SUPPORTING INFORMATION

Nanoarchitectonics of Glass Coatings for Near-Infrared Shielding: From Solid-State Cluster-Based Niobium Chlorides to the Shaping of Nanocomposite Films

Clément Lebastard,^{*a,b,‡*} Maxence Wilmet,^{*b,a,c‡*} Stéphane Cordier,^{*a,**} Clothilde Comby-Zerbino,^{*d*} Luke MacAleese,^{*d*} Philippe Dugourd,^{*d*} Tetsuo Uchikoshi,^{*b,e*} Vincent Dorcet,^{*a*} Maria Amela-Cortes,^{*a*} Adèle Renaud,^{*a*} Karine Costuas,^{*a,**} Fabien Grasset^{*b,a*}

^a Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France.

^b CNRS – Saint-Gobain – NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan

^c Saint-Gobain Research Paris, F-93300 Aubervilliers, France.

^d Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France.

^e Research Center for Functional Materials, National Institute for Materials Science (NIMS), 11 Namiki, Tsukuba, Japan.

* Emails: karine.costuas@univ-rennes1.fr; stephane.cordier@univ-rennes1.fr

I. Experimental Section

Experimental procedures	S3
Scheme S1. Synthesis of 1	S3
Scheme S2. Synthesis of 2	S5
Scheme S3. Synthesis of 3	S5
Table S1. Electrochemical measured and published data	S6
Scheme S4. Film preparation	S9
Figure S1. XRPD Le Bail refinement of the crude powder containing 1	S10
Figure S2. XRPD data of 2	S10
Figure S3. Cyclic voltammogram of 3	S11
Figure S4. Normalized UV-visible spectra of 1 in various solvents	S11
Figure S5. UV-visible spectra of aged $\{Nb_6Cl_{12}^i\}^{2+}$ in PVP	S12
Table S2. FOM values and color coordinates of aged $\{Nb_6Cl_{12}^i\}^{2+}$ in PVP	S12
Figure S6. CIE coordinates of aged $\{Nb_6Cl_{12}^i\}^{2+}$ in PVP	S13
Figure S7. Digital microscopy image and UV-visible spectra of $\{Nb_6Cl_{12}^i\}^{3+}$ in PVP	S13
Table S3. FOM values and color coordinates of $\{Nb_6Cl_{12}^i\}^{3+}$ in PVP	S13
Figure S8. UV-visible spectra of 1_{water} and 2_{water} in PVP	S14
Table S4. FOM values and color coordinates of $\{Nb_6Cl_{12}^i\}^{2+}$ in PVP	S14
Figure S9. UV-visible spectra of aged 1_{water} and 2_{water} in PVP	S15
Table S5. FOM values and color coordinates of aged $\{Nb_6Cl_{12}^i\}^{2+}$ in PVP	S15
Table S6. T_{vis} , haze and clarity values of $\{Nb_6Cl_{12}^i\}^{2+}$ in PVP	S16
Table S7. NIR shielding values of $\{Nb_6Cl_{12}^i\}^{2+/3+}$ in PVP	S16

II. Computational study

Computational details	S17
Table S8. Cartesian coordinates of the optimized geometries	S17
Figure S10. Simulated Raman spectra of $[{Nb_6Cl^i}_{12}Cl^a_6]^{4-}$	S20
Figure S11. Simulated Raman spectra of $[{Nb_6Cl^i}_{12}Cl^a_6]^{3-1}$	S20
Table S9. TD-DFT vertical electronic singlet-singlet excitations	S21
References	S24

I. Experimental section

Experimental procedures

Synthesis of crude $K_4[\{Nb_6Cl^i_{12}\}Cl^a_{6}]$ (1). The synthesis of $K_4[\{Nb_6Cl^i_{12}\}Cl^a_{6}]$ was done by solid-state reaction thanks to the reduction of the pentahalogenated (NbCl₅, Strem, 99.99 %) precursor by an excess of metallic niobium (Nb, Alfa Aesar, 99.8 %) in presence of alkaline salt (KCl, Alfa Aesar, 99 %)). The relative proportion of the synthesis was 4:2.8:7.5 (KCl:NbCl₅:Nb). 0.551 g of KCl (7.40 mmol), 1.399 g of NbCl₅ (5.18 mmol) and 1.288 g of Nb (13.87 mmol). The powder precursors were mixed together in an argon glovebox and put into a silica tube sealed under vacuum. The $K_4[\{Nb_6Cl_{12}^i\}Cl_6^a]$ phase was obtained after a heating treatment at 600 °C during 24 h, with a heating and cooling rate of 1 °C/min and 2 °C/min respectively. X-ray powder diffraction analysis of the powder revealed the presence of the desired K₄[{Nb₆Clⁱ₁₂}Cl^a₆] phase along with an excess of KCl and niobium powder. The structure of the $[\{M_6X_{12}^i\}X_6^i]^{4-}$ cluster unit is centered on a 2*a* Wyckoff position implying the C_{2h} local symmetry, while counter cations are located in an 8*j* general position. This as-prepared powder sample is named 1 thereafter in the text. Thanks to the difference in solubility between $K_4[\{Nb_6Cl_{12}^i\}Cl_6^a]$ and the byproducts, mostly unreacted KCl and Nb, the synthesis yield could be determined. To do so, 1g of 1 was dissolved in dried acetone in a Schlenk flask under argon atmosphere, in order to remove KCl, Nb (metallic form), and traces of amorphous inorganic species that are hardly soluble. After 24 hours of stirring, the insoluble powder was recovered, dried and weighted. It corresponds to 37.5 ± 0.5 % by weight of 1 and consequently 1 contains 62.5 % \pm 0.5 % of K₄[{Nb₆Clⁱ₁₂}Cl^a₆]. The recovered powder was then poured in water and stirred for an extra 24 hours, to get rid of water-soluble impurities, mainly KCl. Following the same procedure, the recovered powder was recovered, dried and weighted. It corresponds to niobium powder and represents 15.5 ± 0.5 % by weight of 1. Therefore, by subtraction, the soluble impurities in water correspond to 22.0 ± 0.5 % of 1. The error bar of 0.5 % considers the error on the weight measurements. By-products determination was made several times with various batches of 1 to highlight reproducibility.

Scheme S1. Synthesis of crude phase K₄[{Nb₆Cl¹₁₂}Cl^a₆].

Advantages and drawbacks of earlier published methods

The early published methods for the preparation of $K_4[\{Nb_6Cl_{12}^i\}Cl_6^a]$ consist in the reaction of the reduced halides Nb₃Cl₈ or Nb₆X₁₄ with KCl under reducing atmosphere.¹ The reaction between KCl, Nb₃Cl₈ and Nb takes place at 800°C in a complex multi-compartmented device wherein the final $K_4[\{Nb_6Cl_{12}^i\}Cl_6^a]$ is collected in a niobium crucible. The reaction between KCl and Nb₆Cl₁₄ takes place at 650°C in silica container during 4 days. Note that in this case, the precursor contains the preformed {Nb₆Clⁱ₁₂} cluster core. Fleming *et al.* developed another method which consists to reduce the NbCl₅ halide with niobium powder in the presence of KCl (KCl:NbCl₅:Nb = 4:14/5:16/5) in a niobium container.² The reported reaction temperature is 850°C and the reaction time is 4-6 days for a rather low yield. Considering the low yield and/or the complexity of the solid-state reactions to obtain $K_4[\{Nb_6Cl_{12}^i\}Cl_6^a]$ published hitherto, this ternary halide was used only a few time as precursor of {Nb₆Clⁱ₁₂} cluster core for solution chemistry. The alternative method developed by Parsons *et al* involves the Na₄[{Nb₆Clⁱ₁₂}Cl^a₆] solid-state precursor instead of K₄[{Nb₆Clⁱ₁₂}Cl^a₆].³ The preparation of $Na_{4}[{Nb_{6}Cl_{12}^{1}}Cl_{6}^{a}]$ is based on the reduction of NbCl₅ by a large excess of niobium powder in the presence of NaCl in silica container. For a stoichiometric reaction, the (NaCl:NbCl₅:Nb) ratio is (4: (14/5 = 2.8):(16/5 = 3.2) whereas the (NaCl:NbCl₅:Nb) ratio used by Parsons is (4:(14/5):13) meaning the use of a 4-fold excess of niobium. The reaction takes place at 800°C for (6 - 8 h) in silica container. In this work, we have optimized the synthesis of $K_4[\{Nb_6Cl_{12}^i\}Cl_6^a]$ in order to reach the lowest temperature reaction and in order to use a minimum excess of niobium.

