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A B S T R A C T   

The relevance of the phase-field approach to simulate the fracture in porous ceramics has been investigated. For 
this purpose, the conditions for the crack initiation using the phase-field model have been compared to the 
theoretical predictions of the coupled criterion considering a pure V-notch singularity and a crack blunted by a 
cavity. For two types of ceramics (3YSZ and 8YSZ), it has been shown that the phase-field approach is able to 
simulate accurately the crack nucleation as predicted by the coupled stress-energy criterion. The nature of the 
regularization parameter l for the phase-field model has been discussed as function of the material and the local 
geometry where the crack initiates. Moreover, the apparent fracture toughness and the compressive fracture 
strength have been calculated for real porous YSZ ceramics. It has been found that the fracture properties of these 
complex 3D porous materials can be correctly predicted with the phase-field model. For specimen loaded under 
compression, it has been shown that the model is able to capture and explain the transition from a brittle 
behavior towards a diffuse damage when increasing the porosity.   

1. Introduction 

Porous ceramics are gaining a noteworthy interest as functional 
materials for many applications. They benefit from the ceramic prop
erties, which are known to be highly stable in corrosive and oxidizing 
environments. Moreover, they offer high thermochemical and mechan
ical stability, low thermal conductivity and small dielectric constant 
[1–8]. Thanks to all these features, porous ceramics are used as key 
components in several technological devices with far-reaching economic 
and ecological implications. They are currently employed in biology, 
medical industry, electronic engineering, petroleum industry, metal
lurgy, environment protection and chemical engineering [2–6]. In 
particular, porous ceramics have achieved an overwhelming success in 
the domain of energy. For example, they are used as barrier coatings to 
enhance the lifetime of many devices operated under severe conditions 
such as gas turbines. Porous ceramics have been also selected as material 
for the key components of several energy storage and power generation 
systems such as the solid oxide fuel cells and batteries [9–11]. Yttria 
Stabilized Zirconia (YSZ) is a specific example, which exhibits good 

chemo-thermo-mechanical properties and high ionic conductivity. 
Nevertheless, despite all these advantages, the fracture of porous 
ceramic remains a problematic issue for all these technological 
applications. 

It is worth noting that the mechanical behavior and especially the 
fracture of porous ceramics cannot be investigated based only on 
experimental studies because the analysis would require an unlimited 
number of mechanical characterizations. Indeed, the mechanical 
response of porous ceramics is complex and strongly dependent on the 
microstructure. For example, the apparent toughness of porous ceramic 
generally decreases with increasing porosity [12]. The crack onset and 
propagation is also a function of the local geometry of the pores and 
their distribution. Under specific conditions, the crack tip blunted by 
distant macropores can even lead to enhance the apparent toughness 
compared to the dense material [13,14]. For porous ceramics tested 
under compression, it has been shown that the fracture mechanism 
changes from a brittle behavior at low porosity towards a diffuse dam
age at high porosity [15,16]. However, this transition has not been 
precisely explained yet. From this point of view, a numerical approach 
would be well adapted to better understand the precise role of the 
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microstructure and to provide accurate prediction of the fracture of 
porous ceramics. Nevertheless, the complexity and the heterogeneity of 
the microstructure make the numerical treatment very challenging. For 
this reason, the simulation of the nucleation and propagation of cracks in 
such microstructure remains a salient subject of investigation. There
fore, there is still not a 3D model, which has been fully validated to 
predict precisely the fracture in porous ceramics. 

To date, several works have been focused on solving the fracture 
problem in porous ceramics using different numerical approaches. On 
the one hand, it has been studied without simulating explicit cracks. In 
this case, phenomenological laws taking into account the loss of rigidity 
induced by the cracks nucleation and extension are used in order to 
reproduce the specimen macro-response during the loading [17,18]. 
Even if these methods enable the computation of the overall material 
behavior with good approximation, they are not based on physical 
models for fracture and their applications is generally limited to the 
studied case. On the other hand, methods based on the explicit simu
lation of cracks has been adopted in order to thoroughly study fracture 
initiation, propagation and branching. For this purpose, two main 
computational families have been developed in the frame of the Finite 
Element Method (FEM) depending on the sharp or diffuse description of 
the simulated crack. The first numerical approach is referred as the 
discrete crack model. In this case, the sharp crack is introduced as a 
discontinuity in the mesh and its propagation is simulated using various 
numerical methods. For instance, the extended finite element method 
(XFEM) [19], the phantom-node method, the element-erosion method, 
the generalized finite element method (GFEM) or re-meshing techniques 
[20–23] have been used to simulate the fracture. However, the imple
mentation of discrete crack models requires criteria for crack initiation 
and propagation. These criteria are taken from the Linear Elastic Frac
ture Mechanic (LEFM), which is well appropriate to describe the brittle 
behavior of ceramic materials. The extension of preexisting crack is 

governed by an energy balance based on the Griffith theory [24,25]. For 
the fracture initiation, the coupled criterion proposed by D. Leguillon 
[26] assumes that both the stress and energy criteria have to be fulfilled. 
It provides a rigorous framework for computing the crack nucleation 
[27,28]. However, the numerical implementation of the discrete crack 
models can be difficult since the fracture criterion must be evaluated on 
the whole structure in order to identify the sites for the crack nucleation. 
Furthermore, special algorithms are required to introduce discontinu
ities by modifying locally the shape functions or by re-meshing the path 
for the propagation. For all these reasons, discrete crack models are not 
well adapted to simulate complex cases like the branching and multiple 
cracks problem. Therefore, they cannot be applied to porous ceramics, 
which have complex and heterogeneous microstructures. 

In order to overcome the limitations inherent to the discrete 
approach, several models have been proposed in the frame of the 
continuous fracture mechanics theory [29–37]. All are based on a 
‘diffuse’ or ‘smeared’ description of the discontinuity where the crack is 
implicitly modeled through a smooth scalar damage variable. In this 
context, Marigo and coauthors have proposed for the development of 
these models a rigorous theoretical framework using the variational 
approach and the gamma-convergence theory for the regularization of 
the free-discontinuity medium [29–33]. As a result, the fracture problem 
has been reformulated as the minimization of an energy functional 
without any additional criterion. On the basis of these developments, 
Miehe et al. [38,39] have proposed a specific smeared crack model 
referred as the Phase-Field Method (PFM) for fracture mechanics. 
Thanks to the thermodynamic consistency of this model, a staggered 
scheme has been proposed for the numerical resolution [38], allowing a 
simple implementation in FEM codes [23,40,41]. The crack extension is 
governed by an energy driving force that can be interpreted as a Griffith 
criterion. Several studies have shown that the model is able to simulate 
accurately the propagation, the branching and the multi-cracking 

Nomenclature 

ac crack length (mm or µm) 
an notch depth (mm) 
L beam length (mm or µm) 
h beam height (mm or µm) 
b beam thickness (mm or µm) 
r cavity radius (mm) 
δc crack width (µm) 
λ singularity order (–) 
β notch angle (degrees) 
ε porosity (%) 
Knotch

Ic apparent fracture toughness for the notch (MPa m1-λ) 
Kapp

Ic apparent fracture toughness for the crack blunted by a 
cavity (MPa √m) 

KI generalized stress intensity factor (MPa m1-λ) 
KIc material fracture toughness (MPa √m) 
R relative toughness (–) 
Fc applied critical loading (N) 
Gc critical energy release rate (J m− 2) 
Ginc incremental energy release rate (J m− 2) 
Wp potential energy (J) 
σc material strength (MPa) 
σ0 applied stress (MPa) 
σc

0 critical applied stress (MPa) 
k, A dimensionless coefficients (–) 
Λ scaling coefficient (MPa− 1) 
D scaling coefficient (MPa− 0.5) 
E Young modulus (MPa) 

