
HAL Id: hal-03681143
https://hal.science/hal-03681143

Submitted on 30 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic differentiation of nonsmooth iterative
algorithms

Jérôme Bolte, Edouard Pauwels, Samuel Vaiter

To cite this version:
Jérôme Bolte, Edouard Pauwels, Samuel Vaiter. Automatic differentiation of nonsmooth iterative
algorithms. Advances in Neural Information Processing Systems, Nov 2022, New Orleans, United
States. 28 p. �hal-03681143�

https://hal.science/hal-03681143
https://hal.archives-ouvertes.fr
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nonsmooth iterative algorithms

Jérôme Bolte∗ Edouard Pauwels† Samuel Vaiter‡

May 30, 2022

Abstract

Differentiation along algorithms, i.e., piggyback propagation of derivatives, is now
routinely used to differentiate iterative solvers in differentiable programming. Asymp-
totics is well understood for many smooth problems but the nondifferentiable case is
hardly considered. Is there a limiting object for nonsmooth piggyback automatic differ-
entiation (AD)? Does it have any variational meaning and can it be used effectively in
machine learning? Is there a connection with classical derivative? All these questions are
addressed under appropriate nonexpansivity conditions in the framework of conservative
derivatives which has proved useful in understanding nonsmooth AD. For nonsmooth
piggyback iterations, we characterize the attractor set of nonsmooth piggyback itera-
tions as a set-valued fixed point which remains in the conservative framework. This
has various consequences and in particular almost everywhere convergence of classical
derivatives. Our results are illustrated on parametric convex optimization problems with
forward-backward, Douglas-Rachford and Alternating Direction of Multiplier algorithms
as well as the Heavy-Ball method.

Dedicated to the memory of Andreas Griewank – a pioneer in automatic differen-
tiation and optimization – who passed away on September 2021.

1 Introduction
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Figure 1: We study exis-
tence and meaning of Jpb

x̄

as a derivative of x̄, com-
patible with automatic dif-
ferentiation of the iterates
(xk(θ))k∈N.

Differentiable programming. We consider a Lipschitz
function F : Rp × Rm 7→ Rp, representing an iterative algo-
rithm, parameterized by θ ∈ Rm, with Lipschitz initialization
x0 : θ 7→ x0(θ) and

xk+1(θ) = F (xk(θ), θ) = Fθ(xk(θ)), (1)

where Fθ := F (·, θ), under the assumption that xk(θ) converges
to the unique fixed point of Fθ: x̄(θ) = fix(Fθ). Such recursion
represent for instance algorithms to solve an optimization
problem minx h(x) (e.g. empirical risk minimization), such as
gradient descent: F (x, θ) = x− θ∇h(x). But (1) could also be
a fixed-point equation such as a deep equilibrium network [5].
In the last years, a paradigm shift occurred: such algorithms
are now implemented in algorithmic differentiation (AD)-friendly frameworks such as Ten-
sorflow [1], PyTorch [39] or JAX [13] to name a few. Assuming that F is differentiable, it is
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possible to compute iteratively the derivatives of xk+1 with respect to θ using the differential
calculus chain rule resulting in so called “piggyback” recursion:

∂

∂θ
xk+1(θ) = ∂1F (xk(θ), θ) · ∂

∂θ
xk(θ) + ∂2F (xk(θ), θ), (2)

where ∂
∂θxk is the Jacobian of xk with respect to θ. In practice, automatic differentiation

frameworks do not compute the full Jacobian, but compute either vector-Jacobian products
in reverse-mode (or backpropagation) [45] or Jacobian-vector products in forward mode [50].
We rather consider the full Jacobian, and therefore, our findings apply to both modes. We
focus on two issues arising with nonsmooth recursions, illustrated in Figure 1. (i) what can
be said about the chain rule (2) and its asymptotics when the function F is not smooth
(for example a projected gradient step)? (ii) how to interpret its asymptotics as a notion
of derivative for x̄, the fixed point of Fθ? We propose a joint answer to both questions,
providing a solid theoretical ground to the idea of algorithmic differentiation of numerical
solvers involving nonsmooth components in a differentiable programming context.

Related works. Algorithmic use of the chain rule (2) to differentiate programs takes its
root in [50], where forward differentiation was first proposed, and later in reverse mode [33].
Along with the practical development of automatic differentiation, the question on how
to prove the convergence of the iterative sequence (2) was investigated, notably in the
optimization community as reviewed in [27]. This is an important paper containing several
ideas in differentiable programming rediscovered/reused later: implicit differentiation [40, 42]
and its stability [8], adjoint fixed point iteration [5] that is a key aspect of the deep equilibrium
network and linear convergence of (2) as discussed below. Notably, the linear convergence of
the Jacobians was investigated in [24, 26] for the forward mode and in [15, Theorem 2.3] for
the reverse mode. This was more recently investigated – for C2 functions – in the imaging
community for primal-dual algorithms [14, 9] and in the machine learning community for
gradient descent [37, 34] and the Heavy-ball [37] method. Note that in the specific context
where F solves a min-min problem, the authors in [2] proved the linear convergence of the
Jacobians. The use of automatic differentiaton for nonsmooth functions was justified by the
development of the notion of conservative Jacobians [12, 11] with a nonsmooth version of the
chain rule for compositional models. The correctness of automatic differentiation was also
investigated in [32] for a large class of functions that are piecewise analytic, and also in [31]
where a qualification condition is used to compute a Clarke Jacobian. Along with automatic
differentiation, a natural way to differentiate a model such as (1) is by implicit differentiation,
recently applied in several works [5, 3, 20]. To study these models with nonsmooth functions,
an implicit function theorem [10] was proved for path-differentiable functions.

Contributions: Under suitable nonexpansivity assumptions, our contributions are as
follows.
• We address both questions illustrated in Figure 1 for nonsmooth recursions: set-valued
nonsmooth extensions of the piggyback recursion (2) have a well defined limit, described as
the fixed point of subset map (Theorem 1), it is conservative for the fixed point map x̄. This
is a nonsmooth “infinite” chain rule for AD (Theorem 2).
• For almost all θ, despite nonsmoothness, recursion (2) is well defined using the classical
Jacobian and converges to the classical Jacobian of the fixed point x̄ (Corollary 2). This has
implications for both forward and reverse modes of AD.
• For a large class of functions (Lipschitz-gradient selection), it is possible to give a quantita-
tive rate estimate (Corollary 3), namely to prove linear convergence of the derivatives.
• We show that these results can be applied to proximal splitting algorithms in nonsmooth con-
vex optimization. We include forward–backward (Proposition 2), as well Douglas–Rachford
(Proposition 3) and ADMM, a numerical illustration of the convergence of derivatives is
given in Figure 2.
• We also illustrate that, contrarily to the smooth case, nonsmooth piggy back derivatives
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Figure 2: Illustration of the linear convergence of proximal splitting methods. (First line)
Distance of the iterates to the fixed point. (Second line) Distance of the piggyback Jacobians
to the Jacobian of the fixed point. The acronyms are FB for Forward-Backward, DR for
Douglas-Rachford and ADMM for Alternating Direction Method of Multipliers. In all
cases, despite nonsmoothness, piggyback Jacobians converge, illustrating Corollary 2. Blue
lines represent the median of 100 repetitions with random data, and the blue shaded area
represents the first and last deciles.

of momentum methods such as the Heavy-ball algorithm, may diverge even if the iterates
converge linearly (Proposition 4).

Notations. A function f : Rp → Rm is locally Lipschtiz if, for each x ∈ Rn, there exists a
neighborhood of x on which f is Lipschitz. Denoting by R ⊆ Rp, the full measure set where
f is differentiable, the Clarke Jacobian [16] at x ∈ Rp is defined as

Jac cf(x) = conv

{
M ∈ Rm×p,∃(yk)k≥0 s.t. lim

k→∞
yk = x, yk ∈ R, lim

k→∞

∂f

∂y
(yk) = M

}
.

(3)
The Clarke subdifferential, ∂cf is defined similarly. Given two matrices A,B with compatible
dimension, [A,B] is their concatenation. For a set X , convX is its convex hull (the smallest
convex set containing X ). The symbol B denotes a unit ball, the corresponding norm should
be clear from the context.

2 Nonsmooth piggyback differentiation

We first show how the use of the notion of conservative Jacobians allow us to justify rigorously
the existence of a nonsmooth equivalent of piggyback iterations in (2) that is compatible
with AD.