Synthesis of $[{Nb_6Cl_{12}}Cl_2(H_2O)^a_4] \cdot 4H_2O$ (2). A protocol derived from that of Koknat and coworkers¹ was developed. 1.5 g of **1** were introduced in 10 ml of degassed water under argon. After 10 hours of stirring, the solution was decanted and filtered on a filter paper (thickness 0.15 mm, porosity 10 – 20 μ m). Then, 225 mg of SnCl₂ were dissolved in air in 5 ml of concentrated HCl (ACROS OrganicsTM, 37 wt. % solution in water). After full dissolution, the latter solution was added to the solution of **1**. Afterwards, this solution was slowly heated to 80°C in air under stirring. Heating was stopped after 45 min. A second acidic solution was added and the solution was let to cool down. When the temperature of 30°C was reached, a third acidic solution was added and the beaker was put in ice. Microcrystalline powder was recovered after filtration on a glass frit (1 – 1.6 μ m). The powder was then washed with HCl and ether and dried over P₂O₅ at room temperature for 24 h; yield 0.77 g, 92.7 % subtracting **1** impurities. EDS analysis of heavy elements *i.e.* Cl and Nb for selected crystals from the preparation revealed an average atomic composition of 70 % for chorine and 30 % for niobium in full agreement with the theoretical one for Nb₆Cl₁₄ (30:70).

Scheme S2. Synthesis of $[{Nb_6Cl_{12}^i}Cl_2^a(H_2O)^a_4] \cdot 4H_2O.$

Synthesis of $(TBA)_3$ [{Nb₆Clⁱ₁₂}Cl^a₆] (3). 200 mg of 1 were diluted in 20 mL of acetone and stirred for 24 hours under air. The resulting yellowish solution was filtered on a membrane filter (Sartorius, PTFE 0.2 µm) and 0.123 g (4.44 10⁻⁴ mol) of (TBA)Cl (TBA⁺ = [N(C₄H₉)₄]⁺) were added to the solution and leave stirred for 24 extra hours. The solvent was then evaporated and the powder was washed with ethanol in order to remove extra TBA salt without dissolving 3. 5 mL of acetone were used to dissolve the powder and to extract 3. 57.6 mg of single crystals were obtained by slow diffraction of ether; yield 28.8 % considering 1 as impurities. The single crystals were used as starting materials and they were dried 1 h in an oven at 60°C after recovering.

Scheme S3. Synthesis of $(TBA)_3[\{Nb_6Cl_{12}^i\}Cl_6^a]$.

Preparation method of solutions of 1 for spectroscopic investigations. Solutions of 1 were prepared as follows: 20 mg of 1 were dissolved per milliliter of solution (water or acetone), stirred overnight at 350 tr/min and then, filtered (on a filter paper, thickness 0.15 mm, porosity $10 - 20 \mu m$) out to get rid of non-dissolved impurities. When acetone was used as solvent, the dissolution was carried out in dried acetone during 24 hours under argon using Schlenk techniques. The stirring was then stopped and the solution let to decantation. The solution appeared green-olive but turned spontaneously brown when

opening the Schlenk tube. When solubilizing 1 in acetone in atmospheric condition using the same protocol, a brown solution is obtained since the early stage of dissolution. The solutions obtained from 1 after filtration in water and acetone will be denoted 1_{water} and $1_{acetone}$ respectively.

Raman solid-state measurements. Raman scattering spectra from 1100 cm⁻¹ to 100 cm⁻¹ were acquired for **1** as powders, for $\mathbf{1}_{water}$ as solution and for **3** as single crystal at room temperature using a LabRamHigh resolution spectrometer coupled with a confocal microscope (Horiba Jobin Yvon), 600 g/mm gratings and 10 × or 100 × objective. A He-Ne 633 nm laser was used for scattering excitation. Raman spectra were recorded at room temperature with the 10 × objective at 10% power during 100 s exposition and 2 accumulations for **1**, the 10 × objective at 100% power during 50 s exposition and 2 accumulations for $\mathbf{1}_{water}$ and with the 100 × objective at 1% power during 60 s exposition and 2 accumulations for **3**. The calibration of the Raman spectrometer was performed using the main Raman band of silicon wafer (520 cm⁻¹).

Electrochemical solution measurements. The electrochemical characterization by cyclic voltammetry was performed at room temperature using a conventional three-electrode cell in the Nb₆-containing electrolytic solution. This solution consists of 1 mM of **3** in a solution of 0.1 M of tetrabutylammonium hexafluorophosphate (TBA)[PF₆] in dichloromethane (column chromatography purification). A glassy carbon electrode was used as working electrode, a platinum wire as counter-electrode, and an Ag/AgCl electrode as reference electrode. The solution was degassed by N₂ before performing the electrochemical measurements. Because cyclic voltammetry measurements were not done in closed system, it has to be mentioned that, even if limited, some solvent evaporation occurs leading to slight changes in the solution concentration. The cyclic voltammetry scans were recorded in a potential window of -0.40 V to 0.70 V versus Ag/AgCl at 0.1 V.s⁻¹ using a Metrohm Autolab PGSTAT30. Both negative and positive potentials were applied from the initial equilibrium potential (0.15 V vs Ag/AgCl) leading to anodic currents and cathodic currents respectively.

The two reversible one-electron transfer processes of niobium chloride octahedral cluster have been reported in different media, using specific cluster compounds²⁻⁶, and gathered in Table S1.

Table S1. Summary of electrochemical measurements of $\{Nb_6Cl_{12}^i\}^{2+}$ cluster units reported in the literature and made in this work

Initial cluster compound	Reference	Redox system	E _{1/2} , V (vs Ag/AgCl	Solvent
			and for comparison vs	
			ferrocenium/ferrocene	
			in brackets)	

