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Epilepsy and multiple sclerosis (MS), two of the most common neurological diseases, are
characterized by the establishment of inflammatory environment in the central nervous
system that drives disease progression and impacts on neurodegeneration. Current
therapeutic approaches in the treatments of epilepsy and MS are targeting neuronal
activity and immune cell response, respectively. However, the lack of fully efficient
responses to the available treatments obviously shows the need to search for novel
therapeutic candidates that will not exclusively target neurons or immune cells.
Accumulating knowledge on epilepsy and MS in humans and analysis of relevant
animal models, reveals that astrocytes are promising therapeutic candidates to target
as they participate in the modulation of the neuroinflammatory response in both diseases
from the initial stages and may play an important role in their development. Indeed,
astrocytes respond to reactive immune cells and contribute to the neuronal hyperactivity in
the inflamed brain. Mechanistically, these astrocytic cell to cell interactions are
fundamentally mediated by the purinergic signalling and involve metabotropic P2Y1
receptors in case of astrocyte interactions with neurons, while ionotropic P2X7
receptors are mainly involved in astrocyte interactions with autoreactive immune cells.
Herein, we review the potential of targeting astrocytic purinergic signalling mediated by
P2Y1 and P2X7 receptors to develop novel approaches for treatments of epilepsy and MS
at very early stages.
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INTRODUCTION

Neuroinflammation, an inflammatory response within the central nervous system (CNS),
orchestrated by the cross-talk between CNS and immune system is now considered a key player
in different neurological disorders, including epilepsy and multiple sclerosis (MS). It is characterized
by the recruitment of immune cells to the CNS and also by a transformation of astrocytes and
microglia into reactive profiles (Ransohoff, 2016; Yang and Zhou, 2019). These events have the
primary role to maintain homeostasis by inducing the production and release of cytokines and
chemokines that favour cell growth and survival. However, sustainment of inflammatory pathways
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leads to cellular dysfunctions actively contributing to the
development and progression of chronic CNS disease (Vezzani
et al., 2011; Xanthos and Sandkuhler, 2014; Yang and Zhou,
2019).

Epilepsy, with its incidence of ~1%, represents one of the most
common neurological disorders (Thijs et al., 2019). Evidence
from both human patients and animal models demonstrated that
neuroinflammation is not only a consequence but is actively
involved in epileptogenesis and in seizure generation
(ictogenesis) (Ravizza et al., 2008; Prabowo et al., 2013). For a
long time, the study of epilepsy has been characterized by a
neuro-centric view focused on the imbalance between excitatory
and inhibitory transmissions that leads to neuronal
hyperexcitability (Naylor, 2010; Bonansco and Fuenzalida,
2016). For this reason, current therapeutic strategies target
mostly neuronal receptors and voltage-gated ion channels
(Bialer et al., 2018). Epilepsy treatment however, remains still
a challenge considering that ~30% of patients do not respond to
current antiseizure drugs (Janmohamed et al., 2020).

MS is a chronic inflammatory disease of the CNS, affecting 2.8
million people worldwide (Baecher-Allan et al., 2018).
Understanding of MS pathology is characterized by the
immuno-centric view focused on the immune cell infiltration
into the CNS leading to the neuroinflammation and development
of the multifocal inflammation, oligodendrocyte loss,
demyelination, and axonal degeneration (Baecher-Allan et al.,
2018; Dobson and Giovannoni, 2019). Current therapeutic
strategies for MS treatment thus mostly focus on preventing
and limiting immune cells trafficking into the CNS and
modifying the immune cells responses (De Jager and Hafler,
2007; Rommer et al., 2019). However, immune cell-mediated
inflammatory mechanisms alone, cannot explain neuronal
degeneration without the CNS-resident cells component.