Conservative Jacobians. Conservative Jacobians were introduced in [12] as a generaliza-
tion of derivatives to study automatic differentiation of nonsmooth functions. Given a locally
Lipschitz continuous function f : Rp → Rm, we say that the set-valued J : Rp ⇒ Rp×m is a
conservative Jacobian for the path differentiable f if J has a closed graph, is locally bounded
and nowhere empty with

d

dt
f(γ(t)) = J(γ(t))γ̇(t) a.e. (4)

for any γ : [0, 1]→ Rp absolutely continuous with respect to the Lebesgue measure. Conser-
vative gradients are defined similarly. We refer to [12] for extensive examples and properties
of this class of function. Let us mention that the classes convex functions, definable functions,
or semialgebraic functions are contained in the set of path differentiable functions. Given
Df : Rp ⇒ Rp, a conservative gradient for f : Rp → R, we have:
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• (Clarke subgradient), for all x ∈ Rp, ∂cf(x) ⊂ conv(Df (x)).
• (Gradient almost everywhere) Df (x) = {∇f(x)} for almost all x ∈ Rp.
• (Calculus) differential calculus rules preserve conservativity, e.g. sum and compositions
of conservative Jacobians are conservative Jacobians.
An important point is that Df can be used as a first order optimization oracle for methods
of gradient type, while preserving usual convergence guaranties [11].

Piggyback differentiation of recursive algorithms. The following is standing through-
out the text

Assumption 1 (The conservative Jacobian of the iteration mapping is a contraction)
F is locally Lipschitz, path differentiable, jointly in (x, θ), and JF is a conservative Jacobian
for F . There exists 0 ≤ ρ < 1, such that for any (x, θ) ∈ Rp × Rm and any pair
[A,B] ∈ JF (x, θ), with A ∈ Rp×p and B ∈ Rp×m, the operator norm of A is at most ρ.

Under Assumption 1, Fθ is a strict contraction so that (xk(θ))k∈N converges linearly to
x̄(θ) = fix(Fθ) the unique fixed point of the iteration mapping Fθ. More precisely, for all
k ∈ N, we have

‖xk − x̄(θ)‖ ≤ ρk ‖x0 − Fθ(x0)‖
1− ρ .

Furthermore, for every k ∈ N, let us define the following set-valued piggyback recursion:

Jxk+1
(θ) = {AJ +B, [A,B] ∈ JF (xk(θ), θ), J ∈ Jxk(θ)} . (PB)

We will show in Section 3 that (PB) plays the same role as (2) in the nonsmooth setting.
Note that one can recursively evaluates a sequence Jk ∈ Jxk , k ∈ N as follows

Jk+1 = AkJk +Bk where [Ak, Bk] ∈ JF (xk(θ), θ), (5)

which corresponds to the operations actually implemented in nonsmooth AD frameworks.

Remark 1 (Local contractions) Assumption 1 may be relaxed locally as follows: for
all θ, the fixed point set fix(Fθ) of the iteration mapping Fθ is a singleton x̄θ such that
xk(θ)→ x̄(θ) as k →∞, and the operator norm condition on JF in Assumption 1 holds at
the point (x̄(θ), θ). By graph closedness of JF , in a neighborhood of (x̄(θ), θ), Fθ is a strict
contraction and the operator norm condition on JF holds, possibly with a larger contraction
factor ρ. After finitely many steps, the iterates (xk)k∈N remain in this neighborhood and all
our convergence results hold, due to their asymptotic nature.

3 Asymptotics of nonsmooth piggyback differentiation

3.1 Fixed point of affine iterations

Gap and Haussdorf distance. Being given two nonempty compact subsets X ,Y of Rp,
set

gap(X ,Y) = max
x∈X

d(x,Y) where d(x,Y) = min
y∈Y
‖x− y‖,

and define the Hausdorff distance between X and Y by

dist(X ,Y) = max(gap(X ,Y), gap(Y,X )).

Note that gap(X ,Y) = 0 if, and only if, X ⊆ Y, whereas dist(X ,Y) = 0 if, and only if,
X = Y. Moreover, X ⊆ Y + gap(X ,Y)B where B is the unit ball. It means that gap(X ,Y)
“measures” the default of inclusion of X in Y, see [43, Chapter 4] for more details.
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Affine iterations by packets of matrices. Let J ⊂ Rp×(p+m) be a compact subset of
matrices such that any matrix of the form [A,B] ∈ J with A ∈ Rp×p is such that A has
operator norm at most ρ < 1. We let J act naturally on the matrices of size p × m as
follows J : Rp×m ⇒ Rp×m the function from Rp×m to subsets of Rp×m which is defined for
each X ∈ Rp×n as follows: J (X) = {AX +B, [A,B] ∈ J }. This defines a set-valued map
through, for any X ⊂ Rp×m,

J (X ) = {AX +B, [A,B] ∈ J, X ∈ X}. (6)

On the model of recursions of the form (PB), we consider sequences (Xk)k∈N of subsets of
Rp×m satisfying the recursion

Xk+1 = J (Xk). (7)

We have the following instance of the Banach–Picard theorem (proved in Appendix A).

Theorem 1 (Set-valued affine contractions) Let J ⊂ Rp×(p+m) be a compact subset of
matrices as above with ρ < 1. Then there is a unique nonempty compact set fix(J ) ⊂ Rp×m
satisfying fix(J ) = J (fix(J )), where the action of J is given in (6).
Let (Xk)k∈N be a sequence of compact subsets of Rp×m, such that X0 6= ∅, and satisfying the
recursion (7). We have for all k ∈ N

dist(Xk,fix(J )) ≤ ρk dist(X0,J (X0))

1− ρ ,

where dist is the Hausdorff distance related to the Euclidean norm on p×m matrices.

3.2 An infinite chain rule and its consequences
Define the following set-valued map based on the fix operator from Theorem 1,

Jpb
x̄ : θ ⇒ fix [JF (x̄(θ), θ)] .

where x̄(θ) is the unique fixed point of the algorithmic recursion. Note that since x̄(θ) =

fix(Fθ), we also have equivalently that Jpb
x̄ is the fixed-point of the Jacobian of the fixed-point

of Fθ:

Jpb
x̄ : θ ⇒ fix [JF (fix(Fθ), θ)] .

We have the following (proved in Appendix B).

Theorem 2 (A conservative mapping for the fixed point map) Under Assump-
tion 1, Jpb

x̄ is well-defined, and is a conservative Jacobian for the fixed point map
x̄.

Combining with Theorem 1 ensures the convergence of the set-valued piggyback iterations
(PB).

Corollary 1 (Convergence of the piggyback derivatives) Under Assumption 1, for
all θ, the recursion (PB) satisfies

lim
k→∞

gap(Jxk(θ), Jpb
x̄ (θ)) = 0. (8)

Unrolling the expression of Jxk , we can rewrite (8) as a set-valued product such that

lim
K→+∞

gap

(
K∏
k=0

JF (xk(θ), θ), Jpb
x̄ (θ)

)
= 0.

In plain words, this a limit-derivative exchange result: Asymptotically, the gap between
the automatic differentiation of xk and the derivative of the limit is zero. This implies in
particular that the recursion (5) produces bounded sequences and all its accumulation points
are in Jpb

x̄ . Using the fact that conservative Jacobians equal classical Jacobians almost
everywhere [12], this implies convergence of derivatives in a classical sense.
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Corollary 2 (Convergence of the classical piggyback derivatives) Under Assump-
tion 1, for almost all θ, the classical Jacobian ∂

∂θxk(θ), is well defined for all k and converges
towards the classical Jacobian of x̄:

lim
k→∞

∂

∂θ
xk(θ) =

∂

∂θ
x̄(θ).

Remark 2 (Connection to implicit differentiation) The authors in [10] proved a
qualification-free version of the implicit function theorem. Assuming that for every
[A,B] ∈ J(x̄(θ), θ), the matrix I −A is invertible, we have that

J imp
x̄ : θ ⇒

{
(I −A)−1B, [A,B] ∈ JF (x̄(θ), θ)

}
(9)

is a conservative Jacobian for x̄. Under Assumption 1, one has J imp
x̄ (θ) ⊂ Jpb

x̄ (θ) for all θ.
Unfortunately, as soon as F is not differentiable, the inclusion may be strict, see details in
Appendix C.

3.3 Consequence for algorithmic differentiation
Given k ∈ N, θ̇ ∈ Rm, w̄k ∈ Rp, the following algorithms allow us to compute ẋk = Jkθ̇
using the forward mode of automatic differentation (Jacobian Vector Products, JVP), and
θ̄Tk = w̄Tk Jk using the backward mode of automatic differentiation (Vector Jacobian Products,
VJP).

Algorithm 1: Algorithmic differentiation of recursion (1), forward and reverse
modes
Input: k ∈ N, θ ∈ Rm, θ̇ ∈ Rm, w̄k ∈ Rp, initialization function x0(θ), recursion
function F (x, θ), conservative Jacobians JF (x, θ) and Jx0

(θ). Initialize:
x0 = x0(θ) ∈ Rp.

Forward mode (JVP):
ẋ0 = Jθ̇, J ∈ Jx0(θ).
for i = 1, . . . , k do
xi = F (xi−1, θ)
ẋi = Ai−1ẋi−1 +Bi−1θ̇
[Ai−1, Bi−1] ∈ JF (xi−1, θ)

Return: ẋk

Reverse mode (VJP): θ̄k = 0.
for i = 1, . . . , k do
xi = F (xi−1, θ)

for i = k, . . . , 1 do
θ̄k = θ̄k +BTi−1w̄i w̄i−1 = ATi−1w̄i
[Ai−1, Bi−1] ∈ JF (xi−1, θ)

θ̄k = θ̄k + JT w̄0, J ∈ Jx0
(θ)

Return: θ̄k
The following result is a consequence of Corollary 2 combined with algorithmic differentiation
arguments, its proof is given in Appendix C.