$[{Nb_6Cl^i_{12}}Cl^a_2(H_2O)^a_4].4 H_2O$	[4]	$\{Nb_6Cl^{i}{}_{12}\}^{2+/3+}$	0.58 (0.988)	2M HClO ₄
$[\{Nb_{6}Cl^{i}_{12}\}Cl^{a}_{2}(H_{2}O)^{a}_{4}].4 H_{2}O$	[5]	$\{Nb_6Cl_{12}^i\}^{2+/3+}$	0.58 (0.988)	H ₂ O
$[\{Nb_6Cl^i{}_{12}\}Cl^a{}_2(H_2O)^a{}_4].4~H_2O$	[5]	$\{Nb_6Cl^i{}_{12}\}^{3+\!/\!4+}$	0.87 (1.278)	H ₂ O
*[MeEtim] ₂ [{Nb ₆ Cl ⁱ ₁₂ }Cl ^a ₆]	[6]	${Nb_6Cl^{i}}_{12}$ ^{2+/3+}	-0.020 (0.388)	AlCl ₃ (44.4 mol %) – MeEtim
$[MeEtim]_2[\{Nb_6Cl^i_{12}\}Cl^a_6]$	[6]	$\{Nb_6Cl^i{}_{12}\}^{3+\!/\!4+}$	0.391 (0.799)	AlCl ₃ (44.4 mol %) – MeEtim
**[TEA] ₃ [{Nb ₆ Cl ⁱ ₁₂ }Cl ^a ₆]	[7]	$\{Nb_6Cl_{12}^i\}^{2+/3+}$	-0.17 ^b (0.437)	CH ₃ CN
$[TEA]_{3}[{Nb_{6}Cl^{i}_{12}}Cl^{a}_{6}]$	[7]	$\{Nb_6Cl^i{}_{12}\}^{3+\!/\!4+}$	0.39 ^b (0.756)	CH ₃ CN
***[TBA] ₃ [{Nb ₆ Cl ⁱ ₁₂ }Cl ^a ₆]	[8]	$\{Nb_6Cl_{12}^i\}^{2+/3+}$	-0.205 (0.203)	CHCl ₂
$[TBA]_{3}[{Nb_{6}Cl^{i}_{12}}Cl^{a}_{6}]$	[8]	$\{Nb_6Cl^i{}_{12}\}^{3+\!/\!4+}$	0.330 (0.738)	CHCl ₂
$[TBA]_{3}[\{Nb_{6}Cl^{i}_{12}\}Cl^{a}_{6}]$	This work	$\{Nb_6Cl^i{}_{12}\}^{2+/3+}$	-0.20 (0.208)	CHCl ₂
$[TBA]_{3}[\{Nb_{6}Cl^{i}_{12}\}Cl^{a}_{6}]$	This work	$\{Nb_6Cl^i{}_{12}\}^{3+\!/\!4+}$	0.33 (0.738)	CHCl ₂

*[MeEtim]⁺ = 1-Methyl-3-ethylimidazolium **[TEA]⁺ = $[N(C_2H_5)_4]^+$ ***[TBA]⁺ = $[N(C_4H_9)_4]^+$

^a E_{1/2}, V (vs SHE)

^b E_{1/2}, V (vs SCE)

Concerning this work, measurements have been done in DCM in order to avoid solvent coordination and apical exchanges. Both anodic (from positive to negative potentials) and cathodic sweep (from negative to positive potentials) have been recorded (Figure S2). In both cases, two reversible one-electron transfer could be observed around -0.20 V vs Ag/AgCl ($E_{1,ox} = -0.15$ V vs Ag/AgCl, $E_{1,red} = -0.25$ V vs Ag/AgCl) for the reversible reduction of a {Nb₆Clⁱ₁₂}³⁺-core species to a {Nb₆Clⁱ₁₂}²⁺-core species (Eq. 1) and around 0.33 V vs Ag/AgCl ($E_{1,ox} = 0.38$ V vs Ag/AgCl, $E_{1,red} = 0.27$ V vs Ag/AgCl) for the reversible oxidation of a {Nb₆Clⁱ₁₂}³⁺-core species to a {Nb₆Clⁱ₁₂}⁴⁺-core species (Eq. 2).

$\{Nb_6Cl_{12}^i\}^{3+} + e^- \rightarrow \{Nb_6Cl_{12}^i\}^{2+}$	Eq. 1
$\{Nb_6Cl_{12}^i\}^{4+} + e^- \rightarrow \{Nb_6Cl_{12}^i\}^{3+}$	Eq. 2

Potential values measured in DCM are identical as those reported by Prokopuk *et al.*⁹ but noticeably different from those measured in water.^{5,6} Indeed, an oxidation potential negative shift of around 0.6 V is observed between acidic aqueous media and DCM. Such shift is generally stated when experiments are done in aqueous and organic media, but the change of media alone is not enough to explain that large shift. The exchange of apical ligands, from $[{Nb_6Cl_{12}^i}Cl_6^a]^{n-}$ to $[{Nb_6Cl_{12}^i}(H_2O)^a_6]^{n+}$, in aqueous solution is another origin of the shift.

UV-vis spectrometry. Absorption spectra of the solutions and transmission spectra of the films were evaluated by a high-performance UV/VIS/NIR spectrophotometer (V770, Jasco) with an integrated sphere, in the 250 nm – 2500 nm range.

Mass Spectrometry. Mass spectrometry (ESI-MS) measurements with ionization by electrospray or nanospray source were recorded on a quadrupole time-of-flight mass spectrometer (microtof-Q, Bruker-Daltonics, Bremen, Germany). The samples 1_{water} and $1_{acetone}$ were analyzed both in negative and positive ion mode. Each solution sample was prepared to approximately reach 50 µmol.L⁻¹ (residual impurities preventing to reach a completely quantitative concentration) in appropriate solvent, *i.e.*, water or acetone. The water solution was infused directly in an electrospray source using a syringe pump (flow rate 180 µL.h⁻¹) and the ESI process was assisted with a dry gas at 80°C. The acetone solution was infused directly in a nanospray source with dry gas temperature set at 55°C.

Powder X-ray diffraction experiments. X-ray powder diffraction (XRPD) data were recorded at room temperature using a Bruker D8 Advance two-circle diffractometer (θ –2 θ Bragg-Brentano mode) using Cu K α radiation (λ = 1.54056 Å) equipped with a Ge(111) monochromator and a Lynx Eye detector. The analyses of the diffraction patterns were performed by profile refinement using the FullProf and WinPlotr software packages.^{10,11}

Measurement of haze and clarity values. The measurement of haze was carried out following the Standard Test Method "ASTM D-1003". A HazeGard Plus hazemeter apparatus from '*OAKLAND Instrument Corporation*' was used to measure simultaneously the haze, transmission and clarity values.

Films preparation. PVP films were obtained by drop-casting from aqueous solution of 1 (1_{water}) and (2_{water}) and from a dichloromethane solution of 3 (3_{DCM}). As depicted in Scheme 1, after dissolution of 1 in water (from 2.0 to 20.0 g.L⁻¹ of K₄[{Ta₆Brⁱ₁₂}Br^a₆]), 1_{water} was filtered (filter paper, thickness 0.15 mm, porosity 10 – 20 µm) to eliminate niobium metal impurities. 2_{water} (1.25 to 12.5 g.L⁻¹) or 3_{DCM} (1.10^{-3} mol.L⁻¹) solutions were used without filtration for the films' preparation. PVP (Sigma- Aldrich M = 1 300 000 g.mol⁻¹) is solid at room temperature. It was added at 10% weight ratio to 1_{water} , 2_{water} or 3_{DCM} and stirred until homogenization (1 – 2 hours). PVP-based solutions are stable over months. They were drop-coated homogeneously in order to cover glass substrates (1 mL for a 7.5 × 2.5 cm substrate). The films were let gently solidify by evaporation of the solvent in few hours (6 for water and 1 for dichloromethane). This latter step was made at room temperature under atmosphere condition.

 $\pmb{2} \; [\{\mathsf{Nb}_6\mathsf{Cl^i}_{12}\}\mathsf{Cl^a}_2(\mathsf{H}_2\mathsf{O})^a{}_4]\!\cdot\!4\mathsf{H}_2\mathsf{O}\;(s))$

Scheme S4. Film preparation from 1, 2 and 3 solutions.

Figure S1. Le Bail refinement of the XRPD pattern of the crude powder containing **1** recorded at room temperature.

