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L1 solution to scalar BSDEs with logarithmic sub-linear growth
generators✩

Shengjun Fan∗, Ying Hu∗∗, Shanjian Tang†

Abstract

By developing the test function method and combining the localization technique, we prove existence

of an L1 solution to a one-dimensional backward stochastic differential equation (BSDE for short) with

L1 terminal condition when the generator g has a one-sided linear growth in the first unknown variable

y and a logarithmic sub-linear growth in the second unknown variable z, which improves some existing

results. A new idea to study existence of an adapted solution to a BSDE is given. When the generator g

additionally satisfies a one-sided Osgood condition in y and a logarithmic uniform continuity condition

in z, we further establish a comparison theorem for the L1 solutions to the above BSDEs, which yields

immediately the uniqueness of the solution.

Keywords: Backward stochastic differential equation, L1 solution, Existence and uniqueness,

Logarithmic sub-linear growth generator, Comparison theorem.

2010 MSC: 60H10

1. Introduction

Fix a positive integer d and a real number T > 0. For a, b ∈ R, define a ∧ b := min{a, b}, a+ :=

max{a, 0} and a− := −min{a, 0}, and sgn(x) := 1x>0 − 1x≤0 with 1A being the indicator function of

set A. Let (Ω,F ,P) be a complete probability space with augmented filtration (Ft)t∈[0,T ] generated by

a d-dimensional standard Brownian motion (Bt)t∈[0,T ]. For each p > 0, denote by Lp the collection

of all FT -measurable real-valued random variables ξ satisfying E[|ξ|p] < +∞, Lp the collection of all

(Ft)-adapted real-valued processes (Xt)t∈[0,T ] satisfying

∥X∥Lp :=

{
E

[(∫ T

0

|Xt|dt

)p]} 1
p∧1

< +∞,

Sp the collection of (Ft)-adapted continuous real-valued processes (Yt)t∈[0,T ] satisfying

∥Y ∥Sp :=

(
E[ sup

t∈[0,T ]

|Yt|p]

) 1
p∧1

< +∞,
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and Mp the collection of all (Ft)-adapted R1×d-valued processes (Zt)t∈[0,T ] satisfying

∥Z∥Mp :=

E

(∫ T

0

|Zt|2dt

)p/2


1
p∧1

< +∞.

Recall that an (Ft)-adapted real-valued process (Xt)t∈[0,T ] belongs to class (D) if the {Xτ : τ ∈ ΣT } is a

family of uniformly integrable random variables, where ΣT represents the collection of all (Ft)-stopping

times τ taking values in [0, T ]. The equality and inequality between random elements are stood in P−a.s..

We study the following scalar backward stochastic differential equation (BSDE for short):

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ], (1.1)

where ξ is an FT -measurable real-valued random variable called the terminal condition, the function

(called the generator)

g(ω, t, y, z) : Ω× [0, T ]× R× R1×d → R

is (Ft)-adapted for each (y, z), and the pair of processes (Yt, Zt)t∈[0,T ] taking values in R × R1×d is

called the adapted solution of (1.1), which is (Ft)-adapted such that P − a.s., t 7→ Yt is continuous,

t 7→ |g(t, Yt, Zt)|+ |Zt|2 is integrable, and verifies (1.1).

Throughout the paper, we always suppose that β ≥ 0 and γ, c > 0 are three given nonnegative

constants, and (ft)t∈[0,T ] is a given (Ft)-adapted nonnegative process. By BSDE(ξ, g), we mean the

BSDE with terminal condition ξ and generator g. For narrative convenience, let α > 0 and the generator

g satisfy the following growth condition:

|g(ω, t, y, z)| ≤ ft(ω)|+ β|y|+ γ|z|α, (ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d. (1.2)

In the case of α ∈ (0, 1), α = 1, α ∈ (1, 2), α = 2 and α > 2, it is usually called that the generator g has

a linear growth in y, and a sub-linear, linear, sub-quadratic, quadratic and super-quadratic growth in z

respectively. The following existence results are well known and classical. For the case of α ∈ (0, 1), it

follows from [1, 8] that if (ξ, f·) ∈ L1 ×L1, then BSDE(ξ, g) admits a solution (Yt, Zt)t∈[0,T ] such that Y·

belongs to class (D) and (Y·, Z·) ∈ Sp×Mp for each p ∈ (0, 1). For the case of α = 1, if (ξ, f·) ∈ Lp×Lp

for some p > 1, then BSDE(ξ, g) admits a solution (Y·, Z·) ∈ Sp × Mp, see e.g. [18, 7, 16, 1, 13] for

more details. For the case of α = 2, by [15] we know that if (ξ, f·) is bounded, then BSDE(ξ, g) admits a

solution (Yt, Zt)t∈[0,T ] such that Y· is a bounded process and Z· ∈ M2. For the case of α > 2, it follows

from [5] that even if (ξ, f·) is bounded, BSDE(ξ, g) may not admit a solution.

