
HAL Id: hal-03681082
https://hal.science/hal-03681082v2

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing a moving load in a simulation in time over a
truncated unbounded domain

Patryk Dec, Régis Cottereau, Baldrik Faure

To cite this version:
Patryk Dec, Régis Cottereau, Baldrik Faure. Introducing a moving load in a simulation in time over
a truncated unbounded domain. Journal of Sound and Vibration, 2022, �10.1016/j.jsv.2022.117035�.
�hal-03681082v2�

https://hal.science/hal-03681082v2
https://hal.archives-ouvertes.fr


Introducing a moving load in a simulation in time over
a truncated unbounded domain

Patryk Deca,b, Régis Cottereaua,∗, Baldrik Faureb

aAix-Marseille Univ., CNRS, Centrale Marseille, LMA
4 impasse Nikola Tesla, 13013 Marseille, France
bSNCF, Innovation and Research Department,

1/3 avenue François Mitterrand, 93212 La Plaine Saint Denis, France

Abstract

When using Finite Element methods to solve wave propagation problems, the

spatial domain must be truncated at a finite distance. This can be done using

absorbing boundary conditions or layers, which effectively inhibit the reflection

of outgoing waves back into the computational domain. They cannot however

handle moving loads coming from outside of the (truncated) computational

domain, for which some incoming waves must be allowed. After illustrating this

fact, this paper proposes a technique to introduce such moving loads in time

simulations over finite size domains. This technique involves the introduction

of appropriate initial conditions within the computational domain. In general,

these initial conditions can be computed numerically, and possibly re-used for

various configurations. The interest of the method is illustrated on industrial

cases of interest for the railway community.
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1. Introduction

When modeling the propagation of waves in unbounded media (for instance

a half-space in railway-induced vibrations [1, 2, 3, 4, 5]) the use of traditional

Finite Element Methods involves the truncation of the computational domain

at a finite distance and the introduction of absorbing boundary conditions [6, 7]5

or absorbing boundary layers [8, 9, 10, 11] to prevent outgoing waves from

bouncing back into the computational domain. We consider in this paper the

excitation of such problems by moving loads, which often appear in engineering

problems alongside invariance by translation (or periodicity) of the geometry,

for instance to model the impact of passing vehicles in the vicinity of railway10

tracks [12, 13, 14], roads [5], tunnels [15], or pipelines [16] (see also [17] and

references therein). When such is the case (or when the domain verifies that

property in slices perpendicular to the loading support), these problems are ef-

ficiently solved in the frequency domain, either in the moving frame or in the

periodicity cell [18, 15, 19, 20, 21]. However, anytime the geometry or the mate-15

rial parameters are neither invariant by translation nor periodic, these technique

cannot be applied. Such situations include: a change of support structure (from

a railway ballasted track to slab track for instance, which we will consider in the

applications of Section 6), a change of supporting topography (a road arriving

at a bridge for instance), a curve in the track (or road, tunnel, pipe), among20

others. As the locations of such changes of material properties and geometry

are potential candidates for stress concentrations and increased strains, it is es-

sential to be able to model them adequately. Time-domain simulations are then

an interesting alternative to frequency-domain methods.

In this paper we illustrate that when applying a Finite Element method to25

solve problems with moving loads in the sub-Rayleigh regime (for which the

charge moves at a speed lower than the Rayleigh wave speed in the ground)

over unbounded domains, the truncation of the computational domain impacts

the moving load very strongly. The most striking feature is the emission of

a parasitic wave from the first point of application of the moving load. The30
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problem has been identified in the literature [22] and heuristic solutions [23, 24]

have been proposed to qualitatively solve it, but with no clear explanation about

its origin. Note that this issue is not so stringent for loads moving faster than

the Rayleigh wave speed in the ground, so we will restrict our study to the

former case, which is also the case of interest for most railway applications.35

Note also that, in the absence of invariance by translation, the separation of the

moving load into so-called quasi-static and dynamic excitations is meaningless.

The objective of this paper is two-folds: (i) explain precisely the reason

why introducing bluntly a moving load in a truncated computational domain

induces a parasitic wave, and (ii) propose a technique to cancel that parasitic40

wave without increasing the computational cost. In Section 2 the problem of

moving load studied in this paper is presented. In Section 3, a semi-analytical

solution for the displacements induced by a moving load in an elastic half-space

is presented. This solution allows us to explain clearly in Section 4 the origin

of the parasitic wave induced by the truncation of the computational domain.45

Section 5 answers the second objective of this paper by proposing to introduce

non-homogeneous initial conditions to remove the parasitic wave. These initial

conditions can be obtained by a preliminary simulation, potentially re-usable

for different computational scenarii. Finally, in Section 6, two applications

in railway engineering highlight the interest and practicality of the proposed50

approach.

