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Light-Weight Federated Learning-based Anomaly

Detection for Time-Series data in Industrial Control

Systems

Abstract

With the emergence of the Industrial Internet of Things (IIoT), potential
threats to smart manufacturing systems are increasingly becoming challeng-
ing, causing severe damage to production operations and vital industrial
assets, even sensitive information. Hence, detecting irregularities for time-
series data in industrial control systems that should operate continually is
critical, ensuring security and minimizing maintenance costs. In this study,
with the hybrid design of Federated learning, Autoencoder, Transformer, and
Fourier mixing sublayer, we propose a robust distributed anomaly detection
architecture that works more accurately than several most recent anomaly
detection solutions within the ICS contexts, whilst being fast learning in
minute time scale. This distributed architecture is also proven to achieve
lightweight, consume little CPU and memory usage, have low communica-
tion costs in terms of bandwidth consumption, which makes it feasible to be
deployed on top of edge devices with limited computing capacity.

Keywords: Anomaly detection, ICS, Federated Learning, Autoencoder,
Transformer, Fourier

1. Introduction1

Industrial control systems (ICS) [1] refers to many types of control sys-2

tems and related instruments, which comprise devices, systems, networks,3

and controls used to operate and automate industrial processes. ICS devices4

and protocols are now deployed in every industrial sector and vital infrastruc-5

ture, including manufacturing, transportation, energy, gas pipelines, water6

treatment, and so on. Since an ICS architecture contains valuable infor-7

mation that can affect the performance of the whole industry, it becomes a8
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significant target for attacks from a variety of threats. Therefore, it is cru-9

cial to maintain a close eye on these systems’ behavior for attack events by10

using anomaly detection-based techniques. Moreover, threats are becoming11

more complex, thus an anomaly detection solution that can promptly and12

correctly identify attacks whilst being light-weight enough to be implemented13

on devices with low computing capabilities in IoT-based industrial control14

systems is required.15

Various anomaly detection methods for time-series data in the ICS con-16

text have been proposed, such as RNN [2], LSTM [2], and GRU [3]. However,17

the performance of these sequence models still requires improvement. The18

primary problem with RNNs is that gradients are propagated over multiple19

stages, which tends to cause them to vanish or explode. For that reason,20

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have21

been widely adopted in time-series anomaly detection and have found partic-22

ular success. Nevertheless, these algorithms still suffer from their sequential23

nature, as with RNN and its variants. Being inherently sequential hinders24

parallelization within samples, which slows down the training and inference25

processes, especially with long sequences.26

To tackle those limitations, we propose to use a Transformer-based ap-27

proach for anomaly detection in this paper. Unlike the other existing sequence-28

to-sequence models, Transformer, which was initiated in [4] to solve NLP29

problems, does not employ Recurrent Networks. Instead, the Transformer30

model deploys an attention mechanism to extract dependency between each31

part of the incoming data simultaneously, thus making it very parallelizable.32

However, the attention mechanism usually requires high computation cost33

and large memory storage, so it might not be suitable for the distributed34

ICS contexts where distributed computing is handled at edge devices with35

limited hardware capacity. Hence, in our solution, we also make use of Au-36

toencoder (AE) to reduce the dimension of input data whilst still preserving37

the most vital information. In addition, the Transformer model’s running38

time is further sped up by replacing the attention layer in the Transformer39

block with a Discrete Fourier Transform (DFT) sublayer. By transforming40

the data from the time domain into the frequency domain, this Fourier trans-41

formation can capture the relationship between the input sequences similar42

to the attention mechanism [5]. DFT is a direct transformation that will43

result in a highly efficient and rapid approach since no learnable parame-44

ters are required. Besides, thanks to the implementation of the Fast Fourier45

Transform (FFT) algorithm, DFT reaches a substantially lower computa-46
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tional complexity of O(n log n), compared to O(n2) of the DFT calculation47

using the conventional matrix method.48

From another perspective, ICS is a distributed system containing multiple49

components located on different machines that communicate and coordinate50

actions to synchronize as a single coherent system. Therefore, in this paper,51

we design an overall Federated learning (FL)-based anomaly detection archi-52

tecture so called FATRAF. FL is one of the most promising and adaptive53

candidates for communication costs in a distributed environment. FATRAF54

is able to provide knowledge of other data patterns from other edge zones55

to each local model through a federated global model update. Furthermore,56

implementing anomaly detection tasks locally at each edge and federating57

those local models with FL improve the system response time upon attack58

arrivals since the detection model is conducted directly right at the edge,59

which is close to attack sources. The synchronization of the FL technique60

and an ML-based detection strategy aids in achieving both benefits of detec-61

tion effectiveness and light-weight computing.62

Overall, FATRAF brings the following advantages:63

1. A light-weight local learning model for anomaly detection in ICS based64

on a combination of Autoencoder - Transformer - Fourier to bring fast65

learning time and consume hardware resources reasonably. That makes66

FATRAF be feasibly implemented in practical distributed edge devices67

in an IoT-based ICS architecture.68

2. An unsupervised learning model based on normal data only, along69

with a dynamical-threshold-determining scheme named Kernel Quan-70

tile Estimation (KQE) [6] to tune the detection mechanism dynami-71

cally. Therefore, it is able to dynamically keep track of new anomalous72

patterns that may change over time in ICS, while yielding high de-73

tection performance for time-series data in industrial control systems,74

compared to state of the art solutions.75

3. A federated learning (FL) framework to enable efficient distributed76

anomaly detection near anomaly/attack sources. Hence the system77

response time upon attacks can be improved. Distributed or edge com-78

puting helps blocking an infected zone without affecting the common79

operation of the entire system, therefore enhancing production effi-80

ciency. FL allows the edge sites to share model information with each81

other, aiming to optimize anomaly detection performance globally. In82

practice, this solves the lack of training data in each edge site, especially83
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with multivariate and high-dimensional data sets.84

