
HAL Id: hal-03681396
https://hal.science/hal-03681396

Submitted on 20 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the effective metric of axial black hole perturbations
in DHOST gravity

David Langlois, Karim Noui, Hugo Roussille

To cite this version:
David Langlois, Karim Noui, Hugo Roussille. On the effective metric of axial black hole perturbations
in DHOST gravity. Journal of Cosmology and Astroparticle Physics, 2022, 08, pp.040. �10.1088/1475-
7516/2022/08/040�. �hal-03681396�

https://hal.science/hal-03681396
https://hal.archives-ouvertes.fr


On the effective metric of axial black hole perturbations in DHOST gravity

David Langlois,1 Karim Noui,2, 1 and Hugo Roussille1, 2
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We study axial (or odd-parity) perturbations about static and spherically symmetric hairy
black hole (BH) solutions in shift-symmetric DHOST (Degenerate Higher-Order Scalar-
Tensor) theories. We first extend to the family of DHOST theories the first-order formulation
that we recently developed for Horndeski theories. Remarkably, we find that the dynamics of
DHOST axial perturbations is equivalent to that of axial perturbations in general relativity
(GR) evolving in a, distinct, effective metric. In the particular case of quadratic DHOST
theories, this effective metric is derived from the background BH metric via a disformal
transformation. We illustrate our general study with three examples of BH solutions. In
some so-called stealth solutions, the effective metric is Schwarzschild with a shifted horizon.
We also give an example of BH solution for which the effective metric is associated with a
naked singularity.
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I. INTRODUCTION

With the first direct detections of gravitational waves (GW), the last few years have seen the
dawn of GW astronomy, allowing the study of strongly gravitational systems through the GWs
they emit. The archetypal example of a GW event is a binary black hole merger, which constitutes
the vast majority of sources presently observed by GW detectors. The possibility to observe these
systems directly gives hope that one might be able to reach a precision sufficient enough to compare
observations with the predictions of General Relativity (GR) and put constraints on deviations from
GR in strong gravity regimes. This perspective puts modified theories of gravity in the limelight,
since they are useful to test GR, by comparison of their respective predictions. Therefore, much
work has been done in the past few years in the direction of new theories of gravity and finding
new black hole (BH) solutions in these theories. Once a solution is obtained, it is important to
study its perturbations in order to compute the behaviour of GWs and to make sure no theoretical
issues that could rule out the solution are present, before making any prediction for experimental
results.

In this paper, we focus our attention on axial (or odd-parity) perturbations of nonrotating black
holes in the context of Degenerate Higher-Order Scalar-Tensor (DHOST) theories [1–5], the most
general family of scalar-tensor theories propagating a single scalar degree of freedom. In DHOST
theories, axial perturbations involve, as in GR, a single degree of freedom, in contrast with polar
(or even-parity) perturbations which contain two degrees of freedom, one from the metric and the
other from the scalar field. For this reason, axial perturbations are easier to study and they have
already been investigated in several works in the context of DHOST theories, or subfamilies: from
generic BH backgrounds in [6–10] to “stealth” solutions (solutions with a nontrivial scalar hair but
whose metric coincides with the GR Schwarzschild metric) in [11]. Other works also include polar
perturbations [12–17]. Many of these studies rely on the computation of the quadratic Lagrangian
that describes the dynamics of the perturbations. Recently, we proposed another approach based
on the extraction of a first-order system from the perturbed Einsteins’ equations in [18, 19]. Note
that a few other works have relied on an EFT approach [20–22].

The present work focuses on this first-order formulation of axial perturbations and uses it to
compute the effective metric in which axial perturbations propagate. We start by recalling the
structure of DHOST theories and describe a few known black hole solutions for these theories,
namely stealth solutions [23], the BCL solution introduced in [24] and the 4-dimensional Einstein-
Gauss-Bonnet (4dEGB) solution proposed in [25]. We then extend the first-order formalism devel-
opped for quadratic Horndeski theories in [19] to the full family of DHOST theories (defined up to
cubic order in second derivatives of the scalar field). For axial perturbations, which involve a single
degree of freedom, one can reexpress the equations of motion in the form of a Schrödinger-like
equation for an appropriate master variable.

We then show that axial perturbations verify the equation of propagation of a massless spin-2
field in GR, on a background described by some effective metric that depends on the functions in
the DHOST Lagrangian and the BH geometry. In the case of quadratic DHOST theories, we find
that the effective metric can be obtained directly from the background solution via a disformal
metric. We illustrate our analysis by applying it to the particular BH solutions mentioned above.

In particular, we discuss stealth solutions whose effective metric is Schwarzschild but with
a shifted horizon in general. This case was also studied recently in [11, 14]. Effectively, axial
perturbations and non-gravitational fields (photons, matter) propagate in different metrics since
non-gravitational fields are minimally coupled to the metric. It is thus important to check that the
causal structures are compatible. Despite having different horizons for the axial perturbations and
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the background, we find that the lightcones associated to both are compatible1. We also consider
the effective metric of the 4dEGB solution’s axial perturbations and find that it is not a BH metric
but instead a naked singularity, which is consistent with the pathological asymptotic behaviours
found for this solution in [26].

The outline of the paper is the following. In Sec. II, we give a brief presentation of DHOST
theories and of the few BH solutions that will illustrate our analysis. We then turn, in Sec. III, to
the equations of motion for the axial perturbations, using the first-order framework and then the
Schrödinger-like approach. In Sec. IV, we compute the effective metric for axial perturbations from
different perspectives. We then apply these general results to our few examples. This article is
completed with a few appendices, in which we give additional details and provide some connections
with previous works.

II. DHOST THEORIES AND EXAMPLES OF BH SOLUTIONS

In this section, we briefly present the family of DHOST theories, introduced in [1, 2] and
extended to cubic order (in second derivatives of the scalar field) in [5] (see also [27] for a review).
We then describe of few exacts BH solutions in the context of DHOST theories.

