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Introduction

Marine organisms exist in osmotic balance with their envi-
ronment. Seawater salinity is environmental variable that 
imposes physiological limits for the embryonic development 
of marine organism and the osmotic stresses acting on species 
depend upon individual adapmtions. The regulation process is 
controlled by specialized cells called ionocytes (or mitochon-
dria-rich-cells) located in numerous organs essentially gills, kid-
ney and/or tegument. Ion movements are mediated by different 
enzymes, primarily Na+/K+-ATPase located in the basolateral 
or apical membranes of the ionocytes.1,2 The Na+/K+-ATPase is 
an ubiquitous plasma membrane pump whose enzymatic activi-
ties constitute some of the principal means through which all 
animal cells convert the energy embodied in ATP into electro-
chemical gradients that can be exploited by all manner of meta-
bolic pathways;1 its structure is adapted in marine organisms.3

Among cephalopods, the common cuttlefish Sepia offici-
nalis mate and spawn in the coastal zone.4,5 Eggs are fixed on 
hard substrata, in the intertidal zone, and are exposed during 
low tide to osmotic stress for all their embryonic development. 
Embryos are protected by an eggshell composed of several black 
enveloppes that can prevent physical damage due to desiccation 
and can limit osmotic problems due to variation in salinity. As 
the embryo grows, the eggshell becomes thinner and permeable 
to seawater, which allows the supply of the various ions and 
respiratory gas required by the embryo.6,7

The influence of salinity stress on embryonic development 
and hatching success in cephalopods have been evidenced by 
numerous authors.8-12 Increases in salinity can produce smaller 
embryos with less ability to swim and predate, decreasing the 
individuals’ chances of survival.13 Cephalopods are less efficient 
in osmoregulation than fish: their tolerance to salinity variation 
is weak and their development is rapidly affected by an increase 
or a decrease of 10% around their optimal. Nevertheless salin-
ity ranges for embryonic development and hatching success are 
species specific.9-11,14

In adult fish, the gills are well established as being the pre-
dominant site of osmoregulation.15,16 Unlike adults, the early 
stages of fish show alternative sites for ion-regulation among 
them extra branchial integument that has a major role in the 
embryo and the post-hatching stages.16,17 The integument com-
prises the head, the trunk and fins and the yolk sac which was 
shown to be a major site for osmoregulation in euryhaline tele-
osts by numerous ionocytes located in the epithelium.18-20

In adult cephalopods, including the cuttlefish S. officina-
lis, ionocytes and Na+/K+-ATPase have been reported in gills 
essentially but also in excretory organs suggesting a role of these 
organs in ion and acid-base regulation.21-23 A recent study on 
two species of cephalopods (Loligo vulgaris and Sepia officinalis) 
has shown a role of gills and Na+/K+-ATPase in the embryo 
before hatching showing the importance of osmoregulation 
process during the development. Differences between the two 
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The cuttlefish Sepia officinalis mate and spawn in the intertidal zone where eggs are exposed during low tide to 
osmotic stress. embryonic outer yolk sac is a putative site for osmoregulation of young S. officinalis embryos. By using 
electrophysiological recordings and immunostaining we showed, (i) that the chorion is only a passive barrier for ions, 
since large molecules could not pass through it, (ii) that a complex transepithelial potential difference occurs through 
the yolk epithelium, (iii) that ionocyte-like cells and Na+/K+-aTPases were localized in the yolk epithelium and (iv) that 
ouabain sensitive Na+/K+-aTPase activity could participate to this yolk polarization. These data warrant further study 
on the role of ion transport systems of this epithelium in the osmoregulation processes in S. officinalis embryos.
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species studied probably in relation to their lifestyle have been evi-
denced.24 But in cephalopod embryos, protected from the external 
environment by the egg envelopes and chorion, the importance of 
the integument, including the outer yolk sac epithelium is poorly 
understood. Recently, ionic and acid-base regulation through Na+/
H+ exchangers (NHE3) was described for the yolk sac of cephalo-
pod embryos.25.26

In this context, we decided to explore how these compartments 
and limits (chorion and perivitelline envelope) intervene in the ion 
movements, in order to compare the mechanisms involved in fish 
and cephalopods and between tissues within the same organism. 
Na+/K+-ATPase is involved in plasma membrane polarization27,28 
and regarded as an excellent marker for the ion-regulatory capac-
ity of a given tissue.29 We thus undertook an electrophysiological 
study of the chorion and yolk sac envelope of Sepia officinalis eggs 
and further searched for putative role of Na+/K+-ATPases.