When the generator g satisfies (1.2) with α = 2, [2] gave a general existence result on an adapted

solution to BSDE(ξ, g), which weakens the boundedness condition on (ξ, f·) in [15] to a certain exponential

moment condition. To the best of our knowledge, this is the first work investigating the weakest possible

integrability condition on (ξ, f·) for existence of an adapted solution to BSDE(ξ, g) when the generator

g has a certain growth condition on both unknown variables. In this spirit, [14] and [9] studied the same

problem in the case that the generator g satisfies (1.2) with α = 1 by applying the dual representation of

solution to BSDE with convex generator used in [7, 19] and utilizing the test function method respectively.
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Very recently, the case that the generator g satisfies (1.2) with α ∈ (1, 2) was tracked in [10], and the

case that the generator g satisfies (1.2) with |z|| ln |z||α instead of |z|α was dealt with in [12], where g has

a super-linear growth in z. We would like to especially mention that in some of known results mentioned

above, the generator g can be allowed to have a one-sided linear growth in y.

Generally speaking, more assumptions are required in order to obtain the uniqueness and the com-

parison theorem of solutions of scalar BSDEs. In particular, when the generator g is of a linear growth in

z, it is additionally supposed that g satisfies a one-sided Osgood condition in y and a uniform continuity

condition in z to obtain the desired results (see [7, 8, 4, 14, 17] for details, where Gronwall’s inequality,

Bihari’s inequality and Girsanov’s transform are usually used as important tools). And, when the gener-

ator g has a super-linear, sub-quadratic or quadratic growth in z, some extended convexity (concavity)

assumptions of the generator g in (y, z) are added to get the uniqueness or the comparison theorem (see

[3, 6, 8, 11, 10, 12] for more details, where the θ difference method and the a priori estimate technique

usually play the key roles in the proof). In addition, we would like to mention that under the condition

that the generator g satisfies (1.2) with α ∈ (0, 1), if g further satisfies a one-sided Osgood condition in

y and a uniform continuity condition with a sub-linear growth condition in z, then the uniqueness and

the comparison theorem of solutions of scalar BSDEs hold, see [1] and [8] for details.

In this paper, we put forward a new idea to study existence of an adapted solution to BSDE(ξ, g).

More specially, the following question is the starting point of this paper. That is, if only (ξ, f·) ∈ L1×L1

is satisfied, then what growth conditions (as weakest as possible) of the generator g in (y, z) can ensure

existence of the adapted solution to BSDE(ξ, g)? As mentioned before, [1] gave an answer of this problem

where the generator g has a linear growth in y and a sub-linear growth in z, i.e., g satisfies (1.2) with

α ∈ (0, 1). Then, a question naturally arises: can we find some weaker conditions? This paper gives an

affirmative answer of this question. Roughly speaking, by utilizing the localization technique put forward

initially in [2], we prove that BSDE(ξ, g) admits a solution (Yt, Zt)t∈[0,T ] such that Y· belongs to class

(D) and (Y·, Z·) ∈ Sp×Mp for each p ∈ (0, 1) when (ξ, f·) ∈ L1×L1 and the generator g has a one-sided

linear growth in y and a logarithmic sub-linear growth in z, see Theorem 2.1 in Section 2. It is a key step

in the proof to search for a suitable test function (see Proposition 3.3 in Section 3) to apply Itô’s formula

and then obtain the desired a priori bound on the first parts of adapted solutions to the approached

BSDEs. Before that, we need to prove an important technical inequality, see Proposition 3.2 in Section 3.

Furthermore, by using the same a priori estimate technique as above and combining Theorem 2.1 in [8], we

establish a comparison theorem for the adapted L1 solutions to the previous BSDEs when the generator

g additionally satisfies a one-sided Osgood condition in y and a logarithmic uniform continuity condition

in z, which naturally yields the uniqueness of the L1 solution, see Proposition 2.5 in Section 2.

The rest of this paper is organized as follows. In next section we state the main result, and in section

3 we prove it.

2. Statement of main result

Let us first introduce the following assumptions on the generator g.
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(H1) dP× dt− a.e., g(ω, t, ·, ·) is continuous.

(H2) g has a one-sided linear growth in y and a logarithmic sub-linear growth in z, i.e., there exists a

constant λ ∈ (1/2, 1] that dP× dt− a.e., for each (y, z) ∈ R× R1×d,

sgn(y)g(ω, t, y, z) ≤ ft(ω) + β|y|+ γ|z|
(ln(e+ |z|))λ

.