Great part in maintaining an optimal milieu for proper
neuronal functioning rests with astrocytes. Indeed, astrocytes
are positioned between blood vessels and synapses which
allows them to fulfil metabolic and homeostatic
maintenance functions (Parpura and Verkhratsky, 2012).
This strategic location engages astrocytes in crosstalk with
neurons, microglia, oligodendrocytes, other astrocytes,
immune cells and blood vessels. Several studies have shown
that neuroinflammation promoted astrogliosis changes the
interaction between astrocytes and other cell types and
alters the excitability of neuronal networks (Araque et al.,
2014; Colombo and Farina, 2016; Vezzani et al., 2019; Sanz and
Garcia-Gimeno, 2020; Audinat and Rassendren, 2021).
Purinergic signalling, mediated by ATP and its breakdown
products, is crucial in maintaining this astrocytic cell-to-cell
communication (Franke et al., 2012) and increasing evidence
have drawn considerable attention to an important role of
astrocytic purinergic receptors (PRs) in epilepsy and MS from
the initial stages of diseases (Narcisse et al., 2005; Dona et al.,
2009; Franke and Illes, 2014; Rassendren and Audinat, 2016;
Amadio et al., 2017; Brambilla, 2019; Domercq and Matute,
2019; Illes, 2020; Nikolic et al., 2020; Sidoryk-Wegrzynowicz
and Struzynska, 2021). This opens possibility to target
astrocytic purinergic signalling to develop non-neuronal

and non-immune cell based therapeutic strategies for
treatment of epilepsy and MS, respectively. These strategies
would aim at better control of epilepsy and MS progression
and even serve as a diseases-modifying entry points.

Considering the possibility to identify novel purine-based
astrocyte-targeting treatments for epilepsy and MS, we here
discuss the impact of astrocyte intercellular communication
mediated by purinergic signalling on the pathogenic
mechanisms underlying these two diseases. We focus on
specific P2Rs, namely P2Y1R and P2X7R, which have been
recently identified as key astrocyte receptors involved in
epilepsy and MS, respectively.

At the Interface of Astrocyte Purinergic
Signalling and Neuroinflammation
Properties of Astrocyte Purinergic
Signalling
ATP is a predominant extracellular signalling molecule that
mediates signalling among astrocytes, and between astrocytes
and other cell types. In response to various physiological and
pathological stimuli, astrocytes can release ATP through different
ways, including exocytosis and large conductance channels, such
as hemichannels, pannexin channels, volume-regulated anion
channels and P2X7Rs (Coco et al., 2003; Franke et al., 2012;
Bijelic et al., 2020). Furthermore, released ATP is rapidly
converted into adenosine by a set of ectonucleotidases.
Extracellular levels of adenosine are also controlled by
astrocytes through the action of nucleoside membrane
transporters and of the enzyme adenosine kinase (ADK)
(Boison, 2012). Purine and its metabolites activate PRs,
classified as adenosine P1Rs, and ATP/ADP P2Rs that are
expressed in astrocytes and in a variety of cell types (Franke
et al., 2012; Burnstock, 2020). P2Rs are divided into the cationic
ion channel P2XRs and the G-protein-coupled P2YRs. Activation
by purines (ATP, ADP, UDP) induces increase in intracellular
Ca2+ in astrocytes: from extracellular sources for P2XRs and from
intracellular sites for P2YRs (Burnstock, 2016).