Note that the approach we propose bears some similarity with an existing

technique [25]. As ours, this technique requires a preliminary simulation, but it

packages the information of the moving load within displacement and traction

fields along an interface for all time steps (while our technique does so in a space55

volume, and only for one time step). Another important difference is that the

referenced method requires the solver to handle discontinuous field, which is not

possible with most classical (and commercial) solvers.
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2. Equations of the wave field induced by a moving load

In this paper we assume x = (x, y, z) is a generic position in a Cartesian

coordinate system. The displacement field in a domain Ω can be obtained by

solving the equation of motion:

−∇ · σ(x, t) + f(x, t) = ρ
∂2u(x, t)

∂t2
, (1)

where f(x, t) is bulk force, u(x, t) = (u, v, w) is the displacement vector, σ =

λ(x)trϵ(x, t)I+2µ(x)ϵ(x, t) is the stress tensor (assuming linear elastic isotropic

behavior for the material), ϵ(x, t) = (∇u(x, t) + (∇u(x, t))T )/2 is the strain

tensor, ρ(x) is the density and λ(x) and µ(x) are the Lamé parameters of the

medium. We additionally define the pressure wave speed CP (x) and the shear

wave speed CS(x) as:

CP (x) =

√
λ(x) + 2µ(x)

ρ(x)
, CS(x) =

√
µ(x)

ρ(x)
. (2)

with CS(x) < CP (x), as well as the Rayleigh [26] wave speed CR(x) < CS(x),

of importance for applications over half-spaces. The domain Ω is assumed to be

unbounded, so that the equation of motion must be completed with Sommerfeld

radiation conditions. When appropriate, for instance when Ω is a half-space,

additional boundary conditions should be considered over the boundary at finite

distance. For instance, and without limiting the scope of the derivation, we

consider here Neumann boundary conditions on this boundary:

σ · n = g(x, t), x ∈ ∂Ω. (3)

Because the domain is unbounded, the computational approximation of Eq. (1)

by traditional Finite Element Methods is completed with absorbing boundary

layers [8, 9, 10, 11]. Finally, the equilibrium Eq. (1) and boundary conditions

are completed with homogeneous initial conditions:

u(x, t = 0) = 0,
∂u

∂t
(x, t = 0) = 0 (4)

In this paper we study the situation when the support of one of the loads,

either f(x, t) or g(x, t), is unbounded, and is hence impacted by the truncation
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of the computational domain. In particular, we will consider loads moving at a

constant speed V along a line, in the form

f(x, t) = F0(t)δ(x− V t)δ(y)δ(z)ez, (5)

or, assuming that Ω is a half-space with a non-homogeneous Neumann boundary

condition Eq. (3), with

g(x, t) = F0(t)δ(x− V t)δ(y)ez. (6)

Here, the Dirac delta functions are defined for any smooth function f(x) and60

position x0 by
∫
R δ(x−x0)f(x)dx = f(x0). When the geometry and mechanical

parameters of the system are invariant by translation, these problems can be

easily solved in a frame moving with the load. Analytical solutions have been

derived for instance for problems of moving bulk loads [27, 28] or for surface

loads at the boundary of half-spaces [29, 30, 31, 32, 33, 34, 35, 36].65

3. Response of an elastic half-space due to a moving load

In this section, a semi-analytical solution of Eq. (1) over a half-space is

proposed, where the moving load is applied over a set of equally-spaced points

along a line [3] at the surface (see Fig. 1). This loading case is a discrete version

of a load moving continuously at the surface of a homogeneous half-space along70

a line, for which analytical solutions exist [30, 31, 32, 33, 34, 37]. The reason for

considering this discrete force model is mainly that it will be easier to illustrate

the impact of truncating the computational domain in Section 4. Also, discrete

load models are actually closer to the real situation than continuous moving

loads in many engineering applications. This is for instance the case of railway75

applications, where loads are transmitted from the train/track system to the

ballast through sleepers, separated by a distance d. Each sleeper can be seen

as a separate dynamic load for the ground, firing with a time lag of d/V with

respect to its neighbors, where V is the velocity of the train. Even though the

presentation considers a discrete load, the analysis as well as the conclusions of80
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the paper would remain identical in the alternative case of a moving load with

continuous support.