Ê Young modulus for the plane strain condition (MPa) 
ν Poisson coefficient (–) 
d phase-field variable (–) 
g degradation function (–) 
t time (s) 
Es stored energy (J) 
Wc energy dissipation (J) 
Pc work of external forces (J) 
π potential energy (J) 
Ψ density of elastic strain energy (J m− 3) 
Ψ+ density of strain energy related to tension contribution (J 

m− 3) 
H ‘history’ loading field (J m− 3) 
f thermodynamic driving force (J m− 3) 
l length scale parameter for the phase-field approach (mm 

or µm) 
l 8YSZ length scale parameter for the 8YSZ material (mm or µm) 
l 3YSZ length scale parameter for the 3YSZ material (mm or µm) 
lIrwin Irwin length (µm) 
l8YSZ
Irwin Irwin length for the 8YSZ material (mm or µm) 
l3YSZ
Irwin Irwin length for the 3YSZ material (mm or µm) 
l0 initial crack length for the coupled criterion (mm or µm) 
lc0 critical initial crack length for the coupled criterion (mm or 

µm) 
lc,8YSZ
0 critical initial crack length for the 8YSZ material (mm or 

µm) 
lc,3YSZ
0 critical initial crack length for the 3YSZ material (mm or 

µm)  

A. Abaza et al.                                                                                                                                                                                                                                  



Theoretical and Applied Fracture Mechanics 119 (2022) 103349

3

problem in complex geometry [21,23]. For example, Nguyen et al. [42] 
have successfully simulated the cracks evolution in a lightweight con
crete microstructure with encapsulated pores. For all these reasons, the 
PFM seems suitable to study the fracture in porous ceramics. However, 
controversy remains on the PFM capacity to predict accurately the crack 
initiation. 

On the one hand, Amor et al. [43] have suggested that the PFM 
approach can predict the crack initiation by choosing an ad-hoc value for 
the length scale parameter l , which was initially introduced in the 
method to control the width of the smeared crack. Indeed, it has been 
proposed that this regularization length for the phase-field method can 
be related to the Irwin characteristic length linked to the material 
properties, i.e., strength and toughness. For this purpose, an expression 
of l has been derived considering a one-dimensional traction test 
[43,44]. It can be noticed that some authors have successfully tested the 
relevance of this approach to simulate the crack nucleation for simpli
fied geometries [21,45]. Besides, Molnár et al. [46] have recently pro
posed a generalization of this expression for the 2D case still considering 
a homogeneous phase-field. They have found that the length scale 
parameter must be also a function of the ratio of the principal stresses 
suggesting a dependence to the local geometry where the crack nucle
ates. However, the generalization and the relevance of these expressions 
for complex 3D geometries without neglecting the gradient term in the 
phase-field is still questionable. 

On the other hand, Kumar et al. [47] have recently criticized the 
above interpretation of l as a material constant. They have claimed that 
‘the fracture nucleation cannot be properly modelled by the phase-field 
formulation’ since ‘it is purely energetic’ and does not take into account 
the material fracture strength. In this view, the regularization length is 
just a numerical ‘parameter that is void of any further physical mean
ing’. To overcome this difficulty, they proposed to add an external 
driving force to the classical formulation depending on the material 
strength and supplementary numerical correction factors [47]. This 
literature review indicates that the interpretation of the regularization 
length and the use of the PFM to simulate the crack nucleation is still a 
subject of investigation. In this objective, the comparison of the PFM 
with the results given by a criterion based on the LEFM could be helpful 
to unravel the real nature of the length scale parameter l . 

The aim of the article is to evaluate the relevance of the PFM 
approach to predict correctly the fracture in the complex 3D micro
structures of porous ceramics. In this frame, the nature of the length 
scale parameter l is discussed depending on the material properties and 
geometry. For these objectives, the PFM simulations have been 
compared to the results of the coupled criterion obtained for stress 
singularity and stress concentration configurations (i.e. for a V-notched 
sample and a macro-crack blunted by a pore) [13,26,48]. The compar
ison has been conducted considering two types of zirconia stabilized 
with 3% and 8% molar of Yttria (3YSZ and 8YSZ) exhibiting different 
fracture properties. Once the capacity of the PFM model to detect 
accurately the crack initiation has been verified for these simplified 
geometries, the model has been used to compute the apparent fracture 
toughness and the compressive fracture strength of porous ceramics. The 
simulations have been compared to experimental data reported in [49] 
and [16] as a function of the porosity for the model validation. Finally, 
the fracture mechanism for porous ceramics subjected to a compressive 
loading has been more precisely discussed. 

2. Methodology 

The objective of the present study is to evaluate the capability of the 
PFM approach to accurately predict the crack initiation in porous 
ceramic materials. For this purpose, PFM simulations have been con
ducted on different geometrical configurations and compared to the 
apparent fracture toughness given by the coupled criterion. First, V- 
notched samples with different opening angles have been studied to 
address the case of crack nucleation from an ideal stress singularity [26]. 
In order to mimic the fracture in porous ceramics, the crack nucleation 
from a stress concentration represented by a macro-crack blunted by a 
cavity [13,48] has been simulated. Moreover, the role of the material 
properties has been investigated considering two types of Zirconia Sta
bilized with 3% and 8% molar of Yttria (3YSZ and 8YSZ). Indeed, as 
reported in Table 1, the yttrium content in YSZ has a strong impact on 
the material fracture properties. For example, the strength and tough
ness of 3YSZ are roughly two and three times higher than 8YSZ, 
respectively [9]. The relevance of the PFM approach for predicting the 
propagation of a preexisting macro-crack in real porous ceramics has 
been assessed using 2D numerical microstructures. The results have 
been compared to the data reported in [49] related to an apparent 
fracture toughness measured on porous 3YSZ specimens. All the simu
lations have been performed with the plane strain elasticity assumption 
for a classical three-point bending symmetric test. In this condition, the 
crack is nucleated under a pure symmetric mode. Finally, the PFM has 
been used to simulate the crack initiation in real 3D porous ceramic 
microstructures for 8YSZ samples submitted to a compression loading. 
The results have been compared to the compressive fracture strength 
measured on the same microstructures reported in [16]. 

2.1. Crack nucleation from a stress singularity: V-notched sample 

The considered geometry of the V-notched sample with different 
opening angles 2β is illustrated in Fig. 1. The length and height of the 
beam are L = 8 mm and h = 2 mm, respectively, while the notch depth is 
an = 0.4 mm. It is worth noting that the coupled criterion allows 
computing the apparent toughness Knotch

Ic for the notch while the critical 
load Fc triggering the crack initiation is calculated with the PFM model. 
Therefore, the two approaches have been compared using the following 
expression [50]: 

Knotch
Ic =

(
3FcL
2bh2

)

h(1− λ)f
(an

h

)
(1)  

where b denotes the beam thickness taken to the unity for the 2D sim
ulations. The exponent λ is the singularity order for a symmetric loading, 
which is obtained by solving the following equation [50]: 

λsin(π − β)+ sin(2λ(π − β) ) = 0 (2) 

The dimensionless factor f
( an

h

)
in Eq. (1) is the polynomial function 

given in Eq. (3): 

f
(an

h

)
= c1

an

h
+ c2

an

h
2
+ c3

an

h
3
+ c4

an

h
4
+ c5

an

h
5

(3) 

The coefficients ci are tabulated in [50] for a ratio an
h ranging between 

0.05 and 0.7. It can be noticed that the dimensions of the simulated 
specimen have been chosen to fulfill this condition on the ratio an

h . Three 
notch angles 2 β ∈ {60◦, 90◦, 120◦} have been investigated to sweep a 

Table 1 
Mechanical properties of 3YSZ and 8YSZ.  

Material E [GPa] ν KIc[MPa.
̅̅̅̅
m

√
] σc[MPa] 

lIrwin =
(KIc

σc

)2
[µm] 

Reference 

3YSZ 214  0.31  5.1 583  76.5 [59] 
8YSZ 216  0.31  1.61 245  43.2 [60,61]  
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large range of singularity orders with a crack initiation mainly 
controlled by the energy criterion for 2 β = 60◦ and a non-negligible 
contribution of the stress criterion for 2 β = 120◦. 