The rest of our paper is represented as follows: Section 2 describes state85

of the art in the field of anomaly detection for ICSs. Section 3 elaborates86

our design and integration of the whole solution - FATRAF - that yields87

an efficient detection performance whilst being light-weight, achieving faster88

training time and consuming fewer hardware resources. The performance89

evaluation and experiments are described in Section 4 in which we investi-90

gate the detection performance of FATRAF as well as its edge computing91

efficiency. Finally, conclusions are presented in Section 5.92

2. Related Work93

Anomaly detection has always been a critical issue in Smart Manufactur-94

ing (SM), which requires timely detection and accuracy. Solutions have been95

proposed to detect cyber attacks for ICS, such as [7], [8], [9],[10], and [11]. In96

[7], the authors performed an ensemble method using a deep neural network97

and decision tree for attack identification. The hybrid model can also ad-98

dress commonly-encountered issues with imbalanced massive data sets. The99

performance is evaluated over ICS data sets, and the model provides the100

accuracy of 99.67 % and 96.00 % on the SWaT [12] and gas pipeline data101

sets [13], respectively. However, the authors used all normal and attack data102

for the training process, resulting in higher accuracy but lack of adaptabil-103

ity when new attack patterns are employed. In the same direction of using104

supervised learning, work [8] proposed a measurement intrusion detection105

system approach to detect any common abnormal activity in an ICS system106

with the HAI data set [14]. They applied the well-known supervised learning107

algorithms such as K-Nearest Neighbour, Decision Tree, and Random Forest,108

with the last one having the best performance of 99.67%. However, the data109

in the ICS system is commonly in time series, and anomalous patterns change110

continuously. Although the performance is proven quite high, the model in111

[8] is incapable of extracting characteristics of time-series data; thus, the ac-112

tual performance may differ. Furthermore, as we reproduce their proposed113

method with the corresponding data set, we notice that the published classi-114

fication performance appears to have been calculated with a micro-averaging115

strategy, which is inappropriate in binary classification problems, especially116

when the correct detection of instances of minority class (i.e., anomaly class)117

is crucial to the overall operation. Therefore, contrary to the opinion pro-118

vided by work [8], we presume that using unsupervised training models with119
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normal data will be a more effective method in detecting attacks and adapt-120

ing to new abnormal behaviors. In addition, an anomaly detection frame-121

work with the combination of k-mean and convolutional neural network was122

proposed in work [10]. These techniques, however, do not provide optimal123

performance for time-series data. It can reach an accuracy of 95.53% and124

an F1-score of 89.08% with the gas pipeline data set, as the paper results125

show. In another aspect, work [9] combined some popular machine learn-126

ing methods such as 1D-CNN, Undercomplete Autoencoder, and Principal127

Component Analysis with short-time Fourier transformation, transforming128

time-domain signals into frequency representation to remove noise and han-129

dle slow attacks. Similar to work [10], the performance of these models has130

not been optimized with F1 scores of only 82 - 88% over the SwaT data set.131

Since ICS data is frequently in time series, it is reasonable to use sequence132

models such as Long Short-term Memory (LSTM) and Gated Recurrent Unit133

(GRU) to capture temporal relationships in data sequences. Nevertheless,134

these solutions still suffer from their sequential nature. Being inherently135

sequential hinders parallelization within samples, which slows down train-136

ing and inference processes, especially with long sequences. Therefore, work137

[15], [16], [17], and [18], for example, did not yield significant anomaly de-138

tection performance when employing LSTM and GRU for ICS time series139

data. In work [15], the author presented a data-driven predictive modeling140

approach for ICS systems. The models such as Recurrent Neural Network141

(RNN), LSTM, and GRU were used to detect anomalies. The best-achieved142

accuracy is 81.38% over the SCADA data set. To detect anomalies with de-143

centralized on-device data, work [16] presented a Federated Learning (FL)-144

based anomaly detection strategy for IoT networks based on the combina-145

tion of GRUs and LSTM. However, the proposed method’s performance is146

insufficient; the accuracy in each FL client reaches the highest performance147

of 95.5%. Work [17] provided a methodology called MADICS for Anomaly148

Detection in Industrial Control Systems using a semi-supervised anomaly de-149

tection paradigm. The performance of MADICS in terms of Recall is slightly150

low over its testing data sets. In work [18], the author proposed MAD-GAN151

to deal with the lack of labeled data using an supervised method - Genera-152

tive Adversarial Networks (GANs) and LSTM-RNN. This model considered153

correlation between the spatial and temporal characteristics of multivariate154

ICS data. However, the experimental results received over the SWaT and155

WADI data sets indicate no trade-off between the measures such as Preci-156

sion and Recall, while the F1-score remains low in general. Furthermore,157
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the authors of [18] did not account for the model training time, which is the158

