medium is required in most of the characterization methods, including the85

flash method. Moreover, recent studies have shown that solutions can be found to manage nonlinear problems [28].86

Finally, the Monte-Carlo algorithm and in particular its probe calculation aspect as proposed by Fournier et al.[23]87

appears highly suitable to use in the field of thermal characterization as it provides the solution to the direct model on88

the complex geometry. In this paper, we propose to apply the algorithm to the particular case of the flash method and89

to demonstrate the high potential of this approach for the study of coupled transfers in a heterogeneous medium.90

91

In the following, we shall first describe the thermal problem and governing equations concerned by our work.92

Secondly, we shall go on to describe the generic principle of the Monte-Carlo algorithm, which allows geometrical93

and multiphysical complexities to be dealt with in a very practical and efficient way. The complete methodology and94

the particular configuration of the flash method are detailed. Compared to previous studies [25, 26, 27], the present95

problem requires a transient solution. Thus, a validation case is provided for a 3D geometry which could be useful as96

a benchmark case for further algorithmic improvements. A comparison with a calculation performed by a commercial97

software based on deterministic methods also helps highlight the interests of our approach. Next the construction of98

the geometry of foams is presented and the identification procedure based on the numerically obtained thermograms99

is briefly described. Finally, a parametric study is presented. The influence of main parameters is studied including100

porosity, size of the cells, bulk conductivity of the foam struts, the bulk emissivity and the reference temperature on101

the total heat transfer.102

2. METHODS103

(a) Thermal problem associated with the flash method with-
out convection/radiation at the wall

(b) Graphical representation of the path construction: mov-
ing to higher dimensions

Figure 1: Principle of the flash method and walking technique for conduction

As explained previously, the flash method is an efficient method for measuring the total equivalent conductivity104

of a semi-transparent medium. In addition, the transient nature of this characterization method means it is possible105

to separate different contributions and the authors successfully achieved this to characterize experimentally silicon106

carbide foams at high temperature [20]. The idea of the present paper is to replace an experimental flash method107

by an entirely numerical one. Although the guarded hot plate or hot wire methods appear as references and are also108

well suited for such an identification of thermal properties, only the flash method is discussed here to benefit from the109

previous experience developed and allow comparison. However, there is no limit to the extension of the methodology110

described in this section to other characterization techniques.111

In the experimental flash method (cf. fig. 1(a)), a sample at thermal equilibrium TI is excited with a short duration112

heat flux Φ(t) on its front face. The transient evolution of the mean surface temperature of the rear face T (xobs, t) is113
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measured with an infrared camera. It is common to place the sample between two soleplates or to cover each face114

with a black coating [8, 20] Here this is necessary because of the semi-transparent nature of the sample and because of115

the experimental configuration used. The first soleplate absorbs the incident radiative heat flux and avoids the direct116

transmission of the laser excitation to the detector. The second is useful to avoid measuring volumetric emission.117

This means that a proper spatially averaged temperature can be measured. Finally, the porous medium is considered118

under vacuum, such that no natural convection or conduction through the fluid phase can occur. This choice was only119

made to isolate and identify conduction through the solid phase but no experimental or numerical limitations prevent120

such study of the influence of the fluid phase. After a presentation of the context of the study, the following section is121

dedicated to the description of the methodology used to provide the coupled direct model describing the heat transfer122

through the heterogeneous medium.123

2.1. Monte-Carlo Method: General case124

Fundamentally, the Monte Carlo (MC) method is a method that estimates integrals (and discrete sums) by inter-125

preting them as expectations. Any quantity that can be expressed in an integral form can be estimated using a MC126

algorithm, including differential problems that are initially formulated outside the framework of stochastic processes127

[29, 30]. In this paper, our work aimed to compute the temperature at location xobs and at time t, by following a128

large number of paths crossing the complex geometry. The temperature T (xobs, t) is then the expectation of a random129

variable Θ(xobs, t):130

T (xobs, t) = E[Θ(xobs, t)] ≈
1

Nmc

Nmc∑
i=1

θi (1)

with T (xobs, t) the Monte-Carlo estimator of T (xobs, t), Θ a random variable and θi the ith realization of this variable,131

which is determined from the ith path inside the calculation domain. A path starts at the location xobs and at the time132

t where and when the temperature needs to be computed. A path stops when a known temperature such as the initial133

condition or a Dirichlet boundary condition is reached. The achieved temperature is retained as the weight of the ith134

realization of the algorithm.135

2.2. Monte-Carlo Method: Conductive path136

Concerning the conduction, the transient Energy Balance Equation (EBE) is:137

∂T
∂t

= α∇2T ∀x ∈ Ds (2)

One way to solve the given thermal problem is to use the finite difference method. In the case of a unidirectional138

problem, using an explicit Euler scheme (order 1) to approximate the time derivative, and a centered scheme (order 2)139

for the spatial derivative, the EBE (cf. eq. (1)) becomes :140

T (x, t) − T (x, t − τ)
τ

=
α

δ2 [T (x + δ, t − τ) − 2T (x, t − τ) + T (x − δ, t − τ)] (3)

with δ the spatial discretization step and τ the temporal discretization step. The temperature at position x and time141

t is thus expressed as:142

T (x, t) = µT (x + δ, t − τ) + (1 − 2µ)T (x, t − τ) + µT (x − δ, t − τ) (4)

with µ = ατ/δ2. For this example, the Courant-Friedrichs-Lewis (CFL) condition requires µ ≤ 1/2 for the explicit143

scheme to be stable. Following this condition, eq. (4) allows a probabilistic interpretation and is used to construct144

propagation paths:145

T (x, t) = pr T (x + δ, t − τ) + pc T (x, t − τ) + pl T (x − δ, t − τ) (5)

It is then possible to construct a walk based on the corresponding 1D regular mesh of step δ, with pr , pc and pl146

the probabilities associated with a computation of the temperatures T (x + δ, t − τ) (on the right), T (x, t − τ) (in the147

center) and T (x − δ, t − τ) (on the left), respectively. Each move δ requires a time decrement τ. If the temperature at a148
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new location at time t − τ is unknown, the process is thus continued recursively until a known temperature such as a149

boundary (Dirichlet) temperature or the temperature at the initial time is reached.150

The transition from this kind of walking technique to a three-dimensional grid is straightforward. It was initially151

proposed by Haji-Sheikh and Sparrow [31] and allow to simulate a Brownian motion process. However, the previous152

example is described so that the purpose of the walk building process can be better understood. This type of walk is153

actually not practical when dealing with boundary conditions which are different from Dirichlet in complex geometry154

because of the derivative terms with respect to the normal. Therefore the same authors proposed a walk based on a155

sphere. In a spherical coordinate system, the formal solution of eq. (1) at a given position x (here x is the position in156

3D and has thus 3 coordinates) and at time t is:157

T (x, t) =

∫ 1

F=0

∫ 1

G=0

∫ t

τ=0
T (x + δu, t − τ)dF(ϕ)dG(θ)dH(τ) (6)

158 F(ϕ) = ϕ/2π, G(θ) = 1
2 (1 − cos(θ))

H(τ) = 1 + 2
∑∞

p=1(−1)p exp
(
−ap2π2τ/δ2

) (7)

with δ the radius of a sphere centered in x, θ the polar angle and ϕ the azimuthal angle. As in the previous example,
eq. (6) and eq. (7) also admit a probabilistic interpretation. The quantities F, G and H can be regarded as cumula-
tive density functions of the azimutal angle ϕ, the polar angle θ and the time decrement τ, respectively. The latter
expression can be thus rewritten:

T (x, t) =

∫
4π

pU(u)du
∫ ∞

0
pT(τ)dτ [H(t − τ ≤ 0) TI

+H(t − τ > 0) T (x + δu, t − τ)] (8)

with pU(u) and pT(τ) the probability densities associated with the sampling of a direction u and a time τ, respectively.159

