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Abstract

Pattern recognition, be in supervised or not, has motivated growing attention because of its several important appli-

cations. One issue of particular importance concerns the validation of the quality, e.g. in terms of correct classifications

and stability, which is often estimated by performing cross-validation methods. A model-based approach is adopted,

in which the data categories are understood statistically in terms of respective random variables, associated to the

features, as well as the associated density probability functions. This allows both the supervised and unsupervised

pattern recognition cases to be addressed in a principled manner while the important issues of bias, undersampling, un-

derlearning and overfitting are all addressed and revisited. Several important and even surprising results are reported,

including the interpretation of overfitting as not being necessarily unwanted, the characterization of the phenomenon

of underlearning, in which several unstable working decision boundaries can be obtained, as being a consequence of

biased sampling and/or undersampling, as well as the approach to unsupervised learning as involving two related but

not necessarily identical issues, namely choosing how to interrelated the clusters and deciding whether a group could

be considered as a cluster. To complement this development, we briefly consider the application of the coincidence

similarity index to some of the covered problems, as well as present the possibility to use the important problem of

image segmentation as a laboratory for better understanding and developing pattern recognition concepts and methods.

1 Introduction

Pattern recognition means the action of, given a set of

entities represented by respective measurements (or fea-

tures), to respectively assign existing (supervised recog-

nition) or novel (unsupervised recognition) categories.

The already substantial importance of this area (e.g.

[1, 2, 3, 4, 5, 6]) has increased steadily along the last

decades as a consequence of respective performance ad-

vancements combined with an expansion and intensifica-

tion of respective applications in the most diverse scien-

tific and technological areas. In particular, several of the

activities traditionally performed by humans have been

progressively assisted or even substituted by artificial in-

telligence resources, which rely intensely on pattern recog-

nition.

By entity it is henceforth meant the objects, individu-

als, or any other type of patterns to be identified. The

collection of the properties (features) characterizing the

entities will be referred to as the respective dataset, with

its respective data elements corresponding to the entities

to be studied/classified.

Despite its relatively simple conceptual characteriza-

tion, pattern recognition involves several concepts and

methods, extending from multivariate statistics (e.g. [7,

8]) to neuronal networks (e.g. [9]). In addition, several

sequential and/or parallel processing stages are typically

involved in the implementation of pattern recognition sys-

tems. Simplistically, the basic steps of a basic pattern

recognition pipeline are shown in Figure 1. These in-

clude: (a) acquisition of measurements (features) of the

entities to be recognized; (b) pre-processing, possibly in-

volving normalization; and (c) the recognition proper; (d)

respective validation, often performed by cross-validation

methods.

Figure 1: The pattern recognition pipeline. Feature extraction: A

set of measurements are taken from the entities to be recognized,

yielding the respective features. Pre-processing: the features are

pre-processed in order to curate their quality and also for normal-

ization purposes. Pattern recognition: methods are applied in order

to assign categories to each entity. Validation: The validation of the

whole approach is then performed.
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Each of these three main stages are characterized by

substantial challenges. At the acquisition level, one prob-

lem of particular relevance concerns which measurements

are to be adopted for characterizing the entities. At the

pre-processing stage, approaches have to be chosen that

are able to improve the data quality (e.g. remove noise)

as well as means to properly normalize the measurements.

Major issues related to the third stage include the choice

of recognition methods to be applied. Then, at the vali-

dation stage, metrics and approaches have to be defined

and adopted in order to validate the recognition results

according to the obtained results.

While all the main issues involved in all the above dis-

cussed pattern recognition stages have received substan-

tial attention from the respective literature, the problem

of characterizing the performance of the obtained recogni-

tion framework and results, so as to validate the adopted

approach, remains an important issue worth continuing

attention.

The validation of a pattern recognition approach de-

pends on whether it is supervised or unsupervised, and

both cases are considered in the present work.

In the former case, this has been typically performed

by using cross-validation approaches (e.g. [5, 1]). In their

most simple implementations, this type of validation in-

volves separating the available data with identified cate-

gories into a training and a testing sets. The supervised

recognition approach is then optimized for the identifica-

tion of the training set and its performance is then quan-

tified from the results obtained by its application to the

test set. There are several variations of this basic princi-

ple aimed at improving the validation comprehensiveness

and/or accuracy, such as considering several training and

test sets, dividing the groups in non-equal proportions,

including additional sets and validation stages, etc.

The result from cross-validations on supervised pattern

recognition approaches indicate how many correct and in-

correct classifications were obtained respectively to each

of the involved categories. Ideally, there should be no

incorrect classifications, with all the test data elements

being correctly identified. When a pattern recognition

approach passes through a strict validation, we have an

indication that it may work properly in identifying the

categories of new data.

The failing of an approach in the respective cross-

validation indicates that there could be problems virtu-

ally anywhere in the framework shown in Figure 1. Ta-

ble 1 summarizes the main aspects that typically play an

important role in defining the performance of a pattern

recognition approach.

The relative large number of aspects of different na-

ture involved in the performance of pattern recognition

(already hinted by the validation task encompassing all

Aspect Main characteristics

Classification Regions

Densities specifying

the categories within

the feature space.

Uniform /

non-uniform regions

The type of the

density.

Sampling

Used to represent

the category regions,

can be sparse or biased.

Wrong samples

Some samples

can have wrong

categories.

Statistical

fluctuations

Deviations from the

respective densities

caused by sampling.

Dimensionality
Determined by the number

of required features.

Decision boundaries
Defined by the recognition

methodology.

Confidence anchor

How accurate the regions,

samples, boundaries

and features are.