Figure 1: A constant force moving at the surface of a homogeneous half-space and applied at

a discrete set of points (black crosses) along a line. Sensors (blue crosses) are located along a

line parallel to the load line.

Let us consider a normal load, moving with a uniform velocity V over a set

of equally-spaced points along a line (y = 0, z = 0) at the surface of a half-space

bounded by z = 0, as in Eq. (6). The problem is described on Fig. 1. We

assume that the medium is elastic, isotropic and homogeneous. The Neumann

boundary condition (Eq. (3) with n = −ez) at the surface of a half-space is

constituted of a sum of traction forces centered on positions x = md and times

t−md/V , m ∈ Z:

∀m ∈ Z, gm(x, t) = F0

(
t− md

V

)
δ(x−md)δ(y)ez, (7)

such that

g(x, t) =
∑
m∈Z

gm(x, t). (8)

As the vibration energy at the surface of a homogeneous half-space is mostly

transmitted by the surface waves [38], Krylov [3] computed the spectrum of the

vertical displacements for the Rayleigh surface wave contribution induced in the

far field at the surface (z = 0) of a homogeneous half-space by such a boundary

condition:

w(x, y, ω) = F0(ω)D(ω)d

∞∑
m=−∞

exp (i(ω/V )md+ ikR(ω)rm)
√
rm

(9)

where rm =
√
(x−md)2 + y2 is the distance between each source and the

observation point, kR(ω) = ω/CR(ω) is the wavenumber of the Rayleigh surface
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wave,

D(ω) =
1√
2π

√
k2R − k2P

√
kRk

2
S

exp(−i3π/4)

µ(ω)Q′(kR)
, (10)

kP = ω/CP and kS = ω/CS are the wavenumbers of the pressure and shear

waves, and Q′(k) is the derivative of the dispersion equation of Rayleigh waves:

Q(k) = (2k2 − k2S)
2 − 4k2

√
k2 − k2S

√
k2 − k2P . (11)

Note that the amplitude d in front of Eq. (9) has been added to allow comparison

between load cases with different spacings.

An example of a load F0(t) (see below) moving at a constant speed V =85

90 m/s on a homogeneous half space with velocities CP = 600 m/s, CS =

450 m/s, CR = 380 m/s and density ρ = 1800 kg/m3 is considered. Dis-

placement fields obtained using discrete version of a loading are presented for

different values of d. The load F0(t) considered is an impulse applied on the

ground and containing frequencies in the band 10-100Hz. The time represen-90

tation of the load and its frequency content are presented in Fig.2. The same

parameters for the medium and load will be re-used later in this paper.

(a) (b)

Figure 2: Time history (a) and spectrum (b), of the excitation F0(t).

Fig. 3 presents displacements induced in the soil (x = 0 m, y = 2 m, z = 0 m)

for d = 0.1 m and d = 0.6 m (typical of railway tracks in France) obtained with

Eq. (9) by considering a sum from m = −2500 to m = 2500, which represents95

a domain of length 5000d. Note that considering this range for the sum means

that point loads very far from the sensors are considered. For d = 0.6 m, a
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similar pattern is observed as for d = 0.1 m, with additional waves before and

after the passage of the load. Indeed, a moving load on a discrete set of points

generates propagating waves in the ground for both sub-Rayleigh regime and100

trans-Rayleigh regime [39], although interferences between the different sources

eventually lead for smaller distances to the disappearance of any significant

amplitude at a distance from the source positions. However when the distance

d increases the pattern of the displacement changes and waves after the passage

of the load are present (see displacements in Fig. 4 obtained with d = 1 m).

Figure 3: Vertical displacements in the soil (x = 0 m, y = 2 m, z = 0 m) for different spacings

between two consecutive loads: d = 0.1 m (orange solid line) and d = 0.6 m (black solid line).

The length of the domain is 5000d.

Figure 4: Vertical displacement in the soil (x = 0 m, y = 2 m, z = 0 m) for a spacing d = 1 m

between two consecutive loads. The length of the domain is 5000d.
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Figure 5: Visualization window of displacements for (A) the infinite case and (B) for the finite

case of the moving load support. Crosses represent the excitation points.