(H3) g has a general growth in (y, z), i.e., there exists a continuous nondecreasing function h(·) :

[0,+∞) → [0,+∞) with h(0) = 0 such that dP× dt− a.e., for each (y, z) ∈ R× R1×d,

|g(ω, t, y, z)| ≤ ft(ω) + h(|y|) + c|z|2.

(H4) g satisfies a one-sided Osgood condition in y, i.e., there exists a continuous, nondecreasing and

concave function ρ(·) : [0,+∞) → [0,+∞) with ρ(0) = 0, ρ(u) > 0 for u > 0, and
∫
0+

du
ρ(u) = +∞

such that dP× dt− a.e., for each (y1, y2, z) ∈ R× R× R1×d,

sgn(y1 − y2)(g(ω, t, y1, z)− g(ω, t, y1, z)) ≤ ρ(|y1 − y2|).

(H5) g satisfies a logarithmic uniformly continuity condition in z, i.e., there exists a nondecreasing

continuous function κ(·) : [0,+∞) → [0,+∞) with linear growth and κ(0) = 0 such that dP× dt−

a.e., for each (y, z1, z2) ∈ R× R1×d × R1×d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ κ

(
|z1 − z2|

(ln(e+ |z1 − z2|))λ

)
,

where the constant λ ∈ (1/2, 1] is the same as in (H2).

The following existence and uniqueness theorem is the main result of this paper.

Theorem 2.1. Let the terminal condition ξ ∈ L1 and the generator g satisfy (H1)-(H3) with f· ∈ L1.

Then BSDE(ξ, g) admits a solution (Yt, Zt)t∈[0,T ] such that Y· belongs to class (D) and (Y·, Z·) ∈ Sp×Mp

for each p ∈ (0, 1). And, there exists a constant C > 0 depending only on (β, γ, λ, T ) such that

|Yt| ≤ |Yt|+
∫ t

0

fsds ≤ CE

[
|ξ|+

∫ T

0

ftdt

∣∣∣∣∣Ft

]
+ C, t ∈ [0, T ]. (2.3)

Moreover, if g also satisfies assumptions (H4) and (H5), then the solution (Y·, Z·) such that Y· belongs

to class (D) is unique.

Remark 2.2. With respect to Theorem 2.1, we make the following several remarks.

(i) It is not hard to verify that for each α ∈ (0, 1), there exists a constant kα > 0 depending only on α

such that for each z ∈ R1×d,

|z|α ≤ kα +
|z|

ln(e+ |z|)
.

This means that for the one-dimensional case, (H2) is weaker than the sub-linear growth assumption

(H6) used in [1], and then Theorem 2.1 improves the corresponding existence result of [1].
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(ii) Note that for each λ > 1 and z ∈ R1×d,

|z|
(ln(e+ |z|))λ

≤ |z|
ln(e+ |z|)

.

Therefore, the constant λ appearing in assumption (H2) can take values in (1/2,+∞). However,

it is still open whether Theorem 2.1 holds still when α ∈ (0, 1/2].

(iii) It is not hard to verify that the constant e appearing in (H2) and (H5) can be replaced with any

constant bigger than one. And, it is clear that if g satisfies assumption (H5), then it is uniformly

continuous in z. In addition, it can be proved that assumptions (H3)-(H5) imply (H2).

In the sequel, we give two examples to which Theorem 2.1 applies, but no existing results could.

Example 2.3. For each (ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d, define

g(ω, t, y, z) := eBt(ω) + e−y cos2 |z|+ |z| sin |z|
(ln(e+ |z|))2/3

− |z|2sgn(y).

It is easy to check that this g satisfies (H1)-(H3) with

f· = eB· + 1, β = 0, γ = 1, λ = 2/3, c = 1 and h(u) = eu.

It then follows from Theorem 2.1 that for each ξ ∈ L1, BSDE(ξ, g) admits an adapted solution (Yt, Zt)t∈[0,T ]

such that Y· belongs to class (D) and (Y·, Z·) ∈ Sp ×Mp for each p ∈ (0, 1).

Example 2.4. For each (ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d, define

ḡ(ω, t, y, z) := Bt(ω) + y21y≤0 + l(|y|) + l

(
|z|

ln(e+ |z|)

)
+
√
|z|,

where

l(u) := u| lnu|10≤u≤ε + l′−(ε)(u− l(ε)), u ∈ (0,+∞)

with ε > 0 being sufficiently small. Note that if F (·) : [0,+∞) → [0,+∞) is a nondecreasing concave

function with F (0) = 0, then for each 0 < x < y, by letting k := x/y ∈ (0, 1) we have

F (y)− F (x) = F (y)− F (ky + (1− k) · 0)

≤ F (y)− (kF (y) + (1− k)F (0))

= (1− k)F (y) + kF (0)

≤ F ((1− k)y + k · 0) = F (y − x),

and then for each x1, x2 ≥ 0,

|F (x1)− F (x2)| ≤ F (|x1 − x2|).