Adopted features

(a kind of sampling)

The set of features

adopted representing

the entities.

Supervised /

unsupervised

The type of pattern

recognition method.

Cross-validation

Performed to quantify

the performance

of the recognition.

Clustered or not
Categories can

be clustered or not.

Table 1: A glossary of the many important aspects influencing pat-

tern recognition.

stages in Figure 1), allied to the fact that these aspects

tend to influence one another, provides a cogent indica-

tion about the complexity of the validation problem. In

this work, we develop a model-based approach to study-

ing the several performance limitations involved in super-

vised and unsupervised pattern recognition while trying

to consider in an integrated manner all the aspects iden-

tified in Table 1. Special attention is placed on the sta-

tistical modeling of the categories in respective feature

spaces, which paves the way to identifying several impor-

tant concepts and potential issues in pattern recognition,

including the potentially dramatic effect of the increase

of the feature space dimensionality on the recognition re-

sults, specially from the perspective of the curse of the

dimensionality. The issue of undersampling therefore re-

ceives special attention along this work, from which we
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characterize the phenomenon of underlearning, namely

the obtention of several provisionally working but un-

stable recognition configurations that do not withstand

systematic cross-validations. The phenomenon commonly

known as overfitting also receives special attention, and it

is argued that it does not intrinsically constitute a short-

coming, but actually an asset in a pattern recognition

approach.

An example of the important interrelationship between

aspects involved in pattern recognition, we have that the

two most often sought properties, namely selectivity is

generally obtained at the expense of generalization. Usu-

ally, a balance needs to be achieved regarding these two

requirements, which should take into account the nature

of the data and questions of interest.

Supervised and unsupervised pattern recognition are

both approached in the present work, with the former be-

ing addressed first. The case of supervised recognition

is developed while considering the above outlined con-

cepts and aspects, with emphasis on undersampling, un-

derlearning, and overfitting, helping us to identify and

approach some the main reasons that can undermine su-

pervised pattern recognition, with several important and

potentially surprising results. Unsupervised recognition

is then treated with emphasis on two key issues: (a) the

quantification of the separation between groups of data

elements; and (b) the criterion adopted for deciding on

the existence of clusters.

To complement our development, we also propose the

consideration of image segmentation, an important and

challenging issue on itself, as a laboratory for better un-

derstanding, developing, and evaluating pattern recogni-

tion approaches and systems.

Though focus is kept on presenting the several con-

cepts and methods in a relatively accessible manner, en-

hanced understanding of this work will be helped by

some previous experience in pattern recognition and/or

related areas, particularly multivariate statistics (e.g. [7]),

stochastic geometry (e.g. [10]), and set/multiset theory

(e.g. [11, 12, 13, 14, 15]). In order to emphasize the main

concepts and results along the development of the present

work, several snippets have been respectively included.

It should also be kept in mind that the presented con-

cepts and methods are still subject to further complemen-

tation and validations, so that they should be treated as

preliminary. In addition, the application of any pattern

recognition approach to real-world data as approached

here should be understood mostly as means for providing

insights on the data and groups interrelationships to be

further investigated and validated, not providing a basis

for absolute decisions regarding the separation or exis-

tence of clusters.

2 Categories, Statistical Modeling

and Sampling

Groups (ensembles) of entities can be modeled in terms

of their respective measurements, which are considered

as random variables. In these cases, the respective joint

probability density function (or field), or densities for

brief, provides all available statistical information about

the properties of those variables, and therefor about the

entities as far as their features are concerned.

Densities can be understood as mappings from each

point (entity represented in terms of its feature vector)

in a given support (a region of the feature space) into re-

spective non-negative values. In addition, the sum of all

densities in the support needs to be identical to one. In

a given pattern recognition problem, it is also important

to identify from the outset the boundings of the respec-

tively feature space, which we will henceforth refer to as

the respective universe Ω. This set can be determined

from the minimum and maximum values of each involved

feature. Observe that each feature defines an associated

axis in the respective feature space where the entities are

to be represented.

There are two main types of probability density func-

tions: (i) uniform; and (ii) non-uniform. The first case

is characterized by constant values assigned for all points

in the whole support. Non-uniform densities have vary-

ing values assigned to those points. An example of non-

uniform density is the normal distribution. Figure 2(a)

illustrates a uniform density defined on a disk on the R2

space.

From the perspective of this article, uniform densities

can be treated in simplified manner, as corresponding to

all the points in their respective support. As such, uni-

form densities provide a particularly effective means for

approaching several of the intricacies of pattern recogni-

tion and its performance characterization. For instance,

in Figure 2(a), it is enough to represent the region asso-

ciated to the support of a uniform density instead of a

three dimensional representation where the constant den-

sity would also be shown.

It is not always the case that the normal density and

its support are available. Indeed, oftentimes we only

have samples, obtained from inaccessible density formu-

lae, from a given density. This is illustrated in Figure 2

in terms of three possible samplings of the density in (a):

sparser (b); denser (c); and biased (d).

The amount and quality of samples is of critical im-

portance in pattern recognition. Even if all samples are

correct, in practice they will always be available in lim-

ited numbers, implying that the original density will never

3



Figure 2: A uniform density, continuous on a disk support (a),

and possible respective discrete samplings characterized by being

relatively sparser (b), denser (c), and biased (d).

be perfectly sampled and represented. This loss of in-

formation impacts the characterization of the density in

several manners, including unavoidable statistical fluctu-

ations, i.e. the fact that (typically) small scale spatial dif-

ferences will be always found between among the sample

distribution. As illustrated in Figure 3, these fluctuations

can lead to respective patterns.