Figure S2. Raw data of the XRPD pattern of the powder of 2 recorded at room temperature.

Figure S3. Cyclic voltammograms of 1.10^{-3} M of **3** in DCM (1.10^{-1} M of (TBA)[PF₆]) recorded starting by applying an anodic sweep (left) or cathodic sweep (right).

Figure S4. Normalized UV-visible absorption spectra of solution 1 at RT in water (blue spectrum), methanol (orange spectrum), ethanol (green spectrum), and acetone (red spectrum).

Figure S5. UV-visible transmission spectra of $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit in PVP film, 1 month after coating on glass substrate.

Table S2. x, y and z color coordinates and the FOM values of $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit in PVP film, 1-month after coating on glass substrate.

	Х	у	Z	T_{vis}	T _{sol}	T_{vis}/T_{sol}			
${\{Nb_6Cl^{i}_{12}\}}^{2+}(aq) : H_2O$ 1-month aging									
1 _{water} -20.0	0.417	0.464	0.119	17.3	14.2	1.2			
1_{water} -16.0	0.406	0.449	0.145	40.0	31.2	1.3			
1_{water} -12.0	0.395	0.439	0.166	53.9	42.1	1.3			
1_{water} -8.0	0.369	0.413	0.217	70.1	55.7	1.3			
1_{water} -4.0	0.342	0.376	0.282	81.5	70.4	1.2			
1_{water} -3.6	0.349	0.386	0.264	81.0	70.9	1.1			
1_{water} -2.8	0.338	0.370	0.292	83.8	74.7	1.1			
1_{water} -2.0	0.330	0.358	0.312	86.2	78.8	1.1			

Figure S6. CIE chromaticity coordinates of $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit in PVP film, 1 month after coating on glass substrate.

Figure S7. Digital microscopy image of the cross section of a $\{Nb_6Cl_{12}^i\}^{3+}$ @DCM@PVP film (left). UV-visible transmission spectra of a film of $\{Nb_6Cl_{12}^i\}^{3+}$ @DCM@PVP film (right).

Table S3. x, y and z color coordinates and the FOM values of $\{Nb_6Cl_{12}^i\}^{3+}$ cluster unit in PVP film, coated on glass substrate.

	Х	У	Z	T_{vis}	T _{sol}	T_{vis}/T_{sol}
${Nb_6Cl^{i}_{12}}^{3+}$ @DCM@PVP	0.417	0.464	0.119	57.07	58.25	0.98

Figure S8. UV-visible transmission spectra of $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit in PVP film, coated on glass substrate.

Table S4. CIE x, y and z color coordinates and the FOM values of $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit embedded in PVP film and coated on glass substrate, starting from $\mathbf{1}_{water}$ and $\mathbf{2}_{water}$ solutions.

	Х	у	Z	T_{vis}	T_{sol}	T _{vis} /T _{sol}	
${\{Nb_6Cl^{i}_{12}\}}^{2+}(aq):H_2O$							
1 _{water} -20.0	0.423	0.463	0.113	41.5	33.8	1.2	
1 _{water} -12.0	0.382	0.427	0.190	62.2	48.3	1.3	
2 _{water} -12.5	0.422	0.466	0.112	41.6	33.4	1.2	
2 _{water} -6.0	0.375	0.421	0.204	63.0	47.9	1.3	

Figure S9. UV-visible transmission spectra of aged $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit in PVP film, coated on glass substrate.

Table S5. CIE x, y and z color coordinates and the FOM values of one-month aged $\{Nb_6Cl_{12}^i\}^{2+}$ cluster unit embedded in PVP film and coated on glass substrate, starting from $\mathbf{1}_{water}$ and $\mathbf{2}_{water}$ solutions.

	Х	у	Z	T_{vis}	T _{sol}	T_{vis}/T_{sol}
${Nb_6Cl^{i}_{12}}^{2+}(aq):H_2O$						
1 _{water} -20.0	0.417	0.464	0.119	17.3	14.2	1.2
1 _{water} -12.0	0.395	0.439	0.166	53.9	42.1	1.3
2 _{water} -12.5	0.422	0.466	0.112	42.3	33.9	1.2
2 _{water} -6.0	0.378	0.424	0.196	61.2	46.4	1.3

	T_{vis}	Haze	Clarity
Sample			
Glass sample	92.8	1.02	99.7
1 _{water} -16.0	56.0	22.6	91.8
1 _{water} -12.0	61.5	12.2	92.0
1 _{water} -8.0	71.1	5.91	94.0
1 _{water} -3.6	82.9	1.44	98.0
1 _{water} -2.0	87.4	1.49	99.2
2 _{water} -12.5	44.3	1.30	99.2
2_{water} -7.5	54.0	1.06	98.6
2_{water} -6.0	60.5	1.44	99.4

Table S6. T_{vis}, haze and clarity value of clusters@PVP films 24 h after their preparation.

The NIR shielding value (S_{NIR}) is calculated as follow:

$$S_{NIR}(\%) = 100 - \frac{\int_{760}^{2500} T(\lambda)S(\lambda)d\lambda}{\int_{760}^{2500} S(\lambda)d\lambda}$$
 where:

- T is the transmission spectrum.

- S represents the Air Mass 1.5 (AM 1.5), which is equivalent to the spectrum of solar radiation after passing through 1.5 times the perpendicular atmospheric thickness

Table S7. NIR shielding values of clusters@PVP films 24 h and one-month in ambient conditions after their preparation.

24-hours after p	preparation	1-month after preparation		
	$\mathrm{S}_{\mathrm{NIR}}\left(\% ight)$		$\mathrm{S}_{\mathrm{NIR}}\left(\% ight)$	
Glass substrate	8.3			
1 _{water} -20.0	63.9	1 _{water} -20.0	83.7	
1 _{water} -16.0	61.7	1 _{water} -16.0	70.6	
1 _{water} -12.0	53.7	1 _{water} -12.0	61.4	
1_{water} -8.0	45.1	1_{water} -8.0	49.1	
1_{water} -4.0	31.8	1_{water} -4.0	35.3	
1_{water} -3.6	30.1	1_{water} -3.6	34.3	
1_{water} -2.8	26.9	1_{water} -2.8	26.4	
1_{water} -2.0	22.6	1_{water} -2.0	22.4	
2 _{water} -12.5	63.4	2 _{water} -12.5	63.2	
2_{water} -6.0	54.3	2_{water} -6.0	55.4	
${Nb_6Cl^{i}_{12}}^{3+} @DCM@.$	PVP 32.0			

II. Computational study

Computational details

Molecular density functional (DFT) calculations were carried out using the Amsterdam Density Functional (ADF 2019) program package developed by Baerend et. al.^{12,13} The local density approximation description¹⁴ was corrected thanks to the revPBE exchange and correlation nonlocal gradient.¹⁵ Relativistic effects were treated at the first-order of perturbation using a ZORA Hamiltonian.^{16,17} The all-electron ADF QZ4P Slater-type atomic basis set has been used, *i.e.* a quadruple- ζ STO basis set completed with four polarization functions. This protocol was successfully employed to study ground states and optical properties of $[\{Mo_6Br_8^i\}L_6^a]^{2-}$ and $[\{Ta_6Br_{12}^i\}L_6^n]^{n-}$ metal cluster in good agreement with experimental results.^{18,19} No symmetry constraint was used during the geometry optimization but if the final geometry was presenting symmetry elements (variation distances < 0.001 Å), the symmetry was later imposed and validated by checking the total energy. The local minimum character of every system was checked via vibrational frequency calculations. Spectroscopic properties (IR, UV-Vis and Raman (laser frequency 1.958 eV/ 633 nm)) were simulated using the modules provided in ADF Modeling suite. Table S3 gathers the Cartesian coordinates of the optimized structures.