A. DHOST theories

We consider the family of DHOST theories, up to cubic order, whose action written in terms of
the metric gµν and the scalar field φ takes the form

S[gµν , φ] =

∫
d4x
√
−g
(
P (X,φ) +Q(X,φ)�φ+ L(2) + L(3)

)
, (2.1)

where X ≡ ∇µφ∇µφ and the L(2) and L(3) denote, respectively, the quadratic and cubic contribu-
tions, including the associated curvature-dependent terms,

L(2) = F2(X,φ)R+

5∑
i=1

Ai(X,φ)L
(2)
i , L(3) = F3(X,φ)Gµνφ

µν +

10∑
i=1

Bi(X,φ)L
(3)
i . (2.2)

In the above expressions, Gµν is the Einstein tensor, R the Ricci scalar, and we use the shorthand
notation φµ ≡ ∇µφ and φµν ≡ ∇µ∇νφ for the first and second (covariant) derivatives of the scalar

field. The five elementary quadratic Lagrangian L
(2)
i , introduced in [1], read

L
(2)
1 = φµνφ

µν , L
(2)
2 = (2φ)2 , L

(2)
3 = (2φ)φµφµνφ

ν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφ

ν)2 , (2.3)

while the ten elementary cubic Lagrangian densities L
(3)
i are given by [5]

L
(3)
1 = (2φ)3 , L

(3)
2 = (2φ)φµνφ

µν , L
(3)
3 = φµνφ

νρφµρ ,

L
(3)
4 = (2φ)2 φµφ

µνφν , L
(3)
5 = 2φφµφ

µνφνρφ
ρ , L

(3)
6 = φµνφ

µνφρφ
ρσφσ ,

L
(3)
7 = φµφ

µνφνρφ
ρσφσ , L

(3)
8 = φµφ

µνφνρφ
ρ φσφ

σλφλ ,

L
(3)
9 = 2φ (φµφ

µνφν)2 , L
(3)
10 = (φµφ

µνφν)3 . (2.4)

1 The polar sector, which we do not consider in the present work, is however pathological, as stressed in [12]. A
possible way out involves a slight detuning of the degeneracy conditions [53], which for example manifests itself in
U-DHOST theories [54], as discussed in [55].
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From now on, we restrict our study to shift-symmetric theories, which entails that all the
functions in the action (2.1) depend on the kinetic density X only. Although we do not write
explicitly the action that governs the non-gravitational fields, we stress that these fields are assumed
to be minimally coupled to the metric gµν . This will be an important point later in this paper when
we compare the metrics effectively “seen” by the gravitational perturbations and non-gravitational
fields, respectively.

While the functions P and Q can be chosen arbitrarily, the other ones, Fi, Ai and Bi, must
satisfy degeneracy conditions in order to guarantee the presence of a single scalar degree of freedom.
These degeneracy conditions were explicitly computed in [5], generalising the degeneracy conditions
for quadratic DHOST theories established in [1].

In the case of quadratic DHOST theories, it was shown that physically viable theories belong to
the class Ia (or 2N-I as per the classification of [4]) where the functions F2, A1 and A3 are free while
the two others are related to these first ones by the degeneracy conditions. In the case of cubic
DHOST theories, the most relevant theories belong to the class 3N-I where only F3, B2 and B6 are
free while the others depend on these three functions [5]. In particular, we have the conditions

3B1 +B2 = 3B3 + 2B2 = 0 . (2.5)

If one allows for both quadratic and cubic terms, for instance theories in 2N-I and theories in 3N-I,
one has to consider new degeneracy conditions, which link quadratic and cubic functions as follows:

XF2B6 = A1XF3X − 2B2F2 + 2B2XF2X − 2F2F3X , (2.6)

X2F2B2A3 = 2B2(3XA1F2 − 4X2A1F2X + 2XF2F2X − 2F 2
2 )− 4F3X(F2 −XA1)2 , (2.7)

where FX denotes the derivative of any function F with respect to X. The first relation fixes B6

(when F2 6= 0) and the second one fixes A3 (when F2B2 6= 0). Hence, as the classes 2N-I and 3N-I
are independently parametrised by 3 free functions each, the “merged” class that combines them
depends on four free functions due to the two degeneracy conditions (2.6)-(2.7).

It was shown in [5] that any theory in the merged class is related to Horndeski theories by
a disformal transformation2. As Horndeski theories depend on two free functions and disformal
transformations are parametrized by two others functions, we recover that the merged class involves
four free functions. As discussed in [28], all DHOST theories that are related to Horndeski theories
via disformal transformations belong to a special category, which was named CI , in contrast with
the other classes of DHOST theories which form the category CII and are not physically interesting.

B. A few BH solutions

In the rest of this paper, we will be interested in static and spherically symmetric solutions of
these theories, characterised by a metric

ds2 = −A(r) dt2 +
1

B(r)
dr2 + C(r) dΩ2 , dΩ2 = dθ2 + sin2 θ dϕ2 , (2.8)

and a scalar field of the form

φ(t, r) = qt+ ψ(r) , (2.9)

2 Note however that in the Horndeski frame, i.e. with the metric for which gravitation is described by a Horndeski
action, the standard matter fields are no longer minimally coupled to this metric. The interest of the DHOST
formulation is precisely that the matter fields can be assumed to be minimally coupled to the metric without loss
of generality.
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as initially proposed in [23], where q is a constant and ψ is a function of r. Note that the time
dependence disappears in the gradient of φ.

Various exact BH solutions of this type have been obtained [24, 29–34] (see also the reviews
[35, 36] on Horndeski theories and references therein). In this work, we are going to focus our
attention on three particular solutions, which we briefly describe below.

Stealth solutions

Stealth solutions are solutions in which the metric coincides with a vacuum solution of GR,
possibly with a cosmological constant. They have been actively studied, since by construction they
allow one to recover many predictions of GR. If, in addition one assumes a constant kinetic density
X, such solutions exist when the theory satisfies a set of conditions that have been listed in [31]
for DHOST theories. Specific solutions were found in [23, 29, 37–39]. In particular, CI theories we
have described above can be shown to admit a stealth solution where X = −q2 and the metric is
the Schwarzschild solution, i.e.

A(r) = B(r) = 1− rs

r
, C(r) = r2 , (2.10)

with rs the black hole horizon radius, when

P = PX = QX = B2 = 0 for X = −q2 . (2.11)

All the other conditions given in Eq. (18) of [31] are trivially satisfied for CI theories. As for the
scalar field (2.9), it is obtained by integrating the equation

ψ′(r) =
q
√
rsr

r − rs
. (2.12)

Although much studied, stealth solutions also appear to suffer from pathologies, as pointed out
in [12] for instance. Non stealth solutions are more complicated to find and very few have been
constructed so far. In this work, we consider two examples of non-stealth solutions.

BCL solution

The first one, dubbed BCL (for Babichev-Chamousis-Lehebel) was obtained in [24] for a subset
of quadratic Horndeski theories with

F2(X) = f0 + f1

√
X , P (X) = −p1X , Q(X) = 0 , (2.13)

where the coefficients f0, f1 and p1 are constant (with f0 > 0 and p1 > 0). Notice that such a
theory exists only if X > 0, which we are going to assume. The BCL solution has been obtained
for any value of q but, for simplicity, we will only consider the case q = 0 here. In this case, the
scalar field is time-independent and the black hole solution found in [24] simplifies: it is described
by a metric of the form (2.8) with

A(r) = B(r) =
(

1− r+

r

)(
1 +

r−
r

)
and C(r) = r2 , (2.14)

where the two radii r− and r+ satisfy

r+r− =
f2

1

2f0p1
, r+ − r− = rm ≡ 2m, 0 < r− < r+ , (2.15)
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m being the BH mass. One can see that the metric described in (2.14) is very similar to that of a
Reissner-Nordström BH. However, since r− > 0, the BCL black hole exhibits only a single event
horizon, of radius r+, in contrast with the Reissner-Nordström geometry. The scalar field can be
found explicitly and is given by

φ(r) = ψ(r) = ± f1

p1
√
r+r−

arctan

[
rmr + 2r+r−

2
√
r+r−

√
(r − r+)(r + r−)

]
+ cst . (2.16)

The global sign of φ(r) and the constant are physically irrelevant [24].