Results and Discussion

A first set of electrophysiologi-
cal experiments was conducted on 
embryos surrounded by their cho-
rion. When the electrode tip was 
located through the chorion in 
the perivitelline space (Fig. 1A,B), 
we failed to record any increase in 
resistance and variation in trans-
membrane electrical potential 
(Fig. 1B,C) suggesting that sea 
water can diffuse freely through 
the chorion in accordance with 
the iso-osmolarity recorded for the 
perivitelline f luid and the sea water 
(Fig. 1D). These results show that 
there is no direct regulation by the 
chorion and dark envelopes. These 
are passive barriers for ionic move-
ments. When the tip of the elec-
trode just began to penetrate the 
yolk we sometime record instable 
voltage values around—60 mV 
(data not shown). On the other 
hand we recorded an abrupt shift 
of voltage when the electrode pen-
etrated into the yolk. In this con-
figuration, we recorded an increase 
in resistance and a clear negative 
electrical gradient across the yolk 
epithelia (Fig. 1B,C). The outer 
yolk sac envelope consists of an epi-
dermal layer, cell layers delimitat-
ing the blood sinus/blood lacunae 
that lines the yolk syncitium. The 
inner epithelium is in direct con-
tact with the yolk whereas the outer 
epithelium is in direct contact with 
the perivitelline f luid.30 Thus, the 

voltage we recorded probably corresponds to a complex poten-
tial difference across several epithelia (TEsPD). The TEsPD 
recorded were closed to – 45 mV and constant for the embryos 
between stages 21 to 27 (Fig. 1C) suggesting that the size reduc-
tion of the yolk implying modifications of the epithelia during 
the development has no consequence on the TEsPD. The sec-
ond set of experiments conducted after removal of the chorion 
(Fig. 2A) displays TEsPD of the same order of magnitude than 
the one recorded with the chorion (Fig. 2A,B). These results 
confirm that the chorion consists in a passive barrier for ionic 
movements and that the yolk epithelia are involved in ionic 
exchanges. We further examine if the TEsPD observed vary 
when embryos were submitted to variable salinity conditions. 
Whatever the hypo—or hypersalinity tested embryos at stage 
21/22 and 25 preserved a TEsPD around—45 mV (Fig. 2C). 
However, the yolk polarization and the stable values of TEsPD 

Figure 1. (A) egg elements surrounding the Sepia embryo during its direct development: embryo bathed 
in the perivitelline fluid (PVF) is protected by chorion and several dark envelopes. (B) Sepia embryo inside 
its chorion. Upper arrow indicates the position of the microelectrode for measuring difference of poten-
tial (V) across chorion. Diagram up: Recording of potential difference upon insertion of the microelec-
trode in the perivitelline space. Diagram down: Recording of potential changes upon insertion of the 
microelectrode in the outer yolk sac through the chorion. (C) Mean values of potential difference for cho-
rion alone and yolk with chorion between stages 21 and 27. (D) Osmolarity of the perivitelline fluid (PVF) 
and sea water (sW). The data correspond to the means of at least 5 replicates and error bars correspond 
to standard deviations. 
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upon variable salinity conditions strongly 
suggest the existence of mechanisms for 
ionic regulation. In fish, several studies 
have evidenced a role of Na+/K+-ATPase in 
cells of the yolk epithelium.18-20 The Na+/
K+-ATPase should be preferentially located 
in membranes of specialized cells called 
ionocytes and known to be involved in ionic 
regulation processes.2,31 In S. officinalis, such 
cells and their crucial role in osmoregula-
tion have been evidenced.24,26 We therefore 
search for presence of putative ionocytes 
on Sepia embryo yolk. Light microscopic 
observations of the yolk surrounding struc-
ture show a continuous cellular layer on all 
the surface of the yolk without any hetero-
geneity in the density or size of the cells as 
observed with DAPI staining (Fig. 3A). The 
silver staining procedure of the yolk epithe-
lium revealed brownish patch indicating 
large amounts of proteins on a restricted sur-
face (Fig. 3B,C) which could correspond to 
ionocyte-like cells.26 The patch is located on 
the ventral side of the yolk near the junction 
between the external yolk sac and the inter-
nal one. Positive immunostaining of patch 
of cells on yolk epithelium (Fig. 4A,B), 
using antibody H300 evidences the pres-
ence of Na+/K+-ATPases. The NaK-ATPase α subunit monoclonal 
antibody (α5 antibody available through the Development Studies 
Hybridoma Bank, Iowa City, IA) gave the same results (data not 
shown). We thus checked if Na+/K+-ATPase could be functional 
on the yolk epithelium of S. officinalis. Na+/K+-ATPase activity 
is effectively known to be involved in TEsPD of most of moist 
glands, ducts and vessels of all animal.32 By using ouabain at 100 
µM, a well known Na+/K+-ATPase inhibitor,28,33,34 we recorded 
when the yolk is impaled, a rapid depolarization of +16 ± 4 mV 
(n = 5) of the yolk (Fig. 5A,C) in the embryo without chorion. It 
is to be noted that this depolarization was not recorded when the 
yolk was impaled in presence of the chorion (Fig. 5B,C), suggest-
ing that ouabain did not reach the Na+/K+-ATPases and that the 
chorion is not permeable to such molecules. These envelopes are 
known to play a role as a physical barrier for some molecules, with 
an evolution of the selectivity as the same time the membranes 
thickened.35,36 These observations are also consistent with previous 
reports indicating that metals are bound to the chorion ensuring a 
protection of fish egg embryos37-40 or Daphnia magna eggs.41