Table S8. Cartesian coordinates of the optimized geometries $[{Nb_6Cl_{12}^i}Cl_6^a]^{4-}$ (n = 2-4), $[\{Nb_6Cl^{i}_{12}\}(H_2O)^{a}_{4}]^{2+}, [\{Nb_6Cl^{i}_{12}\}(H_2O)^{a}_{6}]^{2+}, [\{Nb_6Cl^{i}_{12}\}(OH)^{a}_{6}]^{n-} (n = 2 \text{ or } 4), [\{Nb_6Cl^{i}_{12}\}trans Cl^{a}_{2}(H_{2}O)^{a}_{4}$, [{Nb₆Clⁱ₁₂}(OH)^a₁(OH₂)^a₅] and [{Nb₆Clⁱ₁₂}*trans*-(OH)^a₂(OH₂)^a₄].

[{Nb	${}_{6}Cl^{i}_{12} Cl^{a}_{6}]^{4}$			Nb	-0.003345	-2.143665	-0.003481
Ňb	-0.000071	-2.109654	-0.000068	Nt	-0.000109	0.003479	-2.143692
Nb	0.000007	0.000053	-2.109699	Nt	0.003346	2.143676	0.003468
Nb	0.000074	2,109676	0.000045	Nt	0.000111	-0.003469	2.143704
Nb	-0.000005	-0.000062	2.109722	Nt	-2.143734	0.003336	0.000123
Nb	-2.109796	0.000071	-0.000003	Nt	2.143734	-0.003353	-0.000120
Nb	2 109797	-0.000075	0.000011	CI	2.457182	0.000160	-2.457441
CĨ	2.468628	-0.000002	-2.468602	CI	-0.007330	-4.748015	-0.007643
CI	-0.000153	-4 820765	-0.000175	CI	0.003810	2.461298	-2.453300
CI	0.000094	2 468667	-2 468533	CI	0.000251	-0.007646	4.748049
CI	-0.000007	-0.000196	4 820804	CI	2.453457	-2.461146	-0.004244
CI	2 468534	-2 468682	-0.000080	CI	0.007331	4.748022	0.007631
CI	0.000153	4 820772	0.000157	CI	-2.457180	-0.000162	2.457445
CI	-2 468627	-0.000002	2 468609	CI	-2.461156	-2.453451	-0.003960
CI	-2 468704	-2 468514	-0.000089	CI	-0.004076	-2.453287	-2.461303
CI	-0.000077	-2 468525	-2 468676	CI	0.004072	2.453293	2.461301
CI	0.000073	2 468513	2 468678	CI	2.461154	2.453446	0.003964
CI	2 468695	2.468526	0.000091	CI	-0.000254	0.007637	-4.748041
CI	-0.000008	0.000146	-4 820790	CI	-4.748074	0.007342	0.000258
CI	-4 820861	0.000140	-0.000026	CI	2.457432	-0.008046	2.457166
CI	2 468606	-0.000167	2 468621	CI	-0.003809	-2.461295	2.453287
CI	-0 000090	-2 468682	2 468506	CI	-2.457433	0.008044	-2.457159
CI	-2 468606	0.000164	-2 468606	CI	-2.453452	2.461141	0.004242
CI	-2 468519	2 468691	0.000073	CI	4.748074	-0.007338	-0.000252
CI	4 820862	-0.000145	0.000073				
01	4.020002	0.000140	0.000001	[{	$Nb_6Cl_{12}^i$ Cl_6^a	$[1^{2^{-1}}]$	
				Ň	-0.053425	-2.174534	-0.060039
				Nt	-0.000795	0.060003	-2.175017
[{Nb	${}_{6}Cl^{i}{}_{12}Cl^{a}{}_{6}]^{3}$			Nt	0.053425	2.174532	0.060041

