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Abstract

We are now witnessing the rapid growth of advanced technologies and
their application, leading to Smart Manufacturing. The Internet of Things
(IoT) is one of the main technologies used to enable smart factories, which is
connecting all the industrial assets, including machines and control systems,
with the information systems and the business processes. Industrial Control
Systems of smart IoT-based factories are one of the top industries attacked by
numerous threats. With the distributed structure of plenty of IoT front-end
sensing devices in Smart Manufacturing, an effectively distributed architec-
ture of an anomaly detection system should be created that can produce high
detection performance while being able to handle the cybersecurity task in
fast time scale. In this paper, we propose the so-called FedeX architecture
that integrates Federated Learning into the detection learning model to ag-
gregate various distributed learning models into one global model update for
high detection performance in comparison with a variety of recent research
proposed solutions Bo sung them vao day la ta dat duoc detection rate cu
the the nao, hoac so sanh thi hon giai phap khac bao nhieu. FedeX is also
robust in terms of running time and hardware consumption which allows
us to deploy the detecting task on top of edge computing infrastructure in
real-time. FedeX also uses eXplainable Artificial Intelligence to deal with the
problem of ”black-box” anomaly detection for Industrial Control Systems.
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1. Introduction

AI and Bigdata present excellent potential in migrating the manufactur-
ing paradigm to smart manufacturing, as it enables AI-driven IIoT systems
to operate in real-time and be more precise and efficient [1].

Within the context of smart manufacturing, Industrial Control Systems5

(ICS) are an essential component of industrial systems, and their safety and
security are becoming increasingly important in the Industrial Internet of
Things (IIoT) landscape. However, the exponential rise of IIoT brings not
only enormous benefits but also significant obstacles in terms of developing
and deploying secured ICSs [2], [3]. In reality, a contemporary ICS is no10

longer a stand-alone system but rather linked to the Internet. As a result, if
hackers were to acquire control of a network and steal security-critical data,
or viruses and infections would infiltrate and damage a production line’s
operating system, the effects would be severe and costly. Industrial Control
Systems based on the IIoT is currently one of the top industries attacked15

by various threats. As threats are becoming more complex, an anomaly
detection method that can identify attacks quickly and correctly while being
lightweight enough to be used in Internet of Things (IoT) devices with limited
processing capacity in industrial environments is required.

From another perspective, Federated Learning (FL) - a distributed ma-20

chine learning mechanism [4] is a promising candidate for communication
costs in a distributed environment. Therefore, in this paper, we develop a
FL-based anomaly detection for ICSs right at edge sites. This way helps
aggregating distributed local learning models for a global model update,
thereby giving each single local model knowledge of other data patterns at25

other edge zones. Therefore, Federated Learning can achieve efficiency sim-
ilar to the centralized learning manner while distributing the detection task
to different local edge zones, thereby not offloading the central cloud. While
in another side, the benefit of deploying anomaly detection tasks at the edge
with FL is that it definitely improves the system response time upon attack30

arrivals since the detection model is executed right at the edge which is near
to attack/anomaly sources. The integration of the FL technique with an ML-
based detection scheme helps to achieve the advantages produced by both
techniques in an efficient and lightweight way.
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Besides, although deploying FL enables distributed deep learning algo-35

rithms to work efficiently for anomaly detection in IIoT-based ICSs, anomaly
detection techniques can only help detect abnormalities. The output of the
Machine Learning-based detection model is difficult to explain or interpret,
especially in ICSs where information is often abstract. Interpretability is the
degree to which a human can understand the cause of a decision [5]. An40

explanation denotes the subset of elements in a sample that has the highest
impact on predicting a label output of an ML-based detection model. Note
that this is a very machine-learning-centric definition. In the domain of cy-
bersecurity analysts, a satisfying explanation would also need a description
of why those attributes are critical. Because of this limitation, persuading45

experts to accept and use anomaly detection technologies is difficult. Such
ML-based model’ outputs may contain abnormal cases that the systems an-
alyst was previously unaware of, and an explanation of why an instance is
abnormal might boost the analyst’s confidence in the algorithm. The higher
the interpretability of an ML model is, the more easily administrators can50

comprehend why certain predictions have been made. Furthermore, explana-
tions might be contradictory, which is valuable and important for explaining
anomalies. To overcome this drawback, the concept of eXplainable Artifi-
cial Intelligence (XAI) came into play for ICSs. XAI has been developed to
explain predictions from anomaly detection algorithms.55

Motivated by these potentials, in this paper, we propose a Federated
learning-based Explainable Anomaly Detection for Industrial Control Sys-
tems - called FedeX as the whole architecture to detect and analyze anoma-
lies in ICSs and to enable detection in a distributed environment with FL.
In FedeX, we propose to:60

• Distribute the anomaly detection task to the edge. Distributed edge
computing approach brings a few benefits: detection response can be
faster since the detection task is carried out right at the edge which
is near attack sources. In case of attacks, closing an edge zone to seal
attacks within does not affect the other zones’ operation. Practitioners65

also can more easily allocate the source of attacks within each small
monitored area with a limited number of connecting devices.

• Solve the detection problem by using the so-called FedVAE-SVDD
model to guarantee high detection performance and real-time opera-
tion (i.e. minute-time scale). FedVAE-SVDD combines the advan-70

tage of Variational Autoencoder (VAE) [6] and Support Vector Data
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Description (SVDD) [7] implemented at the Edge. While most cur-
rent approaches determine outlier thresholds by either using heuristic
methods or normally-distributed data assumptions that are unrealistic
and increase false-positive rates. Therefore, FedVAE-SVDD, by us-75

ing SVDD to seek for an optimal threshold, can deliver an automatic
anomaly detection solution with high performance that is proved to out-
perform some other learning models such as Logistic Regression (LR),
Linear Discriminant Analysis (LDA), K-nearest Neighbours (KNN),
Nave Bayes (NB), Support Vector Machine (SVM), and Classification80

and Regression Tree (CART) in the same ICS context [8].

• Leverage FL to reduce huge work offloading in the cloud. Also, ex-
changing only model information from the edge devices to the cloud
also solves the problem of data shortage in each device, especially with
high-dimensional datasets. In addition, by using FL, each single detec-85

tion model based on each local training dataset at each zone will be
updated globally.

• Integrate XAI (i.e SHAP [9]) to deal with the current ”black-box” de-
tection approaches. SHAP can thoroughly explain anomalies detected
by the FedVAE-SVDD model. This type of XAI aims to provide a com-90

prehensive explanation and remove drawbacks in understanding the
output of the FedVAE-SVDD anomaly detection. This XAI method
can evaluate the model’s faithfulness as well as provide the ability to
detect a specific component causing the system problem. SHAP is
the most exact agnostic XAI method available today, as a cause-of-95

interpretation tool. SHAP plots and outputs recorded values and ac-
commodate practitioners to analyze and interpret the results, further
evaluating the reliability of the proposed ML-based training model.

In summary of FedeX’s benefits, FedeX is the framework that applies XAI
to explain anomaly for ICSs in a liquid-storage infrastructure. FedeX is also100

proved to have high detection performance while being able to be deployed
on top of such weak hardware of edge nodes in a distributed computing
architecture. The FL-based architecture of Fedex enables faster system re-
sponse capability upon attacks. FL also assures that the detection model
in each single distributed zone can have global knowledge by updating the105

global model aggregated from all distributed learning models. Moreover,
with real-time training capability (i.e in minute times-scale), FedeX is able
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to retrain its learning model constantly in order to cope with any drift in the
normal/abnormal behavior of data coming from devices (for example, drift
caused by device aging inside a smart factory).110

The rest of our paper is structured as follows. Section 2 discovers re-
lated and cutting-edge researches in the field of anomaly detection for ICSs
and XAI for Anomaly detection in ICSs. The FedeX anomaly detection ar-
chitecture will be elaborated in detail in Section 3. The evaluation of the
FedeX performance in terms of detection capability, system response time,115

edge computing capability, and anomalies explanation is presented in Section
4. Finally, the conclusion of our findings is presented in Section 5.