Figure 3: A uniform random field of points. As a consequence of

random fluctuations implied by the undersampling of the otherwise

completely uniform density, random fluctuations appear that can

eventually be taken for clusters.

Generally speaking, the larger the number of samples,

the better. The situations in which the number of samples

is not enough for proper representation of the original

continuous densities are henceforth called undersampling.

It is also possible that the available samples are biased

in several manners, such as that depicted in Figure 2(d).

Needless to say, biases can have critical impact on the

recognition results.

Sampling is also required for approximating non-

uniform densities, as illustrated in Figure 4, where a vary-

ing density on a disk support (a) is sampled by a limited

number of samples (b). Observe that the density of the

samples tends to reflect the respective original density at

each of the points in the support.

Figure 4: A non-uniform density on a disk support (a), and a pos-

sible respective sampling (b).

Another critical influence of sampling on pattern recog-

nition concerns the fact that the higher the dimensional-

ity of the feature space, the larger the number of points

that are required for a relatively dense and significant

representation of the densities. Actually, it is relatively

straightforward to infer that, in the case of M features,

the number of samples should increase with the respective

M−power. Therefore, the densities involved in pattern

recognition problems involving a large number of features

are often undersampled because the very large number

of samples may not be available, or cannot be computa-

tionally handled, which gives rise to the so-called curse of

dimensionality.

We conclude this section with our first snippet:

1 - The approximation of continuous regions by respec-

tive samples depends strongly on the dimensionality and

is crucial for pattern recognition. The higher the di-

mensionality, much more samples are needed. Biasing

and undersampling undermines the representation of the

densities and can lead to recognition mistakes.

3 Supervised Pattern Recognition

As implied in its own name, supervised pattern recogni-

tion refers to the assignment of categories to data ele-

ments under supervision of several types, including sets

of pre-classified data elements, or prototypes of each cate-

gory (e.g. center of mass of the groups). In this section, we

will approach this type of recognition as well as its perfor-

mance issues mainly from the perspective of the concepts
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presented in Section 2.

Basically, supervised pattern recognition involves two

stages: (i) training, and (ii) application to classification

of new categories. It is the former stage that makes this

type of recognition supervised. Let us illustrate this basic

principle in supervised recognition with the help of the

example in Figure 5, which involves two uniform category

regions.

In this particular case, the optimal decision boundary

resulted aligned to the own original boundaries, which

is characteristic of adjacent category regions. Provided

there are no errors in new data elements, perfect perfor-

mance will characterize subsequent classifications.

Another, more frequent, supervised classification situ-

ation involving non-adjacent regions is presented in Fig-

ure 6.

Some additional examples of relatively compact, well-

separated category regions are illustrated in Figure 7.

Of particular importance is the fact that compact, well-

separated regions makes the classification much easier,

while also reducing the chances of underlearning as im-

plied by undersampling.

Figure 8 presents another supervised recognition exam-

ple involving non uniform regions in a one-dimensional

space.

Provided the densities are fully known, Bayesian deci-

sion theory indicates the means for identifying the optimal

decision boundaries respectively to minimizing the num-

ber of misclassifications, whose probability corresponds

to the areas where one density overlaps the other. More

specifically, let M categories c = 1, 2, . . . ,M be repre-

sented by respective conditional densities p(~x | c). Let

the mass probability of each category be P (c). Then, the

Bayesian classification criterion consists of applying:

C(~x) = c | max
c=1,M

{P (c) p(~x | c)} (1)

In the case of Figure 8, this criterion yields the optimal

border as corresponding to the intersection between the

two densities, i.e. x = b.

When the region densities cannot be accurately deter-

mined, other approaches need to be applied, and that is

precisely where the recognition problems start because

the respective loss of information. There are two main

situations yielding inaccurate densities: we do not know

them, have only approximations or hypothesis, or only

respective samples are available, possibly in limited num-

bers. At least the two following two approaches can be

attempted in the latter case: (a) estimate the densities

from the samples; and (b) use the samples directly for

the recognition.

In both cases, when only a limited number of samples

are available, there will always be the possibility of un-

dersampling, which can have critical impacts on the clas-

sification.

However, before addressing undersampling in a more

systematic way, it is interesting to discuss the frequently

considered problem of overfitting. Basically, this phe-

nomenon consists of the obtained decision boundaries be-

ing ‘too’ closely adapted to the samples, as illustrated in

Figure 9(a).

Here, we have two adjacent category regions that have

been fully separated at the expense of the use of a rela-

tively intricate decision boundary. Observe that all points

have been correctly classified in this case. Now, if a new

data element becomes available and is mapped into the

previous space as shown in Figure 9(b). Given that this

new element resulted within the blue region, a misclassi-

fication will be respective implied. However, the system

can be retrained so that the new boundary region shown

in (c) is obtained, again ensuring correct classifications

throughout, but at the cost of an even more intricate de-

cision boundary, therefore enhancing the overfitting. In-

terestingly, it is possible to show that decision boundaries

can be found in any supervised recognition problem that

will yield full adherence to the involved categories, there-

fore implying no classification errors.

Now, an important point concerns the fact that, pro-

vided there are no errors in the supplied categories of

all the samples, the phenomenon of overfitting is not in-

trinsically unwanted, but actually necessary to properly

represent the categories in the feature space. Actually, in

case the configuration in Figure 9(c) corresponds to all

possible samples constituting the respective category, the

decision boundary in that figure actually corresponds to

an optimal solution. In conclusion, generally speaking,

overfitting does not constitute a shortcoming of the ap-

proach, but actually one respective asset. In summary,

we may conclude that:

2 - The overfitting respectively to the correct classi-

fication of the whole set of correctly labels samples is

not necessarily unwanted, but actually welcomed, irre-

spectively of the level of intricacy or tight adherence

implemented by the respective decision boundaries.