2.2. Crack nucleation from a stress concentration: crack blunted by a 
cavity 

The simulated beam with a preexisting crack blunted by a cavity is 
shown in Fig. 2. Its geometry is the same as the previous V-notched case 
with a same crack length of ac = 0.4 mm. In this case, the fracture 
toughness KIc and the applied critical loading Fc are linked as follows: 

KIc =

(
Fc

b
̅̅̅
h

√

)

f
(ac

h

)
(4) 

The dimensions of the studied geometry fulfil the condition ac
h ∈

[0.05, 0.7] for which the dimensionless factor f
( ac

h

)
is expressed as [51]: 

f
(ac

h

)
=

3 L
h

̅̅̅ac
h

√

2
(
1 + 2 ac

h

)(
1 − ac

h

)3
2

[

1, 99 −
ac

h

(
1 −

ac

h

){

2, 15 − 3, 93
(ac

h

)

+ 2, 7
(ac

h

)2
}]

(5) 

Four porosities have been considered with a radius r ranging from 
0.01 mm to 0.03 mm. These cavity sizes remain very small with respect 

Fig. 1. Three-point-bending test on a V-notched sample.  

Fig. 2. Three-point-bending test on a sample with a crack blunted by a cavity.  

Fig. 3. Synthetic porous microstructures at different porosity volume fractions ε (solid phase in grey): a) 10 %, b) 20 %, c) 30 %.  
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to the crack length so that Eqs. (4) and (5) remain valid for assessing the 
apparent fracture toughness Kapp

Ic . Moreover, the width δc of the preex
isting crack introduced in the mesh was small as compared to the pore 
size (i.e. δc = 3 µm≪2r). 

2.3. Crack nucleation and propagation in porous ceramics 
microstructures 

2.3.1. Propagation of a preexisting macro-crack in 2D 
The sample geometry to simulate the crack extension with the PFM 

approach in porous ceramic is displayed in Fig. 3a. The selected di
mensions are L = 40 µm, h = 10 µm and ac = 3 µm. The ratio ac

h is still 
comprised between 0.05 and 0.7 in such a way that Eqs. (4) and (5) can 
be used to express the toughness as a function of the applied loading. As 
shown in Fig. 3a-3c, three microstructures of different porosities ε ∈{10 
%, 20 %, 30 %} have been simulated. These numerical microstructures 
have been generated using the Gaussian random field method [52,53]. 

Indeed, it has been shown that this method is able to emulate accurately 
the morphology of partially sintered ceramic microstructures, such as 
solid oxide fuel cell electrode materials [53,54]. The three microstruc
tures have been generated by maintaining a constant correlation length 
for the solid YSZ phase [54]. As result, the mean diameter for YSZ 
calculated by continuous Particle Size Distribution (PSD) [55], is 
approximatively a constant equal to 0.45 µm for all the microstructures 
simulated in the present study. On the contrary, the mean pore diameter 
decreases from 0.22 µm to 0.05 µm when densifying the ceramic from 30 
% to 10 %. In all cases, the size of the porosity remains small compared 
to the simulated preexisting crack length. Besides, the crack width set to 
δc = 0.1 µm is lower than the mean pore diameter for a porosity of 20 % 
and 30 %, whereas, for a porosity of 10 %, the two dimensions δc and 2r 
are equivalent. 

2.3.2. Crack nucleation in 3D 
To study the crack nucleation in a real microstructure, the phase- 

Fig. 4. Mesh of the: a) tapered pillar attached to the pellet with axisymmetric conditions. A zoom on the pillar is shown together with the location of the Volume Of 
Interest (VOI) for the simulation at the microstructure scale, b) 3D microstructure at a porosity of 63 %. 
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field approach has been used to simulate our experiments reported in 
[16]. In this previous work, the compressive fracture strength was 
measured as a function of the porosity ranging from 33% to 63%. The 
tested specimens were micro-pillars with a height of 130 µm made of 
porous 8YSZ. Due to a slight taper angle of 6◦, the pillars presented a 
section that evolves from 60 µm at the top to around 88 µm at the bot
tom. To measure accurately the porosity, 3D reconstructions were also 
obtained for all the investigated specimens [16]. 

To predict the dependence of the compressive fracture strength with 
porosity, a multi-scale approach has been adopted coupling computa
tion on the whole micro-pillar with simulation on the 3D porous ceramic 
microstructure (Fig. 4). 

At the microstructure scale, the crack nucleation and propagation 
has been computed on sub-volumes, extracted from the whole re
constructions, using the PFM model. For intermediate porosities below 
50%, a volume of 4 × 4 × 4 µm3 has been simulated whereas a larger 
volume of 15 × 15 × 15 µm3 has been considered for the highest porosity 
at 63%. These dimensions of the simulated domain were chosen to be 
representative of the heterogeneous microstructures. Indeed, the pore 
mean phase diameter is lower than 0.13 µm for the specimen at inter
mediate porosities (<50%) and equal to 0.99 µm at 63% [16]. Therefore, 
even in this later case, several pores remain included along the edge of 
the computed volume (the characteristic size for the simulated volume is 
around fifteen times larger than the mean pore diameter). The solid 
phase of the reconstructed sub-volumes has been meshed using the 
software Avizo® considering tetrahedral elements. For the microstruc
tures at intermediates porosities, the mesh were built using around 3.5 
× 106 tetrahedrons (corresponding to around 17 × 106 degrees of 
freedom) while the volume at 63% contained 5.6 × 106 tetrahedrons 
(corresponding to around 26 × 106 degrees of freedom). A special 
attention was paid to the quality of the mesh by keeping elements with 
an aspect ratio below 10 and a dihedral angle above 10◦. For instance, a 
zoom of the generated mesh at a porosity of 63% is displayed in Fig. 4b. 
It can be seen that the surface of the solid phase inside the microstruc
ture is smoothly meshed by the triangular elements avoiding numerical 
artifacts during the computation. The uniaxial compression has been 
simulated on the meshed reconstructions in displacement-controlled 
loading considering the properties of the dense 8YSZ (Table 1). 

On the other hand, finite element simulations of the compression test 
at the micro-pillar scale were conducted assuming a homogeneous me
dium with a pure elastic behavior. For this modeling, a 2D approach 
including the full geometry of the tapered micro-pillar attached to a part 
of the pellet was considered using axisymmetric conditions (Fig. 4a). 
The size of the simulated pellet substrate was chosen in such a way that 
the mechanical response of the micro-pillar becomes independent of 
boundary conditions applied at the bottom of the substrate (i.e. the 
displacements are blocked in the axial direction). The simulations were 
performed using a Poisson’s ratio of 0.31 and an effective Young’s 
modulus taken from our experiments as a function of porosity [16]. 
Because of the taper angle, it is worth noting that a stress gradient ap
pears in the pillar during compression. For this reason, the cracks were 
observed during the experiments in the upper part of the pillar where the 
stress is the highest [16]. The Volume Of Interest (VOI) related to the 
simulated domain at the microstructure scale was therefore taken at a 
short distance from the top of the pillar (i.e. 11 µm) where the damage is 
expected to occur (Fig. 4a). The difference in the displacements at the 
top and the bottom of the VOI surface was then extracted from the 
simulation at the macroscopic scale and applied on the 3D reconstruc
tion simulated with the phase-field. In this approach, the compressive 
fracture strength corresponds to the critical load applied at the top of the 
micro-pillar identified when the damage is initiated in the simulated 
microstructure. 

3. Models description 

In this work, the coupled criterion has been used in order to validate 

the results obtained by the PFM model. The coupled criterion is thus 
briefly reminded hereafter before detailing the implemented PFM 
method. 

3.1. Coupled criterion 

The coupled criterion stipulates that the crack initiation is triggered 
when both the stress and energy criteria are fulfilled. This condition can 
be reached when the applied stress σ0 reaches a critical value σc

0 leading 
to the nucleation of a crack with an initial critical length lc0 [26]. When 
the crack initiation occurs with an initial length l0, the stress criterion 
requires that the local stress must exceed the material strength σc along 
the expected crack path, as expressed in Eq. (6). Regarding the energy 
criterion, the incremental energy release rate Ginc, which is the change in 
the potential energy Wp due to the crack nucleation, must be higher than 
the material fracture toughness Gc as shown in Eq. (7): 

σ(x) ≥ σc for 0 < x < l0 (6)  

Ginc(l0) = −
δWp

l0
≥ Gc (7) 

The local stress σ(x) and the energy release rate Ginc(l0) introduced in 
the two last equations can be expressed as a function of the applied stress 
σ0 using matched asymptotic expansions between the singular and the 
far fields [56]: 

σ(x) = k(x)σ0 for 0 < x < l0 (8)  

Ginc(l0) = A(l0)σ2
0 (9)  

where the dimensionless coefficients k and A depend on the crack length 
l0, the material properties and the local geometry where the crack ini
tiates. 