2. Related Work

For the non time series data type, we can find anomaly detection ap-
proaches for ICSs in [10] , [11], [12]. In [10], the author proposes a Logical120

Analysis of Data - LAD-ADS solution using a rule-based method to detect
anomalous behaviors in ICS systems over the SWat dataset. LAD-ADS per-
forms detection by extracting rules from a huge of data in the past. However,
rule-based systems are often complex and challenging to manage and deter-
mine the cause of detected anomalies. In addition, it requires experience from125

experts and operational engineers in deploying and operating the system. In
the same scenario of ICSs, [11] proposes a state-aware anomaly detection
method that uses the CUSUM (Cumulative Sum) control chart to the state-
dependent detection threshold. The training process is done centrally on a
large amount of data. In fact, the data in ICSs are often distributed; using a130

centralized solution can cause disadvantages such as latency for sending all
raw data to the central cloud and huge computer resource consumption for
training. Moreover, in CUSUM [11], no detection performance metric such
as Accuracy, Precision, Recall, or F1-score is revealed except the false alarm
rate. In another aspect, training in a distributed environment and the pri-135

vacy of data is addressed in [12]. In [12], the authors present a methodology
called MADICS for Anomaly Detection in Industrial Control Systems using
a semi-supervised anomaly detection paradigm with five main steps. The
performance of MADICS in terms of Recall is slightly low over its testing
dataset. In addition, this mechanism requires a large amount of data for140

semi-supervised learning, which faces data privacy issues when transmitting
a large amount of raw data for training, resource capacity, and computa-
tional resources of the system. In terms of detection performance, Fedex is
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also proved to outperform the previously proposed solutions MADICs [12],
LAD-ADS [10] in the same factory contexts. Additionally, in [13], a statis-145

tical window-based anomaly detection method is adopted by using various
deep-neural network architectures, showing effectiveness in detecting the at-
tacks in a Secure Water Treatment (SWaT) infrastructure which is, in our
opinion, not a purely time-series data scenario as well. However, the authors
also indicated that their work needs to be improved with the interpretability150

of the outcomes and the behavior detection of fault ICS components.
For the time-series data type, we have observed various proposed AD

solutions. Training in a distributed environment and the privacy of data is
also an issue that needs to be addressed in [14]. From the aspect of using
Federated Learning to implement an anomaly detection solution in a dis-155

tributed ICS system, ensuring high accuracy while protecting data privacy,
we can find some researches such as [15], [16]. In [15], the author proposes an
FL framework that allows decentralized edge devices to cooperate in train-
ing an anomaly detector with an attention mechanism-based convolutional
neural network long short-term memory (AMCNN-LSTM) model. Although160

designing an FL-based approach, but the experiments lack insight analysis
in the performance of deploying such a learning model in an edge environ-
ment (i.e in weak hardware of an edge node). Due to the complexity of
AMCNN-LSTM caused by using multi-layer CNN and LSTM, according to
our experience, it is hard to feasibly deploy such a learning model on edge de-165

vices, much less for an expectation of achieving low computing complexity for
running the learning model in minute-time scale and low power consumption.
With a similar lack of performance testing on the edge hardware, work [16]
proposes an FL-based anomaly detection approach for IoT networks based
on the combination between Gated Recurrent Units (GRUs) and Long short170

term memory toward detecting anomalies with decentralized on-device data.
However, the performance of the proposed method is not good enough in
the distributed scenario; accuracy in each FL client is just around 90% on
average.

In several other studies [17],[18], the authors develop and investigate at-175

tack detection solutions in ICS cyberspaces. In [18], the authors propose
an attack detection model that uses a Deep Neural Network and a Decision
Tree classifier to identify cyber-attacks in the ICS context with an F1-Score
of 93.83% with the ICS gas pipeline dataset, which is higher than other
algorithms such as Support Vector Machine (SVM), Long Short-term Mem-180

ory (LSTM), Nave Bayes (NB), Decision Tree (DT), Deep Neural Network
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(DNN), Random Forest (RF). Study [17] uses the semi-supervised techniques
by leveraging K-means and Convolutional Autoencoder to protect the ICS
system from cyberattack. Like in [18] , the experiments of the proposed
methods were performed with the gas pipeline dataset and the water storage185

tank dataset. However, the anomaly detection performance of the proposed
method needs to be improved. In contrast to our study, these studies only
focused on evaluating the performance of detection algorithms and did not
consider other important metrics when being implemented in the edge envi-
ronments of an ICS such as detection time and power consumption. Thus,190

in this paper, we present a comprehensive evaluation of both detection per-
formance and system performance.

Although the studies described above solve challenges surrounding cyber-
attack detection in ICSs, all of them have not concerned the interpretability of
the models detected results up to now. As stated in [19], the interpretability195

of an anomaly detection model is almost as crucial as the prediction accu-
racy of the model. In the field of explaining the detection outcomes (XAI
- Explainable AI), Kasun et al. in [19] used a method named Layer-wise
Relevance Propagation (LRP) to calculate the input features relevance to
explain the trained Deep Neural Network model with DoS attacks detection200

task. The evaluation is conducted with a subset of NSL-KDD Dataset an old
network intrusion detection dataset released in 1999. Even though the com-
bination of solutions to solve the black-box problem of DNN helps domain
experts intuitively access the insight of the DNN algorithms, classification
accuracy improvement is required when producing predictions in the test205

set. Very recently, the authors in [20] have proposed to use XAI to interprete
anomaly detection outcomes of the multiple Bi-LSTM learning model in an
ICS ecosystem. The scope of the ICS is the smart factory of steam-turbine
power generation and pumped-storage hydropower generation. This paper
can be considered as the forefront of interpreting anomaly detection in the210

ICS ecosystem.
As a result, in this paper, we design and investigate the FedeX solution for

not just ensuring high detection performance and lightweight implementation
at the edge devices, but also providing a detailed explanation for the detection
model deployed in a liquid storage infrastructure.215
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3. Federated learning-based Explainable Anomaly Detection for
ICSs - FedeX

3.1. FedeX Overview

In this paper, an architecture using FL for anomaly detection is proposed
for ICSs. As Fig.1 shows, ICSs in smart factories can be organized in var-220

ious zones (i.e. Zone 1, Zone 2, Zone 3...), and each of which is monitored
by a local unit (i.e. Edge 1, Edge 2...) to detect anomalies. Those local
monitoring units serve as edge computing stations that run an anomaly de-
tection function based on their own incoming local data. Computing can be
carried out at the distributed edges as long as detection algorithms running225

on top of it require a reasonable computing capacity. If this requirement is
fulfilled, then this architecture becomes effective since the detection module
is implemented near attack sources which makes the whole detection process
respond faster. Moreover, this solution reduces the workload offloading up on
the central cloud server as the traditional centralized computing architecture230

does.
As illustrated in Fig. 1, the FedeX workflow consists of 6 steps, as follows:

Step 1○: The edge device uses the sensing data collected from nodes within
a zone as a local dataset. Step 2○: The edge device performs the local
model (i.e., VAE model) and the mechanism for determining thresholds at235

the last communication round (i.e., FedVAE-SVDD model) training on the
local dataset. Step 3○: The edge device uploads the weight matrix to the
cloud aggregator. Step 4○: The cloud aggregator obtains a new global model
by aggregating the weights uploaded by the edge device. Step 5○: The
cloud aggregator sends the new global model to each edge device. The steps240

above are repeated until the global model achieves optimal convergence. This
ideal global model can be used by decentralized devices to conduct anomaly
detection tasks. Step 6○: Periodically, the XAI-SHAP model will be run to
interpret and verify the anomaly detection model; and identify the anomaly-
causing elements in ICSs.245
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Figure 1: Our FedeX Model in ICS