H is the Heaviside function. Three random numbers uniformly distributed between 0 and 1 allow us to sample a160

direction u and a time τ. In the case of an infinite medium, the corresponding algorithm to eq. (8) is described in161

algorithm 1:162

Algorithm 1 Sampling of a conductive path (infinite medium)
Sample a direction of travel u according to pU
Sample a time τ according to pT
if t ≤ τ then

T (x, t) = TI (initial condition)
else

T (x, t) = T (x + δu, t − τ) (recursivity)
end if

Hence, if the initial condition is not reached, the path is placed in x + δu and the time t associated with the path163

is decremented by the quantity τ. A random walk based on the construction of a sphere is generated through iteration164

as shown in fig. 1(b). In the case of a finite medium, the conductive path stops if the initial condition or if a boundary165

where temperature is known is reached.166

2.3. Monte-Carlo Method: radiative path167

This paper only deals with the case of an opaque medium and a transparent void phase to simulate experimental168

conditions of our previous study [20]. However, the present method is not only limited to this type of interface169

condition and can be extended, for example, to the case of a semi-transparent medium or to a convective exchange.170

In our case, the radiative transfer is thus limited to a surface-to-surface exchange. The coupling between conduction171

and radiation is thus carried out at the solid/void interface ∂Dsf. The balance of the conductive and the radiative fluxes172

is written as follows:173

n · λs∇T =

∫
2π
|v · n| ε

(
I0(xb) − I(xb,−v)

)
dv (9)
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Figure 2: Conductive-radiative coupling, case of opaque surfaces: ray-tracing within the fluid phase (vacuum)

with ε the emissivity of the surface (uniform and hemispherical), n the unitary outward vector normal to the surface,
λs the thermal conductivity of the solid, xb the position at the solid/void boundary, v the direction, I0 the blackbody
intensity and I the intensity. For the sake of simplicity, radiative quantities averaged on the whole spectrum are
considered.
As described in [25], the wall temperature is non-linearly dependent on the blackbody intensity which means the latter
must be linearized around a reference temperature Tref:

I0(xb) =
σ

π
T 4(xb)

≈
σ

π
T 4

ref + 4
σ

π
T 3

ref(xb) (T (xb) − Tref) (10)

with σ the Stefan-Boltzmann constant. As previously discussed, this assumption does not pose particular problems in
the case of the thermal characterization methods used because of the low temperature elevation of the sample (just a
few Kelvin) relative to the equilibrium temperature. As the void phase is transparent, the incident intensity at the wall
I(xb,−v) is equal to the intensity leaving from xi in the direction −v:

I(xb,−v) = I(xi,−v)

= εI0(xi) +

∫
2π

pR(xi)ρ′|vr · ni| I(xi,−vr)dvr (11)

with pR(xi)ρ′ the Bidirectional Reflectance Distribution Function, which is the product of a probability density over174

the reflected directions vr and the directional-hemispherical reflectivity. ni is the outward normal at the location175

xi. According to eq. (11), the incident intensity is therefore decomposed into an emission term and a reflection term176

integrated over the directions vr . In this expression, the incident intensity I(xi,−vr) can also be decomposed according177

to eq. (11), which gives rise to nested integrals and leads to an iterative algorithm. Finally, we can express the incoming178

intensity as a function of an intensity emitted from an unknown position xγ. The latter intensity can reach the location179

xb in the direction −v after zero, one or multiple reflections. For the sake of clarity, the corresponding nested multiple180

integrals are simply represented by one integral on the space of optical paths Γ:181

I(xb,−v) =

∫
Γ

pΓ(γ)I0(xγ)dγ (12)

with pΓ(γ) the probability density associated with an optical path γ.
By injecting eq. (10) and eq. (12) (linearized) in eq. (9), we can write:

−n · λs∇T = 4εσT 3
ref

(
T (xb) −

∫
2π

|v · n|
π

dv
∫

Γ

pΓdγT (xγ)
)

= hrad

(
T (xb) −

∫
2π

pV(v)dv
∫

Γ

pΓdγT (xγ)
)

= hrad (T (xb) − Trad(xb)) (13)

7



with hrad a radiative exchange coefficient. Trad represents an average radiative temperature seen at the interface and due182

to the radiative exchanges through the void phase. The latter quantity can be estimated with the following algorithm183

(cf. algorithm 2), which is the corresponding algorithmic interpretation of eq. (12) and eq. (13):184

Algorithm 2 Sampling of a radiative path: estimate Trad(xb)
Sample a direction of travel v according to pV
Evaluate a first intersection xi
Sample canonically a random number r in [0, 1]
if r ≤ ε then

Trad(xb) = T (xi) (absorbed)
else

Sample a new direction vr according to pR
Trad(xb) = Trad(xi) (recursivity)

end if

Hence, an emission direction obeying a lambertian law is sampled when evaluating the radiative temperature.185

Then, until an absorption event is achieved, the path jumps through the void phase as represented in fig. 2. At each186

new reflection, a new direction according to the BRDF is sampled. Each jump does not imply time decrementation187

because of the very high velocity of radiative transfers compared to other heat transfer modes such as conduction in188

the solid phase.189

2.4. Monte-Carlo Method: Computation of the wall temperature190

As was the case for the EBE, a finite difference scheme (order 1) requiring the introduction of an infinitesimal191

length δb is used. The conductive heat flux in eq. (13) is therefore approximated as:192

−n · λs∇T ≈ −
λs

δb
(T (xb) − T (xb − δbn)) (14)

By injecting eq. (14) in eq. (13), the wall temperature is expressed:193

T (xb) =
hrad

λs/δb + hrad
Trad(xb) +

λs/δb

λs/δb + hrad
T (xb − δbn) (15)

Hence, the temperature at the interface in eq. (15) can be interpreted as the average of two temperatures weighed by
two associated probabilities prad and pcond:

prad =
hrad

λs/δb + hrad
(16a)

pcond =
λs/δb

λs/δb + hrad
(16b)

The corresponding Monte-Carlo algorithm is straightforward as described in algorithm 3:194

Algorithm 3 Computation of the wall temperature T (xb)
Sample canonically a random number r in [0, 1]
if r ≤ Pcond then

T (xb) = T (xb − δbn) = T (x, t) (conductive path cf. algorithm 1)
else

T (xb) = Trad(xb) (radiative path cf. algorithm 2)
end if

8



Figure 3: Random walks techniques : a) Fixed random walk b) Floating random walk

2.5. Monte-Carlo Method: Computation of the wall temperature (non diffusive wall)195

Considering a given non-emitting (ε = 0) wall ∂DΦ, excited by a transient heat flux Φ(t), the balance at the196

interface is:197

n · λs∇T = Φ(t) (17)

As with the finite difference scheme described earlier, the wall temperature can be expressed as:198

T (xb, t) = T (xb − δbn, t) + Φ(t)δb/λs (18)

This equation can be interpreted with a Monte-Carlo algorithm. If the path reaches an interface with xb ∈ ∂DΦ, it is199

put back at the location xb − δbn and the Monte-Carlo weight is increased by a source term equal to Φ(t)δb/λs. This200

kind of procedure is repeated at each contact with the excited surface. In the same manner, if the impacted wall is201

non-diffusive and adiabatic (Φ(t) = 0), the path is simply put back at the location xb−δbn and the Monte-Carlo weight202

is not increased.203

2.6. Monte-Carlo Method: Random walk techniques204

As discussed previously, the generation of the random walk requires the introduction of two arbitrary lengths δ205

and δb which respectively correspond to a displacement within the solid volume and a replacement at the interface.206

As for the deterministic methods, the computed solution with the MC algorithm converges to the exact solution for207

δ −→ 0 and δb −→ 0. However, as the calculation time increases greatly when the displacement steps are decreased,208

a compromise is therefore required between the computing cost and precision of the solution.209