With the above observation, it is not very hard to verify that for each x1, x2 ≥ 0,

|l(x1)− l(x2)| ≤ l(|x1 − x2|) and

∫
0+

du

l(u)
= +∞,

∣∣∣∣ x1

ln(e+ x1)
− x2

ln(e+ x2)

∣∣∣∣ ≤ |x1 − x2|
ln(e+ |x1 − x2|)
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and

|
√
x1 −

√
x2| ≤

√
|x1 − x2| ≤ 2

( √
|x1 − x2|

ln(e+ |x1 − x2|)
+

|x1 − x2|
ln(e+ |x1 − x2|)

)
.

Thus, it can be checked that this ḡ satisfies assumptions (H1)-(H5) with

f· = B· + 2, β = 1, γ = 2, λ = 1, c = 2, h(u) = u2 + u, ρ(u) = l(u) and κ(u) = l(u) + u+ 2
√
u.

It then follows from Theorem 2.1 that for each ξ ∈ L1, BSDE(ξ, g) admits a unique adapted solution

(Yt, Zt)t∈[0,T ] such that Y· belongs to class (D) and (Y·, Z·) ∈ Sp ×Mp for each p ∈ (0, 1).

The following proposition establishes a comparison result for the L1 solutions of two BSDEs, which

naturally yields the uniqueness part of Theorem 2.1.

Proposition 2.5. Let ξ and ξ′ be two terminal conditions, g and g′ be two generators, and (Yt, Zt)t∈[0,T ]

and (Y ′
t , Z

′
t)t∈[0,T ] be respectively an adapted solution to BSDE(ξ, g) and BSDE(ξ′, g′). Assume that g

(resp. g′) satisfies assumptions (H4)-(H5), and (Y· − Y ′
· )

+ belongs to class (D). If ξ ≤ ξ′ and

1Yt>Y ′
t
(g(t, Y ′

t , Z
′
t)− g′(t, Y ′

t , Z
′
t)) ≤ 0 (resp. 1Yt>Y ′

t
(g(t, Yt, Zt)− g′(t, Yt, Zt)) ≤ 0 ), (2.4)

then for each t ∈ [0, T ], we have Yt ≤ Y ′
t .

3. Proof of main result

We first introduce the following technical lemma.

Lemma 3.1. For each x ≥ 0, we have

(e+ x) ln(e+ x) > 2x (3.5)

and

(e+ x)2 − 2x ln(e+ x) > e. (3.6)

Proof. Let f(x) := (e+ x) ln(e+ x)− 2x, x ∈ [0,+∞). A simple calculate gives

f ′(x) = ln(e+ x)− 1 ≥ 0, x ≥ 0.

Then, (3.5) follows since f(x) ≥ f(0) = e > 0 for each x ≥ 0.

In order to prove (3.6), we let h(x) := (e + x)2 − 2x ln(e + x) − e, x ∈ [0,+∞). A simple calculate

gives that for each x ≥ 0,

h′(x) = 2(e+ x)− 2 ln(e+ x)− 2x

e+ x

and

h′′(x) = 2− 2

e+ x
− 2e

(e+ x)2
≥ 2− 4

e
> 0.

Hence, for each x ≥ 0 we have

h′(x) ≥ h′(0) = 2e− 2 > 0
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and then

h(x) ≥ h(0) = e2 − e > 0,

which yields the desired inequality (3.6).

By virtue of the above lemma we can prove the following key inequality.

Proposition 3.2. For each x, y ≥ 0 and λ ∈ [0, 1], it holds that

xy

(ln(e+ y))λ
≤ 2x2

(ln(e+ x))2λ
+

1

2
y2. (3.7)

Proof. The conclusion is obvious in the case of λ = 0. Let us prove the case of λ ∈ (0, 1]. For (x, y) ∈

[0,+∞)× [0,+∞), define the function

f(x, y) := y2 − 2xy

(ln(e+ y))λ
+

4x2

(ln(e+ x))2λ

=

(
y − x

(ln(e+ y))λ

)2

+
4x2

(ln(e+ x))2λ
− x2

(ln(e+ y))2λ
.

(3.8)

Clearly, in order to prove (3.7), it suffices to prove that f(x, y) ≥ 0 for each x, y ≥ 0. By (3.8) it is

obvious when y ≥ x, hence we only need to prove that f(x, y) ≥ 0 for each x ∈ (0,+∞) and y ∈ [0, x].