Proposition 1 (Convergence of VJP and JVP) Let k ∈ N, θ̇ ∈ Rm, w̄k ∈ Rp, xk ∈
Rp, ẋk ∈ Rp, θ̄Tk ∈ Rm be as in Agorithm 1 under Assumption 1. Then for almost all θ ∈ Rm,
ẋk → ∂x̄

∂θ θ̇.
Assume furthermore that, as k →∞, w̄k → w̄ (for example, w̄k = ∇`(xk) for a C1 loss `),
then for almost all θ ∈ Rm, θ̄Tk → w̄T ∂x̄∂θ .

Remark 3 In addition to Proposition 1, in both cases, for all θ, all accumulation points of
both ẋk and θ̄Tk are elements of Jpb

x̄ θ̇ and w̄TJpb
x̄ respectively.

3.4 Linear convergence rate for semialgebraic piecewise smooth se-
lection function

Semialgebraic functions are ubiquitous in machine learning (piecewise polynomials, `1, `2
norms, determinant matrix rank . . . ). We refer the reader to [11] for a thorough discussion
of their extensions, and use in machine learning. For more technical details, see [17, 18] for
introductory material on semialgebraic and o-minimal geometry.
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Lipschitz gradient selection functions. Let F : Rp 7→ Rq be semialgebraic and continu-
ous. We say that F has a Lipschitz gradient selection (s, F1, . . . , Fm) if s : Rp 7→ (1, . . . ,m) is
semialgebraic and there exists L ≥ 0 such that for i = 1 . . . ,m, Fi : Rp 7→ Rp is semialgebraic
with L-Lipschitz Jacobian, and for all x ∈ Rp, F (x) = Fs(x)(x).
For any x ∈ Rp, set I(x) = {i ∈ {1, . . . ,m} , F (x) = Fi(x)}. The set-valued map JsF : Rp ⇒
Rp×q given by

JsF : x⇒ conv

({
∂Fi
∂x

(x), i ∈ I(x)

})
,

is a conservative Jacobian for F as shown in [11]. Here ∂Fi
∂x denotes the classical Jacobian of

Fi. Let us stress that such a structure is ubiquitous in applications [11, 32].

Rate of convergence. We may now strengthen Corollary 1 by proving the linear conver-
gence of piggyback derivatives towards the fixed point. The following is a consequence of
the fact that the proposed selection conservative Jacobians of Lipschitz gradient selection
functions are Lipschitz-like (Lemma 3 in Appendix D.1). Note that semialgebraicity is only
used as a sufficient condition to ensure conservativity of the selection Jacobian together
with this Lipschitz like property. It could be relaxed if it can be guaranteed by other means,
in particular one could consider the broader class of definable functions in order to handle
log-likelihood data fitting terms.

Corollary 3 (Linear convergence of piggyback derivatives) In addition to Assump-
tion 1, assume that F has a Lipschitz gradient selection structure as above. Then, for any θ
and ε > 0, there exists C > 0 such that the recursion (PB) with JF = JsF satisfies

gap(Jxk(θ), Jpb
x̄ (θ)) ≤ C(

√
ρ+ ε)k, ∀k ∈ N.

Moreover, classical Jacobians in Corollary 2 converge at a linear rate for almost all θ.

4 Application to proximal splitting methods in convex
optimization

Consider the composite parametric convex optimization problem, where θ ∈ Rm represents
parameters and x ∈ Rp is the decision variable

x̄(θ) = arg minxf(x, θ) + g(x, θ).

The purpose of this section is to construct examples of function F used in recursion (1) based
on known algorithms. The following assumption will be standing throughout the section.

Assumption 2 f is semialgebraic, convex, its gradient with respecto to x for fixed θ, ∇xf ,
is locally Lipschitz jointly in (x, θ) and L-Lipschitz in x for fixed θ. Semialgebraicity implies
that ∇xf is path-differentiable jointly in (x, θ), we denote by J2

f its Clarke Jacobian.
g is semialgebraic, convex in x for fixed θ, and lower semicontinuous. For all α > 0, we assume
that Gα(x, θ) 7→ proxαg(·,θ)(x) is locally Lipschitz jointly in (x, θ). semialgebraicity implies
that it is also path differentiable jointly in (x, θ), we denote by JGα its Clarke Jacobian.

This assumption covers a very large diversity of problems in convex optimization as most
gradient and prox operations used in practice are semialgebraic. Under Assumption 2,
we will provide sufficient conditions on f and g for Assumption 1 to hold for different
algorithmic recursions. These are therefore sufficient for the validity of the convergence
results in Corollary 1 and Corollary 2, Proposition 1, as well Corollary 3 in the piecewise
selection case. The proofs are postponed to Appendix E.
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4.1 Splitting algorithms
In this section we provide sufficient condition for Assumption 1 to hold. The underlying
conservative Jacobian is obtained by combining Clarke Jacobians of elementary algorithmic
operations (gradient, proximal operator in Assumption 2), using the compositional rules
of differential calculus [11] and implicit differentiation [10]. Using [12], such Jacobians are
conservative by semialgebraicity and their combination provide conservative Jacobians for
the corresponding algorithmic recursion F . These objects are explicitly constructed in
Appendix E.

Forward–backward algorithm. The forward–backward iterations are given for α > 0
by

xk+1 = proxαg(·,θ) (xk − α∇xf(xk, θ)) . (10)

Proposition 2 Under Assumption 2 with 0 < α < 2
L , denote by Fα : Rp×m → Rp the

forward-backward recursion in (10). For µ > 0, if either f or g is µ-strongly convex in x for
all θ, then Fα is a strict contraction and Assumption 1 holds.

Douglas–Rachford. Given α > 0, the algorithm goes as follows

yk+1 =
1

2
(I +Rαf(·,θ)Rαg(·,θ))yk, (11)

where Rαf(·,θ) = 2proxαf(·,θ)− I is the reflected proximal operator, which is 1-Lipschitz (and
similarly for g). Following [6, Theorem 26.11], if the problem has a minimizer, then (yk)k∈N
converges to a fixed point of (11), ȳ such that x̄ = proxαg(ȳ) is a solution to the optimization
problem. Following [25, Theorem 1], if f is strongly convex, then Rαf(·,θ) is ρ-Lipschitz
for some ρ < 1 and our differentiation result applies to Douglas-Rachford splitting in this
setting.

Proposition 3 Under Assumption 2 with α > 0, denote by Fα : Rp×m → Rp the Douglas-
Rachford recursion in (11). If f is µ-strongly convex in x for all θ, then Fα is a strict
contraction and Assumption 1 holds.

Alternating Direction Method of Multipliers algorithms. Consider the separable
convex problem

min
u,v

φθ(u) + ψθ(v) subject to Aθu+Bθv = cθ. (12)

The alternating direction method of multipliers (ADMM) algorithm combines two partial
minimization of an augmented Lagrangian, and a dual update:

uk+1 = arg min
u

{
φθ(u) + x>Aθu+

α

2
‖Aθu+Bθvk − cθ‖22

}
vk+1 = arg min

v

{
ψθ(v) + x>Bθv +

α

2
‖Aθuk+1 +Bθvk − cθ‖22

}
xk+1 = xk + α(Aθuk+1 +Bθvk+1 − cθ).

(13)

As observed in [22], the ADMM algorithm can be seen as the Douglas-Rachford splitting
method applied to the Fenchel dual of problem (12) (see Appendix E.3 for more details).
More precisely, ADMM updates are equivalent to Douglas-Rachford iterations applied to the
following problem

min
x
c>θ x+ φ∗θ(−A>θ x)︸ ︷︷ ︸

f(x,θ)

+ψ∗θ(−B>θ x)︸ ︷︷ ︸
g(x,θ)

. (14)

Therefore, if φθ is strongly convex with Lipschitz gradient and Aθ is injective, then ADMM
converges linearly and one is able to combine derivatives of proximal operators to differentiate
ADMM.
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4.2 Numerical illustration.

We now detail how Figure 2 discussed in the introduction is obtained, and how it illustrates
our theoretical results. We consider four scenarios (Ridge, Lasso, Sparse inverse covariance
selection and trend filtering) corresponding to the four columns. For each of them, the first
line shows the empirical linear rate of the iterates xk and the second line shows the empirical
linear rate of the derivative ∂

∂θxk. All experiments are repeated 100 times and we report the
median along with first and last deciles.

Forward–Backward for the Ridge. The Ridge estimator is defined for θ > 0 as x̄(θ) =
arg minx∈Rp

1
2‖Ax − b‖22 + θ‖x‖22 Among several possibilities to solve it, one can use the

Forward–Backward algorithm applied to f : (x, θ) 7→ 1
2‖Ax− b‖22 and g : θ‖x‖22. Since g is

strongly convex, the operator Fα is strongly convex, and thus Proposition 2 may be applied.