Astrocyte Purinergic Signalling Regulates
Neuronal Activity
We and others have shown that selective photo-stimulation of
hippocampal astrocytes expressing the light-sensitive
Channelrhodopsin 2 (ChR2), increases Ca2+ signalling in
astrocytes and subsequently triggers ATP release. This ATP
excites inhibitory interneurons through the activation of P2Y1Rs
but also activates P2Y1Rs expressed by astrocytes (Shen et al., 2017;
Tan et al., 2017). This leads to the release of Ca2+ from intracellular
stores and triggers glutamate release from astrocytes (Shen et al.,
2017). In turn, this glutamate activates postsynaptic NMDA
receptors on principal neurons and presynaptic metabotropic
glutamate receptors (mGluR) in CA1 or presynaptic NMDA
receptors in the dentate gyrus (Shen et al., 2017; Nikolic et al.,
2018). Eventually, the degradation of ATP into adenosine leads to a
delayed inhibition of principal neurons through the activation of
adenosine A1Rs (Shen et al., 2017; Tan et al., 2017).
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ATP as an Inflammatory Signal and
Astrogliosis
Besides its role in astrocyte intercellular communication, ATP
may be an important signal contributing to astrogliosis, a
common hallmark of neuropathological conditions that affects
the physiological functions of astrocytes and leads to the
appearance of new ones (Sofroniew, 2014; Escartin et al.,
2019). Reactive astrocytes undergo morphological, molecular
and functional changes (Sofroniew, 2020; Escartin et al., 2021)
in diseases whereby context (pathogenic trigger, age, brain area,
etc.) is important in determining reactive astrocyte phenotype
and its consequences on the outcome of a disease (Anderson et al.,
2016; Bonansco and Fuenzalida, 2016; Rothhammer et al., 2016;
John Lin et al., 2017; Liddelow et al., 2017; Hartmann et al., 2019;
Guttenplan et al., 2020; Borggrewe et al., 2021; Diaz-Castro et al.,
2021; Escartin et al., 2021). Astrogliosis in vivo is observed after
direct infusion of ATP or ADP (Hindley et al., 1994) or its
structural analogue 2-methylthio ATP (2-MeSATP) in the brain
(Franke et al., 1999), and in vitro after astrocyte challenge by ATP
(Brambilla and Abbracchio, 2001) as measured by the
hypertrophy of astrocytes and an increase in the glial fibrillary
acidic protein (GFAP) immunoreactivity. These studies also
showed that in vivo administration of P2Rs antagonists,
suramine, reactive blue 2 and pyridoxal-phosphate-6-
azophenyl-2, 4-disulphonic acid (PPADS) counteracted
astrogliosis. Moreover, activation of P2Rs is linked to the
transduction pathways that involve astrocyte production of
various chemokines and cytokines, inflammatory mediators
that all stimulate neuroinflammation (Franke et al., 2012). In
context of epilepsy and MS, purine-mediated signalling could
therefore be implicated in the appearance of reactive astrocytes
and deregulation of their main homeostatic functions. Indeed,
persistent astrogliosis and release of pro-inflammatory factors by
reactive astrocytes can contribute to the BBB disruption that
commonly occurs in epilepsy, and alterations in the two main
astrocyte functions, such as potassium and glutamate buffering,
leading to hyperexcitability (Abbott, 2000; Friedman et al., 2009;
Marchi et al., 2014; Iori et al., 2016; Smith et al., 2018). Likewise,
in MS purine-mediated signalling could be involved in
appearance of reactive astrocytes with neurotoxic activities that
release numerous inflammatory mediators that are responsible
for the recruitment of peripheral inflammatory cells, activation of
microglia and promotion of oligodendrocyte loss and
demyelination (Schonrock et al., 2000; Stadelmann et al., 2002;
Linker et al., 2010; Argaw et al., 2012; Prins et al., 2014;
Rothhammer and Quintana, 2015; Brambilla, 2019; Wheeler
and Quintana, 2019; Linnerbauer et al., 2020; Colombo et al.,
2021).

Astrocyte Purinergic Signalling Alterations
and Their Impact on Epilepsy and MS
An enhancement in purinergic signalling is a common feature of
different neuropathological conditions including epilepsy andMS
(Franke et al., 2012; Rassendren and Audinat, 2016; Domercq and
Matute, 2019). Considering that purinergic signalling is at the

basis of astrocyte intercellular communication and associated
with a reactive astrocyte profile, alterations in this purine-based
signalling can impact on the neuroinflammatory response that
occurs in both diseases. For this reason, strategies targeting
astrocyte purinergic signalling are considered as promising
new therapeutic treatments to better control the development
and progression of both, epilepsy and MS.