Fig. 6 presents the vertical displacements induced by a discrete load with105

spacings d = 0.1 m for sensors between positions (x, y, z) = (0, 2, 0) m and

(x, y, z) = (100, 2, 0) m (case A on Fig. 5), along a line parallel to the loading

line (see the blue crosses in Fig. 1). This line is located 2 m from the loading

line. As discussed above, the response of the half-space is mainly composed of

evanescent waves. It means that there are no waves generated along the line110

force and propagating away from it. There is only a stationary displacement

field whose support is localized in the vicinity of point of application of the load

and moving along with that load.

4. Parasitic waves induced by the limited extent of the spatial support

of the moving load115

In this section, we investigate what happens when a moving load coming from

outside a truncated computational domain enters that domain. The bounded-

ness of the computational domain induces that of the support of the moving

load and generates parasitic waves where that support intersects the boundary

of the computational domain. The appearance of these parasitic waves will be120

shown in the semi-analytical case of Section 3 and for a Finite-Element type nu-

merical simulation, in Sections 4.1 and 4.2, respectively. This issue has already

been observed in the literature, although not explained precisely, and Section 4.3

discusses a technique that was introduced to mitigate it, highlighting its limits

9



Figure 6: Vertical displacements induced by a discrete load with d = 0.1 m obtained with

semi-analytical solution, at sensors along a line parallel to and 2 m away from the loading

line. The domain is of length 500 m.

before proposing an alternative approach in Section 5.125

4.1. Impact of domain truncation on the vibrations induced by a discrete moving

load in the semi-analytical case

We consider the load of Section 3, but this time with only a finite number N

of discrete loads, mimicking the boundedness of a computational domain. The

displacement field in a given (x, y, z) sensor is therefore obtained as a finite sum,

counterpart of Eq. (9):

w(x, y, ω) = F0(ω)D(ω)d

N∑
m=−N

exp (i(ω/V )md+ ikR(ω)rm)
√
rm

(12)

Displacements obtained for N = 500 with d = 0.1 m, which correspond to

loads between x = 0 m and x = 100 m (case B on Fig. 5), are presented

on Fig. 7. In the center of Fig. 7, we retrieve the quasi-static displacements130

induced by the moving load, and moving with its velocity V , already identified

in Fig. 6. However, compared to Fig. 6, there are two additional propagating

waves. These waves propagate at the velocity of the waves in the soil CR and

are generated at the boundaries of the loading support, at positions x = 0 and
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Figure 7: Vertical displacements induced by a moving load over a bounded series of points

obtained with semi-analytical solution, at sensors located along a line parallel to and 2 m

away from the loading line. The length of the domain is 100 m.

x = 2Nd. What happens is that the quasi-static appearance of the displacement135

induced by the unbounded load actually arises as a complex interference between

waves coming from the different sources. In the middle of the loading line, this

interference can take place normally. However, on the boundaries of the loading

line, the sources outside the computational domain are lacking. The absence

of the corresponding waves means that full interference cannot take place. The140

waves emitted from the first and last few sources are therefore not properly

compensated and reappear as propagating waves in the soil.

4.2. Numerical simulation of a moving load over a truncated half-space

In this section, we illustrate exactly the same effect, but with a 3D Spectral

Element Method software presented in Appendix A, rather than the above145

semi-analytical model.

The homogeneous half-space with the same mechanical properties as in the

Section 3 is represented by a box of dimensions 40 m × 100 m × 10 m, as

illustrated on Fig. 8. Perfectly Matched Layers are used on the exterior of the

box to absorb outgoing waves. There are 75 layers of PML with a total thickness150
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of 60 m. The load presented in Fig. 2 is moving at a constant velocity along

a line at the surface of the soil (black line on Fig. 8). The distance between

two application points is d = 0.1 m. The mesh size goes from h = 0.4 m,

close to the points of application of the load, to h = 0.8 m away from it.

There are around 5.9×106 hexahedral elements, with 5 nodes in each direction155

(tensorization of 4th-order polynomials in each space dimension) for a total of

375 degrees of freedom per element in 3D. The time step is 1.8× 10−5 s.

Figure 8: Geometry of the homogeneous half-space. Perfectly Matched Layers are not repre-

sented.