Forward–Backward algorithm for the Lasso. Consider the Forward–Backward algo-
rithm applied to the Lasso problem [46], with parameter θ > 0, x̄(θ) ∈ arg minx∈Rp

1
2‖Ax−

b‖22 + θ‖x‖1 = arg minx
1

2L‖Ax− b‖22 + θ
L‖x‖1, where L is any upper bound on the operator

norm of ATA. The gradient of the quadratic part is 1 Lipschitz so we may consider the
forward backward algorithm (10), with unit step size with f : (x, θ) 7→ 1

2L‖Ax − b‖22 and
g : (x, θ) 7→ θ

L‖x‖1.
A well known qualification condition involving a generalized support at optimality ensures
uniqueness of the Lasso solution [19, 35]. This conditions holds for generic problem data [47].
Following [10, Proposition 5], under this qualification condition, the implicit conservative
Jacobian JF is such that, at the solution x∗, JF (x∗) has an operator norm of at most 1,
and the matrix set I − JF only contains invertible matrices. This means that there exists
ρ < 1, such that any M ∈ JF (x∗) has operator norm at most ρ. Following Remark 1, all our
convergence results apply qualitatively. Note that we recover the results of [7, Proposition 2]
for the Lasso.

Douglas–Rachford for the Sparse Inverse Covariance Selection. The Sparse In-
verse Covariance Selection [49, 21] reads x̄(θ) ∈ arg minx∈Rn×n tr(Cx)−log detx+θ

∑
i,j |xi,j |,

where C is a symmetric positive matrix and θ > 0. It is possible to apply Douglas–Rachford
to f : (x, θ) 7→ tr(Cx) − log detx and g : (x, θ) 7→ θ‖x‖1,1. It is known that f is locally
strongly convex, indeed x 7→ − log detx is a standard self-concordant barrier in semidefinite
programming [38]. Following Remark 1, all our convergence results apply qualitatively.

ADMM for Trend Filtering. Introduced in [48] in statistics as a generalization of
the Total Variation, the trend filtering estimator with observation θ ∈ Rp reads x̄(θ) =
arg minx∈Rp

1
2‖x− θ‖22 + λ‖D(k)x‖1, where D(k) is a forward finite–difference approximation

of a differential operator of order k (here k = 2). Using ψθ : u 7→ λ‖u‖1 (strongly convex),
φθ : v 7→ ‖v − θ‖22, Aθ = −I (injective), Bθ = D(k), and cθ = 0, we can apply the ADMM to
solve trend filtering.

5 Failure of automatic differentiation for inertial meth-
ods

In this section we consider the Heavy-Ball method for strongly convex objectives, in its global
linear convergence regime. When applied to a C2 objective, accumulation of derivatives
converges to the derivative of the solution map [27, 37, 34]. However, we provide a C1,1

strongly convex parametric objective with path differentiable derivative, such that forward
propagation of derivatives along the Heavy Ball algorithm contains diverging vectors for a
given parameter value. In this example, one may obtain a conservative Jacobian by other
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means, such as implicit differentiation or algorithmic differentiation of the gradient descent
algorithm, both avoiding this divergent behaviors.

5.1 Heavy-ball algorithm and global convergence

Consider a function f : Rp × Rm → R, and β > 0, for simplicity, when the second argument
is fixed we write fθ : x 7→ f(x, θ). Set for all x, y, θ, F (x, y, θ) = (x−∇fθ(x) + β(x− y), x),
consider the Heavy-Ball algorithm (xk+1, yk+1) = F (xk, yk, θ) for k ∈ N.
If fθ is µ-strongly convex with L-Lipschitz gradient, then, choosing α = 1/L and β <

1
2

(
µ

2L +
√

µ2

4L2 + 2

)
, the algorithm will converge globally at a linear rate to the unique

solution, x̄(θ) [23, Theorem 4], local convergence is due to Polyak [41]. Furthermore, if in
addition f is C2 forward propagation of derivatives converge to the derivative of the solution
[27, 28, 37].

5.2 A diverging Jacobian accumulation

Details and proof of the following result are given in Section F.

Proposition 4 (Piggyback differentiation fails for the Heavy Ball method)
Consider f : R2 → R, such that for all θ ∈ R, f(x, θ) = x2/2 if x ≥ 0 and f(x, θ) = x2/8 if
x < 0. Assume that α = 1 and β = 3/4. Then the heavy ball algorithm converges globally to
0 and ∇f is path differentiable. The Clarke Jacobian of F with respect to (x, y) at (0, 0, 0)
is JF (0, 0, 0) = conv {M1,M2}, where the product M1M1M2M2 has eigenvalue −9/8.

The presence of an eigenvalue with modulus greater than 1 may produce divergence in (PB).
Set

f1 : (x, θ) 7→
{
x2/2 if x ≥ 0

x2/8 if x < 0.
f2 : (x, θ) 7→

{
x2/2 if x > 0

x2/8 if x ≤ 0.

Note that f1 and f2 are both equivalent to f as they implement the same function. With
initializations x(θ) = y(θ) = θ, we run a few iterations of the Heavy Ball algorithm for
θ = 0, and implement (PB) alternating between two steps on f1 and two steps on f2 and
differentiate the resulting sequence (xk)k∈N with respect to θ using algorithmic differentiation.
The divergence phenomenon predicted by Proposition 4 is illustrated in Figure 3, while the
true derivative is 0 (the sequence is constant).

6 Conclusion
We have developed a flexible theoretical framework to describe convergence of piggyback
differentiation applied to nonsmooth recursions – providing, in particular, a rigorous meaning

0 50 100 150 200
iteration k

0.0

0.5

J
G

D
k

(0
)

0 50 100 150 200
iteration k

−200

0

200

J
H

B
k

(0
)

Figure 3: Behaviour of automatic differentiation for first-order methods on a quadratic
function. (Left) Stability of the propagation of derivatives for the fixed step-size gradient
descent. (Right) Instability of the propagation of Heavy-Ball initialized. Both methods are
initialized at optimum.
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to the differentiation of nonsmooth solvers. The relevance of our approach is illustrated
on some major composite convex optimization problems through widely used methods as
forward-backward, Douglas-Rachford or ADMM algorithms. Our framework allows however
to consider many other abstract algorithmic recursions and provides thus theoretical ground
for more general problems such as variational inequalities or saddle point problems as in
[14, 9]. As a matter for future work, we shall consider relaxing Assumption 1 to study a
wider class of methods, e.g., when F is not a strict contraction.
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A Properties of affine iterations on compact subsets

A.1 Banach–Picard theorem: Proof of Theorem 1
For a compact set, Z we denote by ‖Z‖sup the maximal norm of elements in Z:

‖Z‖sup = sup
z∈Z
‖z‖.

In order to prove our fixed point result, we need first the following lemma.

Lemma 1 (Bounding Hausdorff distances) Let X ,Y,Z ⊂ Rp be nonempty compact
sets, such that X ⊂ Y + Z and Y ⊂ X + Z then

dist(X ,Y) ≤ ‖Z‖sup

Proof : The first inclusion says that for any x ∈ X , there is y(x) ∈ Y, z(x) ∈ Z such that
x = y(x) + z(x). We deduce that for any x ∈ X

min
y∈Y
‖x− y‖ = min

y∈Y
‖y(x)− z(x)− y‖ ≤ ‖z(x)‖ ≤ max

z∈Z
‖z‖

Therefore, maxx∈X miny∈Y ‖x−y‖ ≤ maxz∈Z ‖z‖. Symmetrically, maxy∈Y minx∈X ‖x−y‖ ≤
maxz∈Z ‖z‖ and the result follows. �
We now prove Theorem 1.
Proof of Theorem 1: Recall that the action of J on matrices is defined in (6) and
by A and B the projections of J on the first p and last l columns respectively, that is
A = {A, ∃B, [A,B] ∈ J } and similarly for B. Note that A is a compact set and that all
matrices in A have an operator norm of at most ρ. We claim that the restriction of J to
compact subsets is a strict contraction in Hausdorff metric. Indeed, for any X , Y compact
subsets of Rp×m, we have by using Lemma 1 and noting that J preserves the inclusion,

J (X ) ⊂ J (Y + dist(X ,Y)B) ⊂ J (Y) + dist(X ,Y)AB ⊂ J (Y) + ρdist(X ,Y)B
J (Y) ⊂ J (X + dist(X ,Y)B) ⊂ J (X ) + dist(X ,Y)AB ⊂ J (X ) + ρdist(X ,Y)B
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where the last inclusion follows because AB ⊂ ρB, where B is the unit ball (for the Euclidean
norm) of p×m matrices, since by assumption all square matrices in A have operator norm
at most ρ. We deduce that dist(J (X ),J (Y)) ≤ ρdist(X ,Y) using Lemma 1, that is the
action of J on subsets of p×m matrices is ρ Lipschitz with respect to Hausdorff metric.
Let us show that (Xk)k∈N remains in a bounded set, we have for all k

‖Xk+1‖sup ≤ ‖AXk + B‖sup ≤ ‖AXk‖sup + ‖B‖sup ≤ ρ‖Xk‖sup + ‖B‖sup,

which entails

‖Xk+1‖sup −
‖B‖sup

1− ρ ≤ ρ
(
‖Xk‖sup −

‖B‖sup

1− ρ

)
.