ATP and its Degradation Product Adenosine
in Epilepsy
Increasing evidence indicates that astroglial-mediated purinergic
signalling modulates seizure threshold and epileptogenesis
(Cieslak et al., 2017). Adenosine has a well-known
anticonvulsant action. However increased expression of the
astroglial enzyme ADK, the major metabolic clearance route
for adenosine, during epileptogenesis reduces the inhibitory
tone of adenosine and consequently reduces the threshold for
seizure generation (Boison and Steinhauser, 2018). Regarding
ATP, Dossi et al. (Dossi et al., 2018) recently demonstrated an
80% increase of extracellular ATP during high potassium induced
ictal discharges on slices obtained from resected tissues of TLE
patients. This increase was pharmacologically blocked by
inhibiting pannexin-1 channels and had anticonvulsive effects
also in a mouse model of kainic acid (KA)-induced seizures.

Ionotropic P2X7R in Epilepsy
Among ionotropic P2XRs, P2X7R is showed to be upregulated in
epileptic mice and TLE patients, and P2X7R antagonism was able
to reduce seizure severity and seizure-induced neuronal death
(Jimenez-Pacheco et al., 2013), supporting the targeting of P2X7R
as a potential therapeutic strategy for epilepsy. However, although
P2X7R increased expression was well documented in neurons
and microglia, its expression in hippocampal astrocytes remains
highly controversial (Rassendren and Audinat, 2016). Even
though, P2X7Rs may have a role in microglia-astrocyte
communication in epilepsy. Activation of P2X7Rs on
microglia induces their production and release of
inflammatory signals (Campagno and Mitchell, 2021) that can
promote astrogliosis. This can be a powerful mechanism of
increasing a magnitude of inflammatory response in the CNS
in epilepsy.

Evidence Supporting Astrocytic P2Y1R as a
Key Modulator of Epileptic Activity
Metabotropic P2Y1R is a promising astrocytic candidate to target
in epilepsy as its downstream signalling is permanently active in
the sclerotic hippocampus and its blockade restores normal
neuronal activity in epilepsy (Alvarez-Ferradas et al., 2015;
Nikolic et al., 2018; Wellmann et al., 2018). An increased
P2Y1R expression was observed at the hippocampal level in
both epilepsy animal models and TLE patients (Alves et al.,
2017) and moreover, the activation of P2Y1R by means of
ADP administration was sufficient to worsen seizure activity.
Furthermore, it has been shown that P2Y1R is responsible for
either proconvulsive or anticonvulsive effects depending if the
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receptor activation was occurring before or after SE induction
(Alves et al., 2019a). There are some disagreements regarding the
P2Y1R cell type specific expression. For example, P2Y1R
expression is observed in microglia at a relatively weak level
(Hidetoshi et al., 2012), and also in a cortical microglia in the
epileptic brain (Alves et al., 2019b). Literature data, however,
show that expression of P2Y1Rs is mainly detected in astrocytes
(Franke et al., 1999; Jourdain et al., 2007; Kuboyama et al., 2011;
Pascual et al., 2012; Delekate et al., 2014). Moreover, activation of
P2Y1Rs mediates aberrant astrocytic Ca2+ activity and glutamate
release that drives abnormal synaptic activity in epilepsy
(Alvarez-Ferradas et al., 2015; Nikolic et al., 2018; Wellmann
et al., 2018; Martorell et al., 2020). These data on expression and
function support an argument on crucial role of astrocytic
P2Y1Rs in mediating epileptic activity (Table 1).

Astrocyte P2Y1R and Neuronal Activity in
Epilepsy
We recently showed that the pro-inflammatory cytokine tumor
necrosis factor-α (TNFα), which is increased during seizure activity,