Moreover, several walking techniques can be employed to mimic the brownian motion [31]. The values of displace-210

ment steps δ and δb can be alternately fixed or floating. These two different techniques are represented in fig. 3. The211

first approach consists of setting a fixed value for displacement step δ as shown in fig. 3 a). At each iteration, a direc-212

tion of travel u is sampled according to pU and the distance δw between the considered position x and the boundary213

∂Ds in the direction u is computed. If δ < δw, the associated boundary condition is processed and the wall temperature214

T (xb) is computed. If the path has to be put back in the solid, a fixed value of δb is used. If δ > δw, the path is simply215

placed in x + δu with the associated time decrement. Hence, the chosen displacement is computed in the form of216

δ = min(δ, δw).217

As fig. 3 shows, the second technique is based on a floating value of the displacement step δ. The idea is to compute218

the radius δs corresponding to the inner circle. The displacement step is chosen in the form of δ = min(δa, δs) with δa219

being an arbitrary value chosen to prevent the displacement being too large. Then, a direction of travel u is sampled220

and the jump is performed. If the considered position x is located between the closest position xb to the boundary ∂Ds221

and xb − δbn, the associated boundary condition is treated. If the path has to be put back in the solid, the same value222

of δb is used and the path is placed in x − δbn. Finally, each floating displacement δ in the volume also implies a time223

decrement according to the chosen value of δ.224
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Between these two described walking techniques, the floating random walk was selected and was used to perform our225

modeling. Even though the calculation of the inner sphere can be more time-consuming than a fixed walk, it means226

we can avoid the introduction of a bias due to a truncated sphere (represented in green in fig. 3 a)). The fixed walk is227

also suitable for small values of δ and δb.228

2.7. Monte-Carlo Method: Complete formulation of the algorithm to the calculation of the flash thermogram229

All the different elements required to solve the considered problem and the construction of the coupled walk in230

conduction and radiation were described previously. This section is dedicated to the description of the general archi-231

tecture of the algorithm as implemented. Details are given of certain specific elements to make these easier to under-232

stand. The aimed configuration to solve is represented in fig. 4. The solid volumeDs is delimited by the surface ∂Ds,233

which is broken down by the surfaces ∂Dfs, ∂Drf, ∂DΦ and ∂Dp respectively corresponding to the fluid(void)/solid234

surfaces (diffusive walls), the rear face surface, the excited surface and the adiabatic surfaces (periodicity condition).235

Periodicity is also applied in the void phase. Hence, each path reaching this virtual wall (represented in blue) is simply236

specularly reflected.237

238

Figure 4: Detailed description of the computation of one realization of the transient conductive-radiative MC algorithm : application to the flash
thermogram

2.7.1. Initialization239

We aim to compute the transient mean surface temperature Trf(t) of the rear face, which is defined by:240

Trf(t) =
1
S

∫
S

T (xobs, t) dS ∀xobs ∈ ∂Drf (19)

with S the surface of the rear face. The latter expression is rewritten to allow a probabilistic interpretation:

Trf(t) =
1

lxly

∫ lx

x=0

∫ ly

y=0
T (xobs, t) dxdy

=

∫ lx

x=0
pX(x)dx

∫ ly

y=0
pY(y)dy T (xobs, t) (20)

with lx, ly, pX(x) = 1/lx and pY(y) = 1/ly respectively the two lengths of the defined rectangular surface and the two241

corresponding probability densities. The initialization can then be easily performed following algorithm 4:242

10



Algorithm 4 Sampling of a spatially averaged temperature: Initialization
Sample location x according to pX(x)
Sample location y according to pY(y)
Set position xobs
Trf(t) = T (xobs, t) (recursivity)

2.7.2. Computation of the Monte-Carlo weight243

All paths start at the time of interest t and at the position xobs sampled uniformly on the rear face (cf. section 2.7.1).
Let us define γ, a given path that reaches the location x( j)

γ ∈ ∂DΦ (excited surface) for the jth times. This path γ, after
a given number of jumps, has an associated time t − τ( j)

γ and the probability density associated with sampling such a
path is p( j)

Γ
(xobs). Hence, in the space of the paths DΓ, the rear face temperature calculation can be summarized as:

Trf(t) = H(t − τ(1)
γ ≤ 0) × TI +H(t − τ(1)

γ > 0)

×

∫
D(1)

Γ

p(1)
Γ

(x(1)
γ )dx(1)

γ

T (x(1)
γ − δbn, t − τ(1)

γ ) +
Φ(t − τ(1)

γ )δb

λs

 (21)

The present algorithm developed for describing the flash method has two important characteristics.244

• A path stops only when the initial condition TI (the only known temperature) is reached.245

• As described in section 2.5, the Monte-Carlo weight is incremented when the path reaches the excited face.246

After this kind of interaction, the walk continues as a conductive walk within the solid phase.247

Hence, the Monte-Carlo weight associated with the ith realization of the algorithm can be simply written as:248

θi = TI +

Ji∑
j=1

H(t − τ( j)
γ > 0)

Φ(t − τ( j)
γ )δb

λs︸                              ︷︷                              ︸
Sij

(22)

with Ji the number of interactions with the excited face of the ith realization of the MC algorithm. Thus, the MC
estimator T rf(t) at a given time t is:

T rf(t) ≈
1

Nmc

Nmc∑
i=1

θi

=
1

Nmc

Nmc∑
i=1

TI +

Ji∑
j=1

S ij


= TI +

1
Nmc

Nmc∑
i=1

S i (23)

with:

S i =

Ji∑
j=1

S ij (24)

the source term for the ith realization of the MC algorithm. In other words, the temperature of the rear face at a time t249

is simply the temperature at the initial condition (t = 0) increased by a given amount due to the energy the flash brings250

to the front face.251

It should be noted that the computation is performed for a given and a unique value of t. Computing an entire252

thermogram thus requires time discretization in Nt values in the [0, tmax] interval and the calculation of the temperature253
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performed for each of these times. Efficient and correct storage of the information generated thus far would mean254

computing the entire thermogram using only the largest time tmax could be carried out with great rapidity but the255

results obtained for different times but computed from the same paths would not be statistically independent. Hence, a256

Monte-Carlo calculation composed of Nmc paths for each value of the time interval is preferable and thus was carried257

out in this work.258

2.7.3. Complete formulation of the algorithm259

The complete formulation of the algorithm for one realization of the algorithm is fully described in fig. 5. It260

summarizes all the previous described steps of the procedure. The interactions with walls (identified by a surface261

mesh) are added and ensure the transition between conductive and radiative paths.262

• The starting point is to sample the starting position on the rear face and to set the starting time (Input, cf.263

section 2.7.1). Then, the Monte-Carlo weight and estimator of the source are set at 0.264

• The loop starts with a test which consists in determining if the considered position is on a boundary (TB). If this265

test is negative, the conductive path is performed (C1-C5, cf.section 2.2). Otherwise, the algorithm determines266

which boundary is reached (TB1 and TB2). If the path is located on the excited face, the estimator of the source267

S is increased (B1 and B2, cf.section 2.5).268

• If the path is located on a diffusive wall, a Bernoulli test is performed (B4-B5) to determine whether the path269

follows a conductive path in the solid or a radiative path through the void phase (cf. section 2.4).270

• If the path follows a conductive path, it is simply put back (B3) within the solid phase at a distance δb from the271

boundary. Otherwise, the walk continues as a radiative path (R1-R5, cf. section 2.3)272

• The path is stopped when the associated time becomes negative (cf. section 2.7.2). The resulting Monte-Carlo273

weight is stored for this realization of the algorithm and a new path is initialized.274

3. Validation on combined conductive and radiative transfers: 3D heterogeneous geometry, benchmark con-275

figuration276

The purpose of this section is to validate the methodology described above as a direct model for its application in277

the framework of an inversion procedure to identify equivalent thermophysical properties. The interest of the method278

is highlighted, a step by step development of the coupled thermal problems to be treated is described and benchmark279

results are proposed. Firstly, in the case of a flash method configuration, a purely conductive medium is considered.280