D → 4 Gauss-Bonnet solution

The second non-stealth solution we will discuss was found in [25] where the authors considered
a specific limit D → 4 of the D-dimensional Einstein-Gauss-Bonnet action. In that way, they
obtained a solution of a particular Horndeski theory defined by

P (X) = 2αX2 , Q(X) = −4αX , F2(X) = 1− 2αX and F3(X) = −4α lnX , (2.17)

where X is supposed to be positive and α > 0 is a constant of the theory with the dimension of a
length squared. In the limit α → 0, one recovers the Einstein-Hilbert action. The solution found
in [25, 40] is static and spherically symmetric with a metric given by

A(r) = B(r) = 1− 2rs

r(1 +
√

1 + 4αrs/r3)
, C(r) = r2 . (2.18)

The solution reduces to the Schwarzschild metric in the limit α→ 0, as expected, with the integra-
tion constant rs corresponding to the BH horizon radius. When α is not too large, more precisely
α ≤ r2

s /4, the solution still describes a BH geometry. It admits two (inner and outer) horizons
located at the positions

r± =
1

2

(
rs ±

√
r2

s − 4α
)
, (2.19)

obtained by solving A(r) = 0. If α > r2
s /2, the solution is a naked singularity, which is not

interesting for us.
As for the scalar field, it is time-independent, i.e. q = 0, and its radial profile is given by3

φ′(r) =

√
A(r)− 1

r
√
A(r)

. (2.20)

The scalar field behaves as φ(r) ' rs/(2r) when r � rs and φ(r) ∝
√
r − rs when |r − rs| � rs.

III. DYNAMICS OF AXIAL PERTURBATIONS

In this section, we consider the linear axial perturbations about the generic background solution
(2.8) and (2.9), and we briefly recall how to compute their equations of motion following the
methods and notations of [19] (see also the general reviews [41–44] on quasi-normal modes and
[6, 45] for the first study of BH perturbations in Horndeski theories).

3 We consider here only the most interesting branch from a physical point of view. The other branch is also discussed
in [26].
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We define the metric perturbations hµν by

gµν = ḡµν + hµν , (3.1)

where a bar denotes the background solution. We restrict ourselves to the study of axial pertur-
bations in the Regge-Wheeler gauge (see the original paper [46] and the more recent article [6] for
the notations we are using here) where the only non-vanishing components of the perturbations
are

htθ =
1

sin θ

∑
`,m

h`m0 (t, r)∂ϕY`m(θ, ϕ), htϕ = − sin θ
∑
`,m

h`m0 (t, r)∂θY`m(θ, ϕ),

hrθ =
1

sin θ

∑
`,m

h`m1 (t, r)∂ϕY`m(θ, ϕ), hrϕ = − sin θ
∑
`,m

h`m1 (t, r)∂θY`m(θ, ϕ), (3.2)

using an expansion in spherical harmonics Y`m(θ, ϕ) because of the spherical symmetry of the
background. In the following, since perturbations with different values of ` and m do not couple
at the linear level, we drop the indices ` and m for clarity. It will also be convenient to use

λ =
`(`+ 1)

2
− 1 , (3.3)

which will contain the whole dependence on `.

The equations of motion are obtained from the action (2.1) expanded at quadratic order in
the perturbations hµν . Note that the scalar field perturbation δφ vanishes identically when one
considers axial perturbations.

A. First order differential system

A long but straightforward calculation, whose details are given in App. A, shows that the
dynamics of the perturbations h0 and h1 can be described in terms of a differential system of the
form

∂Y

∂r
+ Ψ

∂Y

∂t
= M0 Y +M2

∂2Y

∂t2
, (3.4)

where we have introduced the vector Y defined by

Y =

(
Y1

Y2

)
with Y1 = h0 , ωY2 = h1 + Ψh0 , (3.5)

while M0 and M2 are two matrices given by

M0 =

(
C′/C 2iλΦ/C
−iΓ ∆

)
, M2 =

(
0 i
0 0

)
. (3.6)

The different functions Φ, Ψ, Γ and ∆ entering the system depend on the background solution and
also on the DHOST theory functions (2.1) evaluated on the background. They can be deduced
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immediately from the following relations:

F = AF2 − (q2 +AX)A1 −
1

2
ABψ′X ′F3X −

1

2
Bψ′(AX)′B2 −

A
2B

(Bψ′)3X ′B6 ,

FΨ = q

[
ψ′A1 +

1

2

(
Bψ′2

)′
F3X +

1

2

(AX)′

A
B2 +

1

4

(
B2ψ′4

)′
B6

]
,

F
Φ

= F2 −XA1 −
1

2
Bψ′X ′F3X −

1

2
Bψ′ (CX)′

C
B2 −

1

2
Bψ′XX ′B6 ,

Γ = Ψ2 +
1

2ABF

(
2q2A1 + 2AF2 +ABψ′X ′F3X + q2 (AX)′

Aψ′
B2 + q2Bψ′X ′B6

)
,

∆ = −F
′

F
− B

′

2B
+
A′

2A
, (3.7)

where a prime denotes a derivative with respect to r and we have imposed the degeneracy condition
3B3 + 2B2 = 0 from (2.5) to simplify the expressions. One can note that only the functions F2, F3,
A1, B2 and B6 appear in the perturbations: this could be expected from the ADM decomposition of
the DHOST action (2.1) given in [28], since only the terms containing contractions of the extrinsic
curvature tensor of the form KijKij or KijKjkK

i
k contain couplings with the axial modes (this

can be understood by looking at the quadratic actions for tensor modes given in [47] and [28]). In
the case of GR (where F2 = 1 and F3 = A1 = B2 = B6 = 0), (3.7) boils down to

F = A , Ψ = 0 , Φ = A , Γ =
1

AB
and ∆ = −A

′

2A
− B

′

2B
. (3.8)

In the general case, we can slightly simplify the differential system (3.4) and absorb the first
time derivative of Y with the following change of time coordinate

t∗ = t−
∫

drΨ(r) , (3.9)

which transforms (3.4) into

∂Y

∂r
= M0 Y +M2

∂2Y

∂t2∗
. (3.10)

Hence, one can eliminate the function Ψ from the differential system (3.4) by a simple redefinition
of the time coordinate.

Then, we expand in Fourier modes and, using the convention

f(t∗, r) = e−iωt∗f(r) (3.11)

for any function f , we obtain the first-order differential system in the radial variable:

dY

dr
= MY , with M =

(
C′/C −iω2 + 2iλΦ/C
−iΓ ∆

)
. (3.12)

This system generalizes the first-order system obtained for axial perturbations in quadratic Horn-
deski theories, given in [19].