It is worth noting that the coefficient k decreases with increasing l0 
whereas A is an increasing function of l0. Therefore, combining Eqs. (6) 
and (8), the stress condition provides an upper bound for the nucleation 
since the applied loading σ0 increases with l0 (Fig. 5). The lower bound 
for nucleation is provided by the energy condition combining Eqs. (7) 
and (9). The coupled criterion corresponds to the configuration where 
the two conditions are fulfilled by minimizing the applied stress σ0 
denoted σc

0. In this condition, a unique solution for a critical crack length 
lc0 is obtained, as shown in Fig. 5. 

In the case of the V-notched sample submitted to a symmetric 
loading, the coupled criterion is formulated as follows [26]: 

KI ≥ Knotch
Ic with Knotch

Ic =

(
Gc

Λ(β)

)1− λ

σc
2λ− 1 (10)  

where KI is the generalized stress intensity factor and the term Λ(β) is a 
scaling coefficient depending on the notch opening angle. In this case, 
the critical length can be given through a precise analytical expression: 

lc
0 =

1
Λ(β)

Gc

σc
2 =

1
Λ(β)Ê

KIc
2

σc
2 (11)  

where Ê is the Young modulus for the plane strain condition (Ê = E
1− ν2). 

From Eq. (11), it can be noted that the critical length is proportional to 
the Irwin length (lIrwin = KIc

2

σc2 ) through a factor depending on the notch 
opening and the Young modulus. 

For a crack blunted by a cavity, it is worth mentioning that the 
matched asymptotic expansion for expressing σ(x) and Ginc(l0) has been 
conducted by taking into account the local geometry with the pore size 
[13,48]. Therefore, the apparent toughness for a blunted crack Kapp

Ic is 
not only dependent on l0 but also on the pore radius r [13]: 
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Kapp
Ic =

(
Gc

D(r, l0)

)1/2

(12)  

where D is a function of r and l0. In this case, the critical length for the 
crack nucleation must depend on both the pore radius and the Irwin 

length (i.e. lc0 = f
(

r, KIc
2

σc2

)
). However, there is no analytical expression for 

this length, which must be calculated by solving a non-linear equation as 
detailed in [48]. 

3.2. Phase-field method 

The PFM approach described in Miehe et al. [38,39] has been 
adopted for this work. The model has been built considering quasi-static 
and isothermal conditions with the assumption of small strain. The 
variables of the problem are time dependent because the damage 
evolves during the loading. Nevertheless, the time step t is not ‘real’ and 
is introduced only through the loading increment in the simulation. 
Hereafter, the studied domain and the position are denoted V and x, 
respectively. 

As mentioned in the introduction, the crack is modelled through a 
smooth scalar damage variable d(x) referred as the phase-field. Besides, 
a regularization length scale parameter l has been introduced to control 
the region of transition from the pristine state (d(x) = 0) to the fully 
broken state (d(x) = 1) (Fig. 6). In order to propose a specific expression 
for the smeared crack surface Γl (d), depending on the damage variable, 
Miehe et al. [38] have assumed that the evolution of the damage in one- 
dimension can be approximated by an exponential function d(x) = e−

|x|
l . 

This hypothesis had allowed expressing Γl (d) in 1D which has been 
directly extended to the three-dimension case as follows: 

Γl (d) =
1

2l

∫

V
d2 + l 2∇d⋅∇ddV with V⊂Rδ, δ ∈ [1, 2, 3] (13) 

It is worth noting that the minimization of the functional Γl provides 
an approximation of the phase-field d(x), which is a solution of the 
associated Euler-Lagrange type equation: 

d − l 2Δd = 0 in V with ∇d .n = 0 on ∂V (14)  

where n is the outward normal on ∂V considering the natural boundary 
conditions. 

The PFM approach is mainly based on an energy balance. Indeed, the 
evolution of the potential energy during the loading π̇ is the sum of three 
contributions, namely the rate of the stored elastic energy Ės, the rate of 
the work of the external forces Ṗc and the energy dissipation rate Ẇc due 
to crack propagation: 

π̇ = Ės + Ẇc − Ṗc (15)  

where the symbol Ẋ denotes the time derivative of X. 
• The last term of this equation is classically expressed through the 

displacement field u and the applied force t on the edge of the domain: 

Ṗc =

∫

∂V
t⋅u̇ds (16) 

• The energy dissipation rate associated to the damage evolution can 
be expressed as the rate of the work Wc required to create a diffuse crack 
in the volume: 

Wc = GcΓl (d) and Ẇc = Gc
dΓl (d)

dt
= Gc

∫

V

(
1
l

d − l Δd
)

ḋdV (17)  

where Gc is the critical energy release rate of the material. 
• The rate of stored energy is expressed by the integral of the density 

of elastic strain energy Ψ: 

Ės =

∫

V
Ψ̇dV (18) 

In the implemented model, it is assumed that the crack cannot 
propagate under compression. To fulfil this requirement, a spectral 
decomposition of the strain tensor ε is carried out and the density of 
strain energy is split into a sum of two contributions Ψ+ and Ψ− , related 
to tension and compression, respectively: 

Ψ = (g(d) + α)Ψ+ +Ψ− (19)  

where g(d) is a degradation function introduced to take into account the 
material softening during damage. Among several options [57], g(d) is 
chosen, in this work, as a quadratic function with g(d) = (1 − d)2. It can 
be noticed that the numerical parameter α, which is assigned a very low 
positive value, is added to ensure the stability of the simulation when d 
tends to 1. 

Thanks to the introduction of the degradation function, the stress 
tensor σ is dependent on the damage field d(x) as follows: 

σ(ε, d) =
∂Ψ(ε, d)

∂ε
(20) 

Besides, the thermodynamic driving force f for crack extension is 
expressed in the model as the derivative of the elastic strain energy 
stored in the material with respect to the damage variable: 

Fig. 5. Applied loading as a function of the initial crack length for the coupled 
criterion obtained using the stress (in blue) and the energy (in purple) criteria. 
The coupled criterion is chosen among the admissible solutions such lc0 mini
mizes the applied loading σc

0 (in red). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Sharp and diffuse crack description.  
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f = −
∂Ψ(ε, d)

∂d
= 2(1 − d)Ψ+ (21) 

In this condition, the driving force for the crack propagation is 
controlled by the part of the strain energy related to the tension. Finally, 
the rate of the stored energy can be written as follows: 

Ės =

∫

V

[

σ :

{
1
2
(
∇u̇ +∇

T u̇
)
}

− f ḋ
]

dV (22) 

The governing equation to solve the problem is given by the rate of 
the potential energy Eq. (18) combined with Eqs. (16), (17) and (22). For 
each increment of loading (or time), the minimization of this energy 
functional must be carried out on each variable d and u. In a staggered 
approach for the resolution, the minimization at a frozen damage for the 
phase-field (i.e. d(x) = cte) leads to solve a ‘classical’ elastic problem: 

∇⋅σ(ε, d) = 0 for the domain V with σ⋅n = t on ∂V (23) 

Then, the resolution at a given loading (i.e. u = cte) yields the 
equation for the phase-field computation when the crack propagates 
with ḋ > 0: 

f = 2(1 − d)Ψ+ = Gc

(
1
l

d − l Δd
)

with ∇d⋅n = 0 on ∂V (24) 

It can be noticed that this equation describes a classical energy cri
terion. Indeed, the crack is assumed to propagate when the driving force 
equivalent to an energy release rate in J⋅m− 3 is equal to the density of 
energy created in the domain by the apparition of the cracked surface. 
Moreover, the formation of cracks is an irreversible process, so that the 
phase-field d(x) cannot decrease during the loading. To take into ac
count this supplement constrain, Miehe et al. [38] have proposed to 
introduce in Eq. (24) an ‘history’ loading field H (x, t) stipulating that 
Ψ+ can only increase over the time. The partial differential Eq. (24) is 
thus rewritten as follows: 

2(1 − d)H = Gc

(
d
l
− l Δd

)

with H (x, t) = max
s∈[0,t]

Ψ+(u(x, t)) (25) 

The computation for the coupled criterion has been carried out with 
the FE code Modulef, while the phase-field approach has been imple
mented in the software Comsol Multiphysics®. 