Then, both conductive and radiative transfers are solved on a one-dimensional problem and an effective thermal281

diffusivity is identified. For the sake of brevity, both validation cases are provided in section 7 of the appendices.282

Finally, a verification of the solution by comparing with a commercial software like Comsol R© is provided on a 3D283

heterogeneous geometry.284

To validate the MC algorithm to compute the transient solution in the case of a 3D complex geometry, solutions
obtained by the MC method are compared with more common approaches like the deterministic methods used in com-
mercial resolution software. As represented in fig. 6(a), a heterogeneous 3D honeycomb geometry was considered.
This geometry was chosen to be simple enough to be easily reproduced and used as a benchmark for further studies,
but also complex enough to be comparable to a porous structure made of solid struts which is commonly studied in
engineering science. It is demonstrated in both section 7.1 and section 7.2 that taking a transient heat flux or periodic
boundary conditions into account does not cause any particular difficulties. This kind of study can be easily repro-
duced in future works on the development of the Monte-Carlo method for combined transfers.
The thermal problem is represented in fig. 6(b). zmax and xmax = ymax are the dimensions of the structure. Square
channels with side 2 × Ds define the void phase while square channels with side Ds represent the struts (solid phase).
The solid is assumed to be opaque with a unit emissivity. As described in section 2, conduction only occurs in the
solid phase while radiative transfer only occurs in the void phase.
As represented in fig. 6(b), the thermal boundary conditions are Thot, the temperature imposed on the upper bound-
ary, Tcold, the temperature imposed on the lower boundary and T∞ the ambient radiative temperature (infinitely,
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set x = xobs and t

θi = 0, j = 0, S = 0

x ∈ ∂D

No (Conductive path)

Yes (Boundary)

u sampling

compute δ

τ sampling

t− τ < 0

No

Yes (Initial condition)

t = t− τ
x = x+ δu

θi = TI + S

x ∈ ∂Dfs

No (non diffusive walls)

Yes (diffusive wall)

x ∈ ∂DΦ

No

Yes (front face)

S = S + δbΦ(t)/λs

j = j + 1

x = x− δbn

r sampling

r < Pcond

No

Yes (Radiative path)
v sampling

Compute xi

x = xi

r sampling

r < 1− ǫ

No (absorbtion)

Yes (reflexion)
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Output
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Figure 5: Detailed description of the computation of one realization of the transient conductive-radiative MC algorithm : application to the flash
thermogram

(a) 3D Geometry (b) Definition of the physical problem

Figure 6: Studied benchmark case

far from the geometry). The structure is under vacuum so that no natural convection can occur. Surfaces can ex-
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(a) Bi = 7.4 10−3

(b) Bi = 1.6

(c) Bi = 102

Figure 7: Transient temperature along the z centerline for different values of Biot number and for low temperature gradient ∆T ∗ = 0.1

change with the environment through radiation. The reference temperature and the ambient temperature are set so
that Tref = T∞ = (Thot + Tcold)/2, the average between the two imposed temperatures. At the initial time, the entire
structure is in equilibrium at Tcold.
Dimensionless temperature differences, radiative Biot number and dimensionless temperature are defined as:

∆T ∗ =
Thot − Tcold

Tref
; Bi =

hradzmax

λs

T ∗ =
T (xobs, t) − Tcold

Thot − Tcold
(25)
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Figure 8: Dimensionless temperature as a function of the dimensionless position for different radiative Biot numbers at steady-state

The dimensionless lengths and time are defined such as z∗ = z/zmax, y∗ = y/ymax, x∗ = x/xmax and t∗ = (αst)/z2
max.285

This problem was solved both by the present Monte Carlo method and by COMSOL multiphysicsR©. In the case of the286

latter, conduction is solved by a finite element method and radiation by the radiosity method, which is well suited to287

this problem involving surface-to-surface radiative exchanges. Comsol simulation was carried out using 1900 mesh288

points forming 4563 tetrahedrons and 4008 triangles and automatic time step was used289

In the case of the Monte-Carlo method, the associated algorithm to solve such a configuration is easily deduced from290

the methodology described in section 2. All paths started at the time and position of interest and then a combined291

conductive and radiative random walk was performed. A path stopped when a known temperature such as Tcold, Thot292

or T∞ was reached and this temperature was retained as a realization of the MC algorithm. Then, a new path was293

initialized. A low dimensionless temperature gradient was deliberately chosen (∆T ∗ = 0.1) to ensure the assumption294

of linearity of the radiative heat exchanges to be valid.295

Transient results obtained with the stochastic and deterministic methods for different positions z∗ = [0.039, 0.27, 0.5, 0.75, 0.96]296

for x∗ = y∗ = 0.5 (centerline position cf.fig. 6(b)) are drawn in fig. 7. Each sub-figure corresponds to:297

• Figure 7(a), Bi = 7.4 10−3 conduction is dominant298

• Figure 7(b), Bi = 1.6 conduction and radiation have a similar influence299

• Figure 7(c), Bi = 102 radiation is dominant300

The dimensionless temperature as a function of the dimensionless time is represented for each radiative Biot number301

and position in Figure 8. This figure shows a comparison between the Monte-Carlo method and the deterministic302

method at the steady state. The dimensionless temperature as a function of the dimensionless position along the303

centerline is drawn.304

In all cases, a good level of agreement between the two methods is observed, which validates the use of the stochastic305

method described to provide a precise solution for a 3D complex geometry and for the thermal problem targeted. The306

transient variation of the temperature (thermogram) is correctly calculated with the MC algorithm. We observe an307

increase in the rate of heat transfer (it should be noted that the scale of time axis is significantly different for each sub-308

graph) with the increase in radiation transfer, i.e. an increase in the total equivalent diffusivity. Moreover, a decrease309

in the temperature gradients in the volume due to the increase of radiative exchanges is also noticed. These results are310

consistent with the literature on radiative transfer in semi-transparent media.311

Figure 9 shows one of the main interests of the Monte-Carlo method in our present case. In section 2 we showed312

that the geometric complexity can be easily handled with tools provided by the computer graphics community (com-313

putation of the intersection between a path and the surface mesh) while the complexity of the problem can be easily314
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(a) Computing time and dimensionless computing time as a function of the scaled position for the Monte-
Carlo method at the steady state

(b) Comparison of the computing time between the Monte-Carlo method and the deterministic method at the steady state

Figure 9: Computing time

managed thanks to the formulation of this kind of algorithm (multiple heat transfer modes with a single path). Here,315

a reduction of the computational time is observed when the role played by radiation increases. For simple problems,316

the effort to perform a MC simulation is more important than a deterministic one. Nevertheless, MC becomes advan-317

tageous with the increase of radiative propagation through the void phase.318

This can be explained at the scale of one path. The calculation time is only linked to the capacity of a given path319

to reach a known temperature or heat sources and thus to end the random walk. Hence, it is linked to the speed320

of propagation for a given time t of the heat transfer between the source and the position of interest (probe compu-321

tation). Assuming there is pure conduction, a path can only walk through the solid following a Brownian motion322

until it reaches Thot or Tcold. This could be quite tricky, especially with thin struts, and could require a great deal of323

computation time. In the case of coupled conductive and radiative heat transfer, the paths can follow a radiative path324

through the void phase, which allows them to travel along a straight line between two interfaces. The distance traveled325

in one step of the algorithm is very large, especially through large void channels, compared to the distance traveled326

during one step of the conductive random walks. Hence, a path can reach Thot, Tcold or even T∞ in a smaller number327

of iterations of the MC algorithm. Moreover, this kind of phenomenon increases with the increase of the probability328

to follow a radiative path.329

Figure 9 represents the computing time and the dimensionless computing time according to the position z∗ to perform330

a given number of realizations of the Monte-Carlo algorithm and for three different radiative Biot numbers on a single331