To summarize, axial perturbations about a general static and spherically symmetric background
(2.8) in DHOST theories are fully described in terms of the previous first-order system where the
time coordinate t∗ is related to the original time coordinate t that appears in the background
metric by the transformation (3.9).
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If we assume the action to be that of GR, the previous dynamical system (3.12) simplifies and,
using (3.8), the matrix M reduces to

MGR =

(
C′/C −iω2 + 2iλA/C
−i/(AB) −(A′/A+ B′/B)/2

)
, (3.13)

for an arbitrary background metric. Note that the background metric is not necessarily a vacuum
solution of GR. It can also be any solution of Einstein’s equations with an energy-momentum tensor
whose perturbations vanish in the axial sector.

B. Schrödinger-like equation

In this subsection, we show how to recover a Schrödinger-like equation for the axial perturbations
starting from the first order system (3.12). Our results are consistent with those obtained recently
from the quadratic action directly in [11, 14] for instance.

The two first-order equations in (3.12), namely

dY1

dr
=
C′

C
Y1 + i

(
2λΦ

C
− ω2

)
Y2 ,

dY2

dr
= −iΓY1 + ∆Y2 , (3.14)

can be combined into a single second-order equation, which reads

d2Y2

dr2
−
(

∆ +
Γ′

Γ
+
C′

C

)
dY2

dr
+

[
Γ

(
ω2 − 2λ

Φ

C

)
+ ∆

(
Γ′

Γ
+
C′

C

)]
Y2 = 0 . (3.15)

To obtain a Schrödinger-like equation, one needs to get rid of the first derivative term. This can
be done either by introducing a new radial coordinate r∗, via the reparametrisation

dr

dr∗
= n(r) , (3.16)

or by a rescaling of the function Y2,

Y2(r) = N(r)Y(r) . (3.17)

Combining both transformations for generality, and imposing the condition

2
N ′

N
− n′

n
= ∆ +

Γ′

Γ
+
C′

C
, (3.18)

or, equivalently, that N2/n is proportional to A1/2C Γ/(B1/2F), one gets the Schrödinger-like equa-
tion

d2Y
dr2
∗

+

(
ω2

c2
∗(r)

− V (r)

)
Y = 0 . (3.19)

The propagation speed c∗(r), associated with the coordinate system (t∗, r∗), is defined by the
relation

c2
∗ =

1

n2Γ
, (3.20)

while the potential is given by

V = n2

(
2λ

ΓΦ

C
+ V0

)
, (3.21)



10

with

V0 =
1

4

[
∆2 + 2∆′ − 2∆

(
Γ′

Γ
+
C′

C

)
+ 2

Γ′C′

ΓC

+3

(
Γ′

Γ

)2

+

(
n′

n

)2

+ 3

(
C′

C

)2

− 2

(
Γ′′

Γ
+
n′′

n
+
C′′

C

)]
. (3.22)

It is sometimes interesting to choose a coordinate system where the propagation speed is normalized
to c∗ = 1. In that case, the radial reparametrisation function n is fixed by the relation n = 1/

√
Γ,

according to (3.20), and the expression of V simplifies slightly.

In the special case of GR, choosing n = 1/
√

Γ =
√
AB, the expression of the potential (3.21)

reduces to

V = 2λ
A
C

+
1

2

D2C′2

C
− 1

2
D
(
C′D

)′
with D =

√
AB/C , (3.23)

which is — as expected — the potential for a massless spin 2 field propagating in the metric (2.8)
(see [48] and also the recent paper [49] which presents a pedagogical review on the dynamics of
fields with different spins in black holes using the Newman-Penrose formalism). Note that (3.23)
reduces to the usual Regge-Wheeler potential when one substitutes the Schwarzschild expressions
(2.10) for A, B and C.

IV. EFFECTIVE METRIC FOR AXIAL PERTURBATIONS

In this section, we show that the dynamics of axial perturbations in the static and spherically
symmetric metric (2.8) is equivalent to the GR dynamics of the axial component of a massless spin
2 field (3.13) propagating in an effective metric g̃µν that we compute explicitly.

A. Effective Klein-Gordon equation

A simple way to determine the effective metric, but only up to a global factor, is to interpret
the Schrödinger-like equation as an effective Klein-Gordon equation of the form

g̃µν ∇̃µ∇̃νχ−m2
effχ = 0 , (4.1)

where ∇̃ denotes the covariant derivative associated with the effective metric g̃µν .
Starting from (3.19), one simply needs to restore the explicit dependence on time and angular

coordinates, by introducing

χ(t∗, r, θ, ϕ) = e−iωt∗Y(r)Y`,m(θ, ϕ) , (4.2)

which leads, after division of the Schrödinger-like equation by ΓΦ, to the expression

− 1

Φ

∂2χ

∂t2∗
+

1

n2ΓΦ

∂2χ

∂r2
∗

+
1

C
∆(2)χ−

(
V0

ΓΦ
− 2

C

)
χ = 0 , (4.3)

where ∆(2) is the spherical Laplace operator. By comparison with (4.1), one can immediately
identify the coefficients of the inverse metric g̃µν , up to a global factor. The effective metric is thus
of the form

ds̃2 = g̃µν dxµ dxν = Ξ
[
−Φ dt∗

2 + ΓΦn2 dr∗
2 + C dΩ2

]
. (4.4)
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This result can also be derived directly from the first-order system as shown in App. B.
Going back to the original coordinate system, the effective metric thus reads

ds̃2 = Ξ
[
−Φ(dt−Ψ dr)2 + ΓΦ dr2 + C dΩ2

]
. (4.5)

An interesting question is, depending on the BH background solution under consideration, whether
this effective metric describes or not a BH geometry too, with the possibility that the effective
horizon might differ from the background horizon. We will see that our examples provide different
answers, without exhausting the question.

B. Equivalence with GR axial perturbations

In this subsection, we go one step further and show that the dynamics of the DHOST axial
perturbations in the background is equivalent to that of GR axial perturbations in an effective
background (4.5) with a specific conformal factor Ξ.

Our starting point is the DHOST system (3.12), which can be rewritten, via a change of vector
Ỹ = γ(r)Y where γ is some function of r, in the form

dỸ

dr
= M̃Ỹ with M̃ =

(
C′/C + γ′/γ −iω2 + 2iλΦ/C
−iΓ ∆ + γ′/γ

)
. (4.6)

We can now compare this with the system describing the GR dynamics of axial modes in a back-
ground

ds̃2 = g̃µνdx
µdxν = −Ã(r) dt2∗ +

1

B̃(r)
dr2 + C̃(r) dΩ2 , (4.7)

which is characterized, according to (3.13), by the matrix

M̃GR =

(
C̃′/C̃ −iω2 + 2iλÃ/C̃
−i/(ÃB̃) −(Ã′/Ã+ B̃′/B̃)/2

)
. (4.8)

Remarkably, it is possible to identify the two above matrices M̃ and M̃GR, provided one takes

γ =

√
ΓB
A
F2 , (4.9)

up to a multiplicative constant (which we have fixed to 1 without loss of generality). The coefficients
of the effective metric are then

Ã = γ Φ , B̃ =
1

γ ΦΓ
, C̃ = γC , (4.10)

so that the full effective metric finally reads

ds̃2 = g̃µν dxµ dxν = |F|
√

ΓB
A
(
−Φ dt∗

2 + ΓΦ dr2 + C dΩ2
)
. (4.11)

Note that we have imposed a positive γ in order to ensure a physically meaningful signature for
the effective metric4. Moreover, Γ is implicitly assumed to be positive in the definition (4.9), which
is true only if c2

∗ is positive, according to (3.20), meaning there is no gradient instability.