We distinguish two cases

• if ‖Xk‖sup >
‖B‖sup

1−ρ , then ‖Xk+1‖sup gets either closer to ‖B‖sup

1−ρ or below it, in particular
it decreases.

• if ‖Xk‖sup ≤ ‖B‖sup

1−ρ then ‖Xk+1‖sup ≤ ‖B‖sup

1−ρ and we remain below this threshold for
all k.

All in all, for all k ∈ N,

‖Xk+1‖sup ≤ max

{
‖Xk‖sup,

‖B‖sup

1− ρ

}
≤ . . . ≤ max

{
‖X0‖sup,

‖B‖sup

1− ρ

}
,

and lim supk ‖Xk‖sup ≤ ‖B‖sup

1−ρ .
We have shown that the sequence remains in a bounded set so that the recursion actually
takes place in a compact set C ⊂ Rp×m which contains all the iterates in its interior, we
consider the restriction of the topology to this subset. By [4, Theorem 3.85], the closed
subsets form a complete metric space. The result is an application of Banach-Picard theorem
(for example [44, Section 10.3]). In particular (see [4, Theorem 3.88]), L is the unique fixed
point of J and it is closed and bounded, hence compact. Note that we can consider larger
compact sets to take into account larger initializations, the fixed point remains the same.
Indeed for a larger compact C̃ containing C, L is in the interior of C and is still a fixed point
of J when the topology is restricted to C̃ and this fixed point must be unique. �

A.2 Properties of the fixed-set mapping

We now equip the set of matrices Rp×(p×m) with the norm ‖[A,B]‖p,m = max{‖A‖op, ‖B‖}
where A ∈ Rp×p and B ∈ Rp×m. The set of compact subsets of Rp×(p+m) is endowed with
the corresponding Hausdorff distance.

Definition 1 (Affine contraction sets) For ρ ∈ [0, 1), we denote by Cρ, the set of com-
pact subsets of matrices in Rp×(p+m) such that for all S ⊂ Rp×(p+m), S ⊂ Cρ and all M ∈ S,
we have ‖A‖op ≤ ρ where A ∈ Rp×p is the matrix made of the first p columns of M .

Given J ∈ Cρ, we denote by fix(J ) the unique fixed point of the corresponding iteration
mapping as defined in Theorem 1. We have the following

Proposition 5 (Monotonicity of the fixed set) Given J ∈ Cρ and J̃ ∈ Cρ (as in Defi-
nition 1), such that J ⊂ J̃ , we have

fix(J ) ⊂ fix(J̃ ).
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Proof : Setting X0 = fix(J ), we have

X0 = J (X0) ⊂ J̃ (X0),

and the result follows by the same argument as in the last paragraph of the proof of Theorem
1. �

Proposition 6 (The fixed-set mapping is locally Lipschitz continuous) The func-
tion fix is locally Lipschitz continuous on Cρ (as in Definition 1). More precisely, for
any J0 ∈ Cρ and J ∈ Cρ,

dist (fix(J0),fix(J )) ≤
(

1

1− ρ +
sup[A0,B0]∈J0

‖B0‖
(1− ρ)2

)
dist(J0,J )

Proof : Given J0 ∈ Cρ and J ∈ Cρ, we remark that J ⊂ J0 + dist(J0,J )Bpm, where dist
and Bpm are considered with respect to the norm ‖ · ‖pm. This means

J ⊂ {[A0, B0] + [C,D], [A0, B0] ∈ J0, ‖[C,D]‖p,m ≤ dist(J0,J )}

We have

J (fix(J0)) = {AX +B, [A,B] ∈ J , X ∈ fix(J0)}
⊂ {A0X +B0, [A0, B0] ∈ J0, X ∈ fix(J0)}

+ {CX +D, ‖[C,D]‖mp ≤ dist(J0,J ), X ∈ fix(J0)}
= J0(fix(J0)) + {CX +D, ‖[C,D]‖mp ≤ dist(J0,J ), X ∈ fix(J0)}
= fix(J0) + {CX +D, ‖[C,D]‖mp ≤ dist(J0,J ), X ∈ fix(J0)} .

This sets one inclusion. Similarly, we have

fix(J0) = J0(fix(J0))

⊂ J (fix(J0)) + {CX +D, ‖[C,D]‖mp ≤ dist(J0,J ), X ∈ fix(J0)} .

Recall that ‖[C,D]‖mp = max{‖C‖op, ‖D‖}, we have for any [C,D] with ‖[C,D]‖mp ≤
dist(J0,J ) and X ∈ fix(J0),

‖CX +D‖ ≤ ‖C‖op‖fix(J0)‖sup + ‖D‖ ≤ dist(J0,J )(1 + ‖fix(J0)‖sup).

We deduce using Lemma 1 that dist(fix(J0),J (fix(J0))) ≤ dist(J0,J )(1 + ‖fix(J0)‖sup).
Setting X0 = fix(J0), invoking Theorem 1 with J and k = 0, we have

dist(fix(J0),fix(J )) ≤ dist(J0,J )(1 + ‖fix(J0)‖sup)

1− ρ

≤ dist(J0,J )
(1− ρ+ sup[A0,B0]∈J0

‖B0‖)
(1− ρ)2

.

�

A.3 Perturbed iterations

The following proposition shows that the linear convergence property is actually stable to
perturbations. It will be useful to show that all potential limits of unrolling algorithmic
differentiation recursions are contained in the corresponding fixed point set.
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Proposition 7 (Perturbed set sequences) Let ρ < 1 and ε > 0 such that ρ+ ε < 1. Let
(Jk)k∈N be a sequence in Cρ+ε and J̄ ∈ Cρ (as in Definition 1). Assume that for all k ∈ N

gappm(Jk, J̄ ) ≤ ε

or in other words Jk ⊂ J̄ + εBpm where Bpm is the unit ball of the norm ‖ · ‖pm. Then the
recursion on compact sets

Xk+1 = Jk(Xk)

satisfies for all k ∈ N

gap(Xk,fix(J ))

≤ (ρ+ ε)k
(1 + ρ+ ε)‖X0‖sup + sup[A,B]∈J̄ ‖B‖+ ε

1− ρ− ε + ε
(1− ρ+ sup[A,B]∈J̄ ‖B‖)

(1− ρ)2
.

In other words, Xk ⊂ fix(J̄ ) + C(ρ, ε, k)B where C(ρ, ε, k) is the constant above.

Proof : Set Jε := {J + [C,D], J ∈ J̄ , ‖[C,D]‖mp ≤ ε}. Denote by (X̃k)k∈N the sequence
satisfying the recursion, X̃k+1 = Jε(X̃k) with X0 = X̃0. We have

X1 = J̄ (X0) ⊂ Jε(X0) = X̃1

and by recursion Xk ⊂ X̃k for all k ∈ N. By Theorem 1, we have

dist(X̃k,fix(Jε)) ≤ (ρ+ ε)k
dist(X0,Jε(X0))

1− ρ− ε .

We deduce from Proposition 6 that for all k ∈ N,

dist(X̃k,fix(J̄ ))

≤ dist(X̃k,fix(Jε)) + dist(fix(Jε),fix(J̄ ))

≤ (ρ+ ε)k
dist(X0,Jε(X0))

1− ρ− ε +
(1− ρ+ sup[A,B]∈J̄ ‖B‖)

(1− ρ)2
dist(Jε, J̄ )

≤ (ρ+ ε)k
(1 + ρ+ ε)‖X0‖sup + sup[A,B]∈J̄ ‖B‖+ ε

1− ρ− ε +
(1− ρ+ sup[A,B]∈J̄ ‖B‖)

(1− ρ)2
ε.

And the result follows because

max
X∈Xk

min
L∈fix(J̄ )

‖X − L‖ ≤ max
X∈X̃k

min
L∈fix(J̄ )

‖X − L‖ ≤ dist(X̃k,fix(J̄ )).

�
This allows to obtain explicit convergence results as follows

Corollary 4 (Limit of iterations with vanishing perturbations) Let ρ < 1 and J̄ ∈
Cρ (as in Definition 1). Let (Jk)k∈N be a sequence of matrices such that for all k ∈ N

gappm(Jk, J̄ ) ≤ εk

where (εk)k∈N is a positive sequence such that there exists a constant a > 0 such that εk ≤ aρk
for all k ∈ N. Then for the recursion on compact sets of p×m matrices

Xk+1 = Jk(Xk)

There are constants C, c > 0 such that for all k ∈ N

gap(Xk,fix(J )) ≤ Ce−ck.