This depolarization was observed for crab gills epithelia 
treated with ouabain and the authors suggested Na+/K+-ATPases 
as the main driving force for ion extrusion during salinity stress 
response.42 Similarly, although the TEsPD reflect the functioning 
of a complex structure, the efficiency of ouabain from the external 
face of this epithelium suggests an insertion of this transporter in 
the external membrane of the yolk epithelium, and thus a role for 
Na+/K+-ATPases in the excretion of salt from yolk. Actually, the 
TEsPD decrease recorded upon ouabain addition on S. officinalis 

yolk was rapidly reversed even in presence of ouabain (Fig. 5A), 
indicating that other ion transporters, putatively NHE3,26 actively 
participate to yolk TEsPD. However, further studies are needed 
to analyze the ionic composition of S. officinalis yolk and create a 
model for this complex system to explain the yolk polarization and 
the involvement of Na+/K+-ATPase in the TEsPD we recorded.

To our knowledge it is the first report dealing with polariza-
tion of the yolk of cephalopods and the probable presence of Na+/
K+-ATPase activity on ionocytes in yolk epithelium of S. officina-
lis. The characterization of the ionocytes-like cells in relation to 
the types and localizations of ion channels and/or pumps in this 
epithelium must be a challenge. These data will allow drawing a 
complete scheme of the tissues/organs and the regulation systems 
involved in the osmoregulation processes in Sepia embryos.

Materials and Methods

Animals
All animal procedures were in compliance with the guidelines of 

the European Union (directive 86/609) and the French law (decree 
87/848) regulating animal experimentation. All efforts were made 
to minimize animal suffering and to reduce the number of animals 
used. Sepia officinalis embryos used in this study were gathered 
from just-fertilized egg batches that were collected from the marine 
station of Luc-sur-mer (University of Caen-France) between April 
to June. Eggs at the beginning of gastrulation (stage 10 according 
to Lemaire’s system for S. officinalis,43) were kept at 20°C in oxy-
genated sea water (30ppm). Eggs are surrounded by a chorion and 

Figure 2. (A) Sepia embryo without chorion. The arrow indicates the position of the microelec-
trode for measuring difference of potential (V) across yolk epithelium alone. Diagram: Recording 
of potential changes upon insertion of the microelectrode in the yolk. (B) Mean values of differ-
ence of potential for yolk without chorion between stages 21 and 27. (C) Mean values of difference 
of potential for embryos bathed from the beginning of clivage in low salinity, Ls (26 ppm), normal 
salinity, Ns (30 ppm) and high salinity, hs (34 ppm). Measures were taken after 27 and 37 d of 
treatment. The data correspond to the means of at least 5 replicates and error bars correspond to 
standard deviations. 



e26035-4 communicative & Integrative Biology Volume 6 Issue 6

several dark envelopes, constituting an eggshell (Fig. 1A). From 
stages 22 to 27, a few of them were opened daily by removing all 
the black envelopes. In this late embryonic development stage, 
the perivitelline f luid is increasing as a consequence of seawater 
entry7,44 and all the main structures and organs are developed.

The eggshell constitutes an interface, a physical barrier 
between the external surrounding water and the perivitelline 
f luid which creates the embryonic microenvironment.45 The 
external black envelopes were removed in seawater to enable 
easier insertions of microelectrode into the perivitelline space 
through the chorion or into the outer yolk sac through the peri-
vitelline envelope (Fig. 1A,B). The samples were bathed in 5 ml 
of sea water during the whole experiments.

Measurements of osmolarity
The osmolarities of the seawater and of perivitelline f luid 

samples were determined. The chorion and black envelopes 
were rapidly removed and the PVF collected directly in a 
microtube. Measurements were made on 100µl by peltier cool-
ing effect using an osmometer (Roebling microosmometer).

DAPI and silver staining of yolk
Embryos with yolk were separated from the eggshell. Yolk 

sacs were bathed for 15 min in a solution of 200 ng.ml-1 of 
DAPI/PBS, and then observed using a Leica M16 2F binocular 
stereomicroscope. Other embryos with yolk were rinsed rapidly 
in distilled water. They were then transferred to 10·gl–1 AgNO

3
 

for 5·min, again rinsed in distilled water and exposed to sun-
light for 10–15·min. Observations were done with a Leica M16 
2F binocular stereomicroscope.