For this type of specific smart factory, we propose our architecture FedeX,
standing for Federated Learning-based Explainable Anomaly Detection. The
main contributions are as follows:

1. Anomaly Detection Model on Edges :
VAE [6] is a tuned Autoencoder architecture to run on top of the edge device250

for effective anomaly detection. The benefit of VAE is the ability to minimize
over-fitting by ensuring that features from its latent space are good enough
for data generation. A basic idea here is, if a model was only trained on
normal data, then when encountered with anomalous data, the inability to
reconstruct data or, more precisely, the range of the reconstruction error that255

it entails, can signal the presence of anomalous data.
2. Distributed Learning Mechanism for Efficient Resource Sharing :

Moreover, this architecture expands to an FL-based VAE (i.e. FedVAE)
anomaly detection solution that can solve the problem of missing training
data at each edge device when deep learning models often need large amounts260

of data to train. With the FL technique, the central cloud can federate
information with different characteristics from various zones to improve the
detection performance of the overall network without the need of having
knowledge of original raw data.
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3. Accurate, Fast and Automatic Determination Mechanism of Threshold265

for Anomaly Detection:
In addition, the SVDD method [21] is proposed to automatically determine
the threshold for efficient anomalies detection (FedVAE-SVDD). Every sam-
ple at the output of the VAEs block with the loss larger than the chosen
threshold will be considered anomalous.270

4. Explainable Artificial Intelligent to Interpret the Outputs of Black-Box
Learning Models :
Finally, a XAI-based explanation method called SHAP is integrated into
our architecture. SHAP enables us to explain the reason why an instance
is predicted as an anomaly by showing the contribution of the features to275

the prediction, thereby enhancing the reliability of the black-box model. As
a result, FedeX effectively assists domain engineers in finding the physical
cause of anomalies quickly and making responses timely.

In the following sections, we will present a detailed design and deployment
of the VAEs, FL, and SVDD as the hybrid-anomaly-detection model at the280

edge. And finally we will elaborate how to deploy Explainable-Artificial-
Intelligent (XAI) for better understanding of anomalies occurred in the ICS
of a liquid storage infrastructure.

3.2. Design and Development of Variational AutoEncoder (VAE) as Local
Training Model on Edge285

Since the detection module is implemented on Edge hardware, the overall
design is supposed to be lightweight, whilst still ensuring the detection accu-
racy requirement. Therefore, in our proposed detection method, we try our
best to reduce the computing complexity of the algorithms. As elaborated
in Figure. 1, the AI-based detection learning model each is deployed locally290

at each single Edge. Then the model update of each local edge will be done
through a global updating, facilitated by Federated Learning. cau nay la de
giai thich cho edge computing tai comment 1.3, can bo sung them neu can..
In this research, we propose to utilize VAE for anomaly detection purposes.
In fact, many different VAE architectures have been proposed, with differ-295

ent types of layers such as Dense, LSTM, and CNN. We design the VAE
encoder and decoder with only two fully connected layers each because this
approach aims to achieve the model’s simplicity and lightweight, allowing it
to be trained on top of edge devices with limited hardware resources, as part
of an IoT-based ICS, while also lowering communication costs and providing300
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sufficient detection performance. We also emphasize the real-time training
guarantee for this model which will be illustrated in Section 4.

For the background, an autoencoder (AE) is a symmetrical unsupervised
neural network, slightly different from other network architectures in that:
The network uses the input itself as the ground truth. It consists of 3 main305

parts: encoder, latent representation, and decoder. Usually, the centre hid-
den layer has fewer nodes than the input and output layer (a ”bottleneck”).
Thus, the network learns to compress the input to the bottleneck layer and
then from which subsequently restore the input. This middle layer thus be-
comes the ”latent representation” of the input, retaining most information310

about the input using fewer features. The part of the network before this
layer becomes the encoder, and the part after becomes the decoder.

A variational autoencoder (VAE) [6] is a combination of the AE with
the Variational Bayesian method. But instead of generating a representation
in the hidden space for a data point in the original space, the underlying315

principle behind VAE is to find a probability distribution for that data point.

Figure 2: VAE Structure: the data are represented via a normal distribution, and the data
dimensions are independent random variables.

Let X be data generated by inputting a latent variable Z through a ran-
dom process with network parameters θ. The goal is to model the data as a
distribution, Qθ(X). Since the computation cost to calculate Qθ(X) is expen-
sive, we translate the problem into the autoencoder domain by defining the320
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”probabilistic encoder” Pφ(Z|X) to approximate the posterior distribution
Qθ(Z|X).

The VAE module is designed to combine with FL as follows:

• In each iteration of the training, one option is to let the participating
nodes synchronize their VAE models over the parameter server. This,325

however, necessitates many rounds of communication between the fed-
erated nodes and the parameter server, possibly resulting in network
communication congestion.

• Instead, we let the participating nodes run a number of local modifica-
tions and occasionally synchronize with the parameter server. Specif-330

ically, after the nodes receive an updated model from the server, they
update it locally by running ρ iterations of the clients’ optimizer algo-
rithm, and then send the appropriate data to the server for updating
the aggregated model. Finding the optimal choice of ρ for lowering the
overall communication cost of the process is a critical trade-off problem335

that we have to solve.

To update the network weights by backpropagation, as with any deep
learning problem, a differentiable loss function must be defined. For VAEs,
the objective is to minimize the generative model parameters θ to reduce the
reconstruction error between the network’s input and output, and also φ, to340

have Pφ(Z|X) as close to Qθ(Z|X) as possible.

For calculating the distance between two distributions, the commonly
used function is the Kullback-Leibler divergence function. The loss function
called evidence lower bound (ELBO), is obtained:345

−L(θ,φ) = log(Qθ(X))−DKL(Pφ(Z|X) ||Qθ(Z|X)) ≤ log(Qθ(X)) (1)

The parameters of the model can thus be expressed as:

(θ∗, φ∗) = argmaxθ,φL(θ,φ)(x) (2)

As the idea mentioned above, we will sample in the hidden space and
feed to the encoder to generate new data. There should be a certain rule
for this sampling. A simple yet efficient way is suggested to use the normal
distribution N(0, 1). That is, we add a constraint that each data point350
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will be represented by a normal distribution that approximates the N(0, 1)
distribution. This is the idea of reparameterization [6]. To approximate two
distributions, again the KL-Divergence loss of two Gaussian distributions
with univariate function is shown below:

DKL[N(µ(X),Σ(X))‖N(0, 1)] =
1

2

∑
k

(
exp(Σ(X)) + µ2(X)− 1− Σ(X)

)
(3)

with k is the dimension of our Gaussian.355

Algorithm 1: Phase-1: FedVAE

Input: Initial model w0, Client optimizer Opt
Output: V AEcomplete - Trained VAEs model in each client

1 N - the number of zones;
2 Rounds - number of communication rounds;
3 for r = 1 to Rounds− 1 do
4 Server randomly picks C zones;
5 Server sends ωr to C zones ;
6 for node c ∈ C do
7 ωr,0 ← ωr;
8 for t = 0 to ρ− 1 do
9 Compute stochastic gradient

10 ∇̃f(X,ω) = ∇Lθ,φ(X);

11 set ω
(c)
r,t+1 ← Opt (∇̃fc(ω(c)

r,t ), ω
(c)
r,t , α, t);

12 end for

13 send ω
(c)
r,ρ to the server;

14 end for

15 server finds ωr+1 ← 1
C

∑
c∈C ω

(c)
r,ρ ;

16 end for
17 V AEcomplete = f(ωRounds);
18 return V AEcomplete

3.3. Design and Development of Federated-Learning based VAE - FedVAE

In our Federated-Learning based VAE model (or called FedVAE), each
edge device performs the training and detection process with local data from
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each manufacturing area, and the Edge device only sends information of the
weight matrix of the trained model to the cloud server, rather than the entire360

raw data, as a traditional cloud-based training system would. Although
the cloud has the storage and computing power to manage the volume of
data generated in manufacturing, the computationally intensive operations
and vast data storage that are hosted on cloud servers may cause a delay.
Because this delay is caused by the time required to send, transfer, and365

process massive amounts of data from IoT devices at production sites. This
is a significant issue in a smart factory that must undertake huge monitoring
and detection in real-time. Within this context, the concept of Edge-Cloud
Computing combined with FL shall arise to circumvent this constraint.