Furthermore, one can take c = log
(

1√
ρ+ε

)
for arbitrary ε > 0.
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Proof : We consider K ∈ N such that εk ≤ ε for all k ∈ N where ε + ρ < 1. Without
loss of generality, we may assume that K = 0. Using the same notations as in the proof
of Proposition 7, we have Xk ⊂ X̃k for all k ∈ N. Furthermore, it follows from the same
arguments as in the proof of Theorem 1 that

‖Xk‖sup ≤ ‖X̃k‖sup ≤M, (15)

for a constant M > 0. Now choose k ∈ N, applying Proposition 7 shifting the initialization 0
to k, we have for all m ∈ N

max
X∈Xk+m

min
L∈fix(J )

‖X − L‖

≤ (ρ+ εk)m
(1 + ρ+ εk)‖Xk‖sup + sup[A,B]∈J̄ ‖B‖+ εk

1− ρ− εk
+ εk

(1− ρ+ sup[A,B]∈J̄ ‖B‖)
(1− ρ)2

≤ (ρ+ ε)m
(1 + ρ+ ε)M + sup[A,B]∈J̄ ‖B‖+ ε

1− ρ− ε + aρk
(1− ρ+ sup[A,B]∈J̄ ‖B‖)

(1− ρ)2
,

where we have used the bound (15) and the fact that εk ≤ ε and εk ≤ aρk. Setting
u =

(1+ρ+ε)M+sup[A,B]∈J̄ ‖B‖+ε
1−ρ−ε and v = a

(1−ρ+sup[A,B]∈J̄ ‖B‖)
(1−ρ)2 we have

max
X∈X2k

min
L∈fix(J )

‖X − L‖ ≤ u(ρ+ ε)k + vρk ≤ (u+ v)(ρ+ ε)2k/2 ≤ u+ v

(ρ+ ε)1/2
(ρ+ ε)2k/2,

max
X∈X2k+1

min
L∈fix(J )

‖X − L‖ ≤ u(ρ+ ε)k+1 + vρk ≤ u+ v

(ρ+ ε)1/2
(ρ+ ε)(2k+1)/2.

Since k was arbitrary, this proves the desired result. �

B Existence of a conservative Jacobian for autodiff

B.1 Regularity of Jpb
x̄

We recall the main notations and elements of Assumption 1. We assume that F is locally
Lipschitz, path differentiable, and denote by JF : Rp+m ⇒ Rp×(p+m) a conservative Jacobian
for F . Now assume that any pair [A,B] ∈ JF (x, θ) is such that the operator norm of A is at
most ρ < 1, that is for all x and θ, JF (x, θ) ∈ Cρ (as in Definition 1). Define the following
set-valued map

Jpb
x̄ : θ ⇒ fix [JF (x̄(θ), θ)] .

Here, x̄(θ) = fix(Fθ) is the unique fixed point of the algorithmic recursion so that we actually
have

Jpb
x̄ : θ ⇒ fix [JF (fix(Fθ), θ)] .

We have the following

Lemma 2 (Regularity of Jpb
x̄ ) The mapping Jpb

x̄ is nonempty valued, locally bounded and
has a closed graph.

Proof : The fact that Jpb
x̄ is locally bounded and non empty valued comes from the fact

that JF is locally bounded with nonempty values and x̄ is locally Lipschitz combined with
Theorem 1.
By local Lipschitz continuity of x̄ and the fact that JF has a closed graph, the set-valued
map θ ⇒ JF (x̄(θ), θ) also has a closed graph. By continuity of fix(J ) with respect to the
Hausdorff distance, see Proposition 6, Jpb

x̄ has a closed graph. �
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B.2 Proof of Theorem 2
Proof : Following Remark 2, we set

J imp
x̄ : θ ⇒

{
(I −A)−1B, [A,B] ∈ JF (x̄(θ), θ)

}
,

a conservative Jacobian for x̄ and L0 = J imp
x̄ . Now set by recursion for all k ∈ N

Lk+1 : θ ⇒ JF (x̄(θ), θ)(Lk(θ)).

Recall that this means for all θ ∈ Rm and k ∈ N

Lk+1(θ) = {AL+B, [A,B] ∈ JF (x̄(θ), θ), L ∈ Lk(θ)}.

Since F (x̄(θ), θ) = x̄(θ) for all θ, JF is conservative for F and L0 is conservative for x̄, we
have by induction that for all k ∈ N, Lk is conservative for x̄.
Fix l : Rm → Rm an arbitrary Borel measurable selection in Jpb

x̄ , that is l(θ) ∈ Jpb
x̄ (θ) for

all θ ∈ Rm. Such a selection exist by [4, Theorem 18.20] because Jpb
x̄ has a closed graph by

Lemma 2. Set for all k ∈ N a measurable selection

lk : θ → arg min
z∈Lk(θ)

‖z − l(θ)‖.

The function (z, θ)→ ‖z− l(θ)‖ is Caratheodory (continuous in z, measurable in θ), so such a
selection exists (Aliprantis Theorem 18.19). By Theorem 1, we have that dist(Lk(θ), Jpb

x̄ (θ))
tends to 0 as k grows, for all θ ∈ Rm, where the convergence is in Hausdorff distance.
Actually since all set-valued objects are locally bounded, the convergence occurs uniformly
on every compact. This implies in particular that lk converges pointwise to l.
Fix an absolutely continuous path γ : [0, 1]→ Rm. We have for all k ∈ N, by conservativity,

x̄(γ(1))− x̄(γ(0)) =

∫ 1

0

lk(γ(t))γ̇(t)dt.

Furthermore, lk ◦ γ is measurable, converges pointwise to l ◦ γ and lk ◦ γ can be uniformly
bounded, let K be such a bound. The integrable function g : t 7→ K‖γ̇(t)‖ dominates the
integrand and lk ◦ γ × γ̇ converges pointwise to l ◦ γ × γ̇. By the dominated convergence
theorem (see [44, Section 4.4] ), we have

x̄(γ(1))− x̄(γ(0)) =

∫ 1

0

l(γ(t))γ̇(t)dt.

L has a Castaing representation with a dense sequence of measurable selection [4, Theorem
18.14]. Since l was an arbitrary measurable selection in L, conservativity of L follows by [36,
Lemma 8]. �

B.3 Proof of Corollary 1
Proof : Fix θ. We have xk(θ) → x̄(θ), so that for any ε > 0, there exists K ∈ N such
that JF (xk(θ), θ) ⊂ JF (x̄(θ), θ) + εB for all k ≥ K. The result is then a consequence of
Proposition 7, letting ε→ 0. The last part is due to the conservativity of Jpb

x̄ which must be
a singleton almost everywhere, equal to the classical Jacobian. �

B.4 Proof of Corollary 3
Proof : Define (Lk)k∈N, a sequence of conservative Jacobians for x̄ as in the begining of the
proof of Theorem 2 in Appendix B.2. By [12, Theorem 1], for each k ∈ N, there is a full
measure set Sk ⊂ Rm such that Lk(θ) =

{
∂x̄
∂θ (θ)

}
for all θ ∈ Sk. Similarly, there exists a full
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measure set S−1 ⊂ Rm such that Jpb
x̄ (θ) =

{
∂x̄
∂θ (θ)

}
for all θ ∈ S−1. Setting S = ∩+∞

i=−1Si, S
has full measure and for all θ ∈ S and for all k ∈ N,

Jpb
x̄ (θ) =

{
∂x̄

∂θ
(θ)

}
Lk(θ) =

{
∂x̄

∂θ
(θ)

}
.

Following the proof of Theorem 2 in Appendix B.2, Lk converges to Jpb
x̄ in Hausdorff distance,

which means that convergence occurs in the classical sense since all sets in the sequence are
singletons. �

B.5 Proof of Proposition 1
Proof : Under the setting of Corollary 2, for almost all θ ∈ Rm, recursion (PB) or (5) reduce
to the following, and all k ∈ N

Jk+1 = AkJk +Bk (16)

where Jk = ∂xk
∂θ , Ak = ∂F

∂x (xk, θ) and Bk = ∂F
∂θ (xk, θ) are classical Jacobians and Jk converges

to the classical Jacobian of ∂x̄∂θ (θ). Fix such a θ ∈ Rm and k ∈ N, k ≥ 1. With the notation
of Algorithm 1, for the forward mode, multiplying (16) on the right by θ̇, we have for all
i ∈ 1, . . . k

Jiθ̇ = Ai−1Ji−1θ̇ +Bi−1θ̇.

Setting ẋi = Jiθ̇, this is exactly the recursion implemented by Algorithm 1 in forward mode.
Corollary 2 and the result follows from convergence of Jk.
As for the backward mode a simple recursion shows that

Jk = Ak−1Ak−2 . . . A0J0

+Ak−1Ak−2 . . . A1B0

+ . . .

+Ak−1Ak−2 . . . AiBi−1

+ . . .