major drawback of LSTM and GRU. Work [19] proposed a cyberattacks de-159

tection mechanism using the combination of Variational Autoencoder (VAE)160

and LSTM. Although the detection performance is considerably high, the161

model in [19] faces difficulty in terms of running time since the LSTM block162

requires a long training time. Liu et al. [20] presented an attention CNN-163

LSTM model within a FL framework for anomaly detection in IIoT edge164

devices. However, since ICS data usually contains multiple features (the165

Gas Pipeline and SWaT data sets have 17 and 51 features respectively), this166

complex design may necessitate more computation and training time.167

In order to tackle those shortcomings of the LSTM and GRU networks,168

Google launched a novel, fully promising architecture known as Transformer169

[4] in 2017, an encoder-decoder architecture based on an attention mechanism170

rather than RNN. Although initially evolved in the field of Natural Language171

Processing, this architecture has been deployed in various anomaly detection172

applications. As an example, the spacecraft anomaly detection research in173

[21] demonstrated that their transformer-encoder-based framework, with the174

adoption of the attention mechanism and the masking strategy, could con-175

serve time cost up to roughly 80% in comparison with LSTM, while only176

reaching an F1 score of 0.78 on the NASA telemetry data set. From our177

standpoint, this figure needs to be further ameliorated since the capture of178

all actual abnormalities should be prioritized, which aims to minimize the179

damage in the worst case. Similarly, by introducing an Anomaly-Attention180

mechanism so as to measure the association discrepancy between anomalous181

and normal samples, an unsupervised time series anomaly detection proposal182

called Anomaly Transformer in [22] shows considerable prediction capabil-183

ity over the service monitoring data set - Pooled Server Metrics (PSM).184

Nonetheless, regarding the application in industrial water treatment, that185

study achieves a modest F1 score of 94.07% and Recall of 96.73% on the186

SWaT data set, so further improvement is needed.187

With respect to anomaly detection problems in IoT contexts, we also find188

that the transformer-inspired solution in a recent work [23] brings remarkable189

performance. By leveraging a transformer encoder followed by a two-layer190

feed-forward neural network, the classifier deployed in [23] performs well on191

the Aposemat IoT-23 data set [24] with the best F1 score of 95%. Neverthe-192

less, as aforementioned, the performance of such a classifier becomes degraded193

when a new abnormal pattern or behavior arises since it is trained with both194

defined normal and abnormal observations (i.e, labeled samples). Meanwhile,195
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our proposed solution is trained with completely normal data, attempting to196

find non-conform patterns in the data during inference, which results in ef-197

fective anomaly detection performance, even with unknown abnormalities or198

attacks. Work [23], furthermore, lacks a comprehensive assessment in terms199

of runtime as well as feasibility on actual hardware devices if deployed in200

distributed ICS systems, which prompts us to conduct evaluation scenarios201

for our solution itself. Besides, to the best of our knowledge on the rele-202

vant studies, our transformer-based approach is considered at the forefront203

of anomaly detection deployment for ICS ecosystems.204

3. System Architecture Design205

3.1. System Architecture Overview206

In this paper, we propose an Anomaly Detection (AD) architecture207

for time-series data in Industrial Control Systems (ICSs) which provides a208

fast and efficient learning model combined with Federated learning for dis-209

tributed computing. The overall proposed architecture is named FATRAF210

(Federated Learning-based Autoencoder-Transformer-Fourier Anomaly De-211

tection). Our goal is to design an AD system that has a fast training time and212

is light weight to accommodate frequent learning update, while still either213

retaining the same or improving the detection performance in comparison214

with some existing AD solutions for ICSs in the literature.215

As illustrated in Figure 1, FATRAF comprises two main components:216

• Edge sites: In a factory, there are various manufacturing zones, in217

which sensor systems are installed to gather readings that signify op-218

erating states over time. Subsequently, the time-series data, as the219

local data, is transmitted wirelessly to an edge device in the vicinity of220

the corresponding manufacturing zone. Designated to monitor anoma-221

lies, these edge devices employ the local data as inputs for training222

its own local anomaly detection model - ATRAF (AE-Transformer-223

Fourier learning model). This deployment allows detecting anomalies224

timely right at the edge sites, making use of the computing capacity225

of edge devices, and distributing heavy computation tasks that could226

overload the cloud server.227

• Cloud Server: The cloud server undertakes two primary functions:228

system initialization and aggregation of local models sent from differ-229
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Figure 1: FATRAF Architecture

ent edges. The whole process of model aggregation and global model230

updating down to all local models are called Federated Learning.231

As Figure 2 depicts, the Federated learning process of FATRAF comprises232

the following key steps:233

1. System Initialization: At the beginning, the cloud server establishes234

a global model with specific learning parameters (i.e., the global FA-235

TRAF model), and sending it to each edge device of each corresponding236

edge site.237

2. Local Training: After receiving that initial configuration, by utilizing238

the on-site data collected from sensors, edge devices conduct a local239

training process. Accordingly, anomaly detection is deployed right at240

these edge sites, enabling fast and timely system response upon attacks.241

3. Local Model Update: After the local training, the edge devices send242

back the learned weights wkt+1 to the cloud server for aggregation.243

4. Model Aggregation: After deriving all trained weights wkt+1, the cloud244

server federates them and constructs a new global model version by the245

formula proposed by [25], as follows:246

wt+1 =
n∑
k=1

vk
v
wkt+1 (1)
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Where:247

n: the number of edge sites248

vk: amount of data of the kth edge site249

v: total amount of data of all edge sites250

wkt+1: weight of the local model at the kth edge site at time t+ 1251

wt+1: weight of the federated global model at time t+ 1.252

253

Although there are several proposals on the federated learning tech-254

nique to aggregate local models to a single global model such as [26,255

27], through our various experiments, the approach of federating local256

weights presented in Equation1 is still found to be the most efficient in257

terms of detection performance.258

5. Global Update: Finally, the cloud server broadcasts back the new con-259

figuration wt+1 to each edge device so as to update the local models. In260

the next learning rounds, this communication process will repeat from261

the second step in order to optimize the local models until the global262

learning model converges.263
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In the following sections, we will describe how the local anomaly detection264