• Firstly, the initial model is created by the Cloud Server as a Weight370

”Federator”.

• The VAE model was then applied to solve anomaly detection. It then
subscribes to numerous MQTT topics to which the zones will send the
weights of their models.

• After the first model’s weights are published to the aggregated model375

topics, the Cloud Server awaits requests from the VAE model configu-
ration from each zone.

• Local models are trained at each edge based on their own dataset.

• In each communication round, the weights of the trained models ω
(c)
r,ρ

are sent to the Cloud Server for FL.380

• The Cloud then uses the formula (4) to calculate the weight of the
federated global model:

ωr+1 =
1

C

C∑
c=1

ω(c)
r,ρ (4)

Where:

C: the number of zones
ω
(c)
r,ρ: the weight of the local model of zone c at round r385

ωr+1: the federated global model’s weight at round r + 1.
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• Finally, the weight from the federated global model is sent downward
to update the local model of each zone.

For every communication round, the server, at first, randomly picks up C390

zones, then sends the model ω
(c)
r,ρ to each zone. The model, which is the VAE

model, will be run ρ iterations locally with the aim to minimize loss function
Lθ,φ(X). f(ω) stands for the neural network with parameter ω. Moreover,
since Adam [22] is the best among the adaptive optimizers in most of the
cases, we set it for client optimizer Opt by default. The FedVAE model is395

presented in Algorithm 1.

3.4. Design and Development of FedVAE-SVDD to Determine Thresholds
As aforementioned, in Phase 2, to monitor and automatically determine

the threshold for the anomaly detection model - the FedVAE model, we
propose to use the Support Vector Data Description (SVDD) method to go400

over this request accurately while keeping the real-time assurance.
Usually, experts in the industry establish the threshold after attempting

a range of values, then select the one that best balances the requirements
(performance, true positive, or false negative ,.etc). SVDD also works well as
an outlier detection algorithm, especially with high-dimensional datasets, but405

just like all SVMs, it does not scale to large datasets. Therefore, we suggest
a combination of FedVAE and SVDD, as a moderate addition: FedVAE
serves as the main anomaly detection model for the distributed system, while
SVDD, trained with a small set of error vectors from the output of the
FedVAE model, can correspond to finding a small region that encompasses410

all instances.
Support Vector Data Description or SVDD ([7]) is a type of support

vector method used for single-class classification and outlier detection. The
primary idea behind SVDD is to wrap samples in a high-dimensional space
with the smallest volume. For the anomaly detection task in which most415

of the collected data are normal, the hypersphere is usually taken as the
boundary around normal samples, separating them from outliers.

Primal Form:
Ojective Function:

minR2 + C
n∑
i=1

ςi (5)

Subject to:420

‖xi − I‖2 ≤ R2 + ςi,∀i = 1, ..., nςi ≥ 0,∀i = 1, ..., n (6)
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Where:
xi ∈ Rm, i = 1, ..., n indicates the training data
R: radius represents the threshold
ςi: the slack of each variable
I: the centre425

C = 1
ne

: the penalty constant that controls the trade-off between the
volume and the errors

e: the expected outlier fraction
Dual Form:
The dual formulation is obtained using the Lagrange multipliers.430

Objective Function:

Max
n∑
i=1

αi(xi · xj)−
n∑

i,j=1

αiαj(xi · xj). (7)

s.t 0 ≤ αi ≤ C and
n∑
i=1

αi = 1 (8)

Where:
αi ∈ R, i = 1, . . . , n are the Lagrange coefficients
Duality Information:
The following results are valid depending on the observation position:435

• Position of Centre I:
n∑
i=1

αixi (9)

• Inside Position:
‖xi − I‖ < R→ αi = 0 (10)

• Boundary Position:

‖xi − I‖ = R→ 0 < αi < C (11)

• Outside Position:
‖xi − I‖ > R→ αi = C (12)
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The circular data boundary can include amount of very sparse distribu-440

tion of training observations space that can increase the probability of false
positives. Hence, the support-vector-based boundary is usually used rather,
since it is more flexible to cover the data with the volume as small as possible.

The SVDD becomes more flexible by replacing the inner product (xi ·xj)
with an appropriate kernel function K(xi, xj). Results 9 through 12 hold true445

when the kernel function is used in the mathematical formulation. Then the
threshold R is calculated using the Kernel function as follows:

r =

√
K(xl, xl)− 2

∑
i

(xi, xl)−
∑
i,j

αiαj(xi, xj) (13)

using any xk ∈ S where S is the set of support vectors that have αk < C.
Any function that meets the Mercer condition can be used as a kernel

function. Some commonly used kernels are450

Gaussian kernel

K (x, y) = exp
−‖x− y‖2

2σ2
(14)

σ is the Gaussian kernel width
Exponential kernel

K (x, y) = exp
−‖x− y‖

2σ2
(15)

The Gaussian kernel and the exponential kernel are very similar, with
only the square of the norm left out.455

Laplacian kernel

K(x, y) = exp(−‖x− y‖
σ

) (16)

In fact, the Laplace Kernel is completely equivalent to the exponential
kernel, except for being less sensitive for changes in the σ parameter. Al-
though both radial basis function kernels above give excellent performance,
in our case study, we decide to use the Laplace kernel as default since it460

allows the SVDD model to run faster.
Scoring:
For each new observation Z, the distance d(Z, I) is calculated as
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d(Z, I) =

√√√√(Z · Z)− 2
1∑
i=1

αi K (Z · xi) +
l∑

i,j=1

αiαj K (xi · xj) (17)

Thus, any dataset point with d2(Z, I) > r2 are indicated as an outlier.465

More specifically in the process of Phase 2, another portion of normal
data will be passed through the trained FedVAE model (at the end of Phase
1, which will return a set of loss value vectors. We use these vectors to
train the SVDD model in Phase 2: The hypersphere’s radius as calculated
by Equation (24) will be considered as the threshold of the FedVAE-SVDD470

model .
Each sample belonging to the hypersphere needs to satisfy the condition:

(xi − I)T (xi − I) ≤ r2 (18)

Where:
xi ∈ Rm, i = 1, . . . , n represents the training data
r: the radius that represents the decision variable475

I: the center, a decision variable
The dual formulation is obtained using the Lagrange multipliers. Also,

the support-vector-based boundary is usually used rather than the hyper-
sphere, since it is more flexible to cover the data with the volume as small
as possible. Thus it can reduce the amount of very sparse distribution of480

training observations space that can increase the probability of false posi-
tives. Any function that meets the Mercer condition ([23]) can be used as a
kernel function. Therefore, the Objective Function is obtained as follows:

Max
n∑
i=1

αiK(xi · xi)−
n∑

i,j=1

αiαjK(xi · xj). (19)

s.t 0 ≤ αi ≤ C and
n∑
i=1

αi = 1 (20)

Where:
αi ∈ R, i = 1, . . . , n are the Lagrange coefficients485

C: the penalty constant that controls the trade-off between the volume
and the errors.
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K(.) stands for the kernel function. Some commonly used kernels are
Gaussian kernel

K (x, y) = exp
−‖x− y‖2

2σ2
(21)

σ is the Gaussian kernel width490

Exponential kernel

K (x, y) = exp
−‖x− y‖

2σ2
(22)

The Gaussian kernel and the exponential kernel are very similar, with
only the square of the norm left out.