4 Indeed, a negative γ immediately yields a (−−) signature in the angular sector.
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In summary, we have recovered an effective metric of the form (4.5) but the conformal factor
must now be fixed (up to an irrelevant constant factor) in order to have the equivalence between
the DHOST system and axial perturbations in General Relativity. Note that this effective metric
agrees with the analysis of [11] based on the quadratic action for the perturbations. A related work
is [14], which uses a different coordinate system (see App. C for the link with our analysis).

Finally, let us stress that the equivalence between the DHOST and GR systems can also be
seen in the Schrödinger formulation, although it is less transparent. To check this explicitly, one
must compare (3.19)-(3.21) with the GR Schrödinger-like equation characterized by the choice

n =
√
ÃB̃ and the potential (3.23) where A, B and C are replaced by Ã, B̃ and C̃ respectively.

Imposing the same choice for n in the first equation and identifying the λ-dependent terms in the
two Schrödinger-like equations give two relations5 that enable us to express Ã and B̃ in terms of C̃.
Substituting this in the GR potential and identifying it with the potential of the DHOST equation,
one finally gets

3

2

(
C̃′

C̃

)2

− C̃
′′

C̃
+

1

2

Γ′

Γ

C̃′

C̃
= 2V0 , (4.12)

where V0 is given in (3.22). One can verify explicitly that C̃ = γC, with γ given in (4.9), is solution
of the above differential equation.

C. Quadratic DHOST: disformal transformations and effective metric

If we now restrict our analysis to quadratic DHOST theories, the coefficients in (3.7) reduce to

F = AF2 − (q2 +AX)A1 , Ψ = q
ψ′A1

F
,

Φ =
F

F2 −XA1
, Γ = Ψ2 +

q2A1 +AF2

ABF
. (4.13)

In the special case q = 0, these coefficients further simplify and, substituting them in (4.11), the
effective metric reduces to

ds̃2 = g̃µν dxµ dxν =
√
F2(F2 −XA1)

(
−Adt2 +

F2

F2 −XA1

dr2

B
+ C dΩ2

)
. (4.14)

One notes that this is a very simple transformation of the initial background metric, with rescalings
that depend only on F2 and F2−XA1. In fact, this transformation can be interpreted as a disformal
transformation, as we now explain, and this remains valid even in the case q 6= 0.

By using the correspondence between DHOST theories, via field redefinitions, it is possible to
put the coefficient A1 to zero via a disformal transformation of the metric

ĝµν = κ gµν +$φµφν . (4.15)

Indeed, any quadratic DHOST action Ŝ written as a functional of ĝµν and φ is related to another
quadratic DHOST action S for gµν and φ, defined by

S[gµν , φ] ≡ Ŝ[ĝµν = κ gµν +$φµφν , φ] . (4.16)

5 One gets B̃ = 1/(ΓÃ) and Ã = ΦC̃/C.
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The relations between the quadratic-order coefficients in the respective actions are given by the
expressions (see [3] or Appendix D in [50])

F̂2 = [κ2(1 +X$/κ)]−1/2F2 , (4.17)

Â1 = (1 +X$/κ)3/2 (A1 −
$

κ +$X
F2) , (4.18)

and we do not need here the analogous expressions for the other coefficients.

It is easy to check that one can impose F̂2 = 1 and Â1 = 0 by choosing6

κ =
√
F2(F2 −XA1) , $ =

F2A1√
F2(F2 −XA1)

, (4.19)

corresponding to the disformed metric

ĝµν =
√
F2(F2 −XA1)

(
gµν +

A1

F2 −XA1
φµφν

)
. (4.20)

In other words, the part of the original DHOST Lagrangian for gµν that determines the dynamics of
axial perturbations is equivalent to another Lagrangian for ĝµν where the relevant part is the same
as in GR (the other coefficients of the Lagrangian are also modified in the disformal transformation
and can remain nonzero, but they are irrelevant for axial perturbations).

By comparing this statement with the result of the previous subsection, it is clear that the
effective metric obtained previously should coincide with the disformally related metric for which
the dynamics of the axial perturbations is the same as in GR. Let us check this explicitly. The
disformal transformation (4.15) applied to the static spherically metric (2.8) and scalar field (2.9)
yields

dŝ2 = −(κA−$q2)

(
dt−$ qψ′

κA−$q2
dr

)2

+ κ
(

1

B
+$

Aψ′2

κA−$q2

)
dr2 + κ C dΩ2 .(4.21)

Substituting (4.19) and noting that

√
F2(F2 −XA1) = |F|

√
ΓB
A

, (4.22)

one recovers the effective metric (4.11). Note that the conformal factor in (4.20) is well defined if

F2(F2 −XA1) > 0 , (4.23)

which also guarantees that Γ > 0. This agrees with the no-ghost condition given in [11] and [14].

D. Examples of effective metrics

In this subsection, after some general considerations on the causal structure of the background
and effective metrics, we compute and discuss the effective metric (4.11) for the three solutions
presented in section II B. For simplicity, we restrict our analysis to the case where the background
metric is a black hole with A(r) = B(r), which applies to our three examples.

6 We assume here that F̂2 > 0, i.e. F2 > 0, otherwise the effective Planck mass squared is negative, leading to a
theory plagued with ghost instabilities.
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Comparison of causal structures

As mentioned earlier, non-gravitational fields (e.g. photons, or any type of matter) are minimally
coupled to the metric gµν and therefore propagate in the background geometry. By contrast, axial
gravitons behave as if they propagate (in the GR sense) in the effective metric g̃µν , as we have seen
previously.

The fact that gravitational perturbations and other fields effectively “live” in different geome-
tries might lead to interesting new physical effects or inconsistencies. A simple and straightforward
analysis consists in checking that the causal structures associated with the two metrics are com-
patible, following a similar analysis7 discussed in [51].