Immunohistochemistry
The eggshell was removed in sea water and embryos were 

fixed for 1h in 3.7% paraformaldehyde (PFA) in phosphate-
buffered saline (PBS 1X) at room temperature. After stage 
determination by binoculars, the yolk sac was separated from 
the embryo and washed 3 times for 15 min. in PBS , and then 
stored at – 20°C in 30% glycerol. Fixed yolk sacs were washed 
in PBS and permeabilized overnight at room temperature in 
10% dimethylsulfoxide (DMSO) in PBS to enhance antibody 
penetration. To reduce non-specific binding by antibodies, 
sites were blocked by incubating the yolk sac in blocking buf-
fer [PBS / 0.05% Saponin / 1% bovine serum albumin (BSA)] 
overnight at 4°C and rinsed in PBSS [ PBS/ 0.05% saponin] 4 
times for 1 h.

Yolk sacs were then incubated overnight at 4°C with a NaK-
ATPase a1 antibody of 
human origin [5 ug/
ml working dilution; 
NKAα(H-300), Santa 
Cruz Biotechnology, 
Santa Cruz, CA), 
which specifically rec-
ognizes the α subunit 
of the cephalopod 
NaKATPase24 and then 
rinsed 3 times with 
PBSS (1 h each). A sec-
ond incubation in horse 

Figure 3. A) DaPI staining of the yolk; B: silver staining of the yolk peri-
vitelline epithelium of Sepia officinalis embryo. B) Yolk. The aperture is 
the constriction limit between the external and the inner yolk sac. The 
dark patch indicates a zone with high ionocyte-like cells density. C) 
Magnification of the dark area showing ionocyte-like cells. scale bars: 
500 µm 

Figure 4. Na+K+-aTPases immunostaining on S. officinalis yolk from embryo at stage 27. A) staining of the perivitelline 
envelope showing the patchy staining. B) Magnification on a stained cell. C) DaPI staining for the same magnification. 
scale bar: a: 100 µm; B,c: 30 µm. 
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biotinylated anti-rabbit IgG antibody was performed overnight 
at 4°C in blocking buffer (dilution 1:100).

After additional washes (3 times, 1 h in PBSS), staining was 
performed using the Vectastain ABC Kit (Vector Laboratories) 
and 3,3-diaminobenzedine (DAB-nickel Kit, SK-4100, Vector 
Laboratories); a dark brown colored substrate of peroxydase. 
After 10 min., the coloration was stopped in PBSS and embryos 
were fixed with 3.7% PFA in PBSS. The yolk sac was dissected 
in order to remove the yolk and the periviteline envelope was 
mounted on glass slide in 3:1 glycerol to PBS for viewing on 
a Leica DMLB microscope, and photographed with a cool-
snap color camera. A solution of 200 ng.ml-1 of DAPI/PBS was 
applied on slides.

Electrophysiology
Potential differences were measured with glass microelec-

trodes pulled on a Narishige PA81 electrode puller (CLARK GC 
150F with a tip diameter thinnest than 1 µm). Micropipettes 
were filled with 600 mM KCl (resistance of about 80 M) and 
were connected by a reversible Ag/AgCl half-cell to the measur-
ing set-up consisting of an electrometer (F223A WPI) and a 
pen-recorder (Kipp and Zonen BD8). Sepia eggs were bathed 
from stage 10 in three different salinities (low salinity, LS: 26 
ppm; normal salinity, NS: 30 ppm and high salinity, HS: 34 
ppm). After 27 d, embryo is free in the PVF and reached stage 
21/22 in which the yolk is separated in an internal sac inside 
the embryo and an external sac visible outside. After 37 d they 
reached stage 25 at which all the organs are set up. Yolk embryos 
at stage 21/22 and at stage 25 were impaled using a three axis 
hydraulic micromanipulator Narishige WR91 clamped to the 
binocular loupe. Experiments were performed on a vibration 
free table enclosed in a faraday cage, in which all the apparatus 
were earthed. Experiments were performed at 22 ± 2°C. The 
Na+-K+ ATPase inhibitor ouabaïn (100 µM final concentration) 
was added directly to the sea water.
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Figure  5. Recording of the transepithelial difference potential (V) 
of Sepia embryo yolk without (A) or with (B) chorion, and variation of 
the potential upon addition of the Na+K+-aTPase inhibitor ouabain at 
100 µM. C) Mean values of potential variation for the different configura-
tions. The data correspond to the means of 5 replicates and error bars 
correspond to standard deviations.
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