For the phase-field computations, it is worth noting that a special 
attention was paid to check the convergence of the simulations. More 
specifically, the number of iteration for the staggered resolutions was 
chosen so that the results are independent on the loading step. For this 
purpose, when the damage parameter exceeds 0.4, the loading step was 
divided by 100. Moreover, the independence of the result with the mesh 
size was also verified for all the simulations. It can be noticed that a very 
fine mesh was considered in the damage zone: for instance, more than 
15 elements were included in the width 2l for the 2D simulations. Be
sides, all the computations have been carried out in such a way that the 
softening effect on the load-displacement curve due to a large damage 
zone remains negligible. Finally, the simulated tensile, shear and 3 point 
bending tests reported in Miehe et al. [38] were used as benchmark to 
validate the implementation. For all the cases, a very good agreement 
has been found between the results from the Comsol Multiphysics ® and 
the data reported in Miehe et al. [38] validating the implementation. 

4. Results and discussions 

In this section, the results of the PFM simulations, conducted on the 
stress singularity and stress concentration configurations, are presented 
and compared to those performed using the coupled criterion. The ca
pacity of the model to predict accurately the crack nucleation is evalu
ated and the nature of the length scale parameter l is discussed. Then, 
the numerical results obtained on 2D and 3D porous ceramic micro
structures are compared to the experimental data reported in [49] and 

[16] in order to investigate the relevance of the PFM model to simulate 
the fracture in porous ceramics. 

4.1. V-notched 8YSZ sample 

Preliminary computations have been conducted with the PFM model 
to simulate the crack pattern in the V-notched 8YSZ sample considering 
two length scale parameters (i.e.l 1 = 0.01 mm andl 2 = 0.04 mm). It can 
be noted that the classical undamaged condition (∇d .n = 0) was 
retained for the notch. As shown in Fig. 7a and 7b, the crack initiates 
from the stress singularity and propagates in pure symmetric mode for 
both cases. Therefore, as already stated, the PFM is able to identify 
correctly the zone where the crack nucleates as well as its direction of 
propagation whatever the value of l [38] (Fig. 7a and 7b). Moreover, it 
can be seen that the crack becomes thicker when l is larger since this 
regularization parameter controls the width of the region of transition 
from the pristine material to the fully broken state. Fig. 7c shows that the 
force-displacement curve for l = 0.04 mm is slightly below the one 
calculated for l = 0.01 mm before the fracture. This result is due to the 
material softening effect during the loading, which is more pronounced 
when l is larger as previously mentioned. 

As discussed in the introduction, the critical loading triggering the 
fracture was found to be strongly dependent on the choice of l . To 
investigate its role on the crack onset, the critical loading has been 
determined for several opening angles of the V-notched 8YSZ specimen. 
The critical loading Fc was retrieved from the simulated force- 
displacement curves when the phase-field parameter d reaches ≈1 at 
the notch tip. The evolutions of the apparent facture toughness deduced 
from these computations are compared to the coupled criterion pre

Fig. 7. Visualization of the crack pattern initiated from a notch at an opening 
angle 2β of 90◦ for: a) l 1 = 0.01 mm, b) l 2 = 0.04 mm. c) Force-Displacement 
curves considering the 8YSZ material at a V-notch angle 2β of 90◦ forl 1 = 0.01 
mm and l 2 = 0.04 mm. 
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dictions in Fig. 8a. When the regularization parameter is increased, the 
apparent fracture toughness computed with the phase-field is increased 
especially at the highest opening angles. At the lowest angle (2 β = 60◦), 
it can be noted in Fig. 8a that the apparent fracture toughness is almost 
independent of l . This behavior is explained since the singularity order 
at 2 β = 60◦ is very close to the exponent 0.5 for a perfect crack (i.e. λ =

0.5122 for 2 β = 60◦). In this condition, the crack initiation is almost 
governed by an energy criterion. As pointed out by Tanné at al. [45], the 
phase-field method, which is based on a pure energetic approach for the 
crack propagation, is thus able to simulate the fracture initiation from a 

sharp singularity with a low sensitivity on the length scale parameter. 
On the contrary, at the highest opening angle, the apparent fracture 
toughness is strongly dependent on the choice of l for the simulations 
(Fig. 8a). Indeed, the low singularity order at 2 β = 120◦ (i.e.λ = 0.6157) 
means that the fracture behavior is partially controlled by the stress 
criterion [26,48]. In this case, the prediction provided by the phase-field 
method, which does not consider the stress criterion, becomes a function 
of the regularization parameter. In other words, the choice of l is crucial 
for an accurate prediction of the crack onset when the fracture is 
partially controlled by the stress criterion. In these conditions, the reg
ularization parameter could be seen as a pure numerical parameter that 
must be adapted for each configuration, as suggested by Kumar et al. 
[47]. 

Nevertheless, it has been possible to identify a single value of l 

denoted l 8YSZ in such a way that the apparent fracture toughness 
computed by the phase-field matches the coupled criterion prediction 
over the full span of investigated angles (Fig. 8a). Indeed, the PFM 
simulations obtained withl 8YSZ = 0.01 mm provides a precise prediction 
of the crack nucleation with a mean relative error lower than 2.4%. For 
this ad-hoc value of l , the PFM model is thus able to accurately repro
duce the apparent toughness evolution when the fracture mechanism is 
changed from an energy controlled criterion to a coupled criterion. In 
other words, the length scale parameter allowing retrieving the coupled 
criterion predictions is found to be independent of the notch opening 
angle. The possibility to identify a single value of l 8YSZ suggests that this 
parameter could have a physical meaning and would contain the in
formation to take into account the fracture properties involved in both 
criteria (i.e. toughness and strength). From this point of view, l 8YSZ 
could be related to a characteristic length of the material such as the 
Irwin length lIrwin or the critical length lc0 involved in the coupled crite
rion (cf. Eq. (11)). This statement is in good agreement with Tanné et al. 
[45] and suggests that, as for the uni-axial traction [44], the length scale 
parameter must be proportional to the Irwin length. 

The critical loading leading to the fracture is plotted in Fig. 8b as a 
function of the opening angles 2β for the investigated length scale pa
rameters. As expected, the critical force is almost independent of l at the 
lowest angles, whereas it decreases with increasing l at the highest 
angles (Fig. 8b-c). This dependence of the critical force (Fig. 8b) asso
ciated to the apparent fracture toughness (Fig. 8a) with the regulariza
tion parameter l at high opening angles was also observed in Tanné 
et al. [45]. This behavior can be interpreted through the relationship 
between the regularization parameter and the material characteristic 
length (lIrwin or lc0). Indeed, if l is proportional to lIrwin or lc0, a large value 
of this parameter is related to a very low material strength. Since the 
fracture is partially governed at high opening angle by the strength 
criterion [26], the critical force or the apparent fracture toughness must 
decrease with increasing l . 

It can be noted that a decrease of the critical loading Fc is observed 
when increasing 2β for the highest length scale parameter (i.e. l = 0.4 
mm in Fig. 8b). In this condition, the material fracture strength must be 
very low due to the dependence of σc with l . Therefore, the stress cri
terion is more easily fulfilled while the contribution of the energy cri
terion is enhanced. The force triggering the fracture is thus decreased 
with increasing 2β since the energy criterion is more easily fulfilled 
when the opening angle is large (note that Knotch

Ic is still an increasing 
function of 2β at l = 0.4 mm due to the evolution of the term h(1− λ) in 
Eq. (1)). This discussion reinforces the claim that, for a V-notched sin
gularity, the regularization parameter in the phase-field model must be 
related to a material characteristic length lIrwin or lc0. 