CPU Intel Xeon X5650. We note that:332

• The computation time for a position at the center z∗ = 0.5 logically corresponds to a maximum. This position333

is indeed the furthest from the known temperatures.334

• The computation times decrease when the radiative transfer increases. This can be explained by the increase of335

the number of sampled radiative paths as described previously.336
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• The dimensionless computation times become insensitive to the starting position with the increase of radiative337

transfers. This can also be explained by the increase of the number of sampled radiative paths. Paths would338

evolve preferentially in the void phase and reach a known temperature with a low number of steps, whatever339

the starting point.340

Figure 9(b) shows the computing time required to compute the temperature for all the 11 positions for the same341

radiative Biot numbers in fig. 9(a) with the MC algorithm. It is compared to the computing time required with the342

deterministic method (Comsol R©) to obtain the whole field of temperature. The number of realizations of the MC343

algorithm was deliberately set to obtain a similar computing time between both methods for Bi = 7.4 × 10−3. As344

we have explained, it can be noted that the computing time needed with the MC method strongly decreases with345

the increase of the radiative transfers thus demonstrating better performances in this case. The access of the whole346

temperature field is not limiting as long as only a probe computation is required in the case of a characterization347

procedure. This study thus provides advice on choosing a method for a possible user. The deterministic method is348

preferable for high porosity media and purely conductive transfer while the Monte-Carlo method described was found349

to give better performances with coupled transfers.350

4. Application to the characterization of porous media351

The purpose of this section is to apply the proposed procedure to a numerical thermophysical characterization of352

heterogeneous structures. Firstly, the construction of the 3D surface mesh and the inversion procedure are detailed.353

Then, a parametric investigation of the different data of the problem is performed on Kelvin cells, which are commonly354

used as the geometry of reference in the frame of foams.355

4.1. Studied geometries and construction356

3D foam geometries are constructed using 3D images defined by structured grids of Vx×Vy×Vz voxels, which can357

be obtained numerically (with a specific software) or experimentally with a scanning method like X-ray tomography.358

This article deals with the case of purely numerically generated foams with a structured matrix. They are based on a359

repetition of a unitary tetrakaidecahedron (Kelvin cell) or of a cubic-shaped cell as used in the validation section (cf.360

section 3. Nevertheless, as highlighted, the proposed method is easily expandable to a wide range of geometries such361

as randomly distributed matrix foams, fibers, packed spheres or even real x-ray tomographied foams. The initial raw362

data were obtained from a foam generator software named GenMat R©, which was developed by LTEN (Heat Transfer363

and Energy Laboratory at Nantes - UMR CNRS 6607) and IUSTI (Institut Universitaire des Systèmes Thermiques et364

Industriels - UMR CNRS 7343). Based on a watershed marker-based method, foams numerically generated by this365

software were validated by comparing with a reference SiC foam [10].366

GenMat R© provides a stack of grayscale images corresponding to the desired foams. Two stacks of plain material367

corresponding to the two soleplates (cf. section 1) were added. Then, the surface mesh was generated with a robust368

marching-cube method available in 3DSlicer R© (open-source software). Smoothing algorithms (surface preserved) or369

decimation algorithms (reducing the mesh refinement) can be also used and are available in Meshlab R© and Blender370

R© (open-source softwares). Finally, a good quality closed mesh was obtained as shown in fig. 10.371

Figure 10: Example of the studied geometry: four Kelvin cell sandwiched between two soleplates
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4.2. Inversion of the thermogram - equivalent properties of the medium372

The transient evolution of the temperature on the rear face is treated exactly as if it were an experimental thermo-373

gram. As the thermogram was obtained using a stochastic approach, the temperature calculated at any time is affected374

by a random error. It should also be noted that the standard deviation associated to each point is easy to obtain, which375

is one of the strengths of the Monte Carlo methods [32]. This standard deviation is proportional to the inverse of the376

square root of the number of Monte Carlo realizations (or of the computation time, this one being proportional to the377

number of calculated random walks in the medium). From the inversion point of view, this error is similar to the noise378

observed in an experimental thermogram obtained with a flash method (cf. section 7.1).379

The inversion of the thermogram requires a direct model of the equivalent homogeneous media like any kind of in-380

verse problem. Here the direct model aims to calculate the thermogram at the rear face of a homogeneous sample381

sandwiched between two soleplates. This thermogram is indeed the quantity provided by the Monte-Carlo algo-382

rithm. The thickness and thermal properties of the two soleplates are known and correspond to the values used in the383

Monte-Carlo code. The homogeneous medium representing the foam is characterized by its total equivalent thermal384

conductivity and equivalent specific heat. The direct model used for the inversion procedure is a 1D three-layer purely385

conductive model. The thermal problem is solved with a quadrupole method [33], which provides a simple semi-386

analytical solution. The equivalent total thermal diffusivity of the foam can be identified using this inverse method.387

The total equivalent conductivity can be deduced from the knowledge of the specific heat of the foam and its porosity.388

A Levenberg-Marquardt algorithm [34] was used to obtain the best match between the thermogram calculated on the389

actual sample structure (foam struts) with the Monte Carlo algorithm presented above and the thermogram calculated390

with the equivalent homogeneous medium. More details about inversion procedure can be found in the authors’ paper391

devoted to characterization of foams at high temperature by using the Flash method [20].392

4.3. Parametric study and discussions393

4.3.1. Influence of the reference temperature394

The algorithm described in section 2 and validated herein above was applied to a porous medium composed of a395

stack of five Kelvin cells between two soleplates as depicted in fig. 10. Periodic boundary conditions were applied396

along the x and y directions such that an infinite medium was actually considered along these two directions (cf. fig. 4).397

398

The conductivity of the solid phase was fixed at λs = 50 W ·m−1 · K−1 (which is close to the thermal conductivity399

of SiC at 1000 K), the diameter of the cell was Dcell = 10 mm, the porosity of the foam was ε = 80 %, the investi-400

gated range of the reference temperature was between 300 K and 2500 K. The specific heat of the solid was set at401

106 J ·m−3 · K−1 and the duration of the heat flux flash was set so that td = tmax/50 (cf. eq. (27)). Let us note that402

taking constant thermal properties of the strut material along the whole temperature range from ambient to 2500 K is403

nonphysical. However, the goal of this study was not to describe the variation of the total equivalent conductivity of a404

real foam but to conduct a parametric study aiming at separating the influence of the different parameters (temperature,405

porosity, cell size, bulk conductivity and emissivity), that involves rightly to keep all parameters constant except the406

parameter of interest. Such study is easily feasible numerically whereas it is difficult to be carried out experimentally407

due to sample availability or due to correlations between parameters and reference temperature.408

Figure 11 shows the different numerical thermograms obtained with the MC algorithm and corresponding best fits409

after the estimation procedure based on the three-layer purely conductive and homogeneous model. A good level of410

agreement is observed. This figure shows clearly the acceleration of the thermograms when the reference temperature411

increases because of the increasing role of radiation. It should be noted that the temperature reached at the steady412

state is the same for all reference temperatures because the deposited energy was the same. Each thermogram was413

computed using 2000 Monte-Carlo realizations per time interval and 50 time intervals (thus 105 total random walks414

were computed in total).415

The right part and left parts of fig. 11 show an example of random walk in the structure at a low reference temper-416

ature (for which heat transfer is almost purely conductive) and at a high reference temperature (Tref = 2500 K) (for417

which radiation plays a significant role), respectively. As previously stated, when the reference temperature increases,418

the probability of following a radiative path increases. Thus an increasing number of paths (blue lines in insets in419

fig. 11) cross the void phase. This travel is quasi instantaneous (due to the high velocity of light), so the mean celerity420

(i.e. the total equivalent thermal diffusivity) of the heat transfer increases. Hence, the increasing role played by the421
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radiative transfer means the steady state is reached more quickly. This means the starting time of the paths can be422

decreased which causes a strong decrease in computation time as explained in section 3. With a single CPU Intel Xeon423