Displacements induced in the soil at sensors along a line parallel to the

loading line and at 2 m from it are presented in Fig. 9. Note that the model

aims at mimicking that of Section 3, so that the results of Fig. 9 are expected160

to match those of Fig. 6, for d = 0.1 m. But as the loading cannot be

modeled outside of the computational domain, we actually retrieve the results

of Section 4.1 and Fig. 7, with a parasitic wave emitted at the boundaries of the

loading line, where the waves emitted from outside the computational domain

are missing and cannot create the correct interference patterns.165

In conclusion, when considering a bounded support to approximate a moving

load over an unbounded line, waves are generated at the boundaries of that

support. These are parasitic waves in the sense that they do not appear in the

reference model (for unbounded support). Their presence strongly pollutes the

numerical simulation (see Section 6.1 for a striking example of that pollution)170

and they have to be removed in order for the simulation to provide meaningful
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Figure 9: Vertical displacements induced by a moving load, computed using a SEM solver at

sensors located along a line parallel to and 2 m away from the loading line. The length of the

domain is 100 m.

results. Note that, in the simulations shown above, if the velocity of the moving

load V approaches that of the Rayleigh wave CR, the parasitic wave may pollute

the physical wave over large distances, which means the simulation would need

to run over a very large domain (and over very long times) in order for the175

computational result to be accurate.

4.3. Influence of introducing the loading gradually in a numerical simulation

The generation of such parasitic waves has already been observed in the

literature. For instance, this problem was mentioned in [22] although no solu-

tion was proposed. As a mitigation, it is sometimes proposed to progressively180

increase the velocity and magnitude of the loading from an initial zero up to

the desired velocity. However, this technique either requires a lot of additional

ressources (larger computational domain and longer simulation times) or only

partially solves the issue.

We use here the particular proposal of [23], who applied a load as in Eq. (6),

but with a time-varying amplitude and velocity. We choose to apply the ampli-
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tude F0(t) and the velocity V (t) as follows :

F0(t) =


t

Tacc
F ∗
0 if t < Tacc

F ∗
0 if t ≥ Tacc

, V (t) =


V ∗

Tacc
t if t < Tacc

V ∗ if t ≥ Tacc

(13)

where F ∗
0 and V ∗ are the target amplitude and velocity, that are attained after185

an initial acceleration phase of duration Tacc. Below, we show examples with the

same problem as in the previous sections but introducing this time the load for

different initial acceleration times Tacc. The soil is represented by a larger box

of new dimensions 40 m × 122.5 m × 10 m. There are 88 layers of PML with

a total thickness of 70 m. The mesh is composed of about 8.2×106 hexahedral190

elements with 5 nodes and a size h = 0.8 m in each direction. The time step

is 2.2× 10−5 s. We expect the solutions to resemble that of Fig. 6.

We first consider an acceleration of the load in the initial phase of V ∗/Tacc =

450 m/s2 and plot the corresponding displacements at sensors located along a

line parallel to and 2 m away from the load line in Fig. 10. The amplification195

and the progressive acceleration of the load allow to decrease the magnitude of

the parasitic waves generated when the load is introduced. However at time

t = 0.4 s, a parasitic wave is still observed, generated at the moment when the

load reaches the target velocity V ∗. Furthermore, such an acceleration requires

to create a larger computational domain (approximately 10 m here), and longer200

simulation times (approximately 0.15 s here) in order to accommodate a given

time-space frame of interest.

Fig. 11 presents similar results for a load introduced even more slowly, with

V ∗/Tacc = 180 m/s2. As expected, the amplitude of the parasitic wave is even

more reduced, almost vanishing, but the computational domain and simulation205

time would need to be even larger (approximately 20 m and 0.3 s here) in order

to accommodate a given time-space frame of interest.

The progressive introduction of the load therefore allows to solve the problem

of the parasitic waves arising from the truncation of the load support. However,

it comes at the cost of a requirement to increase the computational domain210

and simulation time, which can rapidly be an issue for large scale simulations,
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Figure 10: Vertical displacement induced by an accelerating (V ∗/Tacc = 450 m/s2) moving

load at sensors placed along a line parallel to and 2 m away from the loading line. The length

of the domain is 122 m.

Figure 11: Vertical displacement induced by an accelerating (V ∗/Tacc = 180 m/s2) moving

load at sensors placed along a line parallel to and 2 m away from the loading line. The length

of the domain is 122 m.

that are already very costly. In next section, we propose a technique to remove

that parasitic wave, with no need to increase the computational domain or the

simulation time. Note that the parasitic wave at the end of the simulation is not

15



removed (as will also be the case with our technique) but this is not necessarily215

an issue as the simulation often stops when the loads exists the computational

domain.