4.2. V-notched 3YSZ sample 

The role of the material properties on the regularization parameter 
has been investigated by repeating the same study considering the 3YSZ 
instead of 8YSZ. The apparent fracture toughness calculated with the 

Fig. 8. Dependence of the mechanical response of the V-notched 8YSZ sample 
on the opening angle considering different values of the length scale parameter 
l : a) apparent fracture toughness, b) critical force triggering crack initiation. 
l 8YSZ refers to the length scale parameter that provides close agreement be
tween the coupled criterion and the PFM results over the whole considered 
range of notch angles, c) force-displacement curves at a V-notch angle 2β 
of 120◦. 
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PFM model is plotted in Fig. 9 as a function of the V-notched opening 
angles for different values of l . The results are consistent with the 
previous analysis since the same evolutions of Knotch

Ic with 2β and l than 
the ones discussed for 8YSZ are observed. These evolutions are 
compared to the predictions given by the coupled criterion in Fig. 9. As 
for the 8YSZ ceramic, it has been possible to identify an ad-hoc length 
scale parameter l 3YSZ that allows retrieving the evolution of the theo
retical fracture toughness with the opening angle. Indeed, the PFM re
sults obtained forl 3YSZ = 0.02 mm match the coupled criterion 
predictions with a mean relative error on the apparent fracture tough
ness estimated to 1.9%. It is here worth noting that l 3YSZ is two times 
higher than l 8YSZ. This statement clearly shows that the regularization 
parameter changes with the simulated material. Moreover, the ratio 
l 3YSZ
l 8YSZ

= 2 for the phase-field approach is almost equal to the theoretical 

ratio l3YSZ
Irwin
l8YSZ
Irwin

=
lc,3YSZ
0
lc,8YSZ
0

= 1.8. Therefore, this analysis confirms that when 

considering the crack onset from a singularity, the regularization 
parameter in the phase-field method is proportional to a material 
characteristic length lIrwin or lc0. This statement has far-reaching practical 
implications for the study of the V-notch configuration with the PFM 
model. Indeed, only a single study considering one material could be 
sufficient to determine the corresponding l for any other types of brittle 
materials. 

4.3. Crack blunted by a cavity in 8YSZ and 3YSZ 

To study the crack nucleation from a stress concentration, a crack 
blunted by a cavity has been simulated for the 8YSZ and 3YSZ ceramics. 
The relative toughness R = Kapp

Ic /KIc obtained with the PFM method as 
well as the theoretical predictions given by the coupled criterion are 
plotted as a function of the pore radii in Fig. 10. It can be noticed that the 
phase-field simulations have been carried out for various length scale 
parameters. As shown in Fig. 10, the dependence of the PFM results on 
the regularization parameter is less pronounced when the pore radius is 
lowered. As for the notch configuration, this evolution can be explained 
since the geometry tends towards a sharp crack entirely controlled by a 
pure energy criterion. On the contrary, the dependence on the apparent 
toughness calculated with the PFM becomes significant at the highest 
investigated pore radius for which the contribution of the stress criterion 
to the fracture is non-negligible. In this case, the apparent fracture 
toughness is lowered with increasing l . This evolution can be inter
preted through a very low facture strength associated to the large length 
scale parameter. This explanation would mean that the regularization 
parameter can be still related to a material characteristic length for a 
stress concentration [45]. As illustrated in Fig. 10a for 8YSZ, this 
dependence can lead to an incoherent behavior for l = 0.04 mm with a 

weakening effect with increasing the pore radius. 
For both materials, it has been possible to identify two specific values 

for the regularization parameters l 8YSZ and l 3YSZ to fit accurately the 
predictions given by the coupled criterion (Fig. 10). Indeed, the mean 
relative error on the relative fracture toughness simulated with l 8YSZ =

0.005 mm and l 3YSZ = 0.007 mm is equal to 1.1% and 1.2% for 8YSZ 
and 3YSZ respectively. Therefore, for a given value of l , the PFM model 
is able to capture the expected strengthening effect due to the crack 
blunted by a cavity [13]. Nevertheless, it can be noted that the length 
scale parameters l 8YSZ and l 3YSZ identified for the V-notch singularity 
are not the same than the ones obtained for the blunted crack (for the 
same specimen submitted to a three-point bending test). For instance, 
the regularization parameter identified for the notch (l 8YSZ = 0.01 mm) 
is significantly higher than the one for the blunted crack (l 8YSZ = 0.005 
mm). When the length scale parameter for the notch is taken to l 8YSZ =

0.005 mm, the phase-field results overestimate the coupled criterion 
predictions. In this case, the discrepancy between the critical forces 
provided by the coupled criterion and the phase-field reaches almost 
20% for a notch opening angle of 2β = 120◦. Such a discrepancy cannot 
be explained by the numerical uncertainties for the phase-field simula
tions, which have been checked to be very limited in our case. This result 
would thus suggests that the regularization parameter could be also a 
function of the type of local geometry where the crack nucleates. 

It can be noticed that the ratio l 3YSZ
l 8YSZ

= 1.4 obtained with the phase- 
field method for the blunted crack is different from the Irwin one 
l3YSZ
Irwin
l8YSZ
Irwin

= 1.8. However, it is almost equal to the ratio of the critical crack 

length in the coupled criterion l
c,3YSZ
0
lc,8YSZ
0

= 1.5. This statement means that the 

length scale parameter l for the phase-field method is related to the 
critical length lc0 for the coupled criterion. For a V-notch singularity, the 

Fig. 9. Dependence of the apparent fracture toughness on the opening angle for 
the 3YSZ material considering different values of the length scale parameter l . 
l 3YSZ refers to the length scale parameter that provides close agreement be
tween the coupled criterion and the PFM results over the whole considered 
range of notch angles. 

Fig. 10. The dependence of the relative toughness on the cavity radius 
considering different values of the length scale parameter l for: a) 8YSZ ma
terial, b) 3YSZ material. l 8YSZ and l 3YSZ refer to the length scale parameters 
that provide close agreement between the coupled criterion and the PFM results 
over the whole considered range of cavity radii. 
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ratio lc,3YSZ
0
lc,8YSZ
0 

is equivalent to the ratio given by the Irwin characteristic 

length as mentioned in the previous section. However, for a crack 
blunted by a cavity, the critical crack length lc0 is still a function of lIrwin 

but also takes into account the local geometrical characteristics of the 
stress concentration [13,48] (cf. Section 3.1). This discussion reinforces 
the proposition that the length scale parameter must be dependent on 
the type of local geometry where the crack nucleates for a stress con
centration. It can be mentioned that the possibility could be further 
discussed by comparing the coupled criterion prediction with alterna
tive phase-field methods [34–37]. Nevertheless, even if additional 
studies are still needed, it can be concluded from this analysis that the 
PFM model can be applied to predict the crack initiation in porous 
ceramic with a length scale parameter that have to be identified for each 
type of microstructures. 

4.4. Crack nucleation in porous microstructures 

When the length scale parameter l is correctly chosen, the above 
case studies have shown the capacity of the PFM model to accurately 
predict the crack nucleation on ideal geometries (i.e. V-notch and the 
blunted crack). In this section, the relevance of the PFM model to 
simulate the fracture in porous media with complex microstructures is 
evaluated. 

4.4.1. Apparent fracture toughness of porous ceramics 
To study the evolution of the apparent fracture toughness with the 

porosity, 2D porous 3YSZ microstructures have been generated with the 
random field method considering a constant correlation length for the 
solid phase (cf. Section 2.3 and Fig. 3). As a result, the geometrical 
features of the simulated microstructures are preserved except modifi
cations affecting mainly the porosity (i.e. volume fraction and pore mean 
diameter). Therefore, based on the previous statements, it is anticipated 
that a unique length scale parameter for the phase-field model is suffi
cient to predict the evolution of the apparent toughness with the 
porosity. Two methods have been used to determine Kapp

Ic from the 
phase-field simulations. In the first one (denoted ‘method 1′ thereafter), 
the toughness was deduced when the fracture initiates at the tip of the 
preexisting macro-crack (with δc = 0.1 µm) blunted or not by a pore (cf. 
Fig. 11). In the second method (called ‘method 2′), the toughness was 
assessed after propagation, when the fracture is reinitiated from the first 
pore reached by the crack. The reason for using two methods is to 
provide an estimation of the toughness scattering induced by hetero
geneities in the simulated microstructures. 