is able to trigger a Ca2+-dependent glutamate release from astrocytes
that boosts excitatory synaptic activity in the hippocampus of a TLE
mouse model (Figure 1). We demonstrated that this mechanism
involves an autocrine activation of P2Y1Rs by astrocyte-derived
ATP/ADP. Indeed, reducing extracellular ATP/ADPwith apyrase or
blocking P2Y1Rs normalize glutamate release from astrocytes and
restore normal synaptic activity during epileptogenesis (Nikolic et al.,
2018). Furthermore, ATP can evoke a Ca2+-dependent glutamate
release from astrocytes and trigger slow inward current (SIC) in
neurons (Perea and Araque, 2005) leading to the synchronization of
neuronal activity in the hippocampus (Angulo et al., 2004; Fellin
et al., 2004). Activation of astrocytic P2X7Rs and P2Y1Rs do not
mediate SIC appearance in physiological conditions (Fellin et al.,
2006; Shigetomi et al., 2008). However, in epilepsy P2Y1-dependent
glutamate release from astrocytes increases SIC frequency in CA1
neurons that can promote neuronal synchronisation (Alvarez-
Ferradas et al., 2015), (Figure 1). Likewise, endogenously released
ATP acting through astrocytic P2Y1Rs contributes to Ca2+ wave
propagation of these glial cells (Bowser and Khakh, 2007) and it can
play a role in promoting synchronized neuronal activity in epilepsy.
These data support the importance of astroglial P2Y1R-mediated

TABLE 1 | Examples of astrocyte P2Y1R- and P2X7R-mediated signalling in epilepsy and MS, respectively. Properties of astrocyte P2Rs-mediated signalling and effects of
their blocking on pathophysiological events are showed for both diseases.

Astrocyte P2Y1R in Epilepsy

Preparation/Model P2Y1R
signaling

P2Y1R block Effect on neurons Reference

epileptiform slices ↑P2Y1R MRS 2179 MRS
2365

Prevention of abnormal synaptic frequency
increase

Pascual et al. (2012)
↑Glutamate
release

hippocampal slices/kindling epilepsy model ↑P2Y1R MRS2179 Reversing of abnormal synaptic activity Alvarez-Ferradas et al.
(2015)↑Ca2+ signals

↑Glutamate
release

hippocampal slices/TLE model ↑P2Y1R MRS 2179 Restoring of normal glutamatergic synaptic activity Nikolic et al. (2018)
↑Ca2 signals
↑Glutamate
release

hippocampal slices/kindling epilepsy model ↑P2Y1R MRS2179 Rescuing of impaired synaptic plasticity Martorell et al. (2020)
↑Ca2+ signals
↑Glutamate
release

Astrocyte P2X7R in MS

Preparation/Model P2X7R
signalling

P2X7R block Effect in MS Reference

brain sections/EAE P2X7R null mice P2X7R deficient Reduction of GFAP expression Sharp et al. (2008)
Suppression of EAE development
Reduction of axonal damage

brain sections/EAE ↑P2X7
expression

Brilliant blue G Reduction of astrogliosis Grygorowicz et al. (2016)
Decrease of GFAP and S100β levels
Alleviating of disease symptoms

brain sections/MS patients ↑P2X7
expression

Not studied Astrogliosis near cortical lesions Amadio et al. (2017)

Astrocyte culture/EAE (isolated CNS-infiltrated
immune cells)

↑Ca2 signals PPADS A438079 Blocking interaction of astrocytes and CNS-
infiltrated immune cells

Bijelic et al. (2020)
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signalling in the epileptogenic process and suggest that purinergic
therapeutic strategies could be useful in suppressing or ameliorating
epileptic activity.

P2Y1R-Mediated Astrocyte-Microglia
Crosstalk in Epilepsy
TNFα can trigger the astrocyte ATP-P2Y1R loop (see above) in the
dentate gyrus in the context of epilepsy (Nikolic et al., 2018) and
maybe also in the context of experimental autoimmune encephalitis
(EAE) (Santello et al., 2011;Habbas et al., 2015). Whereas the source
of TNFα in these inflammatory conditions is probably microglia
(Zhang et al., 2014), microglial cells can also activate astrocyte
P2Y1R-mediated signalling directly by releasing ATP. Alain
Bessis and colleagues found that LPS application triggers, within
fewminutes in acute hippocampal slices, ATP release frommicroglia
that activates astrocytic P2Y1Rs. This leads to the glutamate release
from astrocytes that increases excitatory postsynaptic current
(EPSC) frequency in CA1 pyramidal neurons through
presynaptic mGluR activation. Moreover, activation of this
microglia-astrocyte purinergic signalling promotes the generation
of epileptiform activities (Figure 1) (Pascual et al., 2012). These
observations reinforce the idea that purinergic signaling is critical in
astrocyte-microglia crosstalk under various pathological conditions

(Franke et al., 2012; Agostinho et al., 2020; Illes et al., 2020; Matejuk
and Ransohoff, 2020; Pietrowski et al., 2021).