5. Spectral Element Method with non homogeneous initial conditions

5.1. General idea

The solution of a wave equation is uniquely defined by its initial conditions.220

So solving the original problem of Eq. (1) on an unbounded domain (for example,

the blue domain in the Fig. 12) is the same as solving it in a smaller domain (for

example, the box in the Fig. 12), as long as the support of the initial conditions

is enclosed completely within that small domain. The general idea of the paper

therefore consists in decomposing a given time simulation into two steps:225

1. A preliminary simulation to compute the stationary state u0(x, t = T )

and v0(x, t = T ), removing the influence of any parasitic wave;

2. The simulation of interest using these fields as non-homogeneous initial

conditions u(x, t = 0) = u0(x, t = T ) and v(x, t = 0) = v0(x, t = T ), free

of parasitic wave.230

The idea is to separate the parasitic wave from the true wave in the results of a

simulation as featureless as possible. Devoid of most reflectors and interfaces of

the simulation of interest, the separation becomes possible in a smaller domain

and shorter time. The simulation of interest can then be performed with no

parasitic wave, by encapsulating the information about all previous loadings235

within the initial conditions.

In addition, this decomposition allows to re-use the same initial state for

several simulations of interest (as will be shown in the examples of Section 6).

5.2. Preliminary simulation

The preliminary simulation consists in considering a domain Ω0, similar to240

the original domain Ω around the position where the moving load enters the

computational domain. The domain Ω0 (and the properties) must be chosen to
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ensure that a stationary solution can be obtained, and which then represents the

initial conditions for the simulation of interest. In particular, any obstacle that

might inhibit parasitic waves from exiting the domain should be removed. For245

example, for the case of a transition zone (detailed in Section 6), from ballast to

concrete, a translation-invariant ballasted track (with no transition to concrete)

will be considered for the preliminary simulation.

The following problem is then approximated as:

−∇ · σ0(x, t) + f(x, t) = ρ
∂2u0(x, t)

∂t2
, x ∈ Ω0, t ∈ [0, T ]. (14)

At some time τ , the solution reaches a stationary state for which u0(x+V t, τ +

t) = u0(x, τ) for all t > 0 (remember that V is the load velocity). These sta-250

tionary displacement and velocity fields u0(x, τ) and v0(x, τ) are then collected.

In particular cases, such stationary fields are known analytically (see the

references in the introduction), but in general they have to be estimated numer-

ically. For instance, Fig. 12 presents the displacement field u0(x, τ) computed at

τ ≈ 1 s for the geometry and loading seen in Section 4.2. A box of dimensions255

30 m × 40 m × 5 m is chosen (indicated in black on Fig. 12), within which

displacements and velocities are exported. The box is chosen large enough so

that the fields are sufficiently close to zero at the boundaries.

Figure 12: Final displacements (plotted) and velocities are extracted from the simulation in

order to be used as initial conditions in a future simulation. Displacements inside the Perfectly

Matched Layers are not represented.
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We are essentially assuming here that the displacement and velocity fields

reach a stationary state. Although it is not possible to give a clear definition of260

the class of problems that may verify this property, it is expected that this is the

case at least for problems where the geometry and the properties are invariant

by translation along a direction parallel to that of the loading. This situation is

very common in industrial applications. Note that this condition applies only

to the preliminary simulation, and not to the simulations of interest.265

5.3. Simulation of interest

Coming back to the simulation of interest, the following problem is then

solved, on the original domain Ω:
−∇ · σ(x, t) + f(x, t) = ρ∂2u(x,t)

∂t2 , x ∈ Ω, t ∈ [0, T ],

u(x, t = 0) = u0(x− x0, τ),

v(x, t = 0) = v0(x− x0, τ),

(15)

where x0 is chosen so that the initial conditions and loading f(x, t = 0) align

properly.

Although it bears little interest in practice, Fig. 13 presents the displacement

field of interest obtained when the domain, boundary conditions and properties270

are the same as for the preliminary simulation. More interesting applications

will be presented in Section 6 and the main interest of this application is to

show that the initial parasitic wave due to the truncation of the computational

domain is completely suppressed with the non-homogeneous initial conditions.

5.4. Potential issues with interpolation of the initial conditions275

In general, an interpolation step is required to obtain the initial conditions of

the simulation of interest from the fields extracted at the end of the preliminary

simulation. For low-order Finite Element methods, linear interpolation works

fine. However, when using high-order Finite Element methods, the interpolation

step may be more tricky numerically, in particular with unstructured meshes,280

because that interpolation has to consider the basis functions really used for the
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Figure 13: Vertical displacements induced by a moving load, computed using a SEM solver

with non-homogeneous initial conditions, at sensors located along a line parallel to and 2 m

away from the loading line. The length of the domain is 100 m.

particular method. However it is still possible to use linear interpolation if the

elements are small enough (and the time scheme has good spectral properties)

to ensure that the interpolation error does not mix with the frequency range

of interest. In that case a simple a posteriori low-pass filtering can remove the285

high-frequency errors without modifying the solution of interest. This is what

was implemented for the purpose of the examples presented in this draft, with

a filter removing all frequencies above 300 Hz. The filter used was a zero-phase

filter [40] filtfilt available in Matlab.