module is designed and implemented to accelerate the learning speed, be265

more light-weight to adapt well to the limited computing capacity of edge266

hardware.267

3.2. Design of the ATRAF Detection Model at the Edge268

In the FATRAF architecture, the anomaly detection model deployed at269

each edge site is designed as the hybrid learning model of Auto Encoder270

(AE), Transformer, and Fourier - called ATRAF. The mission of this de-271

sign is to create a light-weight, low-computing, and fast-learning model that272

can yield high detection performance for time-series data, while still ensur-273

ing fast training time to cope with the requirement of frequently re-updating274

the learning model. This requirement comes from the fact that devices of a275

factory can be aging, or attack/anomaly behaviors could change over time.276

Therefore, in order to catch up with any new data pattern on time, the se-277

curity system has to keep learning and updating the learning model quite278

frequently. That leads to another requirement that any learning model de-279

ployed on those distributed edge devices with limited computing capacity280

should be light-weight to work fast and consume less computing resources.281

Overall, ATRAF is an unsupervised learning model that relies totally on282

normal data so as to attempt to detect abnormal patterns during inference,283

thereby enhancing anomaly detection performance. This suits the fact that284

novel abnormalities are unknown, or the data is not always labeled, thereby285

solving the limitation of some classifiers such as the recent transformer-based286

work [23] for IoT applications.287

As illustrated in Figure 3, the AE model has the advantage of capturing288

the distinct structural and temporal regularities of the data in each dis-289

tributed zone. The ability to capture data temporal regularities makes this290

model suitable for anomaly detection for time series data. In addition, AE291

is a good method to reduce the data dimensionality that results in a shorter292

learning time. It can be seen in Figure 3, we use the Autoencoder for the293

local training process and only the encoder part for the testing process. As294

the output of the AE Encoder block, compressed time-series data is then fed295

into the Transformer-Fourier block to estimate the long-term correlation of296

the data sequences and extract a distinguishable and meaningful criterion,297

which is used to determine irregularities in the data.298

Aiming to achieve high anomaly detection performance for time-series299

data and better running time, Transformer is used as a remedy for other300
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time-series approaches such as LSTM and GRU since the Transformer model301

processes sequences in parallel. In the Transformer-Fourier block, the train-302

ing process is significantly accelerated by comparing to, for example, that of303

recurrent neural networks such as LSTMs, while retaining or even improv-304

ing detection performance. This is due to the fact that the Transformer-305

Fourier model processes sequences in parallel, instead of sequentially. The306

Transformer-Fourier block consists of a Transformer encoder layer followed by307

a Fourier layer (specifically a Fourier Transform with a position-wise feed-308

forward network). The Fourier layer has a lighter memory footprint since309

it replaces the self-attention sublayer in the Transformer encoder with an310

unparameterized Fourier transform sublayer. Furthermore, the Transformer-311

Fourier block proves to be more efficient than the Transformer encoder with312

the same number of layers, since it maintains the same level of performance313

as the Transformer encoder while shortening the training process, making it314

well-suited for resource-constrained edge devices. This statement is demon-315

strated through our experiments in Section 4.316

In the following sections, we will describe in detail the implementation of317

the ATRAF model.318

3.2.1. Design of the Autoencoder Block319

Autoencoder (AE) is a symmetrical, unsupervised neural network with320

a ”bottleneck” in the central hidden layer, which has fewer nodes than the321
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input and output layers. It is trained to reconstruct the output as closely322

as possible to the input. After this process, the network has learned to323

compress the data into a lower-dimensional code and rebuild the input from324

it. Generally, an AE consists of 3 components:325

• Encoder: An encoder is a feed-forward, fully connected neural network326

that compresses the input into a lower-dimensional code.327

• Code: Code, also known as the latent-space representation, is a com-328

pact ”summary” or ”compression” of the input. This code keeps the329

most essential information of the input while employing fewer features.330

• Decoder: Decoder is also a feed-forward network and has a similar331

structure to the encoder. This network is in charge of reconstructing332

the input back to the original dimensions from the code.333

In our design, the AE block is first trained locally at the edge devices334

for a number of epochs. After that, the decoder part is discarded while the335

encoder part is kept for compressing the input into a lower-dimensional code.336

We construct the encoder and decoder with only two fully-connected hidden337

layers each. The goal of this approach is to accomplish the simplicity and338

light-weight of the model, allowing it to be trained on edge devices with339

limited computing capacity, as well as to reduce communication costs while340

still providing sufficient detection performance. AEs, in particular, learn a341

map from the input to themselves via a pair of encoding and decoding stages.342

X = Decoder(Encoder(X))

Where:343

X and X are the input and output of AE344

• Input X = {x1, x2, . . . , xN}, where X ⊂ RD, is divided into k non-345

overlapping sequences {s1, s2, . . . sk} where si = {x(i−1)Lae+1, . . . , xiLae}346

is a sequence of length Lae.347

• These sequences are then used to train the local AE model. After348

the training process, the sequences are fed through the AE model’s349

encoder, producing compressed code sequences {c1, c2, . . . , ck} where350

ci = {ci,1, ci,2, . . . , ci,Ltf
} with Ltf ≤ Lae.351
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Figure 4: Autoencoder Configuration

In order to reduce the computation cost as well as improve the detec-352

tion performance, the length of the input sequence Lae, the code sequence353

Ltf of the AE model are chosen through a pragmatic process of different354

configurations of Lae and Ltf in order to achieve a good F1-score.355

By fixing parameter Lae at a time while varying Ltf , we found that the356

detection performance (i.e., F1 score) as well as the training time increases357

as Lae increases and decreases with the ratio Lae

Ltf
.358

3.2.2. Design of the Transformer-Fourier Block359

In order to overcome the problem of sequential computing and take ad-360

vantage of GPU parallel computing to speed up the learning process, the361

attention mechanism was adopted to capture long-term dependencies.362

In this paper, a design of the Transformer with the mixing Fourier Trans-363

form sublayer is proposed as a learning model that only relies on an at-364

tention mechanism to draw temporal dependencies in sequences. To speed365

up the Transformer encoder architecture, the unparameterized simple linear366

Fourier Transformation is integrated to replace the self-attention sublayer of367

the Transformer encoder. This linear mixing sublayer was proven to work368

efficiently in terms of learning speeds, especially at long input lengths [5].369