Astrocyte Purinergic Signalling in MS
Although less examined compared to epilepsy, astrocyte
purinergic signalling can also be a critical contributor to the
pathology of MS from its early stages and can also affect the
course of the disease. Indeed, screening of selected P1R, P2XR
and P2YR genes revealed that changes in their expression occur
along with the different phases of the EAE development
(Jakovljevic et al., 2017). The same study showed a decrease in
the expression of ectonucleoside triphosphate
diphosphohydrolase 2 (NTPDase2) in EAE, an ATP
hydrolysing enzyme preferentially expressed in astrocytes.
Furthermore, purine-based signalling mediates communication
between astrocytes and oligodendrocytes (Fields and Burnstock,
2006; Ishibashi et al., 2006; Welsh and Kucenas, 2018; Agostinho
et al., 2020) which may be critical in neuroinflammatory
processes in MS. ATP release during neuronal activity induces
astrocytes to release the promyelinating cytokine leukemia
inhibitory factor (LIF), which promotes oligodendrocyte
development (Ishibashi et al., 2006). However, others
demonstrated that mechanical stimulation of astrocytes
increases ATP release and ATP evokes Ca2+ signals in
oligodendrocyte progenitor cells (OPCs) by a mechanism
involving the activation of P2Y1Rs and P2X7Rs (Agresti et al.,
2005; Hamilton et al., 2010). Moreover, over-activation of
P2X7Rs in oligodendrocytes causes cell death due to the high
cytosol Ca2+ levels, which contributes to demyelinating diseases.
Considering that neurotoxic astrocytes contribute to the
oligodendrocyte death in MS (Liddelow et al., 2017), targeting
purine-based astrocyte-oligodendrocyte communication, could
be a promising approach to prevent demyelination in this disease.

Evidence Supporting P2X7R as a Key
Astrocytic Target in MS
Ionotropic P2X7R could be a promising astroglial candidate to
target in MS as this receptor is upregulated in astrocytes, its
blockade reduces astrogliosis (Narcisse et al., 2005; Grygorowicz
et al., 2016; Amadio et al., 2017), and it is involved in the
communication between astrocytes and components of the
immune system in this disease (Table 1). Although
characterized as dominantly expressed by microglia, P2X7R is
also expressed and functional in astrocytes in specific areas
(Oliveira et al., 2011; Illes, 2020). Within CNS lesions of
patients with MS, P2X7R expression is upregulated in reactive
astrocytes surrounding infiltrated immune cells. The same study
demonstrated that a treatment with the proinflammatory
cytokine interleukin 1β increases mRNA expression of P2X7R,
and also increases P2X7R-dependent Ca2+ response of human
fetal astrocytes (Narcisse et al., 2005).

P2X7R and Astrogliosis in MS
Previous research showed alterations in P2X7R expression in
reactive astrocytes in the inflamed CNS. For example, P2X7Rs