+Ak−1Bk−2

+Bk−1. (17)

Setting B−1 = J0, we may rewrite equivalently,

Jk = Bk−1 +

k−1∑
i=0

 i∏
j=k−1

Aj

Bi−1. (18)

Transposing and multiplying on the right by w̄k, we have

JTk w̄k = BTk−1w̄k +

k−1∑
i=0

BTi−1

k−1∏
j=i

ATj

 w̄k. (19)

We set for all i = 0, . . . , k − 1,

w̄i =

k−1∏
j=i

ATj w̄k. (20)

We have the backward recursion relation, for i = k, . . . , 1

w̄i−1 = ATi−1w̄i,
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which is the recursion implemented by Algorithm 1 in reverse mode. Combining (19) and
(20), we obtain

JTk w̄k = BTk−1w̄k +

k−1∑
i=0

Bi−1w̄T =

k∑
i=1

BTi−1w̄i + JT0 w̄0,

which is the quantity accumulated in θ̄k in Algorithm 1. This proves that θ̄Tk returned by
the backward mode is indeed equal to w̄Tk Jk and the convergence follows from convergence
of both w̄k and Jk as k →∞. �

C Connection with implicit differentiation
Recall that for all θ

J imp
x̄ (θ) =

{
(I −A)−1B, [A,B] ∈ JF (x̄(θ), θ)

}
= {M, ∃[A,B] ∈ JF (x̄(θ), θ)M = AM +B} .

Setting J = JF (x̄(θ), θ), we have therefore that J imp
x̄ (θ) ⊂ J (J imp

x̄ (θ)). By recursion, for
all k ∈ N, J imp

x̄ (θ) ⊂ J k(J imp
x̄ (θ)) and passing to the limit using Theorem 1, J imp

x̄ (θ) ⊂
fix(J ) = Jpb

x̄ (θ). In particular, if F is continuously differentiable, then (PB) with classical
Jacobians converges towards a classical implicit derivative.
However, the inclusion J imp

x̄ (θ) ⊂ Jpb
x̄ (θ) may be strict as the following example shows.

Example 1 Set J = {[A,B], A ∈ A, B ∈ B}, where

A =

{(
λ+1

4 0
0 2−λ

4

)
, λ ∈ [0, 1]

}
B =

{(
1
1

)}
.

We set

T = (I −A)−1B =

{( 4
3−λ

4
2+λ

)
, λ ∈ [0, 1]

}
.

As already observed, we have T ⊂ AT + B, but the inclusion is strict. Therefore T is not a
fixed point of the affine iteration and it is only contained in it.
Indeed, we have (

1+1
4 0
0 2−1

4

)( 4
3−0

4
2+0

)
+

(
1
1

)
=

(
5
3
3
2

)
∈ AT + B.

However solving for λ (
5
3
3
2

)
=

( 4
3−λ

4
2+λ

)
,

the first equation requires λ = 3
5 while the second requires λ = 2

3 which shows that the given
vector does not belong to T .

D Semialgebraic Lipschitz gradient selection functions

D.1 Lipschitz property of conservative Jacobians of selections
Lemma 3 (Conservative Jacobians of selections are Lipschitz-like) Let F be con-
tinuous, semialgebraic with Lipschitz gradient selection. Then for each x0 ∈ Rp, there exists
R > 0 such that

gap(JsF (x), JsF (x0)) ≤ L‖x− x0‖, ∀x, ‖x− x0‖ ≤ R,
where L is the Lipschitz constant given by the selection structure of F .
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Proof : Fix x0 ∈ Rp and consider the function g which associates to r > 0 a subset of
{1, . . . ,m} defined as

g(r) = ∪‖x−x0‖≤r I(x).

The function g is semialgebraic and therefore it admits a limit as r → 0. The function g is
actually piecewise constant so that the limit is reached for some R > 0 by semialgebraicity.
This means that there is R > 0 and an index set I ⊂ {1, . . . ,m} such that I(x) ⊂ I for all x
such that ‖x− x0‖ ≤ R. Furthermore, for each i ∈ I and all 0 < r ≤ R, there exists x such
that ‖x− x0‖ ≤ r and Fi(x) = F (x). By continuity of each component Fi, we have for each
i ∈ I, Fi(x0) = F (x0), that is I ⊂ I(x0).
We deduce that for each x such that ‖x− x0‖ ≤ R and i ∈ I(x), we have

min
V ∈JsF (x0)

∥∥∥∥V − ∂Fi
∂x

(x)

∥∥∥∥ ≤ ∥∥∥∥∂Fi∂x
(x0)− ∂Fi

∂x
(x)

∥∥∥∥ ≤ L‖x− x0‖.

Fix any Z ∈ JsF (x), it is a convex combination of ∂Fi∂x (x) for i ∈ I(x) so by convexity of the
distance, we have

min
V ∈JsF (x0)

‖V − Z‖ ≤ L‖x− x0‖,

which proves the result since this allows to bound the supremum over Z ∈ JsF (x) by the
desired quantity. �

D.2 Proof of Corollary 3
Proof : This is a consequence of linear convergence of the recursion xk+1 = F (xk, θ)
combined with Lemma 3 and Corollary 4. �

E Proximal splitting algortihms in convex optimization

E.1 Proof of Proposition 2
Proof : We consider the gradient step operation Hα : (x, θ) 7→ x− α∇xf(x, θ). We have for
all (x, θ),

Fα(x, θ) = Gα(Hα(x, θ), θ).

By Assumption 2, both Gα and Hα are 1-Lipschitz in x for fixed θ and we are going
to show that if either f or g satisfy the strong convexity condition, the corresponding
map is a strict contraction in x for fixed θ. Furthermore, the mapping Jac cHα : (x, θ) ⇒{

[I − αA,−αB], [A,B] ∈ J2
f (x, θ)

}
is the Clarke Jacobian of Hα. By Assumption 2, all the

functions are path-differentiable [12] and one may obtain a conservative jacobian for F by
applying differential calculus rules [12]. We set for all (x, θ) a conservative Jacobian for Fα,

JFα(x, θ) =
{

[C(I − αA),−αCB +D], [A,B] ∈ J2
f (x, θ), [C,D] ∈ JGα(x− α∇xf(x, θ), θ)

}
(21)

Whenever ∇xf is differentiable at (x, θ), the first p columns of its Jacobian form a symmetric
positive definite square matrix with eigenvalues at most L. This implies that the matrix
(I − αA) in (21) is symmetirc with eignevalues in [−1, 1] and strictly greater than −1.
Similarly, whenever Gα is differentiable, since it is 1-Lipschitz in x for fixed θ and the
gradient of a C1 function, the first p columns of its Jacobian form a symmetric positive
definite square matrix with eigenvalues at most 1. This implies that the matrix C in (21) is
symmetric with eignevalues in [0, 1]. In addition, we have the following;
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• Assume that for all θ, f is µ-strongly convex. In this case, similarly as above the
matrix (I − αA) in (21) has eigenvalue in (−1, 1) for all (x, θ).

• Assume that for all θ, g is µ-strongly convex. In this case, similarly as above the matrix
C in (21) has eigenvalue in [0, 1/(1 + αµ)] for all (x, θ) [6, Proposition 23.13].

In both cases, the product C(I − αA) in (21) has operator norm strictly smaller than 1 and
Assumption 1 holds. �

E.2 Proof of Proposition 3
Proof : From [6, Proposition 23.11], both Rαf and Rαg are 1-Lipschitz. We are going to
show that Rαf is a strict contraction and the result will follow. Since f is C1,1 in x, we have
for all θ ∈ Rm,

z = proxαf(·,θ)(x)⇔ z + α∇xf(z, θ)− x = 0

Set Hα(z, x, θ) = z + α∇xf(z, θ)− x, we have that

Jac cHα(z, x, θ) ⇒ {[I + αA, −I, αB]} (22)

is the Clarke Jacobian of Hα. Similarly as in Appendix E.1, by strong convexity of f , the
matrix I +αA in (22) is symmetric with eigenvalues strictly greater than 0 and smaller than
1. By implicit differential calculus rule in [10, Theorem 2], the mapping

Jproxαf(·,θ)(x, θ) ⇒
{

[(I + αA)−1, −α(I + αA)−1B], [A,B] ∈ J2
f (proxαf(·,θ), θ)

}
(23)

is conservative for (x, θ) 7→ proxαf(·,θ). Furthermore, the matrix (I + αA)−1 in (23) is
symmetric eigenvalues in (0, 1). This entails that the mapping

JRαf(·,θ)(x, θ) ⇒
{

[2(I + αA)−1 − I, −2α(I + αA)−1B − I], [A,B] ∈ J2
f (proxαf(·,θ), θ)

}
(24)

is conservative for Rαf(·,θ) and the matrix 2(I + αA)−1 − I is symmetric with eigenvalues in
(−1, 1).
Similarly, the mapping

JRαg(·,θ)(x, θ) ⇒
{

[2C − I, 2D − I], [C,D] ∈ Jproxαg(x,θ)

}
(25)

is the Clarke Jacobian of Rαg(·,θ) and the matrix 2C−I in (25) is symmetric with eigenvalues
in [−1, 1]. One may combine JRαf(·,θ) and JRαg·,θ) , using differential calculus rule to obtain a
conservative Jacobian JFα for Fα, such that for all (x, θ) and [E,F ] ∈ JFα(x, θ), the square
matrix E is of the form I

2 + ((I + αA)−1 − I)(2C − I) where A is from (24) and C is from
(25). Such a matrix E has operator norm strictly smaller than 1 which is Assumption 1. �

E.3 Equivalence between ADMM and dual Douglas–Rachford
We need the following lemma.