6. Applications to railway engineering290

In this section two examples of railway application are presented. The first

example considers a bogie arriving in the vicinity of a trench while the sec-

ond example considers a transition area, where the ballasted railway track is

replaced by a slab track, with very different mechanical properties of the struc-

ture supporting the rails. Beside their own interest, these two examples aim at295

showing that the initial conditions can be re-used for different computational
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scenarii. We will therefore assume that the initial setting is the same for both

simulations, with a simple model of the track where only the soil and the ballast

layer are taken into account (the rails are not modeled). The soil is assumed

linear, elastic and homogeneous with pressure wave velocity CP = 600 m/s,300

shear wave velocity CS = 350 m/s and density ρ = 1800 kg/m3. The ballast is

also linear, elastic and homogeneous with CP = 397 m/s, CS = 212 m/s and

ρ = 1700 kg/m3. The 3D model for the computation of the initial conditions is

presented in Fig. 14 (upper right). The load considered is that induced by a bo-

gie on a typical railway track, estimated with the approach of [41] where the rail305

is modeled as an Euler-Bernoulli beam with a section stiffness EI = 6.3 MNm2

and a mass per unit length ρS = 60 kg/m. It is periodically supported by sup-

ports separated by a distance l = 0.6 m. The stiffness of the support system is

assumed to be equal to ks = 192 MNm−1. The time dependence of the loading

is presented in Fig. 15. The load is moving with a speed V = 90 m/s and is310

applied on the ballast every d = 0.1 m. The height of the ballast layer is 0.9 m,

the width on the ground is 8 m and that at the top of the layer is 6 m. It

is modeled with elements of size 0.4 m. The soil is represented by a box of

dimensions 20 m × 4 m × 96.3 m with a mesh size increasing from 0.4 m to

1 m. This box is surrounded on five sides by PMLs with a thickness of 60 m.315

The total number of elements is around 5.7 × 106 for a total of 375 degrees of

freedom per element in 3D (5 nodes in each direction). The simulation of 0.96 s

requires 9h of calculation on 512 processors with a time step of 1.5 × 10−5 s.

The displacement and the velocity fields are saved at the time T = 0.95 s in a

box of size 12 m × 4.9 m × 65 m (blue box on Fig. 14 (upper right)).320

In order for a single set of initial conditions to be used for simulations with

different geometries (domains), it is necessary that all the conditions prior to

arriving on the zone of interest (in the simulation of interest) are the same as

those used in the preliminary simulation to determine initial conditions. In the

example given in this section, the two simulations start when the bogie stands325

in an area where both geometry (no trench) and material properties (ballast

layer over soil) are the same. Only in the zones of interest (when the bogie
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Figure 14: 3D models of railway track: ballasted railway track for the application with a trench

(upper left), ballasted railway track for the computation of initial conditions (upper right),

and railway track with a transition from a ballasted track to a slab track (down). The boxes

indicate where the initial conditions were obtained (blue box) and where they are introduce in

the simulations of interest (black boxes). Sensors are located along a line (black line) parallel

to and 10 cm away from the ballast. Perfectly Matched Layers are not represented.

Figure 15: Time dependence of the bogie load

arrives at the height of the trench for the application of Section 6.1; and at

the ballast-concrete transition for the application of Section 6.2) do the models

change.330
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6.1. Train pass-by on a homogeneous half-space with a trench

In this section, the initial conditions presented above are used to simulate a

bogie arriving in the area where a trench has been dug. The trench is 3 m wide,

5 m deep and located at 1 m from the ballast. Because the trench is rather far

away from the track, the trench should not have any effect on the wave field.335

However, we expect that, if not properly treated, the parasitic wave completely

destroy the interest of the simulation because it bounces off the edge of the

trench. The size of the box representing the soil is 20 m × 4 m × 132.3 m. The

3D model with a total of 6.2 × 106 hexahedral elements is presented on Fig. 14

(upper left). The simulation of 0.86 s with initial conditions requires 15 h of340

calculation on 256 processors with a time step of 1.2 × 10−5 s.