Figure 9 also illustrates some possible results of apply-

ing cross-validation to the situation in (a). Figure 9(d)

presents the same case, but after removal of some of its

points. In this specific case, the retraining under these

circumstances will yield a decision boundary similar to
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Figure 5: The basic principle underlying supervised pattern recognition, respective to two adjacent uniform regions in a two-dimensional

feature space: (a) objects belong to two categories, defined by their respective regions delimitated by the blue and green contours, are to be

recognized; (b) samples of the two categories are taken and used to train a respective classifier, which yields the decision boundary shown

in orange; and (c) new data can now be classified depending on which region they fall into.

Figure 6: The basic principle underlying supervised pattern recognition, respective to two non-adjacent uniform regions in a two-dimensional

feature space: (a) objects belong to two categories, defined by their respective regions delimitated by the blue and green contours, are to be

recognized; (b) samples of the two categories are taken and used to train a respective classifier, which yields the decision boundary shown

in orange; and (c) new data can now be classified depending on which region they fall into. Remarkably, a wide range of possible boundary

decisions, instead of the single one obtained in the example in Fig. 5 are now possible. This does not represent neither underlearning nor

overfitting.

Figure 7: Additional examples of relatively compact, well-separated category regions. Many decision boundaries can be found in these cases

that ensures fully correct classifications.

the previous one, yielding no classification errors. Fig-

ure 9(e) presents another example in which several points

were removed from (a), but now a new decision boundary

is obtained. In case the removed points are now tested in

this new region, misclassifications will take place (f). It is

important to identify what can be learnt from these cross-

validation experiments as applied to the specific overfitted

situation in (a). The key aspect here is that the decision

boundary in (b) are in fact not accurate, hence the mis-

classification errors implied. In other words, the failing of

this approach under cross-validation only indicates that

the boundary obtained with fewer points is less precise.

To any extent, adjacent category regions with intricate

interrelationships will tend to be identified as overfitted,
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Figure 8: Entities belonging to two categories statistically modeled

by the densities shown in this figure are to be recognized. In the case

the two categories have the same mass probability (i.e. the two types

of entities are equiprobable), Bayesian decision theory specifies the

optimal decision boundary in terms of the category corresponding

to the maximum density values of the respective universe points. In

the case of this example, the optimal decision boundary is defined

by the value x = b.

but this is as it should be.

We can infer from the above considerations that:

3 - The highest the required performance in terms of

accuracy and correct classifications, the higher the over-

fitting, implying more intricate decision boundaries es-

pecially in the case of adjacent regions with jagged inter-

relationship and also as a consequence of the sampling

of the category regions or densities. The identification

of this phenomenon by cross-validation does not neces-

sarily imply a shortcoming, though it can provide useful

information about the structure of the categories and

samples.

Now, let us address another problem, namely sample

biasing, as illustrated in Figure 10, which shows two bi-

ased samplings of the situation shown in Figure 5(a). As

a consequence, the two samples became well-separated,

allowing a wide range of exact possible decision bound-

aries, a few of which are illustrated in orange in the figure.

Though these boundaries work for the given samples, it

will soon fail when more samples are drawn from the re-

spective regions.

The possibility to have several provisionally adequate

decision boundaries that are prone to become unstable

with new samples (or under cross-validation) is hence-

forth called underlearning, in the sense that the recog-

nition system has not yet reached its proper training as

a consequence of biased sampling, which leads us to the

next snippet:

4 - Underlearning, characterized by many provision-

ally working decision boundaries that are not similar to

the correct one, happens when the sampling does not

properly represent the regions.

Now, let us return to the undersampling problem briefly

introduced above. We will start by performing an exper-

imental study of how uniformly random points randomly

separated into two groups relate one another, in terms

of Euclidean distances between their samples, as the di-

mensionality of the feature space is increased. First, all

features will constrained within the interval [0, 1], as is the

case of features pre-processed by minmax normalization.

Figure 11(a) presents the average ± standard deviations

of the minimum distance between the 1000 randomly gen-

erated pairs of random categories.

Figure 11(b) presents the average ± standard devia-

tions of the Euclidean distances between two randomly

assigned groups of 20, 25, . . . , 50 points in feature spaces

of dimension D, with all features varying from −2 to 2,

as is typically the case with standardized features. Inter-

estingly, a much wider artificial separation can be respec-

tively observed.

Of critical interest in the obtained results is the fact

that a non-null separation is observed between the two

randomly assigned groups of uniform samples, and that

this separation tends to increase in the average with the

dimensionality of the feature space. At the same time,

relatively comparable standard deviations have been ob-

served for most dimensions, except for the smallest cases.

Observe also that the average distances tend to decrease

slowly with the increase of available samples, but they

fall short of the distances observed for 1 or 2 dimensions.

Ultimately, these results are a consequence of the curse

of dimensionality, which implies sparse representation, by

samples, of the category regions.

This result plainly indicates that relatively well-

separated groups can be obtained out of uniformly ran-

dom points, especially for highly dimensional feature

spaces and when relatively few samples are available. A

similar phenomenon can take place for samples obtained

from generic respective category regions, even if they are

actually not well separated in the original, continuous rep-

resentation. Given that artificially well-separated groups

can appear in these cases, the phenomenon of underlearn-

ing directly analogous to our discussion regarding biased

samples will occur. Actually, the undersampling that of-

ten takes place in highly dimensional feature spaces can

be considered as a kind of biased sampling.