Now, fix arbitrarily x ∈ (0,+∞) and let f̄(y) := f(x, y), y ∈ [0, x]. Then we have

f̄ ′(y) = 2y − 2x

(ln(e+ y))λ
+

2λxy

(e+ y)(ln(e+ y))λ+1
, y ∈ [0, x] (3.9)

and in view of (3.5),

f̄ ′′(y) = 2 +
2λx

(e+ y)(ln(e+ y))λ+1
+

2λx (e ln(e+ y)− (λ+ 1)y)

(e+ y)2(ln(e+ y))λ+2

= 2 +
2λx [(e+ y) ln(e+ y) + e ln(e+ y)− (λ+ 1)y]

(e+ y)2(ln(e+ y))λ+2

> 2 +
2λx [(e+ y) ln(e+ y)− 2y]

(e+ y)2(ln(e+ y))λ+2
> 0, y ∈ [0, x].

(3.10)

The previous inequality (3.10) means that f̄ is a strictly convex function on [0, x]. Furthermore, noticing

by (3.9) that f̄ ′(0) = −2x < 0 and

f̄ ′(x) = 2x− 2x

(ln(e+ x))λ
+

2λx2

(e+ x)(ln(e+ x))λ+1
> 0,

we deduce that there exists a unique y0 ∈ (0, x) such that f̄ ′(y0) = 0 and

f(x, y) = f̄(y) ≥ f̄(y0) = f(x, y0), y ∈ [0, x]. (3.11)

In the sequel, let

y1 =
x

2(ln(e+ y1))λ
. (3.12)

Then, y1 ∈ (0, x/2) and it follows from (3.9), (3.12) and (3.5) that

f̄ ′(y1) =
x

(ln(e+ y1))λ
− 2x

(ln(e+ y1))λ
+

2λxy1
(e+ y1)(ln(e+ y1))λ+1

=
x [2λy1 − (e+ y1) ln(e+ y1)]

(e+ y1) ln(e+ y1))λ+1

≤ x [2y1 − (e+ y1) ln(e+ y1)]

(e+ y1)(ln(e+ y1))λ+1
< 0.
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Therefore, y1 < y0 and then it follows from (3.11) and (3.8) that

f(x, y) ≥ f(x, y0)

=

(
y0 −

x

(ln(e+ y0))λ

)2

+
4x2

(ln(e+ x))2λ
− x2

(ln(e+ y0))2λ

≥ 4x2

(ln(e+ x))2λ
− x2

(ln(e+ y1))2λ
, y ∈ [0, x].

(3.13)

Finally, by (3.6) we can deduce that

(e+ y1)
2

1
λ − 2y1(ln(e+ y1))

λ ≥ (e+ y1)
2 − 2y1 ln(e+ y1) > e.

It follows from the last inequality and (3.12) that

2
1
λ ln(e+ y1) ≥ ln(e+ 2y1(ln(e+ y1))

λ) = ln(e+ x),

which means that

4(ln(e+ y1))
2λ ≥ (ln(e+ x))2λ. (3.14)

Combining (3.13) and (3.14) yields that f(x, y) ≥ 0 for each x ∈ (0,+∞) and y ∈ [0, x], which is the

desired assertion.

Now, we fix arbitrarily λ ∈ (1/2, 1] and search for a positive, continuous, strictly increasing and

strictly convex function ϕ(s, x) : [0, T ]× [0,+∞) → (0,+∞) satisfying

−βϕx(s, x)x− ϕx(s, x)
γ|z|

(ln(e+ |z|))λ
+

1

2
ϕxx(s, x)|z|2 + ϕs(s, x) ≥ 0,

(s, x, z) ∈ [0, T ]× [0,+∞)× R1×d,

(3.15)

where and hereafter, ϕs(·, ·) denotes the first-order partial derivative of ϕ(·, ·) with respect to the first

variable, and ϕx(·, ·) and ϕxx(·, ·) respectively the first-order and second order partial derivative of ϕ(·, ·)

with respect to the second variable. Observe from (3.7) that

−ϕx(s, x)
γ|z|

(ln(e+ |z|))λ
+

1

2
ϕxx(s, x)|z|2

= ϕxx(s, x)

(
−γϕx(s, x)

ϕxx(s, x)

|z|
(ln(e+ |z|))λ

+
1

2
|z|2
)

≥ −2γ2 ϕ2
x(s, x)

ϕxx(s, x)

(
ln

(
e+

γϕx(s, x)

ϕxx(s, x)

))−2λ

.