Nb	0 000795	-0.060001	2 175014	н	4 930225	-0 101143	0 880472
Nb	2 175121	0.053237	0.002040	 Ц	0.770567	0.264857	1 9/1/50
	-2.175121	0.055257	0.002940		0.770507	-0.204037	-4.041409
Nb	2.175121	-0.053236	-0.002940	н	-0.234332	-4.926839	-0.680506
CI	2.445391	0.007572	-2.449391	н	0.754898	4.936469	0.013974
CI	-0.116269	-4.701221	-0.130684	0	-0.106723	-0.033892	4.511951
CI	0.059116	2.512875	-2.378845	н	0.246857	-0.779123	5.025950
ĊI	0.002001	-0 130769	4 702734	0	4 431073	0 157828	0.087235
	2 386450	2 505280	0.070824	ŭ	1.101070	0.201286	0.660560
	2.300439	-2.303209	-0.070024	0	4.924709	-0.201300	-0.009309
CI	0.116269	4.701219	0.130684	0	-0.060499	4.445535	0.213499
Cl	-2.445391	-0.007575	2.449390	Н	-0.784874	4.948518	-0.195620
CI	-2.506345	-2.385763	-0.065334	0	0.029281	0.111124	-4.337402
CI	-0.062074	-2.378187	-2.513588	н	-0.775034	-0.099312	-4.841294
CI	0.062073	2 378101	2 513585	0	-4 429127	-0 124936	0.046200
	0.002073	2.370131	2.010000	Ň	-4.423127	-0.124330	0.040200
	2.506346	2.303700	0.005330		-4.931431	0.090664	0.650291
CI	-0.002005	0.130785	-4.702734	0	0.145769	-4.427701	0.062287
CI	-4.703105	0.116086	0.006119	Н	-0.089516	-4.922412	0.865707
CI	2.447371	-0.128517	2.443006	LINh	(Cl^{i}) (OH)	a 14-	
CI	-0.059112	-2.512873	2.378850				0.407000
CI	-2 447371	0.128516	-2 443007	ND	-0.016963	-2.136263	0.137209
	2.447.071	0.120010	0.070000	Nb	-0.168415	0.041036	2.199099
CI	-2.300402	2.505266	0.070622	Nb	-2.126558	0.032837	-0.098746
CI	4.703103	-0.116098	-0.006116	Nb	0.170513	-0.055111	-2.029827
				Nb	0.018760	2 152006	0.044250
[/ Nh	$C1^{i}$ H_{O}	a_{1}^{2+}		NIL	0.010700	0.010700	0.044230
		/ 4]	0.070050		2.131307	0.012732	0.252409
ND	0.044137	-2.058490	0.076253	CI	-0.213275	-2.469033	2.651378
Nb	-0.031785	-0.012003	2.157311	CI	-0.188747	2.555024	2.578111
Nb	-2.000783	-0.028451	0.057233	CI	-2.527462	-2.468281	-0.024916
Nb	0.026863	0.024527	-1.978807	CI	2,482630	-2.497571	0.347210
Nb	-0 030338	2 077338	0 111277	CI	-2 7/3252	0.005034	2 365010
	-0.033330	2.077330	0.1112/1		-2.745252	0.033334	2.303310
IND	2.000443	0.051299	0.113118	CI	-2.305218	-0.050915	-2.636969
CI	0.015709	-2.470388	2.528633	CI	2.714836	-0.054746	-2.224050
CI	-0.084303	2.420612	2.575110	CI	-2.476018	2.584897	-0.160633
CI	-2.423322	-2.454866	0.032763	CI	0.187113	2.447322	-2.464938
CI	2 527153	-2 344681	0 102240	CI	0 151006	-2 584697	-2 332334
CI	_2 513281	_0.060334	2 455102	CI	2 /08378	2 520887	0.208565
	-2.313201	-0.000334	2.433192		2.490370	2.329007	0.200303
	-2.430000	-0.019424	-2.375260		2.313021	0.075251	2.704209
CI	2.498364	0.078180	-2.308414	н	-0.221684	0.934788	4.610161
CI	-2.514143	2.389807	0.073974	0	-0.347866	0.010705	4.342180
CI	-0.016080	2.477387	-2.327614	0	4.274534	0.019113	0.463812
ĊI	0.082067	-2 435112	-2 371734	H	4 606910	0 072436	-0 446083
	2 424280	2 / 8/110	0 1/217/	\sim	0.080485	1 202422	0.021700
	2.424303	2.404110	0.142174	Ň	0.003403	4.502422	0.021733
CI	2.438473	0.038131	2.536000	н	-0.828583	4.573890	-0.136451
н	-0.087797	-4.938340	-0.703308	0	0.401560	-0.124290	-4.169909
Н	0.699524	4.950551	-0.100731	Н	-0.480061	-0.357599	-4.501064
Н	0.009033	0.768491	5.027745	0	-4.262813	0.070333	-0.346329
н	0 812827	-0 219209	-4 851526	Ĥ	-4 611623	0.031652	0 558631
\sim	0 12027	0.038008	4 502620	\sim	0.028825	4 200070	0.144556
U U	-0.129322	-0.030090	4.302020		-0.020025	-4.290079	0.144550
н	0.212721	-0.776254	5.034702	н	-0.022858	-4.529524	1.084663
0	-0.063631	4.428690	0.201041				
Н	-0.855588	4.939903	-0.038091	[{Nh	(OH)	$[a_{2}]^{2}$	
0	0.054325	0.094892	-4.330725		0.042040	0 100701	0.000544
Ĥ	-0 739668	-0.093421	-4 859434	IND	0.042849	-2.186791	0.233544
\sim	0.158021	4 405565	0.071552	Nb	-0.087435	0.119550	2.252732
U U	0.130921	-4.403303	0.071552	Nb	-2.188944	-0.031618	-0.015703
н	-0.065046	-4.936852	0.854378	Nb	0.078515	-0.141640	-2.079478
				Nb	-0.053893	2,207240	-0.039856
[{Nh	$(C1^{1})^{1}(H_{2}O)$	a^{a} 1^{2+}		Nb	2 170004	0.086008	0 160145
			0.070054		2.173034	0.000330	0.100143
IND	0.039482	-2.051973	0.073954		-0.040473	-2.340393	2.714404
Nb	-0.016402	-0.012537	2.142093	CI	-0.179390	2.601751	2.443425
Nb	-2.057086	-0.025051	0.070823	CI	-2.429673	-2.499874	0.193002
Nb	0.012222	0.028825	-1.963239	CI	2.522411	-2.379002	0.332124
Nb	2 057601	0 049959	0 097078	CI	-2 606998	0 125332	2 430928
Nb	0.033685	2 073064	0.115073		2 277492	0.2179/2	2 400270
	-0.033003	2.073004	0.113073		-2.377403	-0.217043	-2.499270
CI	0.028744	-2.473074	2.529769	CI	2.574339	-0.072007	-2.292675
CI	-0.057620	2.421093	2.580897	CI	-2.525321	2.464805	-0.131985
CI	-2.396720	-2.484801	0.050404	CI	-0.011375	2.315007	-2.521755
CI	2.498612	-2.386924	0.081271	CI	0.117622	-2.636355	-2.201501
CI	-2 481604	-0.056612	2 505013	CI	2 392703	2 569680	-0 004619
CI	2.401004	0.000012	2 200544		2 272450	0.050000	2 627625
	-2.443040		-2.390314		2.3/3432	0.200020	2.02/020
	2.409400	0.074091	-2.359622	н	-0.093207	1.036439	4.075992
Cl	-2.488708	2.432214	0.095274	0	-0.179374	0.135041	4.328879
CI	-0.027266	2.484266	-2.325463	0	4.248875	0.156176	0.310469
CI	0.058203	-2.431347	-2.378646	н	4.662300	0.212748	-0.564550
CI	2 400174	2 515964	0 129535	0	-0.018809	4 279943	-0 145090
CI	2.400114	0.020220	2 5/20/2	ŭ	0.011401	1 640760	0.254000
	2.440000	0.029230	2.040040		-0.911421	4.042/02	-0.254000
н	0.105123	0.770322	5.015436	0	0.256468	-0.274259	-4.146121
н	-4.935523	0.244127	-0 696929	н	-0.584355	-0.532258	-4 554023

0	-4.257424	-0.069054	-0.207141	н	-0.331367	4.884822	0.817090
Ĥ	-4 688644	-0.050760	0 661395	н	1 049374	0.662961	4 898540
0	0 091943	-4 261938	0 292541	н	-4 909193	-0 115219	0.018320
й	0.163768	-4 587940	1 202603	н	4 949577	-0.039533	0.017108
	0.100700	-4.007 040	1.202003	 Ц	0 228047	0.007535	4 720408
F (3 11					-0.330947	-0.907333	4.729400
$[{Nb_6}]$	Cl ⁻ ₁₂ }trans-Cl	$["_{2}(H_{2}O)"_{4}]$		0	0.301204	0.140095	4.332332
Nb	0.017406	-2.216251	0.036829	H	0.375427	-0.727851	4.972847
Nb	0.233674	-0.055596	2.048731	0	4.415179	0.745702	-0.195857
CI	0.259735	-2.484838	2.521405	н	4.709097	1.019625	-1.081833
CI	0.282440	2.376172	2.507516	0	-0.741453	4.387672	0.089026
CI	-2.467691	-2.478817	0.281206	Н	-0.482874	4.853077	-0.724518
CI	2 500087	-2 502938	-0 206481	0	-0.260290	-0.021393	-4.335340
CI	-2 174492	-0.042535	2 731054	Н	-0.989586	0.498998	-4.712772
Nh	_1 990949	-0.050531	0 236984	0	-4.339825	-0.786340	0.431683
Nb	0 170238	0.065143	1 097626	Н	-4.665823	-0.875737	1.343796
	-0.179230	-0.003143	-1.907020	0	0.820163	-4.078267	0.118822
	-2.073290	-0.034214	-2.171200	Ĥ	0 127609	-4 755482	0 162606
CI	2.228921	-0.078198	-2.669955		0.121000	11100102	0.102000
CI	-2.445679	2.382197	0.267585	E ONTI-	α_{11}		1 0
н	0.037019	-0.815901	4.855471	[{IND ₆	CI_{12} trans-(C	$(OH_2)_2(OH_2)_4$]
Н	-4.790425	0.736999	0.051163	Nb	0.194028	-2.153268	0.198519
Н	4.844817	-0.857799	0.009843	Nb	0.113874	0.109358	2.124816
Nb	0.036994	2.095535	0.024282	Nb	-1.987134	-0.156061	0.191619
CI	-0.205312	2.364096	-2.460286	Nb	-0.059303	-0.075735	-1.918772
CI	-0.228021	-2.496917	-2.446415	Nb	-0.116236	2.158829	0.013368
ĊI	2.522095	2.358079	-0.220099	Nb	2 056027	0 129535	0.009315
Н	0 017979	0 694836	-4 794426	C	0 303081	-2 292022	2 722661
CI	2 727726	-0.066539	2 232290	CI	-0.029743	2 558515	2 508390
Nh	2.121120	-0.0000000	-0 175890		2 261163	2.00010	2.300330
	0 500333	0.070210	4 474044		2.201103	-2.030333	0.333129
	0.0000000	-0.049071	4.474344		2.7 19217	-2.203004	0.062922
	0.000700	0.730966	4.040032	CI	-2.334830	-0.052883	2.671824
0	4.471532	-0.081905	-0.442840	CI	-2.543427	-0.278934	-2.253633
н	4.852973	0.689212	0.011190	CI	2.380016	0.047909	-2.481803
Н	-4.798538	-0.810013	0.049981	CI	-2.659408	2.240417	0.100554
0	-0.445861	-0.070842	-4.413838	CI	-0.259556	2.345869	-2.483645
Н	-0.002824	-0.852036	-4.787654	CI	0.071883	-2.530951	-2.315463
0	-4.417120	-0.038837	0.503930	CI	2.368515	2.585694	-0.151238
CI	0.048224	4.557595	0.017203	CI	2.594766	0.287968	2.449946
CI	0.006167	-4.678317	0.043916				
				н	0.498751	1.126687	4.812855
UNh	Cl^{i} $(OH)^{a}$	$(OH)^{a} 1^{1+}$		н	-4 792171	0.541190	0.177498
[]IN06			0.440000	н	4 837113	-0.600733	-0.305452
ND	0.386669	-2.143016	0.118369	н	-0 196419	-1 106983	-4 610229
ND	0.182153	0.044622	2.144927	\sim	0.180058	0.235107	4.574402
Nb	-1.973894	-0.347950	0.268535	U U	0.103330	0.200107	4.014492
Nb	-0.124528	-0.030863	-1.927363		0.070900	-0.370000	4.902403
Nb	-0.302833	2.016741	0.097944	0	4.506412	0.290535	-0.095535
Nb	2.043269	0.318246	-0.049185	Н	4.745707	0.836394	-0.864212
CI	0.594065	-2.341126	2.629120	0	-0.261635	4.165119	0.035728
CI	-0.173242	2.489785	2.540969	н	-0.228797	4.628260	-0.814822
CI	-1.995687	-2.825832	0.318796	0	-0.153784	-0.163144	-4.374203
CI	2 893433	-1 998892	-0 074434	Н	-1.007598	0.204224	-4.661356
CI	-2 210045	-0 347149	2 750587	0	-4.439385	-0.359739	0.287206
CI	-2 583525	-0 426478	-2 150080	Н	-4.676688	-0.608360	1.197601
	2.000020	0.720770	-2 530149	0	0.449327	-4.147205	0.275009
	2.200100	0.000440	0 202002	н	-0.333788	-4.693951	0.439172
	-2.101322	2.012002	0.233032				–
	-0.500842	2.39/135	-2.359299				
	0.206927	-2.431649	-2.38/0/6				
CI	2.051808	2.816067	-0.104681				
CI	2.632842	0.444035	2.375122				