X5650, a gain of a factor of 50 is observed between a pure conduction calculation and a calculation performed with424

Tref = 2500 K. Hence, the MC algorithm is of interest when radiative heat transfer plays an important role, as was425

already explained in the previous section. An opposite trend is generally observed following deterministic methods426

for conduction-radiation algorithms which slow down when the radiation contribution increases due to error control.427

For each reference temperature value, fitting the computed thermogram makes it possible to obtain a total equivalent428

diffusivity of the porous medium. In the following subsections, the influence of the foam’s morphological (number429

of cells, porosity, cell size) and thermophysical (bulk thermal conductivity, emissivity) properties on the equivalent430

diffusivity are presented. For the sake of brevity, the thermograms will no longer be shown.431
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Figure 11: Numerical thermograms (symbols) and corresponding thermogram fits (plain lines) obtained with the three-layer purely conductive
and homogeneous model (cp). Right and left insets: representation of random walk paths (blue lines) inside the structure. Right inset: 300K
temperature, radiation is negligible most of the random walk stays inside the struts. Left inset: 2500 K, the random walk can jump straightly from
one strut to another strut

4.3.2. Influence of the number of pores in the thickness432

The variation of the pore number in the thickness allows us to address the question of the validity of the diffusion433

approximation to describe the radiative transfer. This assumption is based on the idea that radiative transfer is com-434

parable to a diffusive transfer such as conduction. This means the radiative transfer can be described by the simple435

definition of a “radiative” conductivity λrad. In the case of an optically thick participating medium, Rosseland’s law436

[35] is commonly used:437

λrad =
16σT 3

ref

3βeff

(26)

The effect of increasing the number of pores in the thickness is that the equivalent optical thickness of the porous438

medium also increases and thus, the diffusion approximation according to Rosseland becomes valid.439

Five foams were generated which were exactly identical in terms of porosity and pore size. These foams differ simply440

by the number of patterns present in the thickness such as represented in fig. 12. The conductivity of the solid was441

decreased to 1 W ·m−1 · K−1 to increase the role of the radiative transfer. For these five foams, the total equivalent442

estimated conductivity was drawn according to the reference temperature. First, when the reference temperature is443

low, the equivalent total conductivity is identical between the different structures. This is due to the fact that in pure444

conduction the equivalent conductivity is independent of the number of patterns. A single cell is sufficient to be445

representative of the transfers. Secondly, with the increase of the radiative transfer, the total equivalent conductivity446

increases with the number of pores.447

The Rosseland’s law given in eq. (26) predicts that the equivalent “radiative” conductivity, for a given reference448

temperature, does not vary with the thickness. Thus, if the medium is optically thick, the transfer by radiation only449

depends on the equivalent extinction coefficient and the reference temperature. We can observe graphically that the450
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equivalent total conductivity for a foam with 3 cells and 4 cells are very close to that of a foam with 5 cells. This451

suggests, at least graphically, the validity of the diffusion approximation and a radiative behavior in agreement with the452

Rosseland prediction for the chosen set of parameters and investigated range of reference temperature. The proposed453

tool enables the quantification of an equivalent radiative conductivity, an exploration of the validity of the diffusion454

approximation and a simplification in the modeling. In the following, only foams with at least 4 cells along the455

thickness are considered.456

Figure 12: Influence of the number of pores in the thickness – λs = 1 W ·m−1 · K−1, ε = 80 %, Dcell = 10 mm

4.3.3. The influence of the porosity457

In this section the influence of the porosity and shape of the solid matrix on the coupled heat transfer is presented.458

Two kinds of cell geometries were considered: Kelvin cell and honeycomb cell (cubic-shaped cell) as represented in459

fig. 13. Cell size is set to 2 mm. A stack of 4 cells along the heat transfer axis was considered. For each structure,460

the porosity value of both structures varied from 0.2 to 0.8. The evolution of the total equivalent conductivity as a461

function of the reference temperature is drawn.462

For a given porosity, a logical linear increase in the total equivalent conductivity with the third power of the ref-463

erence temperature is observed (cf. Rosseland relation eq. (26) or according to other laws dedicated to radiative464

conductivity [36]). At a low temperature, heat transfer arises from conduction only and a very well-known result465

is observed[2], i.e. the higher the porosity, the smaller the conductivity. Conversely at high temperature, the higher466

the porosity, the higher the conductivity is because the emptier the structure, the easier radiation can take place and467

transfer heat. We notice that the conductivity depends little on the porosity at a given temperature near 1200 K (4σT 3
468

= 400 W ·m−2 · K−1) in this example, except for the lowest porosities. Moreover, the influence of the shape of the469

matrix is highlighted. For the same set of parameters, the total effective conductivity of the cubic-shaped cell is greater470

than the Kelvin cell. This leads to the idea that a cubic shaped foam is more transparent than a Kelvin cell foam, i.e.471

it has a lower effective extinction coefficient. The slope of the curve presented in fig. 13 means a radiative coefficient472

equivalent to the porous medium could be extracted following a judicious choice of an equivalent radiative law.473

These results seem logical and expected. The proposed procedure involves retrieving the classic results from the474

literature to explore the influence of parameters like porosity and carry out a better quantification of the major heat475
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transfer mechanism for a given structure. In the case of pure conduction, the estimated conductivity is compared to476

the one proposed by Pabst et al. [37] for a Kelvin cell with the same morphological parameters. As presented in477

fig. 14, a good level of agreement is found which meant the result could be validated with a high level of confidence478

in the proposed method.479

�= 0.4 �= 0.8

(a) Kelvin cell (Dcell = 2 mm)

�=0.4 �=0.8

(b) Cubic-shaped cell cell (Dcell = 2 mm)

Figure 13: Influence of the porosity on the total heat transfer – λs = 1 W ·m−1 · K−1, Dcell = 2 mm

Figure 14: Equivalent thermal conductivity of Kelvin cell according to porosity: pure conduction

4.3.4. The influence of cell size480

This section focuses on the influence of cell size. The geometry studied was composed of four Kelvin cells with481

a fixed porosity equal to 80 %. We varied the cell size between 1 mm and 10 mm. The equivalent conductivity as a482

function of the third power of reference temperature is represented in fig. 15. In pure conduction (low temperature),483

the equivalent conductivity does not depend on cell size. The solid matrix is organized in exactly the same way and484

the amount of material (porosity) is the same which means there is no reason to observe an influence of cell size.485
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This is a well-known result in foam literature [2]. When the temperature increases, radiation transfers increase too486

and we observe that the larger the cell size, the higher the total equivalent conductivity of the homogeneous medium.487

As noted in the previous section, this result is logical. The mean free radiative path is indeed greater for larger cells,488

which corresponds to a lower extinction coefficient. It should be noted that, in theory, the equivalent optical thickness489

is the same for all these different structures. However, as the sample thickness increases when the size of the cell490

increases, this corresponds to a decrease in the extinction coefficient β (the optical thickness being defined by τ = βe)491

and thus an increase in radiative conductivity as predicted, for example, by the Rosseland model.492

Figure 15: Influence of cell size on the total heat transfer: Kelvin cell – λs = 1 W ·m−1 · K−1, ε = 80 %

4.3.5. Influence of the bulk conductivity of struts493

In fig. 16, the results obtained for a stack of 4 Kelvin cells with a porosity equal to 0.8 and bulk conductivity of494

the struts varying from 0.1 W ·m−1 · K−1 to 100 W ·m−1 · K−1 are described. This study illustrates how conduction495

and radiation through the porous medium are in a competition to become the major heat transfer mechanism.496