Hence, it is sufficient for the function ϕ(·, ·) to satisfy that for each (s, x) ∈ [0, T ]× [0,+∞),

− βϕx(s, x)x− 2γ2 ϕ2
x(s, x)

ϕxx(s, x)

(
ln

(
e+

γϕx(s, x)

ϕxx(s, x)

))−2λ

+ ϕs(s, x) ≥ 0. (3.16)

In the sequel, we choose the following test function

ϕ(s, x) := (k + x)

(
1− 1

(ln(k + x))δ

)
µs, (s, x) ∈ [0, T ]× [0,+∞)

8



to explicitly solve the inequality (3.16), where δ is a positive constant to be assigned, µs : [0, T ] → (0,+∞)

is a nondecreasing and continuous differentiable function to be assigned and

k := exp

(
2

δ
+ 2(δ + 1) +

2δ

(δ + 1)γ

)
. (3.17)

First of all, a simple computation gives that for each (s, x) ∈ [0, T ]× [0,+∞),

ϕx(s, x) =

[
1− 1

(ln(k + x))δ

(
1− δ

ln(k + x)

)]
µs > 0,

ϕxx(s, x) =
δ

(k + x)(ln(k + x))δ+1

(
1− δ + 1

ln(k + x)

)
µs > 0,

and

ϕs(s, x) = (k + x)

(
1− 1

(ln(k + x))δ

)
µ′
s > 0.

Combining (3.17) and the last three inequalities yields that for (s, x) ∈ [0, T ]× [0,+∞),

1

2
µs ≤ ϕx(s, x) ≤ µs, (3.18)

δµs

2(k + x)(ln(k + x))δ+1
≤ ϕxx(s, x) ≤

δµs

(k + x)(ln(k + x))δ+1
(3.19)

and

ϕs(s, x) ≥
1

2
(k + x)µ′

s. (3.20)

It follows from (3.18), (3.19) and (3.17) that

γϕx(s, x)

ϕxx(s, x)
≥ γ

2δ
(k + x)(ln(k + x))δ+1 ≥ k + x. (3.21)

Substituting (3.18)-(3.21) into the left hand side of (3.16) we can deduce that

−βϕx(s, x)x− 2γ2 ϕ2
x(s, x)

ϕxx(s, x)

(
ln

(
e+

γϕx(s, x)

ϕxx(s, x)

))−2λ

+ ϕs(s, x)

≥ −β(k + x)µs −
2γ2µ2

s
δµs

2(k+x)(ln(k+x))δ+1 (ln(e+ k + x))2λ
+

1

2
(k + x)µ′

s

≥ (k + x)

[
−
(
β +

4γ2

δ
(ln(k + x))δ−(2λ−1)

)
µs +

1

2
µ′
s

]
, (s, x) ∈ [0, T ]× [0,+∞).

Thus, if we pick δ = 2λ− 1 and

µs := exp

[
2

(
β +

4γ2

δ

)
s

]
= exp

[
2

(
β +

4γ2

2λ− 1

)
s

]
, s ∈ [0, T ],

then (3.16) and then (3.15) holds.

In conclusion, we have the following proposition on the test function.

Proposition 3.3. Let λ ∈ (1/2, 1] and

k0 := exp

(
2

2λ− 1
+ 4λ+

2λ− 1

λγ

)
. (3.22)

For (s, x) ∈ [0, T ]× [0,+∞), define

9



φ(s, x) := (k0 + x)

(
1− 1

(ln(k0 + x))2λ−1

)
exp

[
2

(
β +

4γ2

2λ− 1

)
s

]
. (3.23)

Then, the test function φ(·, ·) satisfies that for each (s, x, z) ∈ [0, T ]× [0,+∞)× R1×d,

− βφx(s, x)x− φx(s, x)
γ|z|

(ln(e+ |z|))λ
+

1

2
φxx(s, x)|z|2 + φs(s, x) ≥ 0. (3.24)

The following Proposition 3.4 establishes an important a priori estimate for the solution to a BSDE.

Proposition 3.4. Assume that ξ is a terminal condition, g is a generator satisfying assumption (H2),

and (Yt, Zt)t∈[0,T ] is a solution of BSDE(ξ, g). If the process |Y·| +
∫ ·
0
fsds belongs to class (D), then

there exists a constant C > 0 depending only on (β, γ, λ, T ) such that for each t ∈ [0, T ],

|Yt| ≤ |Yt|+
∫ t

0

fsds ≤ CE

[
|ξ|+

∫ T

0

ftdt

∣∣∣∣∣Ft

]
+ C. (3.25)

Proof. Define

Ȳt := |Yt|+
∫ t

0

fsds and Z̄t := Ztsgn(Yt), t ∈ [0, T ].

Itô-Tanaka’s formula yields

Ȳt = ȲT +

∫ T

t

(sgn(Ys)g(s, Ys, Zs)− fs) ds−
∫ T

t

Z̄sdBs −
∫ T

t

dLs, t ∈ [0, T ],

where L· is the local time of Y· at 0. Now, let the function φ(·, ·) be defined in (3.23) and apply

Itô-Tanaka’s formula to the process φ(s, Ȳs) to deduce, in view of (H2),

dφ(s, Ȳs) = φx(s, Ȳs) (−sgn(Ys)g(s, Ys, Zs) + fs) ds+ φx(s, Ȳs)Z̄sdBs

+φx(s, Ȳs)dLs +
1

2
φxx(s, Ȳs)|Z̄s|2ds+ φs(s, Ȳs)ds

≥
[
− φx(s, Ȳs)

(
β|Ys|+

γ|Zs|
(ln(e+ |Zs|))λ

)
+

1

2
φxx(s, Ȳs)|Zs|2 + φs(s, Ȳs)

]
ds

+φx(s, Ȳs)Z̄sdBs, s ∈ [0, T ].