Cross-validation provide a valuable means for

identifying underlearning as a consequence of high

dimensionality-related undersampling, because distinct
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Figure 9: Illustration of the phenomenon of overfitting and its relationship to cross-validations.

Figure 10: Example of biased sampling of the regions in Figure 5(a)

leading underlearning, in the sense that a wide range of decision

boundaries can be obtained that implement fully correct classifica-

tion for this particular sample configuration, but which are unstable

and bound to misclassify new samples. The correct decision bound-

ary, as implied by the original category regions in Figure 5(a) is

shown in cyan.

choices of the two randomly assigned groups will yield

distinct decision boundaries, which leads us to the next

snippet:

5 - Cross-validation can reveal underlearning caused by

sparse sampling (curse of dimensionality), especially in

the case when many features are adopted.

However, there is an important exception to the influ-

ence of undersampling on supervised recognition in high

dimensions, and it has to do with a phenomenon that

we shall call compact sampling, in order to refer to sam-

pling of relatively compact, well-separated original cat-

egory regions. Interestingly, under these circumstances,

the sampling, even if sparse, becomes restricted to the

original regions, therefore reflecting the distances between

the original regions. Provided those distances, e.g. in the

average, are larger than the distances between the groups

induced as a consequence of respective high dimensional-

ity, the effect of underlearning can become substantially

minimized. It then becomes possible, provided all the

other involved aspects (e.g. classification method, quality

of samples, etc.) are proper, to infer effective decision

boundaries even in the case of highly dimensional feature

spaces.

There are at least two possible means to identify com-

pact sampling: (i) apply cross-validation; and (ii) to com-

pare the distances between the given sampled groups with

those obtained for similar configurations (i.e. number of

samples, normalization, dimensionality). In the latter

case, a significant distinction between the distances im-

plied by the original data and those obtained by randomly

assigned groups will suggest that the supervised recogni-

tion can proceed with relatively little underlearning. An

important conclusion to be drawn from the above reason-

ings therefore can be summarized as:
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(a)

(b)

Figure 11: The average ± standard deviations of the Euclidean dis-

tances between two groups of 20, 25, . . . , 50 points in feature spaces

of dimension D, with all coordinates varying from 0 to 1 (a) ad

from -2 to 2 (b), increases steadily, though in sublinear manner.

Also interesting is that the standard deviations do not tend to very

significantly with the dimensionality and that similar shapes have

been obtained in (a) and (b). Results obtained from 1000 random

experiments.

6 - In the case of highly dimensional feature spaces,

is possible to have underlearning minimized provided

the original regions are relatively compact and well-

separated. This can be verified by cross-validation or by

comparison between the original and random distances.

A relatively simple and quick approximated method for

investigating underlearning in high dimensions is as fol-

lows. Given samples of M categories, obtain the average

± standard deviations of the distances between each pair

of group. The overall interrelationship between the orig-

inal groups can then be roughly estimated by inspecting

the respective representation of the distance as a network

where each node corresponds to a category, and the links

between the nodes are proportional to the respectively

obtained average distances. Another reference network

is obtained by randomized groups with the same number

of elements and dimensionality. These two networks can

then be compared qualitative and/or quantitatively. In

case the two networks are similar, it is very likely that

undersampling may be taking place, which can be further

investigated by cross-validation. Given that the minimum

distance between the samples in each pair of clusters is

too strict and relatively unstable (the change of a single

sample can strongly impact on the result), it is also in-

teresting to consider the distances between the center of

mass of the real and random groups.

Let us illustrate this method respectively to a dataset

containing 3 types of handwritten characters (‘’c, ‘e’, and

‘o’) [16], each being represented by 50 samples. Each

data element is characterized in terms of four respective

features, which are henceforth taken in their standard-

ized version. The average distances obtained from the

randomly assigned pairs of groups with the same dimen-

sionality and number of samples was 〈dr〉 = 0.580765942.

Figure 12 shows the principal component (e.g. [17]) pro-

jection of the handwritten characters dataset (a), as well

as the distances networks respectively to the real data (b)

and randomly assigned simulation (c).

The results of the same experiment as above, but now

performed respectively to the features normalized in the

interval [0, 1] are presented in Figure 13, being charac-

terized by similar ratios between the real and random

average distances.

7 - If cross-validation does not hold, then: (a) the

selectivity needs to be increased; (b) the sampling is not

enough to properly represent the reference regions; (c)

the data has low quality; (d) the recognition method is

unstable/unsuitable; or (e) the groups of samples cannot

be separated.

It is interesting to observe that, though the above dis-

cussion focused on the effect of biased sampling and un-

dersampling in relatively high dimensions, the obtained

distance values for the random configurations obtained

even for dimensions as smalls 2 or 3 indicate that artifacts

in data separation can take place even in these situations.

4 Clustering, or Unsupervised

Pattern Recognition

Having discussed supervised pattern recognition from a

model-based perspective with special attention on perfor-
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Figure 12: The handwritten characters database presented in terms

of its PCA (a), and respective networks of average distance for the

real data (b) and respective randomly assigned simulation (c). One

of the real-data links resulted about twice the random counterpart,

another is comparable, and the third is about half. Given that

the minimum distance between clusters is a too strict indication of

the separation between two groups, the original real data can be

considered as being relatively far from underlearning.

Figure 13: The comparison between the real and random distances

for the handwritten characters dataset considering the interval [0, 1].

These results have proportions similar to those in Fig. 12.

mance, we now turn our attention to the relatively more

challenging task of unsupervised pattern recognition, or

clustering for short, which is characterized by absence of

prototypes or even information about the number of ex-

pected clusters.