FIGURE 1 | Purinergic signalling between astrocytes, neurons, microglia
and CNS-infiltrated immune cell in epilepsy and multiple sclerosis. The ATP
release and the involvement of the specific astrocytic purinergic receptor (PR)
type is depicted for the diseases. Activation of astrocytic P2Y1R and
P2X7R induce the rise in intracellular Ca2+. Activation of P2Y1R promotes the
release of glutamate, which acts on the presynaptic and postsynaptic
glutamate receptors (NMDAR and mGluR). Activation of P2X7Rs is mediated
by the release of ATP through connexin-43 hemichannels and/or pannexin-1
channels. Integrins are depicted as a putative link to the astrocytic P2X7R
activation via connexin-43/pannexin-1-derived ATP.
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are up-regulated in reactive astrocytes in the frontal cortex of
patients with MS (Amadio et al., 2017), while in EAE reactive
astrocytes show increase in P2X7Rs immunoreactivity
(Grygorowicz et al., 2016). In fact, blockade of P2X7Rs by
Brilliant blue G administration in rats with EAE, decreases
astrogliosis and alleviates disease symptoms (Grygorowicz
et al., 2016). Furthermore, P2X7R deficiency supresses EAE
development in P2X7R KO mice, reduces astroglial activation
and axonal damage, but does not influence immune cell
infiltration into the CNS (Sharp et al., 2008). Interestingly,
P2X7Rs co-immunoprecipitate with pannexin-1 channel in
astrocytes (Silverman et al., 2009), and pannexin-1 KO mice
display a delay in the onset of the EAE clinical signs (Lutz
et al., 2013). In this modality, pannexins-1 release ATP that
activates P2X7Rs and further recruit components of the
inflammasome.

Astrocyte P2X7R and Interaction With
CNS-Infiltrated Immune Cells
In addition to signalling through the release of ATP to
communicate with other types of neural cells (Franke et al.,
2012), astrocytes utilize this purine-based signalling also to
interact with CNS-infiltrated immune cells (Bijelic et al.,
2020). Our recent study showed that astrocyte interaction with
a nearby CNS-infiltrated immune cells requires astrocytic
P2X7R- and not P2Y1R-dependent signalling (Bijelic et al.,
2020). Furthermore, the presence of CD4+ autoreactive
immune T cells promotes astroglial hemichannel and or/
pannexin channel-controlled ATP release that activates
P2X7Rs and causes increase in the cytosolic Ca2+ in these glial
cells (Bijelic et al., 2020). Initial step promoting P2X7Rs activation
in astrocytes upon encountering autoreactive CD4+ T cells, can
involve integrins (Figure 1), as integrin engagement has been
linked to the astrocyte P2X7R activation via connexin-43
hemichannel and pannexin-1 channel release of ATP
(Henriquez et al., 2011; Alvarez et al., 2016). Integrins are
adhesion molecules that mediate cell-to-cell interaction, they
are expressed on neural and immune cells and implicated in
pathology of MS (Archelos et al., 1999). Moreover, integrin-
inhibiting therapies such as natalizumab are currently in use for
treatment of MS to reduce relapses in patients (Slack et al., 2022).
This consideration linking astrocytic P2X7Rs with integrins
pertains to the potential role of this PR as an astroglia-
targeting therapeutic candidate for treatment of MS, to control
interaction between astrocytes and CNS-inflitrated immune cells
to reduce neuroiflammation in this disease (Figure 1).

CONCLUSION

Deciphering astrocytic purinergic signalling and neuroinflammation
in epilepsy and MS is a challenging task considering the cell types
involved and the communication pathways operating in the inflamed
CNS in these diseases. ATP release and astroglial-mediated
purinergic signalling are crucial mechanisms through which
astrocytes communicate between themselves, with neurons in
epilepsy and with autoreactive immune cells in EAE (Figure 1),
making them suitable targets for designing innovative disease-
modifying strategies. In case of epilepsy, this would mean
developing effective therapies that will not just target neurons, but
also astrocytes, which by themselves provide conditions for proper
neuronal functioning. Similarly in MS, demyelination and neuronal
loss, could be rescued by effective controlling and targeting astrocyte
interaction with autoreactive immune cells. Quite possibly, saving
astrocyte protective functionswould be a farmore effective strategy to
save neurons fromdamage in both, epilepsy andMS as virtually every
aspect of brain function involves a neuron-astroglial partnership. We
pointed toward P2Y1R and P2X7R as two potential astrocytic
therapeutic candidates for treatment of epilepsy and MS,
respectively. Common for both astrocytic receptor types is their
involvement in autocrine loops, which further confirms that astrocyte
targeting can be exploited to design effective therapeutic strategy.
Further understanding of the purine-based signalling in mediating
astrocyte cell to cell interactions holds a promise to develop new
strategies for treatment of these neurological disorders.
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