For each porosity, two independent realizations (i.e. microstruc
tures) exhibiting the same geometrical statistical properties have been 
generated using the Gaussian random field method. As an illustration for 
a porosity of 20%, it can be seen in Fig. 12 that the PSD of the two 
microstructures shown in Fig. 11a-b are nearly perfectly superimposed. 
The simulations of these two microstructures at the same porosity level 
should allow estimating the impact of the local spatial variations on the 
toughness predictions. It is worth noting that, in spite of these statistical 
variations on the local geometry, the same type of morphology is pre
served since the same method and input parameters have been used to 
generate the microstructure. Finally, as pointed out in Section 2.3.1, the 
synthetic microstructures generated with the Gaussian random field 
method provide a good approximation of real porous ceramic micro
structures produced by powder sintering [53]. Consequently, the 
experimental toughnesses reported in [49], which were measured using 
double-torsion testing on 3YSZ porous membranes produced by tape- 
casting, have been selected for comparison with the phase-field 
simulations. 

All the simulations have been performed with a single length scale 
parameter l 3YSZ = 0.1 µm that remains small compared to the correla
tion length used to generate the microstructures (cf. Section 2.3.1). The 
apparent fracture toughnesses calculated on the first synthetic 

microstructure are compared to the experimental data in Fig. 13a. 
Independently of the method used to assess the toughness, the phase- 
field results are consistent with the measurements. The offset between 
the simulations and the experimental curve can be explained by the 
assumptions considered for the modeling, which are mainly (i) the dif
ferences between the synthetic microstructures and the real ones, and 
(ii) the hypothesis of 2D simulations for the phase-field model. More
over, it is worth noting that the slight disagreement between the 
experimental data and the simulations can be further reduced by 
increasing l 3YSZ. For example, it has been found that a regularization 
parameter taken at l 3YSZ = 0.8 µm allows fitting almost perfectly the 
experimental data (indeed, at a porosity of 10 %, the computed fracture 
toughness with the method 1 falls to Kapp

Ic = 3.8 MPa.
̅̅̅̅
m

√
). However, a 

tradeoff has to be found for the length scale parameter. On the one hand, 
this parameter must be adapted to describe accurately the initiation step 

Fig. 11. Cartographies displaying the crack path within the porous micro
structures: a) first realization at ε = 20 %, b) second realization at ε = 20 %, c) 
first realization at ε = 10 %. (l 3YSZ = 0.1 µm). 

Fig. 12. Comparison between two generated synthetic microstructures with ε 
= 20 %: a) visualization of the two realizations of the microstructure, b) Solid 
phase size distributions computed on the two realizations. 
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in order to predict the apparent fracture toughness. On the other hand, a 
sufficiently low value for l must be ensured to describe correctly the 
subsequent crack propagation in the fine microstructure. From a prac
tical point of view, if necessary, two length scale parameters may be 
considered for the simulations. The first one could be adapted to 
compute precisely the fracture initiation, while the second one could be 
chosen small compared to the size of the microstructure in order to 
describe the crack propagation in the porous ceramic. 

Nevertheless, with a single length scale parameter, the model cap
tures correctly the decrease of Kapp

Ic with increasing the porosity. This 
result confirms the relevance of the phase-field method to predict the 
fracture toughness of porous brittle materials after calibration of the 
regularization parameter for a given type of microstructure. This sup
ports the claim that this parameter contains material fracture properties 
so that the PFM model can be used to quantify the conditions for the 
propagation of a pre-existing crack in porous ceramics. 

The comparison of the fracture toughness predictions as a function of 
the porosity for the two microstructures (displayed in Fig. 12) is shown 
in Fig. 13b. For the sake of clarity, only the results with the first method 
have been reported. The results fall within the same range for the two 
simulated microstructures. The slight difference between the two curves 
is due to local variations in the geometry at the preexisting macro-crack 
tip. Therefore, by keeping the same length scale parameter for the phase- 
field model, it is possible to estimate correctly the fracture toughness for 
two different microstructures exhibiting similar statistical features for 
the morphology. In other words, the fracture properties can be deter
mined with a single regularization parameter for one type of porous 
media (characterized by the same morphological features related to the 
manufacturing process or the method of synthetic microstructure gen
eration). This statement is consistent with the previous discussion on the 
dependence of the regularization parameter on the type of the local 
geometry where the crack initiates. For a complex microstructure, l 

would thus depend on the characteristics of the solid and pore phases (i. 
e. shape and size of pores and of solid ligaments between the pores, their 
statistical distribution, etc. [13]). 

In Fig. 13a, it can be noticed that the first method to compute the 

apparent fracture toughness leads to slightly overestimate Kapp
Ic 

compared to the second one at ε = 20 % and 30 % and underestimate 
Kapp

Ic at 10 %. These results can be interpreted by inspection of the car
tographies displaying the crack path within the microstructure in 
Fig. 11. For instance, at ε = 20 %, it can be noted that the preexisting 
macro-crack ends in a large pore (Fig. 11a). Due to the blunting effect 
induced by this large cavity, the apparent toughness computed with the 
first method is thus enhanced. On the contrary, after propagation, the 
crack reaches a smaller pore. Therefore, the apparent toughness for the 
crack re-initiation from this smaller cavity is lowered knowing that the 
other conditions affecting the fracture remains roughly similar. Indeed, 
the direction of propagation remains in a quasi-pure opening mode and 
the distance between the pores is almost constant (Fig. 11a) [13]. At the 
lowest porosity fraction (ε = 10 %), the initial macro-crack tip is located 
in the 3YSZ solid phase (Fig. 11c). Therefore, in this particular case, the 
crack tip is no longer blunted by a cavity explaining the lower value of 
Kapp

Ic obtained with the first method with respect to the second one. 
Moreover, it can be noticed that the direction of propagation remains 
similar (only the distance between the initial macro-crack tip and the 
first pore and between the first and second pores is changed). 

4.4.2. Compressive fracture strength of porous ceramics 
To study the crack nucleation in pristine porous ceramics, the 

compressive fracture strength measured in [16] as a function of porosity 
for 8YSZ has been calculated with the PFM model. The simulations have 
been conducted on 3D porous ceramic microstructures according to the 
methodology detailed in Section 2.3.2. Two length scale parameters of 
l = 0.4 µm and l = 0.8 µm have been considered for the computations. 

The calculated compressive fracture strength is compared to the 
experimental data as a function of porosity in Fig. 14. It can be seen that 
the numerical predictions are in very good agreement with the mea
surements. Especially at l = 0.8 µm, the model captures almost perfectly 
the decease of the compressive fracture strength with the porosity. This 
statement confirms that, with a single value of the regularization 
parameter l , the phase-field method is also able to predict accurately 
the crack nucleation in partially sintered ceramics. Therefore, for a given 
type of microstructure for which the regularization parameter has been 
identified, the phase-field approach can be seen as a predictive tool to 
study the fracture behavior of uncracked porous ceramic. In other 
words, as already discussed on ideal geometries, the length scale 
parameter must contain the material properties so that the phase-field 
model can be used to predict the fracture in complex porous ceramic 
microstructures. 

It is worth noting that a transition in the fracture mechanism with the 
porosity fraction was detected in the micro-compression tests [16]. 
Indeed, at low porosity, it was found that the fracture is controlled by a 

Fig. 13. Experimental and simulated dependences of the apparent fracture 
toughness on porosity using a) the two computation methods for realization 1, 
b) “method 1” for the two realizations. 