The displacements in the soil along a line parallel to and 10 cm away from

the ballast are presented in Fig. 16 for the case when vanishing initial conditions

are considered and in Fig. 17 for the case with initial conditions obtained as de-

scribed above. We can clearly observe on the first simulation that the numerical345

results are polluted not only by the parasitic waves but also by their reflections

at the edge of the trench. The results with initial conditions on the other hand

show no influence of the trench, as expected. The use of initial conditions is

therefore absolutely unavoidable in order to obtain a correct estimation of the

displacements induced by the passage of the train. The method proposed in350

this paper allows to obtain the correct displacement field in an efficient manner.

6.2. Train pass-by on a transition zone between ballasted track and slab track

In this second application, we consider a transition area, where the bal-

lasted railway track becomes a concrete slab track. As ballast and concrete355

have different mechanical properties, waves are expected to be generated at the

interface. The concrete is assumed homogeneous with pressure wave velocity

CP = 3725 m/s, shear wave velocity CS = 2236 m/s and density ρ= 2400 kg/m3.

The total length of the track is 132.3 m, with 66 m of ballasted track and 66.3 m

of concrete slab. The mesh size in the concrete varies between 0.4 m and 1 m.360
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Figure 16: Vertical displacement induced in the soil by a moving load at 10 cm from the

ballast layer.

Figure 17: Vertical displacement induced in the soil by a moving load for sensors along a line

parallel to and 10 cm from away the ballast layer after introduction of initial conditions.

The PMLs in contact with the concrete have a thickness of 250 m. The soil and

ballast are meshed in the same way as in the previous section. The 3D model

with a total of around 5.8 ×106 elements is presented in Fig. 14 (down). The

simulation of 0.96 s requires 45 h of calculation on 512 processors with a time
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step of 2.8 × 10−6 s.365

The displacements in the soil are presented in Fig. 18. We indeed observe

a wave propagating away from the transition. As the mechanical properties

of the problem are not invariant by translation, it is interesting to note that

the classical computational approaches (in particular in the frequency domain)

cannot be used. Again, the method yields the expected result in an efficient370

manner.

Figure 18: Vertical displacement induced in the soil by a moving load over a transition area,

at sensors located along a parallel line to and 10 cm from away the ballast. The green line

indicates the position of the transition from ballasted track to slab track.

7. Conclusion

A load moving at a sub-Rayleigh speed on an unbounded half-space gener-

ates an evanescent wave front located in the vicinity of the load. When solving

such problems with the Finite Element Method in time, the truncation of the375

computational domain induces the generation of parasitic waves at the bound-

aries of the support of the moving load. The origin of these parasitic waves is a

missing destructive interference: the waves supposedly coming from outside the

computational domain are lacking so that waves that should have been destroyed
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are then emitted away from the load. After demonstrating clearly through an-380

alytical and numerical examples the origin of these parasitic waves, the paper

proposed a technique to remove them. It consists in introducing non-vanishing

initial conditions in the simulation. These initial conditions can be computed

using an independent and preliminary simulation, and possibly re-used for dif-

ferent computational scenarii (this was illustrated in Section 6). Re-using these385

preliminary simulations can be very convenient in the context of industrial ap-

plications, where track geometry and properties are mostly normalized. It can

be also useful in the context of inverse problems or reliability analyses, where

multiple runs have to be performed with potentially the same initial conditions.

The main requirement for this technique to work is that the initial conditions390

(not the simulation of interest) correspond to some stationary type of solution,

as for instance that reached by a moving load on a homogeneous half-space or on

any translation-invariant geometry. In particular, for non-linear soil behavior,

when such stationarity can be reached, the technique is still expected to work.
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Appendix A.

SEM3D software is a High-Performance Computing software based on the405

Spectral Element Method [42] (SEM) and co-developed by MSSMat Labora-

tory (CentraleSupélec, CNRS and Université Paris-Saclay), Institut de Physique
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du Globe de Paris (Paris Institute of Earth Physics) and the Commissariat à

l’Énergie Atomique et aux énergies alternatives (French Atomic Energy Com-

mission), used for instance in [43, 44, 45, 46, 47]. The SEM is a Finite Ele-410

ment Method that uses Lagrange polynomials based on the nodes of the Gauss-

Lobatto-Legendre quadrature and integrates numerically the weak formulation

using that same quadrature. This leads to a diagonal mass matrix which al-

lows to construct a very efficient explicit time scheme and yield very efficient

parallelization.415
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