According to (4.11), the lightcone and the time-like region delimited by it are defined, for the
effective metric, by

−Φ(dt−AΨ dr∗)
2 + ΦΓA2 dr∗

2 ≤ 0 , (4.24)

which is equivalent to

Φ (dt− a+ dr∗) (dt− a− dr∗) ≥ 0 , (4.25)

where we have introduced the coefficients a− and a+ defined by

a±(r) = A(Ψ±
√

Γ) . (4.26)

When Ψ = 0, this reduces a±(r) = ±A
√

Γ so that the lightcones are symmetric. By contrast,
when Ψ 6= 0, the lightcones become skewed, as we will see in the stealth BH example.

Stealth solutions

For the stealth solution (2.10) and (2.12), the coefficients in (3.7) are given by [19]

F = 1− rg
r
, Ψ =

ζ r
1/2
s r3/2

(r − rs)(r − rg)
, Φ =

r − rg
(1 + ζ)r

,

Γ =
(1 + ζ)r2

(r − rg)2
, ∆ =

1

r
− 1

r − rg
,

(4.27)

where we have introduced the constant parameter

rg ≡ (1 + ζ)rs . (4.28)

Substituting these coefficients into (4.11), one finds that the effective metric can be written as
another Schwarzschild metric:

ds̃2 = −
(

1− Rg
R

)
dT 2 +

(
1− Rg

R

)−1

dR2 +R2dΩ2 , (4.29)

in the rescaled coordinates (T,R) defined as

R = (1 + ζ)1/4r , T = (1 + ζ)−1/4t∗ , Rg = (1 + ζ)1/4rg , (4.30)

7 In [51], the authors compared the effective metric of the radial scalar perturbation with the physical metric where
non-gravitational fields propagate.
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This metric describes a Schwarzschild solution whose horizon is located at r = rg and therefore is
shifted with respect to the horizon rs of the background metric. Note that a similar double-horizon
structure was previously studied in e.g. [52].

The coefficients a± associated with the lightcone of the effective metric are given here by

a±(r) = A(Ψ±
√

Γ) =
ζ
√
r rs

r − rg
±
√

1 + ζ
r − rs

|r − rg|
. (4.31)

and their radial dependence is shown in Fig. 1.

2 4 6 8 10 12

-5

0

5

10

15

FIG. 1: Coefficients a±(r) as functions of r, with the choice of parameters rs = 1 and ζ = 3. The vertical
line is placed at r = rg.

We have also plotted the corresponding lightcones, inside and outside the effective horizon rg,
in Fig. 2. In the same figure, the lightcone associated with the background stealth BH coincides
with the standard Minkowski lightcone, since the metric is conformally related to Minkowski in
the coordinates (t, r∗) which we are using. We find that the relative position of the lightcones is
the same inside and outside rg. This means that the causal structures are compatible since it is
possible to define a common spatial hypersurface on which to specify initial data.

BCL solution

We consider now the BCL solution (2.14) and (2.16). The coefficients governing the dynamics
of axial perturbations are given by [19]

F = f0A , Ψ = 0 , Φ = A , Γ =
r2(r2 + 2r+r−)

(r − r+)2(r + r−)2
,

∆ = − r+

r(r − r+)
+

r−
r(r + r−)

. (4.32)

This leads to the effective metric

ds̃2 = f0

√
1 + ξ

r2
m

r2

[
−A(r)dt2 +

1

A(r)

(
1 + ξ

r2
m

r2

)
dr2 + r2dΩ2

]
, (4.33)

where the dimensionless parameter ξ = 2r+r−/r
2
m measures the deviation from General Relativity.

Even though the effective metric differs from the background metric, it still describes a black hole
geometry, with a horizon that coincides with the background horizon located at r = r+. Hence,
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(a) Lightcones for r > rg. (b) Lightcones for rs < r < rg.

FIG. 2: At some point (t, r∗) in spacetime, we plot the lightcones in the (x = dr∗ , y = dt) plane for a
stealth black hole with rs = 1 and ζ = 3. The background lightcones for the background metric are shown
in gray. The two cases shown here correspond respectively to r = 5 and r = 3.

the effective metric is regular in the domain ]r+,∞[ and the Schrödinger-like equation for axial
perturbations can be solved following the same strategy as in GR.

Note that the effective lightcones, characterized by

a± = ±
√

1 + ξ
r2

m

r2
, (4.34)

are symmetric and always inside the background lightcones, since |a±| > 1. In summary, one does
not expect instabilities for the axial perturbations contrary to the polar sector in which we found
some evidence of instabilities in [19].

D→4 Gauss-Bonnet solution.

In the D→4 Gauss-Bonnet solution (2.18)-(2.20), the coefficients of the linear system, computed
in [26], are given by

F =
fγ1

z2
, Γ =

γ2

f3γ1γ3
, Φ =

fγ1

γ3
, ∆ = −F

′

F
, (4.35)

where we have introduced the functions f(z) =
√
A(r), with z = r/r+, and

γ1 = f
[
z2 + 2β(f − 1)(f − 1− 2zf ′)

]
, (4.36)

γ2 = z4 − 2β(1 + β)z , (4.37)

γ3 = z2 + 2β(1− f2) , (4.38)

with β = α/r2
+. This leads to the effective metric

ds̃2 = − 1

z2

√
fγ3

1γ2

γ3
3

dt2 +
1

z2

√
γ1γ3

2

f5γ5
3

dz2 +

√
γ1γ2

fγ3
dΩ2 . (4.39)
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This metric is clearly very different from the background metric and its behaviour when z → 1
can be determined from the analysis of the functions γi. One can see that γ1 and γ3 are positive
when z > 1 and γ2 is positive when z > z2 = [2β(1 + β)]1/3. In order to have the effective metric
(4.39) well defined in the vicinity of z = 1, we assume that β is small enough so that z2 < 1, i.e.
β < (

√
3 − 1)/2. In this case, the behaviour of the effective metric in the limit z → 1 takes the

form

ds̃2 ' −c1(z − 1)1/4dt2 + c2(z − 1)−5/4dz2 + c3(z − 1)−1/4dΩ2 , (4.40)

where the ci are constants, since the functions γi tend to a constant value while f(z) ' f0(z−1)1/4

with f0 constant.
The Ricci scalar associated with the effective metric (4.40) behaves as R ' (z − 1)−3/4 in this

limit, which indicates that the effective metric describes a naked singularity8. The consequence is
that the dynamics of axial modes is very different from the GR case and, in particular, ingoing and
outgoing modes cannot be defined at the horizon, as shown in [26]. This might lead to stability
issues associated with spatial divergences of the metric perturbations, which we leave for a future
study.

V. CONCLUSION

In the present work, we have studied the axial perturbations of black hole solutions in the
context of DHOST theories, including cubic terms in second derivatives of the scalar field. The
main reason to focus our attention on axial perturbations is that they are much simpler than their
polar counterparts, thus leading to more general conclusions. Indeed, in DHOST theories, the
axial perturbations contain a single degree of freedom, as in GR, whereas the polar perturbations,
by contrast, contain two degrees of freedom, due to the inclusion of the scalar field perturbation.
Given this relative simplicity, the dynamics of the axial modes, which can be written as a first-order
radial system, can be described by a single Schrödinger-like equation.