The hybrid model of Transformer and Fourier transform mixing sublayer370

can provide a smaller memory footprint and faster runtime than an all-371
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attention-sublayer Transformer on GPU. As a result, it is much more suitable372

for resource-constrained edge devices. The operations of the Transformer-373

Fourier block in Figure 5 can be described as follows:374

𝒄 ሶ𝒊

Positional
Encoding

Add &
Norm

Add &
Norm

𝒄′ ሶ𝒊

Add &
Norm

Add &
Norm𝒄′′ ሶ𝒊

Masked self-attention block Position-wise 
Feedforward block

Fourier block

Transformer layer

Fourier Transform layer

Position-wise 
Feedforward block

Figure 5: The Transformer-Fourier block

• Each output code sequence ci of the local AE models are passed through375

the Positional Encoding layer, which injects relative positional infor-376

mation into the sequences. Since the sequences are processed in par-377

allel, we need to ensure that the model is able to differentiate be-378

tween the positions in the code sequences. In this paper, we add379

the sine and cosine encodings of variable frequencies to each sequence380

ci = {ci,1, ci,2, . . . , ci,Ltf
}.381

PEp,2i = sin(
p

10
8i

dhidden

) (2)

382

PEp,2i+1 = cos(
p

10
8i

dhidden

) (3)

where p is the position, i is the dimension index and dhidden is the size383

of the code sequences’ hidden dimension.384

• A contiguous sub-sequence from index ml to mu (as illustrated in Fig-385

ure 3) in each resultant sequence is blocked from the Transformer en-386

coder (by assigning the respective score in the self-attention matrix387
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to minus infinity). The Transformer encoder block consists of a Self-388

Attention sublayer, followed by a Position-wise Feed Forward sublayer.389

The Transformer encoder can learn the inter-position dependencies of390

the non-blocked portions of the input sequences, producing an embed-391

ding c′i = {c′i,1, c′i,2, . . . c′i,Ltf
} of the same dimensionality as the input392

sequence ci.393

• This embedding c′i is then fed into the Fourier Transform layer. The394

Self-Attention sublayer of the Transformer encoder is replaced with395

an unparameterized Fourier sublayer. The Fourier sublayer applies396

two 1-dimensional Discrete Fourier Transforms along the hidden di-397

mension and the sequence dimension of the sublayer’s input and takes398

the real part of the result, i.e., <(Fhidden(Fsequence(c
′
i)). The unpa-399

rameterized Fourier transform is a relatively effective and light-weight400

mixing method and is able to retain 92-97% the performance of a Trans-401

former encoder while only taking 20% the training time [5]. The out-402

put of the Fourier transform layer is a reconstructed sequence of the403

input sequence ci which is denoted c′′i = {c′′i,1, c′′i,2, . . . c′′i,Ltf
}. The re-404

construction errors are calculated between the masked sub-sequence405

of ci, i.e., bi = {ci,ml, . . . , ci,mu} and the corresponding reconstructed406

sub-sequence b′′i = {c′′i,ml, . . . , c′′i,mu} as demonstrated in Figure 3.407

Ei = ‖bi − b′′i ‖2 (4)

• An anomaly threshold λTh is determined by the Kernel Quantile Esti-408

mation (KQE) technique [6] that is used on the reconstruction errors409

to classify the input sequence si = {x(i−1)Lae+1, . . . , xiLae}. Without410

loss of generality, assume that E1 ≤ E2 ≤ . . . ≤ Ek. The anomaly411

threshold is determined by412

λTh =
k∑
i=1

[∫ i
k

i−1
k

1

h
K(

t− q
h

)dt

]
Ei (5)

Where K is the density function, chosen as the standard Gaussian413

kernel K(x) = 1√
2π

exp(−x2

2
); the asymptotically optimized bandwidth414

h =
√

p(1−q)
k+1

controls the estimator’s smoothness, and q (0 < q < 1) is415

the preset value.416
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4. Experiments and Evaluation417

In this section, we focus on evaluating the performance of FATRAF in418

terms of detection performance in different scenarios as well as the imple-419

mentation feasibility in the Edge Computing environment.420

First, we briefly introduce different time-series data sets in our exper-421

iments and the data preprocessing. Second, we also describe our testbed422

settings and tools. Finally, anomaly detection performance and edge com-423

puting efficiency will be studied throughout our experiments.424

4.1. Data Sets and Pre-processing425

In this study, we take the data sets presented in Table 1 as the main ICS426

use cases. In addition, to cross validate our solution detection performance427

in diverse contexts, we utilize other time-series data sets of disparate areas428

as listed in Table 2. In our experiments, we compare the performance with429

some mostly up-to-date reference anomaly detection solutions for ICS that430

run on top of some other time-series or non-purely time-series data sets.431

In fact, all data sets need to be pre-processed before being fed into the432

ATRAF learning model. As for the SCADA Gas Pipeline data set, it initially433

carries many missing values (i.e., ”?” values) throughout the entire data set.434

To deal with this problem, we make use of the Last Observation Carried435

Forward (LOCF) method [30], which uses the immediately previous value436

within the same field to substitute the missing values. In the case of the437

SWaT and HAI data sets, as their raw data sets contain many correlated438

features, using all of them in our proposed learning model will increase the439

computational burden considerably, resulting in exceptionally long training440

time. For that reason, we perform feature selection to reduce the number of441

features presented in each data point by investigating the correlation between442

them: features with high correlation are removed; features with zero variance443

are discarded.444

Finally, all data sets should be normalized to have all processed features to445

be in the same scale between 0 and 1 according to the min-max normalization446

described in Equation 6:447

x′i =
xi − xmin
xmax − xmin

(6)

where xi, x
′
i are before and after values of the feature. xmax, xmin are the448

maximum and minimum values of that feature.449
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Table 1: List of the data sets used for main use cases

Data sets Description
Gas Pipeline [13] Time-series data set was collected in 2015 from the Su-

pervisory Control and Data Acquisition (SCADA) gas
pipeline system by Mississippi State University Lab.
Each data point has 17 features, containing network
information as well as a payload which gives details
about the gas pipeline’s state and settings.