Laplacian kernel

K(x, y) = exp(−‖x− y‖
σ

) (23)

In fact, the Laplace Kernel is completely equivalent to the exponential495

kernel, except for being less sensitive for changes in the σ parameter. Al-
though both radial basis function kernels above give excellent performance,
in our case study, we decide to use the Laplace kernel as default since it
allows the SVDD model to run faster.

The threshold r is calculated as:500

r =

√
K(xl, xl)− 2

∑
i

(xi, xl)−
∑
i,j

αiαj(xi, xj) (24)

using any xk ∈ S where S is the set of support vectors that have αk < C.
For each new observation Z, the distance d(Z, I) is calculated as

d(Z, I) =

√√√√(Z · Z)− 2
1∑
i=1

αi K (Z · xi) +
l∑

i,j=1

αiαj K (xi · xj) (25)

Thus, any dataset point with d2(Z, I) > r2 are indicated as an outlier.
505

More specifically in the process of Phase 2, another portion of normal
data will be passed through the trained FedVAE model (at the end of Phase
1, which will return a set of loss value vectors. We use these vectors to
train the SVDD model in Phase 2: The hypersphere’s radius as calculated
by Equation (24) will be considered as the threshold of the FedVAE-SVDD510

model .
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Algorithm 2: Phase-2: FedVAE-SVDD

Input: X - NormalTrainData;
C - penalty constant;
K(.) - Kernel function;
Output: Threshold;

1 Recontruction Data X̃ = FedV AE(X);

2 Get set of error vectors SX = {∆X|∆X = X̃ −X};
3 for xi, xj ∈ SX do
4 if (αi < C and αj < C) then

calculate x′ = K(xl, xl)− 2
∑

i(xi, xl)−
∑

i,j αiαj(xi, xj);

5 end if

6 end for

7 Threshold =
√
x′;

8 return Threshold ;

3.5. Integration of Explainable Artificial Intelligence (XAI SHAP) - FedeX

In anomaly detection, although algorithms related to neural network
models tend to benefit rather than signature-based methods and techniques,
its drawback is insufficient interpretability. Therefore, the reason why an515

instance is predicted to be abnormal can not be easily discovered in such
cases, which could render researchers vague in analyzing anomaly or out-
lier outcomes. To overcome this limitation, a widely-used approach called
Explainable Artificial Intelligence (XAI) can be adopted.

The aim of XAI is to assist humans to understand the results of solutions520

using black-box models by the assessment of feature attributions, thereby
demonstrating how much each feature participated in making a decision for
each data point of the model. With simple machine learning models, such
as logistic regression and linear regression, the importance of features can be
assessed via the coefficient of each feature in the data set. Meanwhile, as525

aforementioned, for several complicated models related to neural networks
such as VAE, it is difficult to measure or compute the influence level of
each feature on an output decision. This is simply because there are a large
number of parameters engaging in the model. In fact, with the advent of
some state-of-the-art XAI frameworks, this problem has been handled.530

There are several effective XAI frameworks such as Local Interpretable
Model-agnostic Explanations (LIME) [24] and Deep Learning Important Fea-
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tures (DeepLIFT) [25]. However, with the scope of this study, the main XAI
approach is based on SHapley Additive exPlanations (SHAP) [9] method us-
ing the Shapley values, which comes from the theory of the cooperative game535

[26]. By computing an individual player’s contribution for each coalition P
(a possible subset from feature set) and then averaging over all of these con-
tributions, the Shapley value tells us the payout the one is assigned fairly
in received payouts. Similarly, in terms of XAI, for an individual decision,
each feature value can be considered as a player, and the payouts can be540

treated as the decision. Mathematically, the Shapley value of a feature in a
particular prediction model can be defined as:

ξn(f, a) =
∑
P⊆a′

|P|!(m− |P| − 1)!

m!
[fa(P)− fa(P \ n)] (26)

Where, ξn is the Shapley value for feature n
f is a ”black-box” model that needs explaining
a is an input datapoint545

a′ is the simplified data input
P is one of all possible subsets of feature set, considered as a coalition
m is the number of features in the dataset
Due to the fixed input size, commonly, the features of a model that are

omitted in the Eq.(26) are substituted with random input values from the550

background dataset. Looking at this formula, it can be seen that the total
possible subsets of an m-feature set used for interpretation is 2m, which leads
to the complexity of computing Shapley values being massive if m increase
more. Therefore, to deal with this issue without calculating all combinations,
Kernel SHAP [9] can be employed by sampling feature subsets and then555

fitting them into a linear regression model:

K(a) = γ0 + γ1a1 + γ2a2 + γ3a3 + ...γmam (27)

where, ai is a encoded feature and γi is the corresponding coefficient repre-
senting the contribution of the feature to the model, i = 1, 2, ...,m. In this
linear regression model, the variables ai are encoded according to the pres-
ence or absence of ones. Thanks to this, Sharply values can be approximated560

as the output values of the trained linear regressing model.
In this work, our FedeX architecture is applied with SHAP to account

for the impact level of features on the anomalies that are predicted from the
FedVAE-SVDD model, via their SHAP values. In this case, as depicted in
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Fig. 3, the Kernel SHAP is fed in with the FedVAE-SVDD model and the test565

data to construct a local linear regression explanation model and compute
the SHAP values. Subsequently, the explanatory model computes the SHAP
value of classified anomalies and displays them visually. As feature values
are measured by sensors, by using this explanation, operators or domain
engineers can easily determine the sensors likely causing the abnormality570

and make a faster detection response.

Figure 3: FedVAE-SVDD phase

4. Performance Evaluation

In this section, we evaluate the FedeX architecture in various aspects.
From the detection performance perspective, the FedVAE-SVDD learning
model is evaluated in comparison with different cutting-edge solutions for575

Anomaly detection in ICSs. The resource requirement of FedVAE-SVDD
over the embedded edge device is also taken into account. Moreover, the
results of using the XAI-SHAP technique to interpret the prediction results
of FedVAE-SVDD are also described with the main case study in a SCADA
liquid storage infrastructure dataset [27].580

4.1. Experiment Setup

For the evaluation, we implement FedeX in a small-scale IoT testbed
including:
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• 4 Raspberry-Pi-4-Model-B kits acting as edge devices; Raspberry-Pi-4
equipped with quad-core 1.5 GHz ARM Cortex-A72 processor and 4585

GB RAM with 32-bit Raspbian OS

• 01 Dell Precision 3640 Tower Workstation serves as Cloud Server; the
workstation with Intel Core i710700K 3.8 GHz (up to 5.1 GHz), 16 GB
RAM, working on Linux operating system.

• All edge devices and the Cloud Server are connected by a router through590

a WIFI interface

At the edge devices (i.e. Raspberry-Pi-4), we implement our FedeX frame-
work in Python 3 with the Tensorflow 2 platform, which is built with the
support of the FL framework - FedML[28]. In the FedeX architecture, the
edge devices and cloud server exchange the weights and bias matrix of the595

VAE model using the standardized MQTT protocol for an IoT environment
[29]. EMQ X Broker (2021) is hosted on the cloud server as an MQTT broker
for better long-term performance. We discover EMQ X Broker as the most
scalable open-source broker that could accept more advantageous devices
linked to the server.600

4.2. A Case Study for ICSs

In our main case study, we consider the SCADA liquid storage infrastruc-
ture dataset [27], which simulates a fuel storage system supplying an auto-
mated production line monitored by an ICS system. The high-level overview
of the testbed system is shown in Fig. 4.605
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Figure 4: High level architecture of the SCADA liquid storage infrastructure system.