The ratio λeq/λs is presented in fig. 16(a). If the temperature is low enough for heat transfer to be due to conduction497

alone, then the equivalent conductivity is proportional to the bulk conductivity and consequently the ratio λeq/λs is498

logically independent of the thermal conductivity of the solid. This ratio only depends on structural properties such499

as porosity and the shape of the solid matrix. When the temperature increases, the ratio is no longer independent on500

the bulk conductivity because of the increasing role of radiation transfer, which becomes quickly the main transport501

mode when the thermal conductivity is low.502

Figure 16(b) presents the ratio of the radiative thermal conductivity by the total equivalent conductivity (percent-503

age) as a function of the reference temperature for different conductivities of the bulk is represented. For a low bulk504

conductivity (e.g. λs = 0.1 W ·m−1 · K−1), radiation transfer very quickly becomes the main transfer method, even505

for low reference temperatures. For example, for Tref = 500 K, radiation accounts for already almost 60 % of the506

total transfer. On the other hand, for λs = 100 W ·m−1 · K−1, conduction transfer remains predominant over radiation507

transfer even at high temperatures.508

These observations can be understood through the scope of the stochastic method developed in this paper. Indeed,509

the competition between the two heat transfer modes appears because of the probability of following a radiative510

path Prad. If the conduction term λs/δb is very large compared to the radiative term hrad, then the problem is purely511

conductive and it is weakly sensitive to radiative transfer and thus to temperature. On the other hand, considering512

an extreme case in which the radiation is very large in comparison to the conduction, the total heat transfer does not513

depend on the conductivity of the solid.514

4.3.6. The influence of emissivity515

In this section, the influence of the emissivity of struts on the total equivalent heat transfer is studied. In all516

previous cases, the emission of radiation was hemispherical (lambertian or isotropic on the hemisphere) and the517

emissivity was chosen equal to 1. On a structure composed of a stack of five Kelvin cells along the direction of518

heat transfer, simulations were performed for an emissivity and a reference temperature varying between 0 to 1 and519
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(a) Ratio equivalent thermal conductivity / bulk conductivity as a
function of the temperature

(b) Ratio equivalent radiative conductivity / total conductivity as a
function of the temperature

Figure 16: Influence of the bulk conductivity for a structure composed of 4 Kelvin cells – ε = 70 %, Dcell = 2 mm

300 K to 2500 K, respectively. fig. 17 shows the ratio λeq/λs as a function of the reference temperature. In this work,520

perfectly diffuse reflection was implemented. Nevertheless, it is possible to take specular reflection or combined521

specular/diffuse reflection into account using the proposed stochastic approach.522

When transfers by radiation are weak, the emissivity logically has no influence on the equivalent total conductivity523

because conduction is the main mode of transfer. Then, with the increase of the reference temperature (i.e. radiation),524

an increase of the equivalent conductivity with the emissivity and, logically, with the temperature considered, is525

observed. For the asymptotic case ε = 0, no radiative transfer can occur. Then, a rapid increase in total equivalent526

conductivity between ε = 0 and ε = 0.25 is observed and reaches its maximum for ε = 1. In the case of an optically527

thick medium, this kind of phenomenon can not be explained by the influence of the emission of the intern part of the528

two soleplates alone. An effective optical thickness of the porous medium, which can be seen as the statistical mean529

free paths traveled within the fluid phase and thus depends only on the morphological properties of the foam, appears530

here to depend on the emissivity. Evidence on this kind of result was also given by Vignoles [15], Patel et al. [21] or531

Li and Wang [38]. The latter also showed that the specular/diffuse mode of reflection has a major role on the effective532

extinction coefficient. This aspect could usefully be explored in more detail in further studies.533

Figure 17: Influence of the emissivity of struts – λs = 50 W ·m−1 · K−1, ε = 70 %, Dcell = 2 mm
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5. Conclusion534

In this paper, a new tool for modeling and characterizing coupled transfers in complex geometric media such as535

porous media was proposed. The recent developments of the Monte-Carlo method make it possible to imagine, in536

the framework of linear thermal transfers, to solve coupled and multiphysics transfers with a single algorithm. This537

method is very interesting for the characterization of complex media for two reasons. Firstly its capacity to han-538

dle the increasing complexity of the solved physics (directional dependency of emission, semi-transparent medium,539

frequency dependence, anisotropy of the solid phase, etc.) without an increase in computation time. Secondly the540

calculation performances allowed by using tools from the graphic community (insensitivity of the refinement of the541

mesh, parallelization, etc.) make it an effective option as well. Moreover, the probe computation aspect, the statistical542

interpretation of the space of paths and the approach’s capacity to simulate the combined heat propagation are very543

appropriate in the context of study and understanding of coupled mechanisms. For the first time, a numerical repro-544

duction of the flash method in the case of coupled conductive and radiative transfers (opaque surfaces) was performed.545

Firstly, the methodology was fully described. This highlighted the proposed formulation’s various positive aspects546

such as its practical implementation and the understanding it provides of the intrinsic thermophysical properties547

through probabilities. However, the method requires the introduction of arbitrary lengths to generate the walk. Future548

studies will focus precisely on determining a time/accuracy trade-off for these parameters.549

Next the proposed MC algorithm and its use as a numerical measuring instrument were validated by comparison with550

deterministic solvers such as FlexPde R©, Comsol R© or a semi-analytical solution provided by the quadrupole method.551

A validation of the transient solution was provided on a 3D heterogeneous benchmark case. The results showed a552

very good level of agreement with deterministic solvers and highlighted the interest of using the present method in553

the case of an increasing influence of the radiative transfer. New transport modes such as advection, conduction in the554

fluid phase and participating solid phase can be added.555

Finally, this code was used to reproduce the usual flash method applied to experimentally determine the diffusivity of556

foams, as was recently performed by the authors. The thermal response of a foam sample sandwiched between two557

soleplates and submitted to a heat radiative flux flash was computed. The thermogram obtained numerically were fitted558

against the thermogram obtained with a direct model involving a homogeneous medium between the same soleplates.559

A total equivalent diffusivity (conduction+radiation) for the foam was thus obtained. The proposed procedure and its560

coupling with recently developed tools such as GenMat R© (foam generator) enabled us to propose a parametric study561

of how morphological and thermophysical parameters influence the equivalent total conductivity of the foam. Our562

results showed a good level of agreement with the associated literature. The proposed method can be adapted to new563

geometries and to new characterization configuration. Further studies could focus on new heterogeneous structures564

such as X-ray tomographied foams, numerical foams, packed sphere or fibers and new characterization methods such565

as the hot-guarded plate or the hot-wire method used to study combined heat transfer. Hence, correlations of effective566

equivalent properties of such media could be provided in parallel of experimental developments.567
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References575

[1] A. Sommers, Q. Wang, X. Han, C. T’Joen, Y. Park, and A. Jacobi. Ceramics and ceramic matrix composites for heat exchangers in advanced576

thermal systems—A review. Applied Thermal Engineering, 30(11-12):1277–1291, 2010.577

[2] Paola Ranut. On the effective thermal conductivity of aluminum metal foams: Review and improvement of the available empirical and578

analytical models. Applied Thermal Engineering, 101:496–524, May 2016.579

[3] Rolf Landauer. The Electrical Resistance of Binary Metallic Mixtures. Journal of Applied Physics, 23(7):779–784, July 1952. ISSN580

0021-8979, 1089-7550. doi: 10.1063/1.1702301.581

24



[4] R. Coquard, D. Baillis, and E. Maire. Numerical investigation of the radiative properties of polymeric foams from tomographic images.582

Journal of Thermophysics and Heat Transfer, 24(3):647–658, 2010.583

[5] R. Wulf, M. A. A. Mendes, V. Skibina, A. Al-Zoubi, D. Trimis, S. Ray, and U. Gross. Experimental and numerical determination of effective584

thermal conductivity of open cell fecral-alloy metal foams. International Journal of Thermal Sciences, 86:95–103, 2014.585

[6] C. Y. Zhao, T. J. Lu, H. P. Hodson, and J. D. Jackson. The temperature dependence of effective thermal conductivity of open-celled steel586

alloy foams. Materials Science and Engineering: A, 367(1-2):123–131, February 2004. ISSN 09215093. doi: 10.1016/j.msea.2003.10.241.587