Figure S10. Normalized simulated Raman spectra obtained using the geometry issued from the X-ray structure (C_{2h}) and the optimized geometries of $[{Nb_6Cl^i}_{12}{Cl^a}_6]^{4-}$ (O_h).

Figure S11. Normalized simulated Raman spectra of $[{Nb_6Cl^i_{12}}Cl^a_6]^{3-}$ (*O_h* symmetry and from experimental data) compared to **3** experimental spectrum.

Table S9. TD-DFT vertical electronic singlet-singlet excitation energies (eV) which oscillator strength (*f*) is superior to 0.01, wavelength (nm), and composition for $[{Nb_6Cl^i}_{12}Cl^a_6]^{n-}$ (n = 2-4), $[{Nb_6Cl^i}_{12}(H_2O)^a_6]^{2+}$, $[{Nb_6Cl^i}_{12}(H_2O)^a_5(OH)^a]^+$, and $[{Nb_6Cl^i}_{12}(H_2O)^a_4(OH)^a_4]$.

$[{Nb_6Cl^{i}_{12}}Cl^{a}_{6}]^{2}$							
λ(nm)	f	Composition					
1152	0.006	HOMO-1→LUMO	87%				
509	0.049	HOMO-6→LUMO	54%				
		HOMO-1→LUMO+3	36%				
496	0.096	HOMO-1→LUMO+3	46%				
		HOMO-6→LUMO	40%				
421	0.069	HOMO-3→LUMO+3	83%				
272	0.022	HOMO→LUMO+4	93%				
[{Nb ₆ Cl ¹ ₁₂ }Cl ^a ₆] ⁵⁻							
$\begin{array}{c} \text{Electronic excitation} \\ \text{energy (eV)} \end{array} \lambda (nm) \qquad \qquad f \qquad \qquad \text{Composition} \end{array}$							
	[{N λ(nm) 1152 509 496 421 272 [{N λ(nm)	$\frac{[\{Nb_6Cl^{i}_{12}\}Cl^{a}_{6}]^{2}}{f}$ $\frac{\lambda(nm)}{1152} = 0.006$ $509 = 0.049$ $496 = 0.096$ $421 = 0.069$ $272 = 0.022$ $[\{Nb_6Cl^{i}_{12}\}Cl^{a}_{6}]^{3}$ $\lambda(nm) = f$	$\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$				

energy (ev)			-	
0.998	1242	0.008	HOSOα→LUSOα+1	83%
			HOSOβ-3→LUSOβ	10%
1.175	1055	0.010	HOSOβ-3→LUSOβ	84%
			HOSOα→LUSOα+1	14%
2.627	472	0.130	HOSOα-2→LUSOα+3	72%
2.837	437	0.005	HOSOα-5→LUSOα+1	98%

$[{Nb_6Cl^{i}}_{12}{Cl^{a}}_{6}]^{4-}$						
Electronic excitation energy (eV)	λ (nm)	f	Compositio	n		
1.385	895	0.037	HOMO→LUMO	94%		
2.761	449	0.111	HOMO-2→LUMO+2	66%		
			HOMO-1→LUMO+3	8%		
			HOMO-1→LUMO+8	6%		
3.046	407	0.033	HOMO-1→LUMO+3	90%		
3.163	392	0.030	HOMO-4→LUMO+2	83%		
			HOMO-6→LUMO	8%		

$[Nb_6Cl_{12}(H_2O)_6]^{2+}$						
Electronic excitation energy (eV)	λ (nm)	f	Nature			
1.514	819	0.014	HOMO→LUMO	60%		
			HOMO→LUMO+1 HOMO→LUMO+2	19% 11%		
1.525	813	0.014	HOMO→LUMO+1 HOMO→LUMO HOMO→LUMO+2	56% 26% 4%		

1.533	809	0.014	HOMO→LUMO+2	74%
			HOMO→LUMO+1	11%
3.115	398	0.019	HOMO-6→LUMO+6	18%
			HOMO-4→LUMO+4	18%
			HOMO-5→LUMO+3	17%
			HOMO-3→LUMO+8	13%
			HOMO-2→LUMO+8	11%
3.131	396	0.018	HOMO-4→LUMO+5	21%
			HOMO-6→LUMO+3	17%
			HOMO-3→LUMO+8	10%
			HOMO-1→LUMO+8	10%
			HOMO-5→LUMO+7	9%
			HOMO-1→LUMO+9	8%
3.147	394	0.018	HOMO-5→LUMO+5	22%
			HOMO-6→LUMO+4	19%
			HOMO-2→LUMO+9	18%
			HOMO-1→LUMO+9	12%
			HOMO-4→LUMO+7	10%
3.324	373	0.009	HOMO-3→LUMO+8	28%
			HOMO-1→LUMO+9	26%
			HOMO-6→LUMO+3	8%
			HOMO-4→LUMO+5	8%