The following snippet provides an intuitive definition of

a cluster:

8 - Given samples in a feature space, a respective cluster

is a subset of these samples which are more similar one

another than to the remainder samples.

One of the first important aspects to be observed con-

cerning clustering is that it involves two related, but dis-

tinct, requirements: (a) how to quantify the separation

between the clusters; and (b) how to decide on the exis-

tence of one or more clusters. This critically important

aspect is not always observed, and can lead to respective

misunderstandings. So, we have the following snipped:

9 - Unsupervised classification requires a choice of how

to quantify the separation between the clusters, as well

a decision on the existence of clustering.

Pertaining the issue (a) above, there are several possi-

ble approaches that can be used for that finality, includ-

ing the minimal, maximum, distance between centers of

mass, among other possibilities, of metrics and indices

(e.g. [18, 19, 20, 21]) including but not being limited to:

Euclidean distance, cosine distance, Pearson correlation

coefficient, Mahalanobis distance, Manhattan distance, as

well as similarity indices including the Jaccard, Interior-

ity, and coincidence. Observe that we distinguish between

metrics and index in order to indicate that the former

obeys the metric requirements, while the latter does not.

For simplicity’s sake, the present work concentrates

on the Euclidean distance agglomeration (single-linkage),

though other agglomerative approaches including the

complete-linkage, average-linkage and Ward methods are

also illustrated, and the coincidence similarity is consid-

ered, for comparison purposes, in a subsequent section.

In the case of agglomerative clustering approaches, the

successive merging of the clusters gives rise to a respec-

tive dendrogram, which provides a comprehensive graph-

ical representation of the interrelationships between the

unfolding clustering respectively to the adopted metric

or similarity index. Figure 14 presents the dendrograms

obtained from the handwritten characters dataset by us-

ing single-linkage), complete-linkage, average-linkage and

Ward agglomerative clustering.

Observe that the y−axes in each of the dendrograms in

Figure 14 corresponds to the respective adopted linkage

criterion and metrics/index. In the case of metrics, the

y−axis corresponds to a distance that increases from the

bottom to the top. Interestingly, quite distinct cluster-

ing structures have been obtained by each method, which

motivates the question of which of them could be more

relevant for this specific dataset.

10



Figure 14: Dendrograms obtained from the handwritten characters dataset by using single-linkage, complete-linkage, average-linkage and

Ward agglomerative clustering. Observe the completely distinct clusters interrelationships suggested by each of these distinct approaches.

What is the most adequate for the handwritten characters dataset?

The issue (b) above, namely deciding on the existence

of one or more cluster is directly related to the interre-

lationship, especially the separation, between the candi-

date groups, and can be approached in those terms. For

instance, it is possible (e.g. [22]) to consider the length

of the branches leading to a branch, multiplied by the

number of samples in that branch as an indication of how

much that possible cluster stands out among the others.

While the above mentioned type of approach is inter-

esting and often leads to suitable results, there is an im-

portant issue that is not so often realized or discussed,

and it has to do with the fact that the scaling of the

y−axis variable, henceforth referred to as y, has a some-

what arbitrary nature. For instance, in the case of the

average-linkage method, instead of taking the respective

average Euclidean distances between the groups as y, it

would be also possible to consider any monotonic trans-

formation of y, for instance by taking it to the 5-th power,

to the 0.2 power, or taking a sharp sigmoid, as depicted

in Figure 15.

It is particularly interesting to compared these trans-

formed dendrograms with those in Figure 14. Though

they are completely distinct as far as the relative posi-

tions of the vertical axes where the mergings occur, the

merging sequence is completely identical in all average-

linkage cases presented above. At the same time, the

type of illustrated transformations constitute a particu-

larly useful resource for zooming in and out of the several

scales along the y−axis. For instance, in case we are es-

pecially interested in studying the clusters relationship at

the finer merging scale, we could resource to a transforma-

tion similar to that obtained by the sharp sigmoid, and so

on. Another relevant observation about the dendrograms

obtained for the handwritten characters dataset consists

in the fact that none of them, original or transformed,

provided a pronounced indication, as far as the relative

lengths and widths of their branches are concerned, about

the original separation between three main types of char-

acters in this specific dataset.

The above example illustrates the difficulty in using the

lengths of the branches as a criterion for deciding on the

whether the involved clusters should be separated or not.

Actually, there is an alternative approach that does not

11



Figure 15: Monotonic transformations of the average-linkage dendrogram obtained for the handwritten characters, but taking the by taking

the average distances y to the 5-th power (a), to the 0.2 power (b), or through a sharp sigmoid (c). Completely distinct dendrograms can

therefore be obtained, emphasizing respectively the large, medium, and small scales of the clustering structure of the dataset. Importantly,

the sequence of merging of each of these transformations is completely preserved, while only the y-axes is ‘elastically’ modified.

depend on the length of the branches. It consists of us-

ing other criteria for that purpose, in particular one of

the several approaches to quantifying the separation be-

tween clusters, including those based on scatter matrices

(e.g. [4]) or even network modularity (e.g. [16]).

Now that we have considered some of the most basic

aspects of unsupervised clustering, we can attempt to ap-

proach the issue of their respective performance. There is

a particularly direct manner to do this, by using a set of

classified samples that are then treated as it they were not,

being therefore classified in an unsupervised manner. The

original categories can then be taken into account in order

to evaluate the recognition results in terms of misclassi-

fications, as well as all the aspects discussed respectively

to supervised pattern recognition. Actually the effects of

most of those aspects are precisely the same whatever we

are dealing with supervised or unsupervised learning. For

instance, the presence of biased samples in relatively high

dimensions, and/or undersampling, are likely to induce

underlearning, implying clusters to be found where there

are none.