SWaT [12] Secure Water Treatment, launched in 2015, is the
data set collected from a scaled down water treat-
ment plant. Being applied in secure Cyber Physical
Systems research, SWaT collects the plant’s continu-
ous operation data in 11 days, in which 7 days of nor-
mal activities and 4 days under attacks. Each sample
the SWaT data set contains 51 features from different
sensors and actuators.

HAI [14] HIL-based Augmented ICS data set stemmed from a
practical ICS testbed augmented with a Hardware-
In-the-Loop (HIL) simulator, introduced for ICS
anomaly detection research. The testbed aims to em-
ulate steam-turbine power and pumped-storage hy-
dropower generation. Initially published in 2020, the
time-series data set includes 59 features recorded un-
der normal and abnormal (in case of attacks or system
failures) behaviors.

Power Demand
[28]

Univariate time-series data set, including 1-year-long
power consumption readings of a Dutch research fa-
cility in 1997.
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Table 2: List of the data sets used for cross validation

Data sets Description
ECGs [28] Time-series of the heartbeat electrical signals
Respiration [28] Measurements of patient’s respiration when waking

up by thorax extension
Gesture [28] 2-feature data set indicates the right hand’s coordi-

nates while performing different actions
Space shuttle [28] Solenoid current’s measurements of a Marotta MPV-

41 series valve cycled on and off
NYC taxi [29] Information on New York taxi passenger data stream

(Jul 2014 - Jun 2015)

4.2. Testbed Setup and Implementation450

In our experiments, the ATRAF learning model is implemented in two451

learning modes: Centralized Learning and Federated Learning. As the whole452

FATRAF architecture is designed to be light-weight, parallel computing of453

the ATRAF detection model should be leveraged. Therefore, the training454

and inference tasks are implemented in GPU-equipped devices.455

456

In the Centralized-learning mode, the experiment is conducted using:457

• a Dell Precision 3640 Tower workstation featuring an NVIDIA Quadro458

P2200 GPU and an Intel Core i7-10700K CPU with 16GB RAM.459

In Federated-learning mode, the expriment is conducted using:460

• 4 NVIDIA Jetson Nano B01 boards to emulate 4 edge devices (standing461

for 4 different distributed zones). Local learning models are trained462

with local data subsets at each edge.463

• A ThinkSystem SR550 (Intel Xeon Silver 4210, 64GB RAM) to serve464

as the Cloud Server for aggregation tasks (i.e., Federated learning).465

• WiFi interfaces for the edges and the Cloud to communicate their466

weight matrices via the MQTT protocol. MQTT is proven to be a467

light-weight, reliable and scalable protocol for IoT networks. For this468
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purpose, the open-source EMQ X Broker is hosted in the Aggregation469

Server.470

For the performance measurement purposes, some tools are used as follows:471

• Tool bmon [31] is used to measure bandwidth occupation in each link472

between the Edge–Server link in the Federated Learning–based archi-473

tecture.474

• Built-in utility tegrastats keeps track of computational resources usage475

as well as energy consumption on edge devices during training and476

testing tasks. This program extracts real-time information about the477

usage of CPU, RAM, GPU, and the energy consumption of the NVIDIA478

Jetson Nano board.479

The implementation of the ATRAF model is written in Python 3.8.10 us-480

ing the PyTorch framework (release 1.9.0). We also leverage FedML [32]481

framework to realize the Federated Learning setting.482

4.3. Performance Evaluation483

4.3.1. Detection Performance Evaluation484

To assess the detection performance of FATRAF, some common standard485

metrics are used such as Precision, Recall and F1-Score. The definition of486

these metrics are defined as follows:487

488

Precision = TP
TP+FP

489

490

Recall = TP
TP+FN

491

492

F1− Score = 2× Precision×Recall
Precision+Recall

493

494

where:495

• TP : True Positive represents samples which are correctly classified as496

positive class.497

• TN : True Negative represents samples which are correctly classified as498

negative class.499

• FP : False Positive represents samples which are incorrectly classified500

as positive class.501

19



• FN : False Negative represents samples which are incorrectly classified502

as negative class.503

To calculate the performance metrics in our experiments, we apply the504

simple point-adjust approach proposed in [33], which assumes it is adequate505

to trigger a malfunction or attack alert within any subset of an anomaly506

window. As we detect anomalies in windows of time-series data points, a507

full window is viewed as anomalies in the ground truth label if it contains at508

least one anomalous point. When the model detects any part of this window509

as anomalous, the whole window is also considered as correctly detected as510

anomalies.511

It is also noted that during the evaluation process, we prioritize Recall512

and overall F1-Score metric over Precision. This priority can be explained513

that in real-life scenarios, detecting all actual attacks and malfunctions in514

the system is often more critical. The cost of the system operator in case515

of being attacked is too high; thus, a small number of false alarms is tolerable.516