As depicted in Fig 4, the system is composed of the main tank and sec-
ondary tank with a capacity of 9 and 7 liters, respectively. Data is collected
by connecting the sensors to a PLC; four discrete sensors in the main tank
(i.e., IN0, IN1, IN2, IN3) and one in the secondary tank (i.e., R4) are used
to measure the level of fuel in tanks. Besides, pump1 and pump2 control the610

flow of fuel between two tanks, it is also connected with two sensors (i.e., PP,
PG). PLC registers 2 through 4 provided output data defining the system’s
state used to analyze the data obtained and register 2 provides the bits that
indicate the discrete sensors’ binary status. To extract the state of each sen-
sor separately, a population count can be performed on the register. Register615

3 holds the pump’s active or inactive state, whereas Register 4 holds the ul-
trasound sensors’ step value from 0 to 10,000. (e.g. Step 3,000 represents 2.1
liters of liquid in the tank).

As described in [27], the data set consists of 14 distinct scenarios. Each
scenario includes one of 5 operational situations (such as sabotage, break-620

down, accident, or cyber-attack) as well as six affected components. Affected
components are those parts of the system that are directly impacted by the
abnormality.

The data set has 10 features, and we use the normal data to perform the
training model for all scenarios. In order to simulate the 4 distributed zones,625

we split the original data set into 4 independent subsets, each of which is used
for local training corresponding to each of the 4 edge devices. After that,
a test set containing both normal and abnormal data is utilized to evaluate
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the model performance. Accordingly, the proportion of the training set and
test set in the whole data set is 0.7 and 0.3, respectively.630

4.3. FedeX Performance Evaluation

4.3.1. Detection Capability

As aforementioned, in our FedeX testbed, we set up 4 distributed edge
zones. To evaluate the detection performance of the FedVAE-SVDD model,
the common detection metrics such as F1 score, Accuracy, Recall, Precision635

are measured in various testing scenarios:

• Scenario 1: FedVAE-SVDD versus its centralized counterpart in our
main case study of ICS (i.e. the SCADA liquid storage infrastructure
dataset [27])

• Scenario 2: FedVAE-SVDD and its centralized counterpart versus other640

previously proposed AD solutions in our main case study of ICS and
different SCADA datasets.

As elaborated above, the SVDD model is used to determine the optimal
detection threshold for the FedVAE model depending on each different train-
ing dataset, in order to achieve good detection performance. Here, we use the645

Laplacian kernel as default to calculate the kernel distance. Any loss value
greater than this threshold is considered an outlier. In our experiments, the
optimal thresholds found for 4 distributed zones: Zone 1, Zone 2, Zone 3,
and Zone 4 are 0.11, 0.09, 0.09, and 0.09 respectively.

650

Scenario 1: FedVAE-SVDD vs. its centralized VAE-SVDD over
our main case study of a non-time series SCADA dataset

In this scenario, we measure the detection performance of our FedVAE-
SVDD solution with the Centralized VAE-SVDD in which the training pro-655

cess is supposed to be carried out at the Central Cloud. Since the learning
model converges after 3 communication rounds, the results retrieved after
the rounds are shown in Table. 1.

In fact, in the context of seeking a detection scheme in a distributed
manner that can provide a fast system response upon attacks or anomalies,660

and can work lightweight to cope with the limited computing capacity of edge
devices in an IoT environment, we always have to think about the trade-off
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Table 1: FedVAE-SVDD performance measured in 4 zones vs. Centralized VAE-SVDD
over the SCADA liquid storage infrastructure dataset [27]

Zone 1 Zone 2 Zone 3 Zone 4 Centralized
Threshold 0.11 0.09 0.09 0.09 0.26
Accuracy 1 0.9587 0.9992 0.9210 0.9017
Precision 1 0.9237 0.9985 0.864 0.9059
Recall 1 1 1 0.999 0.9806
F1 1 0.96 0.9992 0.9269 0.9418
AUC 1 1 1 0.92 0.9

with detection performance which is supposed to be slightly lower than the
detection performance of the centralized monitoring and training manner.

However, as we can see, in our ICS main case study, the hybrid FedVAE-665

SVDD solution even outperforms the Centralized learning manner. It can be
explained that Federated learning offers the improvement of generalizability
of the VAE-SVDD model through the collaboration of multiple edge devices
by taking advantage of separate data sources when compared to a single
global model under data heterogeneity. FL eliminates a single point of failure670

due to its distributed nature. This can be considered as an advantage of
Decentralized Learning, so the results when comparing our model with the
Centralized learning method are slightly higher.

Considering the performance of FedVAE-SVDD only, we can see that all
detection metrics are very good. Only Precision in Zone 4 gets a bit low at675

0.864. However, in a smart factory, even the smallest abnormal incident can
adversely affect the entire factory. So in general, we need to avoid discarding
anomalies (i.e. Recall is important) and accept that sometimes the model
can miss detecting a normal sample to be abnormal (i.e. Precision). Because
engineers can easily test it and then operate the factory properly. Therefore,680

the Recall results of our model prove that this model can be a very good
candidate to be deployed in a smart factory.

Scenario 2: FedVAE-SVDD vs. other Anomaly detection solu-685

tions over different SCADA data sets
First of all, as the main case study of our detection design, we compare

the performance of FedVAE-SVDD with the results of other AD solutions
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for ICSs found by a recent research work [8] who work in the same ICS con-
text (i.e the same SCADA liquid storage infrastructure data set [27]). The690

results can be seen in Table. 2 in which our FedVAE-SVDD detection so-
lution is shown to outperform other machine-learning algorithms LR, LDA,
KNN, CART, NB, SVM in all metrics (i.e. Accuracy, Precision, Recall, and
F1-Score). Even its centralized counterpart (i.e the centralized VAE-SVDD)
performs better than those ones, which shows that this learning model is suit-695

able for such a case study. Note that the detection results of our proposed
solution are retrieved after 3 communication rounds as the convergence point
of the learning model.

Table 2: Our proposal vs. other anomaly detection solutions over the SCADA liquid
storage dataset

Learning model Accuracy Precision Recall F1-Score
LR 0.87 0.78 0.51 0.49
LDA 0.88 0.87 0.53 0.53
KNN 0.91 0.85 0.7 0.75
CART 0.94 0.86 0.86 0.86
NB 0.67 0.63 0.80 0.60
SVM 0.91 0.90 0.68 0.74
Centralized VAE-SVDD 0.9017 0.9059 0.9806 0.9418
FedVAE-SVDD @ Zone 1 1 1 1 1
FedVAE-SVDD @ Zone 2 0.9587 0.9237 1 0.96
FedVAE-SVDD @ Zone 3 0.9992 0.9985 1 0.9992
FedVAE-SVDD @ Zone 4 0.9210 0.864 0.999 0.9269

In the extended experiments, we run our FedVAE-SVDD model and the700

centralized VAE-SVDD model over the SWaT dataset [30] which is the case
study of several other researches such as LAD-ADS [10], MADICS [12], and
1D CNN ensembled attacks [13]. As it can be seen in Table. 3, since SWaT
represents a data type that is not purely time-series, therefore similar to the
case of SCADA liquid storage dataset, FedVAE-SVDD and its centralized705

counterparts (VAE-SVDD) perform quite well in comparison with LAD-ADS
[10], MADICS [12], and 1D CNN ensembled attacks [13] in terms of Recall
and F1-score. In the FL-manner, the detection model FedVAE-SVDD pro-
vides higher detection performance which is varied from one zone to another
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one depending on the local data of each zone.710

Again, let us note that Recall and F1-score are the 2 important metrics
for ICSs. In the case of imbalanced datasets like these considered datasets in
which the number of abnormal samples is so much different from the number
of normal samples, a good F1-score figure is necessary.