[7] T. Fend, B. Hoffschmidt, R. Pitz-Paal, O. Reutter, and P. Rietbrock. Porous materials as open volumetric solar receivers: Experi-588

mental determination of thermophysical and heat transfer properties. Energy, 29(5-6):823–833, April 2004. ISSN 03605442. doi:589

10.1016/S0360-5442(03)00188-9.590

[8] R. Coquard, D. Rochais, and D. Baillis. Experimental investigations of the coupled conductive and radiative heat transfer in metal-591

lic/ceramic foams. International Journal of Heat and Mass Transfer, 52(21-22):4907–4918, October 2009. ISSN 00179310. doi:592

10.1016/j.ijheatmasstransfer.2009.05.015.593

[9] M. Tancrez and J. Taine. Direct identification of absorption and scattering coefficients and phase function of a porous medium by594

a Monte Carlo technique. International Journal of Heat and Mass Transfer, 47(2):373–383, January 2004. ISSN 00179310. doi:595

10.1016/S0017-9310(03)00146-7.596
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[37] W. Pabst, E. Uhlı́řová, T.and Gregorová, and A. Wiegmann. Young’s modulus and thermal conductivity of closed-cell, open-cell and inverse656

ceramic foams–model-based predictions, cross-property predictions and numerical calculations. Journal of the European Ceramic Society,657

38(6):2570–2578, 2018.658

[38] Jun E Li and Baolin Wang. Equivalent thermal conductivity of open-cell ceramic foams at high temperatures. International Journal of659

Thermophysics, 35(1):105–122, 2014.660

[39] Gerard L Vignoles and Alberto Ortona. Numerical study of effective heat conductivities of foams by coupled conduction and radiation.661

International Journal of Thermal Sciences, 109:270–278, 2016.662

7. Appendices663

(a) On a square (2D) with convective loss at the front and
rear face. Thermogram computed thanks to 105 realizations
of the Monte-Carlo algorithm per time

(b) On a cube (3D) without convective loss at the front and
rear face (adiabatic). Thermogram computed thanks to 5000
realizations of the Monte-Carlo algorithm per time

Figure 18: Comparison of the rear face thermograms on a Flash configuration computed with the Monte Carlo method and the finite element
method (commercial software)

7.1. Purely conductive case: Flash configuration664

For this first case, a purely conductive homogeneous solid medium (no radiation) was considered. A transient heat665

flux was applied on the front face such that:666

Φ(t) = Q
(
H(t > 0) −H(t − tp > 0)

)
(27)

with tp the time duration of the excitation and Q the constant heat flux deposited. The parameters were set as λs = 1667

W ·m−1 · K−1, α = 1 mm2 · s−1 and tp = 10 s. Studied geometries were simply a square and a cube whose sides had668

a length of 10 cm. fig. 18 shows thermograms computed with the described MC method and with the finite elements669

method (commercial software Flexpde R©). A dimensionless temperature such as T ∗ = (Trf(t) − TI)/(Tmax − TI) was670

introduced with Tmax the maximum temperature of the thermogram.671

In fig. 18(a), on a square 2D geometry, the thermogram was discretized in 1000 time intervals and 105 realizations of672

the MC algorithm were performed for each time value. Convective losses on the front and rear face were considered673

(h = 5 W ·m−2 · K) with a fluid temperature set to the initial temperature TI. The other boundaries were adiabatic.674

26

http://epubs.siam.org/doi/10.1137/0114031
http://epubs.siam.org/doi/10.1137/0114031
http://epubs.siam.org/doi/10.1137/0114031


Thus, the heat transfer was unidirectional. A good level of agreement was observed between the two methods and the675

well-known shape of the rear face thermogram for the flash configuration was successfully obtained. In fig. 18(b), on676

a cube 3D geometry, the thermogram was also discretized in 1000 time intervals but only 5000 realizations of the MC677

algorithm were performed. Convective losses were removed so the system reached a new temperature equilibrium678

at steady-state. In that case, a good level of agreement was also found between the two methods. Nevertheless, the679

solution computed with the Monte-Carlo method appears noisier than in the previous case due to a low number of680

realizations of the MC algorithm per time.681

We would like to simply stress at this point the fact that the uncertainty associated with a MC computation is dependent682

on the number of realizations performed. The solution computed by the Monte Carlo algorithm and its associated683

error can be compared to the thermogram obtained by a measuring instrument. For the Monte Carlo algorithm, the684

associated uncertainty simply depends on the number of paths followed and, therefore, on the calculation time. The685

solution obtained by Monte Carlo tends towards the solution obtained by the deterministic solver with the increase686

of the number of realizations. This noise is independent and centered on the solution which means it can be taken687

into account during the inversion procedure (like during an experimental measurement) and implies an error in the688

estimated parameters. It is therefore possible to reduce computation time with the present approach but with reduced689

precision in the estimated parameters.690

7.2. Coupled conductive and radiative transfers: 1D Flash configuration, opaque parallel plates separated by void691

phase692

(a) Studied geometry

(b) Equivalent scaled thermal diffusivity as a function of the Biot number

Figure 19: Comparison of the analytical solution and the solution estimated by inversion of the thermogram generated by MC

The previous example only dealt with the simple case of pure conduction in a homogeneous medium. The more693

complex case of coupling between conduction and radiation is considered here. This academic case was studied by694

Vignoles [15] to validate his coupled conductive and radiative stochastic method and to identify the equivalent thermal695

diffusivity of foams [39]. The problem is defined by solid plates of thickness L1 which are homogeneous, parallel696

and opaque with a given emissivity ε. Each plate is separated by a void phase of thickness Ltot − L1 and are assumed697

infinite in the other two directions. Thus, the considered thermal problem is unidirectional.698

This thermal problem has an analytical solution. By writing the balance of the conductive and radiative fluxes (cf.699
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eq. (9)) at the interface, the equivalent diffusivity between two separated plates can be written as:700

αeff =
αs

(1 − Π)2

(
1 +

2 − ε
Bi

)−1

(28)

with αeff the equivalent diffusivity, Π = 1 − L1/Ltot the volume fraction and Bi the radiative Biot number defined such701

as:702

Bi =
hradL1

λs
=

4εσT 3
refL1

λs
(29)

The simulation with the MC algorithm was performed on the geometry represented in fig. 19(a). The simulation of703

the coupled heat transfer of the equivalent homogeneous medium was based on the quadrupole method [33], which is704

very convenient for simulation of multi-layer and one dimensional heat transfer. A bi-layer medium was thus modeled.705

The first layer was defined with a thermal diffusivity αeff, which accounts for the first soleplate and the void phase706

while the second, defined with αs, accounts only for the second soleplate. The inverse procedure aims to identify the707

value αeff of the homogeneous model that allows the best match with the thermogram obtained with the 3D simulation708

computed with MC.709

In fig. 19(b), the estimated values of the equivalent diffusivity are represented as a function of the radiative Biot num-710

ber for a given value of volume fraction Π. These values and their associated uncertainties are compared with the711

analytical solution given in eq. (28). For Bi > 0.1, a good level of agreement was found between our estimated equiv-712

alent diffusivity and the analytical solution. Given the associated uncertainty, the results are statistically compatible.713

This means we can have great confidence in the described procedure involving direct modeling with combined MC714

algorithm and inversion based on the use of a homogeneous equivalent model.715

Computation with the MC algorithm becomes difficult in the case of a low radiative Biot number (little body assump-716

tion Bi < 0.1) which constitutes a limit of the present MC algorithm. For low value of hrad, the probability of a path717

located at the boundary to jump through the void phase is very low and therefore many attempts are required to allow718

a given path to reach the front face, location of thermal excitation. This means the computation time needed to build a719

usable thermogram is increased too much. Convergence issues are highlighted even in this simple 1D case. Solutions720

exist like the introduction of arbitrary probabilities but have not been considered in the case of the described MC721

algorithm and could be the subject of further studies.722
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