Then, in view of |Ys| ≤ Ȳs, by Proposition 3.3 we have

dφ(s, Ȳs) ≥ φx(s, Ȳs)Z̄sdBs, s ∈ [0, T ], (3.26)

which means that φ(s, Ȳs) is a local submartingale.

For each n ≥ 1 and t ∈ [0, T ], define the following stopping time

τ tn := inf

{
s ∈ [t, T ] : φ(s, Ȳs) +

∫ s

t

[
φx(r, Ȳr)

]2 |Z̄r|2dr ≥ n

}
∧ T

with the convention that inf ∅ = +∞. It follows from the definition of τ tn and (3.26) that for each n ≥ 1

and t ∈ [0, T ],

φ(t, Ȳt) ≤ E
[
φ(τ tn, Ȳτt

n
)
∣∣Ft

]
. (3.27)

On the other hand, observe from (3.23) and (3.22) that

1

2
(k0 + x) ≤ φ(s, x) ≤ k1(k0 + x), (s, x) ∈ [0, T ]× [0,+∞), (3.28)

10



where k0 is defined in (3.22) and

k1 := exp

[
2

(
β +

4γ2

2λ− 1

)
T

]
. (3.29)

Combining (3.27) and (3.28) yields that for each n ≥ 1 and t ∈ [0, T ],

1

2
(k0 + Ȳt) ≤ φ(t, Ȳt) ≤ E

[
φ(τ tn, Ȳτt

n
)
∣∣Ft

]
≤ k1E

[
(k0 + Ȳτt

n
)
∣∣Ft

]
.

Since Ȳ· belongs to class (D) and τ tn → T as n → ∞ for each t ∈ [0, T ], by sending n to infinity in the

last inequality we deduce that

Ȳt ≤ 2k1k0 + 2k1E[ȲT |Ft]− k0, t ∈ [0, T ],

which is the desired assertion.

Before proving Theorem 2.1, we introduce the following proposition, which is a direct corollary of

Proposition 3.8 in [12].

Proposition 3.5. Assume that the generator g satisfies assumption (H2) and (Yt, Zt)t∈[0,T ] is a solution

of BSDE(ξ, g). If |Y·|+
∫ ·
0
fsds ∈ Sp for p > 0, then Z· ∈ Mq for each q ∈ (0, p).

Proof of Theorem 2.1. For positive integers n, p ≥ 1, let

ξn,p := ξ+ ∧ n− ξ− ∧ p and gn,p(ω, t, y, z) := g+(ω, t, y, z) ∧ n− g−(ω, t, y, z) ∧ p.

As the terminal condition ξn,p is bounded and gn,p is a bounded generator, it follows from [15] that

BSDE(ξn,p, gn,p) admits a maximal bounded solution (Y n,p
· , Zn,p

· ) such that Y n,p
· is bounded and Zn,p

· ∈

M2. It is not hard to verify that gn,p satisfies assumption (H2) with f· ∧ (n ∨ p) instead of f· It then

follows from Proposition 3.4 that there exists a constant C > 0 depending only on (β, γ, λ, T ) such that

for each t ∈ [0, T ] and n, p ≥ 1,

|Y n,p
t | ≤ |Y n,p

t |+
∫ t

0

[fs ∧ (n ∨ p)]dt

≤ CE

[
|ξn,p|+

∫ T

0

[ft ∧ (n ∨ p)]dt

∣∣∣∣∣Ft

]
+ C

≤ CE

[
|ξ|+

∫ T

0

ftdt

∣∣∣∣∣Ft

]
+ C.

(3.30)

It follows from Theorem 2.3 in [8] that Y n,p
· is nondecreasing in n and non-increasing in p. Then, in view

of (3.30) and assumptions (H1) and (H3), by using the localization technique put forward initially in [2]

we deduce that there exists an (Ft)-adapted process (Zt)t∈[0,T ] such that (Y· := infp supn Y
n,p
· , Z·) is a

solution to BSDE(ξ, g). Furthermore, by letting n and p to infinity in (3.30) yields the desired inequality

(2.3), and then the process Y· belongs to class (D).