Reinterpreting the Schrödinger-like equation as a Klein-Gordon equation, one can naturally
define, up to an arbitrary conformal factor, an effective geometry in which the perturbations prop-
agate. Remarkably, one can exhibit a direct correspondence between the DHOST axial system and
a GR axial system associated with the effective metric, whose conformal factor is now determined.
In the case of quadratic DHOST theories, it turns out that this effective metric can be obtained
directly from the background metric by a disformal transformation.

The reason for this surprising property is that the dynamics of axial modes depends on only
two independent functions of the DHOST quadratic Lagrangian and these two functions can be
mapped into their respective GR values via a disformal transformation that also depends on two
free functions. By contrast, for more general DHOST theories which include cubic terms, the
dynamics of axial perturbations depends on four independent functions, which cannot be related
to their GR version via a disformal transformation. Nevertheless, one can still define an effective
metric, since all information from the five Lagrangian functions and the background metric boil
down to just four radially-dependent functions in the dynamical system. This dynamical system
can be mimicked by GR axial perturbations living in an appropriately chosen metric. This metric
is artificial and does not necessarily correspond to a GR vacuum solution (but can nevertheless be
seen as a solution of Einstein’s equations with an artificial energy-momentum whose perturbation
does not contribute to the dynamics of axial perturbations).

8 This can be expected in general for BH solutions in DHOST theories with cubic terms, since avoiding a singularity
requires a specific tuning of the behaviours of Φ and Γ near the horizon. The complicated structure of these
coefficients, given in (3.7), suggests that such a tuning is unlikely, unless for very specific DHOST theories.
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We have computed the effective metric for three known black hole solutions: a stealth solution,
whose metric coincides with the standard Schwarzschild solution, a solution similar to the Reissner-
Nordström solution but with a negative charge squared, and finally a solution obtained in a special
4d limit of Gauss-Bonnet theories. Interestingly, we find that the effective metric is also a BH
metric in the first two cases, with a shifted horizon in the stealth case. By contrast, in the last
case, the effective geometry, in the region close to the horizon, corresponds to that of a naked
singularity.

We have also checked, for each example, that the background and effective causal structures
are compatible, i.e. that it is possible to find a common hypersurface where initial data can be
specified, by comparing locally the respective lightcones of the two metrics. While the compatibility
is immediate for two of our examples, the presence of a shifted horizon in the stealth case requires
more caution and we have verified that, even in the region between the two horizons, the two
metrics remain compatible. These various cases illustrate the diversity of the effective metrics that
one can encounter. It would be interesting to further explore the range of possible effective metrics,
depending on the choices of DHOST functions.

Finally, let us conclude with some comments about future extensions. As mentioned earlier,
polar perturbations in DHOST theories are more complicated than axial perturbations as they
contain two degrees of freedom. This implies that their dynamics cannot be described by a single
Schrödinger-like equation and it is not obvious how the notion of effective metric could be defined in
this context. It should however be possible to study the high frequency limit of the perturbations:
in this limit, the perturbations would decouple and we expect to be able to define a local effective
metric for each degree of freedom. We plan to explore this direction in a future work. It would
also be interesting to study more systematically DHOST theories with cubic terms.
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Appendix A: Axial perturbations and their equations of motion

In this appendix, we give more details on how to obtain the equations of motion for axial
perturbations in a general cubic theory of the form (2.1), assuming shift symmetry. At this stage,
we do not assume degeneracy. Nonetheless, let us recall that the black hole background solutions
we have considered have been computed for DHOST theories.

Interestingly, only the five elementary Lagrangians L
(2)
1 , L

(3)
2 , L

(3)
3 and L

(3)
6 contain pieces of the

form φµνφ
νρ, which entails that they are the only ones contributing to the dynamics of axial per-

turbations. All the other elementary Lagrangians, together with the terms P (X) and Q(X)2φ, can
be ignored as far as the dynamics of axial perturbations is concerned, which drastically simplifies
the calculations.

In the Regge-Wheeler gauge in which the non-vanishing components of the axial perturbations
are

htθ =
1

sin θ

∑
`,m

h`m0 (t, r)∂ϕY`m(θ, ϕ), htϕ = − sin θ
∑
`,m

h`m0 (t, r)∂θY`m(θ, ϕ),

hrθ =
1

sin θ

∑
`,m

h`m1 (t, r)∂ϕY`m(θ, ϕ), hrϕ = − sin θ
∑
`,m

h`m1 (t, r)∂θY`m(θ, ϕ), (A1)



19

which are expanded in spherical harmonics Y`m(θ, ϕ). Since the background metric is static, it is
also convenient to work in the frequency domain. In practice, any partial derivative with respect
to the time coordinate t corresponds to a multiplication by −iω.

As explained in [19], only two perturbation equations (out of the four non-trivial Einstein
equations) are independent. Hence the system of perturbation equations can be reduced to a
system of two second order equations, which read

0 = ωd1(r)h′0(r) +
(
λd2(r) + ω2d3(r)

)
h1(r) + (qλd4(r) + ωd5(r))h0(r) ,

0 = qd6(r)h′0(r) + d7(r)h′1(r) + (qd8(r) + ωd9(r))h0(r) + (d10(r) + qωd11(r))h1(r) ,
(A2)

where λ has been defined in (3.3). The coefficients di, whose expressions are too cumbersome to
be written here, are functions of r (but not of λ, ω or q) and depend on the Lagrangian of the
theory and on the background solution. They satisfy the following properties:

d3 = id1 , C d5 = −C′ d1 , d11 = −id6 ,

d2d6 = d4d7 , d6(d10 − d′7) = d7(d8 − d′6) , (A3)

for any choice of functions F2, A1, F3, B2 and B6, even if they do not satisfy the degeneracy
conditions (2.5), (2.6) and (2.7).

We now wish to reformulate the system (A2) in the canonical form

dY

dr
= (M0 + ωM1 + ω2M2)Y , (A4)

where the components of the vector Y are independent linear combinations of h0 and h1, and the
three matrices M0, M1 and M2 do not depend on ω. To do so let us try the following ansatz:

Y =

(
Y1

Y2

)
with Y1 = h0 , ωY2 = h1 − qfh0 , (A5)

where f is an undetermined function at this stage. (A2) implies that the differential system satisfied
by Y is given by(

−ωd1 0
−q(d6 + fd7) −ωd7

)
dY

dr
=

(
qλ(d4 + fd2) + ω(d5 + qωfd3) ω(λd2 + ω2d3)

q(d8 + fd10 + f ′d7) + ω(d9 + q2fd11) ω(d10 + qωd11)

)
Y . (A6)

To remove the off-diagonal term in the left-hand side matrix and simplify the system, one chooses

f = −d6

d7
, (A7)

which also implies that

d4 + fd2 = 0 , d8 + fd10 + f ′d7 = 0 , (A8)

due to the last two relations in (A3). Using the remaining three relations in (A3), the system
further reduces to

dY

dr
=

(
C′/C + iωΨ −iω2 + 2iλΦ/C
−iΓ ∆ + iωΨ

)
Y , (A9)

with

Ψ = q
d2

d4
, Φ = iC d2

2d1
, Γ = i

q2d2d11 − d4d9

d7d4
, ∆ = −d10

d7
. (A10)
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Finally, one obtains the formulas given in (3.7) by substituting the explicit expressions for the
functions di.