One important difference respectively to unsupervised

recognition is that cross-validation, e.g. by k-folding, can-

not generally be performed in the same way, as there is

no training stage involved in that case. Those methods

need to be adapted, for instance by identifying clusters

respective to a portion of the reference samples, and then

comparing them with other the results obtained by the

same unsupervised respectively to other sets of samples.

However, it should be observed that this is not a complete

test, because the procedure may induced similarly biased

results in all cases. More comprehensive validation ap-

proaches need to consider previously labelled sets of sam-

ples, so that the obtained clusters can be confronted with

the original ones. As a summary of our brief discussion

of unwanted effects on the performance of unsupervised

recognition methods and their respective validation, it can

be said that:

10 - Overfitting, undersampling, and underlearning

phenomena equally affect the supervised or unsuper-

vised case.

5 Similarity-Based Pattern

Recognition

In this section we consider some possibilities of using the

real-valued coincidence similarity index [23, 21, 16, 24] as

the basis for comparing and interrelating groups of sam-

ples in both supervised and unsupervised pattern recog-

nition.

Basically, the coincidence similarity corresponds to

the product between the real-valued Jaccard and in-

teriority indices, which are based on multiset theory

(e.g. [11, 12, 13, 14, 15]). It is primarily aimed at perform-

ing similarity comparisons between two patterns, e.g. as

represented by respective feature vectors. In the present

work we limit our attention to the parameterless version

of the coincidence similarity index which, in this partic-

ularly case, has results comprised in the interval [−1, 1].

The higher the coincidence similarity value, the most sim-

ilar two patterns can be said to be. So far, the coincidence

index has been successfully applied to several applica-

tions, including template matching [21] and translation

of datasets into respective complex networks [16].
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First, we present in Figure 17 the average ± stan-

dard deviation of the coincidence values between random

groups for 20, 25, . . . , 50 points in feature spaces of dimen-

sion D, with all features varying from 0 to 1.

Figure 16: The average ± standard deviations of the coincidence

values between two groups of 20, 25, . . . , 50 points in feature spaces

of dimension D, with all features varying from 0 to 1. Comparatively

to the respective Euclidean distance counterpart in Fig. 11, it can

be said that the obtained coincidence values increase more steeply

along the smaller dimensions, become relatively stable for the larger

dimensions.

A similar shape of the coincidences in terms of the di-

mensions can be verified for when the features comprised

in the inverval [−2, 2], shown in Figure 17.

Figure 17: The average ± standard deviations of the coincidence

values between two groups of 20, 25, . . . , 50 points in feature spaces

of dimension D, with all features varying from −2 to 2.

Figure 18 depicts the networks of average similarity ob-

tained respectively to the handwritten characters datased.

Interestingly, a more uniform distribution of coincidences

was obtained for the real data, two of which are higher

(in absolute value) than the random reference, while the

remainder distance is similar. This suggests that, at least

for this specific example, the coincidence similarity can

lead to less intense underlearning as a consequence of bi-

ased sampling or undersampling.

Figure 18: Networks of average similarity for the real data (a)

and respective randomly assigned simulation (b) respectively to the

handwritten characters database. Comparatively to the Euclidean

distance based results shown in Fig. 12, two of the real pairwise

distances resulted larger than the random counterparts, while the

other distance result very similar. This suggest a better underlearn-

ing resilience of the coincidence similarity representation of the data

elements, at least for the case of the specific data in this example.

Observe that the magnitude of negative coincidence similarity quan-

tifies the dissimilarity between the respective groups.

To conclude this section, we present in Figure 19

the dendrogram obtained for the handwritten characters

dataset by the single-linkage method adapted to the co-

incidence similarity. More specifically, this index is used

instead of the Euclidean distance or the other options al-

ready discussed. As a consequence, the y−axis has to

be modified so as to have the dendrogram comparable to

those obtained by the other methods. In this work, this

has been done by taking the complement of the coinci-

dence values along the respective y−axis, i.e.:

ỹ = max {y} − y (2)

Interestingly, a well-balanced dendrogram has been ob-

tained in which not only details can be appreciated about

the pattern relationships at fine and medium compari-

son scale, while the intrinsic subdivision into three cat-

egories corresponding to the three types of handwritten

characters can be more effectively perceived in the relative

long branches leading to the three groups. Remarkably,

this coincidence-based single-linkage does not suffer from

the same level of chaining (successive incorporations of

samples into a same group) as its respective Euclidean

distance-based counterpart.
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Figure 19: Dendrogram obtained for the handwritten characters

dataset through single-linkage of coincidence similarities between

the clusters. A well-balanced distribution of mergings is obtained

at all scales while moderately emphasizing the intrinsic subdivision

into three respective types of handwritten characters. Remarkably,

virtually none of the intense chaining characterizing the Euclidean

distance-based counter part can be observed.

It should be observed that the coincidence similarity

index can also be adapted to the other clustering ap-

proaches, substituting the Euclidean distance or corre-

lations whenever necessary.

6 Image Segmentation as a Labo-

ratory

Image analysis and computer vision constitute important

branches of artificial intelligence (e.g. [25, 5, 4, 6]) as a

consequence of their impressive potential for automating

and enhancing activities typically performed by humans,

including prospection, surveillance, quality control, as-

tronomy, to name but a few possibilities.