Table 3: Our proposal vs. other anomaly detection solutions over the SWaT dataset

Learning model Accuracy Precision Recall F1-Score
LAD-ADS[10] N.A 0.939 0.891 0.914
MADICS[12] 0.9659 0.984 0.75 0.851
1D CNN ensembled attacks[13] N.A 1.0 0.853 0.920
1 FedVAE-SVDD @Zone 1 0.942 0.942 0.9999 0.97
FedVAE-SVDD @Zone 2 0.9727 0.9718 1 0.9857
FedVAE-SVDD @Zone 3 0.9427 0.9427 1 0.9705
FedVAE-SVDD @Zone 4 0.9433 0.9433 1 0.9708
Centralized VAE-SVDD 0.9725 0.9751 0.9962 0.9855

4.3.2. Explainable AI - SHAP715

Although the above results demonstrate that FedeX achieves good anomaly
detection performance, we want to investigate the reasons why they are pre-
dicted so. Since our case study is based on the data set gathered in a liquid
storage infrastructure [27] as described in Section 4.2, we expect that FedeX
could support domain engineers quickly and visually in finding and checking720

abnormal behavior of those sensors or actuators . Therefore, SHAP is em-
ployed to identify how features contribute to the anomalies predicted by the
FedVAE-SVDD model. Thanks to this, decisions and priorities in checking
and maintaining systems can be made effectively, allowing operators to save
more time.725

From a practical perspective, anomalies can arise from various threats
such as accidents, sabotage, breakdown, and cyber-attack. This promotes
us to perform two explanation scenarios, where SHAP is employed to ex-
plain two sets, corresponding to two different intervals, drawn randomly
from anomalous samples predicted in the test set at Zone 1. The results730

of both scenarios are visualized in Fig.5, a summary plot for the distribution
of SHAP values over whole computed data points, pointing out the impor-
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tance of features through their impact. In the visualizations, the dots in each
feature correspond to the SHAP values of each data point, piling up to depict
density. The position on the x-axis is denoted by Shapley values and on the735

y-axis by features ordered as per importance. Besides, the value of features
from low to high is displayed by color gradation.

(a) Explanation for detected anomaly 1 (b) Explanation for detected anomaly 2

Figure 5: Summary plot of SHAP values

As characterized in Fig.5(a), we can observe that overwhelmingly, Slope
and R4 are critical features, while the other features do not contribute to the
anomaly. Consequentially, it can be inferred that the ultrasound sensor which740

measures the physical values of the R4 and Slope feature may break down.
This incident can come from some weather factors like humidity. Therefore,
by checking the ultrasound sensor quickly, domain engineers can make rea-
sonable solutions, without verifying other physical components in the system.
On the other hand, if the sensor still works properly, i.e false alarm occurs,745

the operator can consider retraining the model for higher anomaly detection
accuracy. For the remaining scenario, Fig.5(b) shows that IN3 is the most
crucial feature, while Slope, IN2, R4, and IN1 have a remarkable influence.
Based on these signs, as an engineer, we could determine that the anomaly
is most likely to arise from sabotage impacting physical components such750

as the discrete sensors in the main tank and the ultrasound sensor, thereby
prioritizing checking them.

In both of these scenarios, SHAP suggests that the R4 feature has a
significant impact on predicted anomalies, similar to the analyses mentioned
in a SCADA dataset research [31]. The authors confirm that the ultrasound755

sensor badly affects most of the abnormal scenarios in the dataset and the
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value of R4 measured by this sensor is most significant. Accordingly, it
can be seen that our XAI-based explanatory solution is capable of precisely
identifying the primary cause related to the anomaly in reality.

In conclusion, based on these positive findings, we would like to make760

some comments and recommendations. Firstly, our scheme can make a com-
prehensive explanation for detected anomalies, boosting the reliability of
FedeX. Besides, if there are the occurrence of unknown threats, FedeX will
still support operators to determine affected physical components and come
up with timely responses rather than inspecting the entire system. This issue765

may not be solved by other multi-class classification-based anomaly detection
solutions. Furthermore, based on data records, we recommend that domain
engineers should run SHAP periodically, for example, once per week, to check
and schedule system maintenance depending on attack types, or to retrain
the model for higher detection performance.770

4.3.3. Edge Computing Capacity

Deploying a learning model at the edge is challenging due to limited ca-
pacity of those embedded devices. Therefore, to get insight into the efficiency
and feasibility of the FedeX architecture, we conduct a few experiments for
the FedVAE-SVDD training phase to evaluate the edge performance during775

the training, based on some metrics such as: power consumption, CPU usage,
memory usage, and model running time.

30



Figure 6: Power consumption of an edge device in one communication round

• Power consumption: Fig.6 illustrates the consumed power level dur-
ing the FedVAE-SVDD training process in one communication round
at an edge device (i.e the Raspberry-Pi-4), comprising two successive780

phases, namely FedVAE and SVDD. The measurement shows that the
power consumption ranges from under 3500 mW to 6000 mW in the
whole training process. Power consumption at the SVDD phase fluctu-
ates strongly and is much higher than the FedVAE phase. As a result,
to develop FedeX in IoT industrial systems, the edge devices should785

load the power consumption of the range from 5000 to 6000 mW on
average to afford the worst case. These real-world metrics give us a
better idea of how deploying distributed machine learning models on
edge devices will consume more energy for that computation.
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Figure 7: CPU usage of an edge device in one communication round

• CPU usage: Fig.7 shows the proportion of CPU usage during the790

FedVAE-SVDD process in one communication round at the edge device.
It is conspicuous that the running time in the whole process is very fast,
but in the worst case, the SVDD phase accounts for 100% of the CPU
usage while this ratio of the FedVAE phase is just over 20%. Based on
these findings, we would like to make a few recommendations. Firstly,795

in reality, with a runtime of only 70 seconds, the threshold update
process in the SVDD phase can be retrained during system maintenance
time or the night on schedule, rather than implemented on a real-time
scale (i.e minutes or seconds scale). Thanks to this, other services
would not be interrupted on the edge device every update time. From800

another perspective, these findings seem to be an acceptable trade-
off between the running time for high detection performance and the
hardware resource. Furthermore, it is possible to consider upgrading to
edge hardware devices with higher processing capacity than Raspberry-
Pi-4. With more powerful edge hardware, the FedVAE-SVDD model805

will be the effective detection model for such a factory.
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Figure 8: Memory usage of an edge device in one communication round

• Memory usage: In the same experimental setup with the power mea-
surement, the percentage of memory usage in the VAE-SVDD phase
at an edge device is demonstrated in Fig.8. Obviously, throughout the
period of 150 seconds of the VAE-SVDD training process with one com-810

munication round, the memory usage of the VAE and SVDD phase is
quite steady, with just over 9% and 14%, respectively. With these ra-
tios, it can be inferred that in the training process, the memory resource
is still available for other tasks.

• Model running time: Using deep learning to detect anomalies inside815

ICS is common worldwide, but we always have to face the fact that
training models take quite a long time to train with the whole data
set, even with smaller data sets from distributed zones. We have usu-
ally observed the computing running time on the scale of an hour or
a few hours; and those figures mean that the system should be only820

retrained periodically on the scale of an hour, day, or week, since it
can not capture any sudden change of traffic patterns in real-time. For
example, if IoT devices inside a factory are aging over time, resulting

33



in a change in the data set characteristic, we will need to wait until
the next period of the training model operation to retrain it again. In825

contrast to this setback, our outcomes in the testbed indicate that in
terms of time, Raspberry-Pi-4 takes relatively little total time of 150
seconds to run the FedVAE-SVDD model (with just about 70 and 80
seconds in the FedVAE phase and SVDD phase respectively) in each
communication round, whereas still ensuring the high detection per-830

formance depicted in Table.1. In our case study, it just needs to run
3 communication rounds for the training to converge and the detec-
tion results shown in the previous section are retrieved after 3 rounds.
Therefore, the FedVAE-SVDD model takes only roughly 450 seconds
(i.e 7.5 minutes) overall to produce such high detection performance.835

Basically, this shows that FedeX not only responds to anomalies in
real-time but also handles the running time problem in a trade-off for
a high performance described in a previous work [32], especially for the
smart factory scenario as presented in this paper.