Let us note that the system (A9) describes the dynamics of a single degree of freedom whereas it
has been obtained without imposing any degeneracy condition. Hence, the Ostrogradsky ghost does
not show up in the axial sector of the perturbations and should appear when one considers polar
perturbations. This result is fully consistent with the analysis of [11] based on the computation of
the quadratic Lagrangian. Furthermore, it is similar to what happens in the context of cosmological
perturbations where the Ostrogradsky ghost can be seen to appear in the scalar sector and not in
the tensorial sector [28].

Appendix B: Dispersion relation in the high frequency limit from the first order system

In this appendix, we give another method to compute the effective metric, up to a conformal
factor, directly from the first-order system without relying on the Schrödinger-like reformulation
used in subsection IV A.

This method relies on the dispersion relation of the first-order system (3.4) in the high frequency
and large ` limits. In this regime, the components of Y can be viewed as plane waves and one can
introduce the wave number k such that

dY

dr
= ikY . (B1)

Furthermore, k, ω and ` are supposed to scale in the same way in the large frequency limit. Hence,
the dispersion relation can be obtained by simply requiring that the determinant

det(−ikI +M) = det

(
−ik + C′

C + iωΨ −iω2 + 2iλΦ
C

−iΓ −ik + ∆ + iωΨ

)
(B2)

= −(k − ωΨ)2 − ΦΓ

C
`2 + Γω2 +O(ω) , (B3)

where I is the identity, vanishes at leading order in ω. This corresponds to propagation equation
of the form

−Γ
∂2χ

∂t2∗
+
∂2χ

∂r2
+

ΦΓ

C
∆(2)χ ≈ 0 (B4)

in this limit, for the quantity χ defined in (4.2) which is consistent with the Schrödinger-like
equation (4.3).

One might wonder what happens when working with a different set of functions, i.e. another
vector Ŷ in place of Y . Writing the relation between the two vectors as Y = PŶ , where P is
assumed to be independent of ω, one finds that Ŷ satisfies the new first-order system

dŶ

dr
= M̂Ŷ , M̂ = P−1MP − P−1 dP

dr
. (B5)

Such change of vector is ubiquitous in [19] where we study the asymptotic behaviour of perturba-
tions.

When P is an arbitrary invertible matrix, the ω-dependency of M̂ is generically very different
from the ω-dependency of M . More precisely, M̂ will still have the same ω-structure as M , i.e.

M̂ = M̂0 + ωM̂1 + ω2M̂2 , (B6)
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where M̂1 = M1 = iΨI and M̂2 is nilpotent but not necessarily in its Jordan form. Hence, in
general, one does not expect the dispersion relation obtained from M̂ ,

det(−ikI + M̂) = 0 , (B7)

to be equivalent to the one computed previously from M . One can check that, for this new
dispersion relation to be valid, M̂2 must be its Jordan block form after the change of variables.

Appendix C: Stealth solution in Lemâıtre coordinates

In this appendix, we discuss how some of our results, in particular the propagation speed, are
related to those of the recent work [14], in which the stealth Schwarzschild solution

A(r) = B(r) = 1− rs

r
, φ(r, t) = qt+ ψ(r) , ψ′(r) = q

√
rrs

r − rs
, (C1)

where rs is the Schwarzschild radius and X = −q2, is described in Lemâıtre coordinates (τ, ρ),
defined by

τ = dt+ α(r)dr , ρ = dt+ β(r)dr , (C2)

with

α =

√
rrs

r − rs
, β =

r2

√
rrs(r − rs)

. (C3)

The authors of [14] computed the quadratic Lagrangian for the axial perturbation χ and obtained
an associated equation of motion, which is not Schrödinger-like. Indeed, one can check, starting
from our Schrödinger-like equation, that only a uniform linear combination of our coordinates t∗ and
r∗ conserves the Schrödinger form that we have derived, similarly to the Lorentz transformations
of special relativity.

The equation satisfied by the perturbation χ is given by [14]

− ∂

∂τ

(
s1
∂χ

∂τ

)
+

∂

∂ρ

(
s2
∂χ

∂ρ

)
+Wχ = 0 , (C4)

where

s1 =
(1 + ζ)2r6√

rs/r
, s2 =

(1 + ζ)r6

(rs/r)3/2
, (C5)

and the expression of W , which is not needed here, can be found in [14]. Notice that r depends on
τ and ρ, hence the equation is time-dependent.

Even if this equation does not have the canonical wave equation form, one can deduce the
associated propagation speed from its high frequency limit, which amounts to take into account
only the derivatives of highest order, i.e. second order here. This gives

c2
L =

s2

s1
=

r

rs(1 + ζ)
. (C6)

In fact, the propagation speed given in [14] is defined by the relation

c2
ρ = −gρρ

gττ
c2

L , (C7)
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in order to express the propagation speed in normalised units (i.e. in the normalised basis spanned
by the vectors eτ = (−gττ )1/2∂τ , eρ = (gρρ)

−1/2∂ρ).
Now, we would like to relate the propagation speed (C6) to our relation (3.20)

c2
∗ =

1

n2Γ
=

(r − rg)2

(1 + ζ)(r − rs)2
with ζ = 2q2FX , rg = (1 + ζ)rs , (C8)

also obtained in [19], using the usual tortoise coordinate with n(r) = A(r). Starting from the

wave operator in (3.19), one finds, after restoring the time derivatives and applying the coordinate
change (C2),

1

n2

(
∂2

∂r2
∗
− 1

c2
∗

∂2

∂t2∗

)
=

(
β̃2 − 1

n2c2
∗

)
∂2

∂ρ2
+

(
α̃2 − 1

n2c2
∗

)
∂2

∂τ2
+ 2

(
α̃β̃ − 1

n2c2
∗

)
∂2

∂τ∂ρ

+

(
α̃′ +

n′

n
α̃

)
∂

∂τ
+

(
β̃′ +

n′

n
β̃

)
∂

∂ρ
, (C9)

where we have introduced the coefficients

β̃ = β + Ψ , α̃ = α+ Ψ . (C10)

One can then check that the cross derivative term in (C9) vanishes and the propagation speed
squared deduced from the first two terms is

c2
new =

β̃

α̃
, (C11)

which coincides with the expression (C6).
We have thus checked that the two different expressions for the propagation speed given in [19]

and [14] agree, up to an adequate change of coordinates. One can note that, independently of their
expressions, the absence of gradient instability requires the same condition 1 + ζ > 0.
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