517

Experiment 1 - Federated Learning vs. Centralized learning518

519

At first, in this experiment, we will compare the detection performance520

of FATRAF with its centralized computing mode (i.e. implementing the521

ATRAF learning model in the centralized cloud mode). Table 3 illustrates522

the performance of the two modes over the 4 time-series data sets of ICSs523

such as Power Demand, HAI, SWaT, and Gas Pipeline data sets. The detec-524

tion performance of the centralized mode slightly outperforms the Federated525

Learning mode. This can be obviously explained that the learning-based526

model in the Federated Learning mode just learns from its own smaller local527

data set, so we will have to trade off a bit of detection performance with the528

benefits of Federated learning.529

For cross-validation, the detection performance of both learning manners530

is verified with other time-series data sets which do not belong to the ICS con-531

text such as Space shuttle, Respiration, Gesture, NYC taxi, ECG. As Table532

3 shows, the performance of FATRAF mostly approximates the Centralized-533

learning mode of ATRAF in all cross-validation data sets. However, ATRAF534

in both modes is proven to detect anomalies efficiently.535
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Table 3: FATRAF vs. its Centralized Learning mode

Data set Centralized FATRAF
Precision Recall F1 Precision Recall F1

Power Demand 0.9339 0.9797 0.9563 0.9285 0.9442 0.9363
Gas Pipeline 0.9699 1 0.9847 0.9683 1 0.9839

HAI 0.9039 0.9973 0.9483 0.8939 1 0.9440
SWaT 0.9404 0.9871 0.9632 0.9389 0.9775 0.9578

Space shuttle - TEK14 0.9874 1 0.9936 0.9738 1 0.9867
Space shuttle - TEK16 0.9851 1 0.9925 0.9296 1 0.9635
Space shuttle - TEK17 0.9728 1 0.9862 0.9728 1 0.9862
Respiration - nprs43 0.9567 0.9627 0.9597 0.9578 0.9730 0.9654
Respiration - nprs44 0.9174 0.9224 0.9199 0.9195 0.9799 0.9488

Gesture 0.9339 0.9921 0.9621 0.9331 0.9906 0.9610
Nyc taxi 0.8837 1 0.9382 0.9419 1 0.9701

ECG - Chfdb chf01 275 0.9761 1 0.9879 0.9761 1 0.9879
ECG - chfdb chf13 45590 0.9810 1 0.9904 0.9773 1 0.9885

ECG - chfdbf15 0.9118 1 0.9538 0.9118 1 0.9538
ECG - ltstdb 20221 43 0.9841 1 0.9920 0.9841 1 0.9920
ECG - ltstdb 20321 240 0.9558 1 0.9774 0.9714 1 0.9855
ECG - mitdb 100 180 0.9536 1 0.9763 0.9474 1 0.9730

ECG - qtdbsel102 0.7990 1 0.8883 0.7891 1 0.8821
ECG - stdb 308 0 0.9547 1 0.9768 0.9521 1 0.9755

ECG - xmitdb x108 0 0.9795 1 0.9896 0.9856 1 0.9927

Experiment 2 - Performance of Federated Learning based ap-536

proaches537

538

In this experiment, the detection performance of FATRAF is compared539

with a recent detection work for ICS that applies Federated Learning [19]540

- Federated Learning called FL-VAE-LSTM. As Table 4 shows, FATRAF541

improves the detection performance in all metrics: Precision, Recall, F1-542

score with both of the ICS data sets: Power Demand and Gas Pipeline. It543

also outperforms FL-VAE-LSTM in most of the cross-validation time-series544

data sets. In conclusion, the results show that FATRAF can detect anomalies545

efficiently and stably in ICS systems that have time-series data. Later in the546

following subsection, the running time of FATRAF and FL-VAE-LSTM [19] is547

also compared to show that the training time of FATRAF much outperforms548

FL-VAE-LSTM.549
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Table 4: Federated-Learning approaches over the time-series data sets

Data set FL-VAE-LSTM [19] FATRAF
Precision Recall F1 Precision Recall F1

Power Demand 0.7355 0.9100 0.8135 0.9285 0.9442 0.9363
Gas Pipeline 0.9609 0.9982 0.9792 0.9683 1 0.9839

Space shuttle - TEK14 0.8623 0.8431 0.8536 0.9738 1 0.9867
Space shuttle - TEK16 1 1 1 0.9296 1 0.9635
Space shuttle - TEK17 0.9650 1 0.9822 0.9728 1 0.9862
Respiration - nprs43 0.9313 0.5530 0.6939 0.9578 0.9730 0.9654
Respiration - nprs44 0.5347 0.5027 0.5182 0.9195 0.9799 0.9488

Gesture 0.5278 1 0.6910 0.9331 0.9906 0.9610
Nyc taxi 0.9606 1 0.9799 0.9419 1 0.9701

ECG - Chfdb chf01 275 0.9175 1 0.9570 0.9761 1 0.9879
ECG - chfdb chf13 45590 0.9489 1 0.9738 0.9773 1 0.9885

ECG - chfdbf15 0.9458 1 0.9721 0.9118 1 0.9538
ECG - ltstdb 20221 43 1 1 1 0.9841 1 0.9920
ECG - ltstdb 20321 240 1 1 1 0.9714 1 0.9855
ECG - mitdb 100 180 1 1 1 0.9474 1 0.9730

ECG - qtdbsel102 0.9604 1 0.9797 0.7891 1 0.8821
ECG - stdb 308 0 0.6073 0.6373 0.6220 0.9521 1 0.9755