Lemma 4 Let F,G two convex, lower semicontinuous and closed functions and h defined by

h(x) = F ∗(−A>x) +G∗(x).

Then, h is convex, lower semicontinuous, closed, and

proxαh(x) = x+ α(Aû− v̂) (26)

where
(û, v̂) ∈ arg min

u,v

{
F (u) +G(v) + x>(Au− v) +

α

2
‖Au− v‖22

}
.
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The material contained in this section is already known in the litterature accross several
papers and lecture notes, but for the sake of completeness, we include a full derivation of the
equivalence.
In this appendix, we drop the dependency to the variable θ since we are only concerned
on the behaviour with respect to x. We recall that the iteration of Douglas–Rachford are
defined by an initialization y0 and the recursion

xk+1 = proxf (yk)

yk+1 = yk + proxg(2xk+1 − yk)− xk+1.
(27)

By denoting x̃k = xk+1 and ỹk = yk, we can rewrite the updates of Douglas–Rachford (given
x̃0 and ỹ0) as

ỹk+1 = ỹk + proxg(2x̃k − ỹk)− x̃k.
x̃k+1 = proxf (ỹk+1)

(28)

Introducing the variable r̂ = proxg(2x̂− ŷ), this is also equivalent to

r̂k+1 = proxg(2x̂k − ŷk)

x̂k+1 = proxf (ŷk + r̂k+1 − x̂k)

ŷk+1 = ŷk + r̂k+1 − x̂k
(29)

Using the change of variable ŵk = x̂k − ŷk, we have

r̂k+1 = proxg(x̂k + ŵk)

x̂k+1 = proxf (r̂k+1 − ŵk)

ŵk+1 = ŵk + x̂k+1 − r̂k+1.

(30)

This formulation will be convenient to show how to retrieve the equations of ADMM (13).
The dual problem of (12) is given by (14)

max
x
−f(x)− g(x). (31)

where f(x) = φ?(−Ax) + c>x and g(x) = ψ(−Bx)
We consider the update rules given by (30), i.e.,

r̂ = proxαg(x+ w) (32)

x̂ = proxαf (r̂ − w) (33)

ŵ = w + x̂− r̂. (34)

Applying Lemma 4 to F = φ and G = ιc, we rewrite (32) by

r̂ = x+ w + α(Aû− c)

where
û = arg min

u

{
φ(x) + x>(Au− v) +

α

2
‖Au− c+ w/α‖22

}
.

Using the same lemma to F = ψ and G = 0, we rewrite (33) by

x̂ = x+ α(Aû+Bv̂ − c)

where
v̂ = arg min

v

{
ψ(v) + x>Bv +

α

2
‖Aû+Bv − c

}
.

Finaly, combining the expression of r̂ and x̂, we obtain

ŵ = αBv̂.
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F Inertial methods
Let us first recall notations from Section 5. Consider a function f : Rp × Rm → R, and
β > 0, for simplicity, when the second argument is fixed we write fθ : x 7→ f(x, θ). Set
for all x, y, θ, F (x, y, θ) = (x − ∇fθ(x) + β(x − y), x), consider the Heavy-Ball algorithm
(xk+1, yk+1) = F (xk, yk, θ) for k ∈ N. If fθ is µ-strongly convex with L-Lipschitz gradient,

then, choosing α = 1/L and β < 1
2

(
µ

2L +
√

µ2

4L2 + 2

)
, the algorithm will converge globally

at a linear rate to the unique solution,

F.1 Failure of Forward differentiation for C1,1 objectives
The Jacobian of F for the Heavy-Ball agorithm (in x, y) is of the form

JacF (x, y, θ) =

(
(I − α∇2fθ(x)) + βI −βI

I 0

)
, (35)

when f is C2. If f is C1,1, then the Hessian can be replaced by a set-valued conservative
Jacobian of the gradient: J∇fθ .
Proof of Proposition 4:
Recall that the function f : R2 → R is given by

f : (x, θ) 7→
{
x2

2 if x ≥ 0
x2

8 if x < 0.

We have f ′(x) = x for t ≥ 0 and f ′(x) = x
4 for t < 0, therefore, f ′ is 1-Lipschitz. The Clarke

subdifferential of f ′ is { 1
4} for t < 0, {1} for t > 0 and the segment

[
1
4 , 1
]
at t = 0. Finally,

f is µ = 1
4 strongly convex and has L = 1 Lipschitz gradient and the unique fixed point of

the Heavy-Ball algorithm applied to f(·, θ) is x = y = θ. Choosing α = 1, β = 0.75, we have

β <
1

2

(
µ

2L
+

√
µ2

4L2
+ 2

)
=

1

2

(
1

8
+

√
1

64
+ 2

)
' 0.77.

Therefore, the heavy ball algorithm with this choice of parameter converges linearly to the
unique solution which is 0, a fixed point of the iteration mapping.
Set

F (x, y, θ) = (x−∇xf(x, θ) + β(x− y), x).

At (0, 0, 0), the last column of the Jacobian of F is (0, 0) and the first two columns are given
by

J = conv {M1,M2} ,

where

M1 =

(
3
2 − 3

4
1 0

)
M2 =

(
3
4 − 3

4
1 0

)
.

Therefore, the Clarke Jacobian of F (with respect to x, y) at (0, 0, 0) is given by

JF (0, 0, 0) = conv{M1,M2}, M1 =

(
3
2 − 3

4
1 0

)
, M2 =

(
3
4 − 3

4
1 0

)
.

We have

M1M1M2M2 =
−1

32

(
36 0
27 9

)
,
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which has two eigenvalues −9
8 < −1 and −9

32 . Setting for any θ ∈ R x0(θ) = θ, y0(θ) = θ, we
have for all k ∈ N xk(θ) = yk(θ) = θ, in other words, this is the unique fixed point of the
Heavy-Ball algorithm.

�
Given l ∈ N, the forward propagation recursion in (PB) presented in Figure 3 satisfies for
k = 8l

(M1M1M2M2)2l

(
1
1

)
This products will diverge diverge due to the eigenvalue of (M1M1M2M2)2 strictly above 1.
In other words, for all k, Jx8k

given by (PB) contains elements which magnitude diverges at
a geometric rate. We conclude that, for all k ∈ N, Jxk contains elements which magnitude
diverge at a geometric rate.
This illustrates the failure of forward derivative propagation on f(·, θ): the Heavy Ball
algorithm is stable and globally linearly convergent, its fixed point is differentiable (it is
actually constant in θ), yet there is a parametric initialization x(θ), y(θ) such that forward
propagation of derivatives produces diverging elements for θ = 0. Note that implicit
differentiation provides the correct derivative, which is 0, since x(θ) = 0 is the unique fixed
point of the gradient iterations. Forward derivative propagation on the gradient descent
algorithms also results in the limit in 0 derivative since it only contains element which
converge to 0 at a geometric rate.
Le us emphasize again that such pathology would not happen if f was C2. Indeed, in this
case, J2

f would be single valued and the divergence phenomenon would not appear. This
illustrate a fundamental difference between C1,1 and C2 objectives in terms of forward
derivative propagation for second order inertial methods.

G Experiments details

All the experiments where run on a MacBook M1 Pro (arm64), on Python 3.9 and numpy
1.21 for a compute time inferior to one hour. They are repeated 100 times, and we report the
median as a blue line and the first and last deciles as a blue shaded area. The solutions are
computed with 2000 iterations, and the curves are reported for the 1000 first iterations. The
differentiation of all methods is performed in forward-mode with jacfwd of the module jax.

Forward–Backward for the Ridge. The dimensions of the problem are n = 500, p = 300.
The design matrix is Gaussian, i.e., Xi,j

i.i.d∼ N (0, 1) and the observations yi
i.i.d∼ N (0, 1).

The regularization parameter is set to θ = 0.05.

Forward–Backward algorithm for the Lasso. The dimensions of the problem are
n = 50, p = 500. The design matrix is Gaussian, i.e., Xi,j

i.i.d∼ N (0, 1) and the observations
yi

i.i.d∼ N (0, 1). The regularization parameter is set to θ = 0.2× θmax where θmax = ‖X>y‖∞.

Douglas–Rachford for the Sparse Inverse Covariance Selection. We consider co-
variance matrices of size n × n where n = 50 and θ = 0.1. The matrix C is generated as
C = V >V where Vi,j

i.i.d∼ N (0, 1).

ADMM for Trend Filtering. We consider the cyclic 1D Total Variation n = p = 75

and λ = 3.0. Here θ i.i.d∼ N (0, 1).
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H Assets used
Our numerical experiments rely on:

• numpy [29], released under BSD-3 license.

• matplotlib [30], released under PSF license.

• jax [13], released under Apache-2.0 license.
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