$[Nb_6Cl_{12}(H_2O)_5(OH)]^+$						
Electronic excitation energy (eV)	λ (nm)	f	Nature			
1.427	869	0.008	HOMO→LUMO	73%		
			HOMO→LUMO+1	12%		
1.571	789	0.013	HOMO→LUMO+2	87%		
2.003	619	0.008	HOMO→LUMO+6	50%		
			HOMO-1→LUMO	22%		
			HOMO→LUMO+1	20%		
2.818	440	0.007	HOMO-6→LUMO	23%		
			HOMO-5→LUMO+3	18%		
			HOMO-6→LUMO+2	12%		
			HOMO-1→LUMO+8	10%		
			HOMO-1→LUMO+9	9%		
3.069	404	0.012	HOMO-2→LUMO+10	36%		
			HOMO-6→LUMO+3	30%		
			HOMO-5→LUMO+7	8%		
3.092	401	0.012	HOMO-2→LUMO+10	20%		
			HOMO-6→LUMO+3	17%		
			HOMO-1→LUMO+8	11%		
			HOMO-6→LUMO+4	7%		
3.107	399	0.012	HOMO-6→LUMO+6	30%		
			HOMO-5→LUMO+5	10%		
			HOMO-2→LUMO+8	10%		
			HOMO-6→LUMO+1	6%		

4.335	286	0.009	HOMO-13→LUMO	35%
			HOMO-9→LUMO+7	20%
			HOMO-11→LUMO+7	13%
			HOMO-3→LUMO+19	10%
			HOMO-3→LUMO+19	

$[Nb_6Cl_{12}(H_2O)_4 trans-(OH)_2]$							
Electronic excitation energy (eV)	λ (nm)	f	Nature				
1.406	882	0.011	HOMO→LUMO	93%			
1.660	747	0.009	HOMO→LUMO+4	42%			
			HOMO→LUMO+2	22%			
			HOMO-1→LUMO	13%			
1.666	744	0.008	HOMO→LUMO+5	30%			
			HOMO→LUMO+3	22%			
			HOMO-2→LUMO	21%			
			HOMO-1→LUMO+1	10%			
2.567	483	0.017	HOMO-6→LUMO+1	27%			
			HOMO-5→LUMO+4	23%			
			HOMO-4→LUMO+5	12%			
			HOMO-4→LUMO+7	6%			
2.761	449	0.013	HOMO-6→LUMO+1	36%			
			HOMO-7→LUMO+1	18%			
			HOMO-6→LUMO+2	8%			
			HOMO-6→LUMO+4	8%			
2 702	111	0.014		27%			
2.752	444	0.014	$HOMO_{-4} \rightarrow UMO_{+1}$	27% 13%			
			$HOMO_1 \rightarrow UUMO_10$	10%			
				8%			
			HOMO-7 \rightarrow LUMO+1	8%			
2 960	419	0.008	HOMO-7→LUMO+4	39%			
21300	115	0.000	HOMO-6→LUMO+4	16%			
			HOMO-4→LUMO+6	6%			
3.280	378	0.010	HOMO-5→LUMO+10	58%			
			HOMO-4→LUMO+9	20%			
4.065	305	0.014	HOMO-1→LUMO+22	9%			
			HOMO-3→LUMO+15	8%			
			HOMO-2→LUMO+21	6%			
			HOMO-3→LUMO+20	6%			
			HOMO-11→LUMO+1	6%			
			HOMO-3→LUMO+19	6%			
			HOMO-2→LUMO+23	5%			

REFERENCES

- (1) Simon, A. *et al.* K₄Nb₆Cl₁₈ Darstellung, Eigenschaften und Struktur *Zeit. Anorg. Allg. Chem.* **1968**, *361*, 235–248.
- (2) Fleming, P. B. *et al.* Chemistry of polynuclear metal halides. II. Preparation of polynuclear niobium chloride and bromide *Inorg. Chem.*, **1967**, *6*, 1–4.
- (3) Parsons, J. A. *et al.* High temperature conproportionation of niobium pentahalide and niobium metal; A convenient route to hydrated cluster halides Nb₆Cl₁₄·8H₂O and Nb₆Br₁₄·8H₂O *Inorg. Nucl. Chem. Lett.*, **1972**, *8*, 281–286.
- (4) Koknat, F. W. *et al.* Metal Cluster Halide Complexes. I. Efficient Synthesis of Hydrated Hexanuclear Niobium and Tantalum Cluster Halides M₆X₁₄·8H₂O. *Inorg. Chem.* 1974, 13, 1699– 1702.
- (5) Schäfer, H. et al. Die Niob- und Tantalkomplexe [Me₆Xⁱ₁₂]X^a₂.nH₂O mit Me=Nb, Ta; Xi=Cl, Br; Xa=Cl, Br, J. Zeit. Anorg. Allg. Chem. 1972, 392, 10–22.
- (6) Schäfer, H. *et al.* Das chemische Verhalten von Me₆.Komplexen (Me=Nb, Ta, Mo, W) aus analytischer Sicht. *Zeit. Anorg. Allg. Chem.* **1973**, *401*, 63–84.
- (7) Quigley, R. *et al.* Electrochemical and Spectroscopic Characterization of {Nb₆Cl₁₂}^{z+}Chloride Clusters in the Aluminum Chloride-I-Methyl-3-ethylimidazolium Chloride Molten Salt. *Inorg. Chem.* 1992, *31*, 1255–1261.
- (8) Pénicaud, A. *et al.* Novel Redox Properties of the Paramagnetic Hexanuclear Niobium Cluster Halide Nb₆Cl₁₈³⁻ and the Preparation, Structures, and Conducting and Magnetic Properties of Its One-Dimensional Mixed-Valence Tetramethyltetra(selena and thia)fulvalenium Salts: [TMTSF. *Chem. Mater.* 2, 123–132 (1990).
- (9) Prokopuk, N. *et al.* Synthesis and structure of the useful starting material [Bu₄N]₃[Nb₆Cl₁₂(OSO₂CF₃)₆]. *Inorganica Chim. Acta* **2000**, *300–302*, 951–957.
- (10) Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. *Phys. B Phys. Condens. Matter* **1993**, *192*, 55–69.
- (11) Roisnel, T. *et al* WinPLOTR: A Windows tool for powder diffraction pattern analysis. *Epdic 7 Eur. Powder Diffraction, Pts 1 2* **378**, 118–123 (2001).
- (12) Fonseca Guerra, C. et al Towards an order-N DFT method. Theor. Chem. Acc. 1998, 99, 391-403.
- (13) te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931-967.
- (14) Vosko, S. H. *et al* Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Can. J. Phys.* **1980**, *58*, 1200–1211.
- (15) Zhang, Y. *et al* Comment on "generalized gradient approximation made simple". *Phys. Rev. Lett.* 1998, *80*, 890.
- (16) Van Lenthe, E. Geometry optimizations in the zero-order regular approximation for relativistic effects. J. Chem. Phys. **1999**, 110, 8943–8953.
- (17) Van Lenthe, E. *et al.* Optimized Slater-type basis sets for the elements 1-118. *J. Comput. Chem.* **2003**, *24*, 1142–1156.
- (18) Costuas, K. *et al.* Combined theoretical and time-resolved photoluminescence investigations of [Mo₆Brⁱ₈Br^a₆]²⁻ metal cluster units: Evidence of dual emission. *Phys. Chem. Chem. Phys.* 2015, 17, 28574–28585.
- (19) Kepenekian, M. *et al.* Red-NIR luminescence of Mo₆ monolayered assembly directly anchored on Au(001). *Mater. Horizons* **2019**, *6*, 1828–1833.