Fig. 14. Comparison between the calculated compressive fracture strength and 
the experimental data [16] as a function of porosity. 
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pure brittle behavior whereas a diffuse damage with the generation of 
stable micro-cracks in the microstructure was observed at high porosity. 
This behavior is well retrieved by the PFM model and can be analyzed 
thanks to the simulated results obtained on the 3D volumes. For 
instance, as shown in Fig. 15a-15c for a porosity of 33%, the apparition 
of the first crack in the microstructure is almost instantaneously fol
lowed by a complete damage spreading in the whole microstructure. 
Indeed, the first cracks are detected in the volume for an applied force on 
the micro-pillar of 6.04 N (Fig. 15a). Then, for a very small increment in 
charge (less than 25%), the damaged variable takes a value of d = 1 in 
the whole simulated domain indicating the total fracture of the spec
imen as shown in Fig. 15c. Therefore, as soon as the facture is initiated in 
the volume, it leads to the complete collapse of the material as it was 
observed during the experiments. It can be also noticed that the first 
micro-cracks are roughly aligned and parallel to the direction of the 
applied solicitation as detected during the tests [16]. On the contrary, 
for the highest porosity, the simulations have revealed the formation of a 
network of stable micro-cracks distributed in the microstructure during 
the loading (Fig. 15b-15d). As shown in Fig. 15b, the first micro-cracks 
appear for an applied force of 0.09 N. Then, the density of cracks is 
progressively increased with increasing the loading. The repartition of 
micro-cracks in volume is for example shown in Fig. 15d for an applied 
force of 0.16 N. The total collapse arises only when the load is increased 
up to 0.17 N. These results, which are in very good agreement with the 
experiments, constitutes a further proof of the relevance of the phase- 
field approach to calculate accurately the fracture initiation in com
plex porous ceramics. 

The modeling results can be used to analyze this transition in the 
fracture mechanism as a function of the porosity. For this purpose, the 
density of elastic strain energy ξ stored in the microstructure has been 
calculated just before the first crack nucleates in the volume: 

ξ =
1

VYSZ

∫

VYSZ

ΨdV (26)  

where VYSZ is the volume of the solid phase. This density of energy is 
plotted in Fig. 16 as a function of the porosity. It can be noticed that the 
strain energy strongly decreases with increasing the porosity. The high 
stored energy at low porosity should thus constitute the driving force to 
propagate the first nucleated micro-cracks to the whole microstructure 

explaining the brittle behavior of the ceramic. At the opposite, for the 
highly porous material, the stored energy becomes insufficient to ensure 
the propagation to the whole specimen. In this condition, the fracture is 
based on a diffuse damage as shown by the modeling and experimental 
results. 

Moreover, the mean value of the local maximum principal stress, 
which was taken in the ligament where the first crack appears, has been 
also retrieved from the simulated data just before the fracture (i.e. the 
loading step corresponding to the time when the stress is the highest in 
the ligament before relaxation due to the fracture). It can be noticed that 
this principal stress is in traction. Indeed, due to the complexity of the 
microstructure loaded under compression, some part of the ceramics are 
submitted to a bending moment leading to local tensile stress. It is worth 
noting that this local tensile stress triggering the fracture is roughly 
equal to 4 GPa whatever the investigated porosities (i.e. 33 %-63 %). 
This high value could be consistent with the apparent fracture strength 
of the 8YSZ ceramic when considering the very small volume of the 
ligament submitted to the tensile loading [58]. 

As for the ideal 2D geometries, the above discussion shows that the 
phase-field model is able to capture a change in the fracture criterion 
thanks to an accurate identification of the regularization parameter. For 
a porous ceramic loaded under compression, it enables us to explain the 
observed transition in the fracture mechanism from a brittle behavior 
towards a diffuse damage. From all these results, the phase-field model 
appears as a relevant tool to quantify the crack nucleation in porous 
ceramics but also to analyze the underlying mechanisms controlling the 
fracture. 

5. Conclusion 

The relevance of the phase-field model for simulating the crack 
nucleation and propagation in porous ceramics has been evaluated. For 
this purpose, the PFM results have been compared to the predictions of 
the coupled criterion based on linear fracture mechanics. The study was 
conducted on two types of ceramics, whose fracture properties are 
significantly different (i.e. 3YSZ and 8YSZ). A pure singularity induced 
by a V-notch and a stress concentration related to a crack blunted by a 
cavity have been studied considering a three point bending test. 

In the V-notch case, considering a unique length scale parameter for 
the phase-field model l , it has been shown that the PFM method is able 
to retrieve the coupled criterion predictions as a function of the notch- 
opening angle. Moreover, the ratio of the regularization parameter for 
the two ceramics is equal to the ratio for both the Irwin length and the 

critical length for the coupled criterion (l 3YSZ
l 8YSZ

≈
l3YSZ
Irwin
l8YSZ
Irwin

=
lc,3YSZ
0
lc,8YSZ
0

). Therefore, 

the length scale parameter depends on the material fracture properties 
as expected. For an ad-hoc value of l , the PFM method is thus able to 
predict correctly the facture initiation at singularities even when the 
crack nucleation is controlled by a coupled energy and stress criterion. 

For a crack blunted by a cavity, the PFM model is also able to 
reproduce the theoretical dependence of the apparent fracture tough

Fig. 15. Visualization of the cracks created in porous microstructures submit
ted to compression: First micro-cracks created in the microstructure for a 
porosity of a) 33 % and b) 63 %. Evolution of the damage variable after a small 
increment of charge at c) 33 % and d) 63 % (l = 0.4 µm). 

Fig. 16. Evolution of the density of elastic strain energy as a function of 
porosity (l = 0.8 µm). 
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ness on the pore size. In this case, the ratio of the selected length scale 
parameters for the two materials is no longer equal to the ratio for the 
Irwin length but remains identical to the one related to the coupled 

criterion (l 3YSZ
l 8YSZ

≈
lc,3YSZ
0
lc,8YSZ
0

∕=
l3YSZ
Irwin
l8YSZ
Irwin

). Moreover, the length scale parameter for 

the V-notch was found significantly different from the one identified for 
the blunted crack. Therefore, this result suggest that the length scale 
parameter is also dependent on the type of local geometry or micro
structure where the crack initiates. In this context, it should be deter
mined using theoretical or experimental data. 

This analysis conducted with the coupled criterion and the PFM on 
ideal geometries indicates that the phase-field should be an appropriate 
method to predict the crack initiation in complex porous ceramic mi
crostructures. To confirm this claim, the relevance of the phase-field 
method to simulate the crack nucleation and propagation in represen
tative porous ceramic microstructures has been investigated. For this 
purpose, the conditions triggering the propagation of a pre-existing 
crack in porous 3YSZ have been computed with the phase-field 
method on 2D synthetic microstructures. As proposed, the apparent 
fracture toughness was found to be in good agreement with experi
mental data over the whole porosity range using a unique length scale 
parameter. Moreover, the conditions of crack re-initiation from porosity 
during the propagation has been discussed as a function of local 
microstructural parameters (i.e. pore size, length of the ligaments be
tween the pores and direction of propagation). These results confirm 
that the phase-field method is able to predict accurately the fracture 
toughness of porous brittle materials after calibration of the regulari
zation parameter. 

The fracture initiation in uncracked porous ceramics have been 
studied on real 3D microstructures. In that objective, the compressive 
strength has been computed with the PFM model for 8YSZ with poros
ities ranging from 33% to 63%. For a single length scale parameter, it 
has been found that the compressive strengths computed as a function of 
the porosity are in very good agreement with the experimental data. 
Besides, it has been shown that the model predicts the transition from a 
brittle behavior at low porosity towards a diffuse damage at high 
porosity. This change in the fracture mechanism has been analyzed with 
the model. It has been shown that this transition is related to the elastic 
strain energy stored in the microstructure. At low porosity, the excess of 
strain energy allows the unstable crack propagations in the whole 
specimen. Conversely, at high porosity, the strain energy is insufficient 
to propagate the nucleated micro-cracks to the whole microstructure. All 
these results show that the PFM method is a relevant tool to predict 
accurately the fracture of porous ceramics. 
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