5. Conclusion840

In this paper, we have elaborated our proposed hybrid model which com-
bines an effective and fast detection scheme based on VAE and SVDD with
the Federated-Learning technique that enables the hybrid model to perform
efficiently on the weak computing hardware of distributed edge devices in-
stalled in the IoT-based system of a Smart Factory. With the FL architecture845

design, the detection task is distributed to smaller local zones located in the
last premise of traffic senders. Therefore, anomalies or attacks can be quickly
identified and quarantined in each separate zones. This FL architecture also
helps to deal with Big Data created from a variety of devices inside a huge
smart Factory 4.0 of the future.850

In addition, this detection model stands out with a very fast training time
in the minute-time scale (i.e 7.5 minutes). In case IoT devices in a Factory
are aging, leading to changes of data patterns over time (i.e. concept drift),
FedeX still works well since it can be retrained quickly every 7.5 minutes.

Moreover, the scheme has been proved to achieve high anomaly detection855

metrics such as Accuracy, Precision, Recall, F1-score, especially in the con-
text of distributed training environment where the different edge of numerous
zones trains their own model from different datasets.
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In this paper, we also introduce XAI to help enhancing anomaly detec-
tion by interpreting how features contribute to the anomalies predicted by a860

”black-box” ML-based learning model. This way paves the way for engineers
to have a deeper outlook on checking the systems more effectively.

Acknowledgment

This work was supported by Hanoi University of Science and Technology
(HUST) under Project T2021-PC-010.865

References

[1] Y. Lu, X. Xu, L. Wang, Smart manufacturing process and system au-
tomation a critical review of the standards and envisioned scenarios,
Journal of Manufacturing Systems 56 (2020) 312–325.

[2] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari,870

H. Karimipour, A survey on internet of things security: Requirements,
challenges, and solutions, Internet of Things 14 (2021) 100129.

[3] N. Tuptuk, S. Hailes, Security of smart manufacturing systems, Journal
of Manufacturing Systems 47 (2018) 93–106.

[4] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi,875

M. Guizani, A survey on federated learning: The journey from cen-
tralized to distributed on-site learning and beyond, IEEE Internet of
Things Journal 8 (2021) 5476–5497.

[5] T. Miller, Explanation in artificial intelligence: Insights from the social
sciences, Artificial Intelligence 267 (2019) 1–38.880

[6] D. P. Kingma, M. Welling, Auto-encoding variational bayes (2014).

[7] D. M. J. Tax, A. Ypma, R. P. W. Duin, Support vector data description
applied to machine vibration analysis, 1999.

[8] G. E. I. Selim, E. E.-D. Hemdan, A. M. Shehata, N. A. El-Fishawy,
Anomaly events classification and detection system in critical industrial885

internet of things infrastructure using machine learning algorithms, Mul-
timedia Tools and Applications 80 (2021) 12619–12640.

35



[9] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model
predictions, in: Proceedings of the 31st international conference on
neural information processing systems, pp. 4768–4777.890

[10] T. K. Das, S. Adepu, J. Zhou, Anomaly detection in industrial control
systems using logical analysis of data, Computers & Security 96 (2020)
101935.

[11] H. R. Ghaeini, D. Antonioli, F. Brasser, A.-R. Sadeghi, N. O. Tippen-
hauer, State-aware anomaly detection for industrial control systems, in:895

Proceedings of the 33rd Annual ACM Symposium on Applied Comput-
ing, SAC ’18, Association for Computing Machinery, New York, NY,
USA, 2018, p. 16201628.

[12] . L. Perales Gmez, L. Fernndez Maim, A. Huertas Celdrn, F. J.
Garca Clemente, Madics: A methodology for anomaly detection in900

industrial control systems, Symmetry 12 (2020).

[13] M. Kravchik, A. Shabtai, Detecting cyber attacks in industrial control
systems using convolutional neural networks, in: Proceedings of the
2018 Workshop on Cyber-Physical Systems Security and PrivaCy, pp.
72–83.905

[14] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, M. C. Chan,
Gee: A gradient-based explainable variational autoencoder for network
anomaly detection, in: 2019 IEEE Conference on Communications and
Network Security (CNS), pp. 91–99.

[15] Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, M. S. Hos-910

sain, Deep anomaly detection for time-series data in industrial iot: A
communication-efficient on-device federated learning approach, IEEE
Internet of Things Journal 8 (2021) 6348–6358.

[16] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
G. Srivastava, Federated learning-based anomaly detection for iot secu-915

rity attacks, IEEE Internet of Things Journal (2021) 1–1.

[17] C.-P. Chang, W.-C. Hsu, I. Liao, Anomaly detection for industrial con-
trol systems using k-means and convolutional autoencoder, in: 2019
International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), pp. 1–6.920

36



[18] A. Al-Abassi, H. Karimipour, A. Dehghantanha, R. M. Parizi, An en-
semble deep learning-based cyber-attack detection in industrial control
system, IEEE Access 8 (2020) 83965–83973.

[19] K. Amarasinghe, K. Kenney, M. Manic, Toward explainable deep neural
network based anomaly detection, in: 2018 11th International Confer-925

ence on Human System Interaction (HSI), pp. 311–317.

[20] C. Hwang, T. Lee, E-sfd: Explainable sensor fault detection in the ics
anomaly detection system, IEEE Access 9 (2021) 140470–140486.

[21] D. M. J. Tax, A. Ypma, R. P. W. Duin, Pump failure detection using
support vector data descriptions, in: D. J. Hand, J. N. Kok, M. R.930

Berthold (Eds.), Advances in Intelligent Data Analysis, Third Inter-
national Symposium, IDA-99, Amsterdam, The Netherlands, August
1999, Proceedings, volume 1642 of Lecture Notes in Computer Science,
Springer, 1999, pp. 415–426.

[22] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,935

arXiv preprint arXiv:1412.6980 (2014).

[23] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch,
A. Smola, Input space versus feature space in kernel-based methods,
IEEE Transactions on Neural Networks 10 (1999) 1000–1017.

[24] M. T. Ribeiro, S. Singh, C. Guestrin, ”why should I trust you?”: Ex-940

plaining the predictions of any classifier, CoRR abs/1602.04938 (2016).

[25] A. Shrikumar, P. Greenside, A. Kundaje, Learning important fea-
tures through propagating activation differences, CoRR abs/1704.02685
(2017).

[26] L. A. Petrosyan, N. A. Zenkevich, Game theory (second edition), World945

Scientific Publishing Company, 2 edition, 2016.

[27] P. M. Laso, D. Brosset, J. Puentes, Dataset of anomalies and malicious
acts in a cyber-physical subsystem, Data in Brief 14 (2017) 186–191.

[28] G. Li, Y. Shen, P. Zhao, X. Lu, J. Liu, Y. Liu, S. C. Hoi, Detecting cy-
berattacks in industrial control systems using online learning algorithms,950

Neurocomputing 364 (2019) 338–348.

37



[29] R. A. Light, Mosquitto: server and client implementation of the mqtt
protocol, Journal of Open Source Software 2 (2017) 265.

[30] J. Goh, S. Adepu, K. N. Junejo, A. P. Mathur, A dataset to support
research in the design of secure water treatment systems, in: CRITIS.955

[31] H. Hindy, D. Brosset, E. Bayne, A. Seeam, X. Bellekens, Improving siem
for critical scada water infrastructures using machine learning, Lecture
Notes in Computer Science (2019) 319.

[32] T. T. Huong, T. P. Bac, D. M. Long, T. D. Luong, N. M. Dan, L. A.
Quang, L. T. Cong, B. D. Thang, K. P. Tran, Detecting cyberattacks960

using anomaly detection in industrial control systems: A federated learn-
ing approach, Computers in Industry 132 (2021) 103509.

38