Let us further show that (Y·, Z·) ∈ Sp ×Mp for each p ∈ (0, 1). Indeed, in view of (2.3), it follows

from Lemma 6.1 in [1] that for each p ∈ (0, 1),

E

[
sup

t∈[0,T ]

(
|Yt|+

∫ t

0

fsds

)p
]
≤ (2C)p

[
1

1− p

(
E

[
|ξ|+

∫ T

0

fsds

])p

+ 1

]
< +∞,
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which means that Y· ∈ Sp for each p ∈ (0, 1), and then by Proposition 3.5, Z· ∈ Mp for each p ∈ (0, 1).

Thus, the existence part of Theorem 2.1 is proved.

The uniqueness part is a direct corollary of Proposition 2.5, which will be proved below. The proof

of Theorem 2.1 is then complete.

Proof of Proposition 2.5. We only prove the case that the generator g satisfies assumptions (H4)-(H5),

and dP× dt− a.e.,

1Yt>Y ′
t
(g(t, Y ′

t , Z
′
t)− g′(t, Y ′

t , Z
′
t)) ≤ 0. (3.31)

The other case can be proved in the same way. Without loss of generality, we always assume that the

function ρ(·) in assumption (H4) and the function κ(·) in assumption (H5) verify that for each x ≥ 0,

ρ(x) ≤ Ax+A and κ(x) ≤ Ax+A, (3.32)

where A > 0 is a universal constant.

Define Ŷ· := Y· − Y ′
· and Ẑ· := Z· − Z ′

· . Then, (Ŷ·, Ẑ·) verifies

Ŷt = ξ − ξ′ +

∫ T

t

(g(s, Ys, Zs)− g′(s, Y ′
s , Z

′
s)) ds−

∫ T

t

ẐsdBs, t ∈ [0, T ]. (3.33)

Let

Ỹt := Ŷ +
t + 2At and Z̃t := 1Ŷt>0Ẑt, t ∈ [0, T ].

Itô-Tanaka’s formula yields

Ỹt = ỸT +

∫ T

t

(
1Ŷs>0 (g(s, Ys, Zs)− g(s, Y ′

s , Z
′
s))− 2A

)
ds−

∫ T

t

Z̃sdBs −
∫ T

t

dLs, t ∈ [0, T ],

where L· is the local time of Ŷ· at 0.

Furthermore, in view of assumptions (H4) and (H5) of the generator g together with (3.31) and (3.32),

we have dP× ds− a.e.,

1Ŷs>0 (g(s, Ys, Zs)− g′(s, Y ′
s , Z

′
s))− 2A

≤ ρ(Ŷ +
s ) + 1Ŷs>0κ

(
|Ẑs|

(ln(e+ |Ẑs|))λ

)
− 2A

≤ AŶ +
s +A

1Ŷs>0|Ẑs|
(ln(e+ |Ẑs|))λ

≤ AỸs +
A|Z̃s|

(ln(e+ |Z̃s|))λ
.

(3.34)

Let the function φ(·, ·) be defined in Proposition 3.3 with A instead of β and γ in (3.22) and (3.23). In

view of (3.34), applying Itô-Tanaka’s formula to the process φ(s, Ỹs) yields that

dφ(s, Ỹs) = −φx(s, Ỹs)
(
1Ỹs>0 (g(s, Ys, Zs)− g(s, Y ′

s , Z
′
s))− 2A

)
ds+ φx(s, Ỹs)Z̃sdBs

+φx(s, Ỹs)dLs +
1

2
φxx(s, Ỹs)|Z̃s|2ds+ φs(s, Ỹs)ds

≥
[
− φx(s, Ỹs)

(
AỸs +

A|Z̃s|
(ln(e+ |Z̃s|))λ

)
+

1

2
φxx(s, Ỹs)|Z̃s|2 + φs(s, Ỹs)

]
ds

+φx(s, Ỹs)Z̃sdBs, s ∈ [0, T ].
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Then, by (3.24) in Proposition 3.3 with A instead of β and γ we have

dφ(s, Ỹs) ≥ φx(s, Ỹs)Z̃sdBs, s ∈ [0, T ].

With the last inequality in hand, noticing that Ỹ· belongs to class (D) and using a same argument as

that in the proof of Proposition 3.4 we deduce that for each t ∈ [0, T ],

Ỹt ≤ 2k1k0 + 2k1E[ỸT |Ft]− k0,

where the constants k0 and k1 are defined respectively in (3.22) and (3.29) with A instead of β and γ.

Then, we have for each t ∈ [0, T ],

(Yt − Y ′
t )

+ + 2At ≤ 2k1k0 + 2k1
(
E[(ξ − ξ′)+|Ft] + 2AT

)
− k0 ≤ 2k1k0 + 4Ak1T,

which means that (Y· − Y ′
· )

+ is a bounded process.

Finally, in view of assumptions (H4)-(H5) of g, ξ ≤ ξ′ and (3.31) together with the fact that (Y·−Y ′
· )

+

is a bounded process, we can apply Theorem 2.1 in [8] to obtain the desired assertion.
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