One of the first steps along the image analysis pipeline,

the task of image segmentation (e.g. [25, 4]) is as critical

as it is challenging. Basically, given an image, to segment

it typically means identifying its portions of special rele-

vance for being possibly related to specific objects in the

image, or portions of these objects. This seemingly sim-

ple endeavor is complicated by several effects including

noise, shadows, reflections, occlusions, and transparency,

among several other unwanted interferences. The impor-

tance and challenge of image segmentation has been di-

rectly reflected to a so large number of related studies,

based on the most varied areas and concepts.

As a consequence of some special characteristics, we

argue here that the problem of image segmentation can

provide a particularly interesting and effective laboratory

not only for better understanding supervised and unsu-

pervised pattern recognition, but also for developing and

comparing respective concepts and methods. That is be-

lieved to be so as a consequence of the following aspects:

(i) the original data to be classified (pixels) can be im-

mediately inferred from the images; (ii) in the case of

supervised recognition, the choice of prototypes can be

easily performed, e.g. by clicking on specific points of the

image; (iii) images in general have great complexity and

intricacy, providing a comprehensive resource for testing

methods; (iv) the effects of the pattern recognition can

be immediately perceived in terms of the highlighted seg-

mented regions, especially the identification of possible

underlearning caused by biased sampled and undersam-

pling.

Figure 20 illustrates the above possibilities with respect

to the supervised segmentation of a color image of a land-

scape (a) including natural and human made objects and

structures, while also incorporating varying levels of lu-

minosity, shadows, and diverse types of backgrounds and

textures. More specifically, segmentation results obtained

by using Pearson correlation coefficient and coincidence

similarity are shown respectively in (b) and (c), respec-

tively to five prototype points marked with red crosses. In

the former case, the segmentation generalized too much in

detriment of the selectivity, which implied several struc-

tures and textures to be merged. The results obtained by

the coincidence similarity resulted substantially more ad-

herent to the structures from which the prototypes were

taken with a moderate loss of generalization. In addition,

given that a relatively high number of features was in-

volved, namely 25 RGB pixels sorted by intensity within

each color channel, the good adherence to the respective

objects can be taken as an indication that underlearning

is not taking place.

7 Concluding Remarks

Pattern recognition has progressed all the way from early

promising approaches toward becoming one of the central

current research subjects. This has been motivated by the

many important applications to virtually every scientific

and technological area and aspect. Yet, the question of

evaluating the performance of pattern recognition while

also identifying the main causes that can undermine it and

devising possibilities of improvements, remains an ever

important subject.

It should be kept in mind that all results in the present

work are preliminary and still being complemented and

evaluated. In addition, the application of pattern recogni-

tion as approached here should be taken as a resource for
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(a) (b) (c)

Figure 20: Original image (a) and respective segmentations (b) by using the Pearson correlation coefficient between the selected features of

the prototypes and those of all pixels in the image. The prototypes, are marked by red crosses, refer to the sandstone wall (2 samples) and

the further away bridge (3 samples). The obtained regions, delimitated by respective red contours, can be observed not to adhere selectively

to any of the types of structures in this image. In this case, the generalization prevailed strongly in detriment of the selectivity to the types

of structures. The results obtained by the coincidence similarity (c) are characterized by a precise adherence to the types of structures

in the image while maintaining an excellent generalization ability. These enhanced results are a direct consequence of important specific

properties of the coincidence similarity operation, including its high selectivity/sensitivity while being substantially robust to localized

feature perturbations [24].

gathering insights about the analyzer problem from the

point of view of the interrelationship between its compo-

nents that can lead to insights and better understanding,

not as an absolute or definitive result. Indeed, the ap-

plication and interpretation of pattern recognition should

closely take into account the nature of the data, the ques-

tions to be worked, as well as the limitations of the fea-

tures, classification methods as well as all other involved

aspects.

This work addressed the issue of identifying the aspects

that influence the performance of supervised and unsuper-

vised pattern recognition from the perspective of statis-

tical modeling of the original categories. Several related

factors were addressed, with special attention given to

the phenomena of biased sampling, undersampling, uner-

learning caused by the former, as well as overfitting. Sev-

eral important effects were identified and discussed with

the help of some real-world data examples. Snippets have

also been included in order to emphasize 10 main points

discussed and addressed here, provide a good concluding

remarks summary.

The developed concepts and methods as reported in

the present work pave the way to several future develop-

ments. While the range of possibilities is particularly am-

ple, some of the potentially mostly promising prospects

are briefly presented in the following. Even though we

considered several possible aspects influencing the per-

formance of supervised and unsupervised recognition, it

would be interesting to approach the issue of features

normalization to greater depth, as this aspect can also

strongly influence the recognition results. Several possi-

bilities have also been established respectively to the phe-

nomenon of underlearning, which has been argued to play

a critically important role especially not only in the case

of highly dimensional feature spaces, but even for mod-

erate dimensions. In particular, it would be interesting

to derive more complete tables of the artifact distances

not only in terms of addition numbers of samples and

dimensions, but also respectively to other normalizing in-

tervals. Regarding the identification of clustering as in-

volving two related tasks that can perhaps be performed

more effectively in separate, it would be interesting to

evaluate in a more systematic and comparative fashion

how it would perform respectively to several types of syn-

thetic and real-world datasets, including diverse types of

noise and interferences. Another promising research line

consists in considering further multiset-based similarity

indices, and especially the coincidence approach, respec-

tively to several other types of data and possible appli-

cations to supervised and unsupervised pattern recogni-

tion. Among many other related developments, it would

be interesting to consider the parametric version of the
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coincidence index, which allows for enhanced versatility

in its applications.
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