ECG - xmitdb x108 0 1 0.7628 0.8654 0.9856 1 0.9927

Experiment 3 - Comparison with other existing AD solutions550

for ICS over different contexts551

552

The third experiment focuses on the comparison of ATRAF in both the553

Centralized and Federated Learning mode and several most recent works554

[7, 8, 22] in the field of anomaly detection in ICS.555

Figure 6 depicts the detection performance of the 3 solutions: SAE pro-556

posed in [7], our FATRAF and its centralized computing mode on 2 different557

data sets: Gas Pipeline [13] and SWaT [12]. As these data sets are primary558

case studies in [7], using them in the detection performance comparison will559

yield better validation results. Whilst FATRAF gets marginally lower results560

than its centralized counterpart as shown in Experiment 1, it can be seen561

that on the Gas Pipeline data set, FATRAF outperforms SAE on all three562

metrics with Precision, Recall, F1-Score being 0.9683, 1, 0.9839, respectively,563

as opposed to 0.9463, 0.9372, 0.9383 achieved by SAE.564

On the contrary, the experiment on the SWaT data set shows that FA-565

TRAF a bit underperforms SAE’s roughly perfect performance in Precision,566

Recall, F1-Score of 0.97, 0.99, and 0.99, respectively. This can be explained567

as SWaT is not a purely time-series data set whilst FATRAF is designed to568

cope with time-series effectively.569

22



(a) Gas Pipeline data set (b) SWaT data set

Figure 6: Detection performance of SAE [7] vs. FATRAF vs. ATRAF’s centralized mode
on two datasets

Another comparison is made between our proposed solution and the mea-570

surement intrusion detection system (MIDS) introduced in [8], which utilizes571

3 machine learning techniques such as KNN, Decision Tree, and Random572

Forest. As can clearly be seen from Table 5, the detection performance of573

both FATRAF and its centralized mode remarkably outperforms MIDS with574

all three different detection techniques. One point worth mentioning is that575

Precision, Recall, and F1-Score values are yielded 0 when using MIDS over576

the HAI data set. This outcome can be explained as the classification algo-577

rithms are not able to detect the minority class, which is the anomaly class in578

the test set. In fact, the original paper [8] presented much higher classifica-579

tion performance, approximately ideal results, than our shown experimental580

results. The reason could be that those performance metrics may have been581

calculated when classifying an imbalanced test set with a micro-averaging582

strategy which highly encourages the classifier to focus on the dominant583

class for the trade-off of the minority class. However, this strategy is irrel-584

evant in the context of binary classification tasks. Also, correctly detecting585

minority classes should be the priority when dealing with anomaly detection586

problems.587

23



Table 5: FATRAF and ATRAF’s centralized mode vs. Measurement Intrusion Detection
System [8]

Data set
HAI Gas Pipeline

Precision Recall F1 Precision Recall F1

MIDS
[8]

KNN 0.7254 0.1685 0.2735 0.4236 0.6791 0.5218
Decision Tree 0 0 0 0.5113 0.7076 0.5937
Random Forest 0 0 0 0.4913 0.7587 0.5964

Centralized ATRAF 0.9039 0.9973 0.9483 0.9699 1 0.9847
FATRAF 0.9404 0.9871 0.9632 0.9683 1 0.9839

Finally, Figure 7 shows the detection performance differences of proposed588

solutions and Anomaly Transformer [22] which also applies the Transformer589

model for time-series anomaly detection tasks. The comparison is drawn590

from their performance on the SWaT data set. It can be noted from the591

chart that our proposed detection mechanism is slightly better than Anomaly592

Transformer whose Precision, Recall and F1-Score metrics are 0.9155, 0.9673,593

0.9407, respectively.594

Figure 7: FATRAF and ATRAF’s centralized mode vs. Anomaly Transformer [22]

4.3.2. Edge Computing Evaluation595

Since our proposal aims to be deployed on resource-constrained IoT edge596

devices, we should validate if FATRAF not only reaches a remarkable perfor-597

mance as demonstrated above but also saves edge resources effectively, partly598

thanks to its light-weight feature. Consequently, this section dives into eval-599

uating the edge computing performance in terms of memory usage, GPU,600

CPU usage, power consumption, running time, and bandwidth occupation.601

602
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Memory usage603

604

In this measurement, we can see how the memory of each edge device605

is used during the training phase of the FATRAF on the Gas Pipeline data606

set. As described above, the training phase comprises two continuous phases:607

local training of Autoencoder and training of Transformer-Fourier in the fed-608

erated environment. The edge computing assessment is carried out with 10609

local epochs of training the autoencoder and 10 communication rounds of610

training the Transformer-Fourier block. Figure 8 demonstrates the memory611

usage of an NVIDIA Jetson Nano representing an edge device during the612

whole operation of 1155 seconds (roughly 19 minutes). As it can be noticed,613

the autoencoder phase takes about 410 seconds or nearly 7 minutes, con-614

suming around 70% of total memory. After that, the client continues to feed615

data through the trained encoder to create input for the Transformer-Fourier616

training phase. For the latter phase, the Jetson client increases its constant617

memory usage to approximately 75% of its total of 4GB RAM.618

It should be noted that the memory space is common between GPU619

and CPU, there is no dedicated GPU memory in NVIDIA Jetson Nano.620

Therefore, this memory usage is not for training model purposes only, it is621

also used by the operating system and other general-purpose programs.622

Autoencoder phase

Transformer-Fourier phase

Figure 8: Memory Usage of an Edge device (NVIDIA Jetson Nano) during the FATRAF
Training Phase

CPU usage623

624
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In order to see how CPU is occupied for the training phase of the learning625

model, and to analyze how light-weight our proposed solution is, CPU usage626

is measured and presented in Figure 9. As the proposed detection mecha-627

nism leverages parallel computing and GPU training, the learning model just628

makes a spike of around 40% of the CPU usage, but mostly consumes less629

than 20% of the hardware CPU during the training phase. This result shows630

that our proposed learning model is quite light-weight which is suitable for631

being deployed in an edge-computing environment.632
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Figure 9: CPU Usage of an Edge device (NVIDIA Jetson Nano) during the FATRAF
Training Phase

GPU Usage633

634

The GPU usage of the edge hardware based on NVIDIA Jetson Nano is635

illustrated in Figure 10. Since the GPU hardware is primarily responsible636

for the training detection model, the GPU usage of Jetson is utilized to its637

maximum during the FATRAF operation in order to accelerate the learning638

process of both the Autoencoder and Transformer-Fourier block.639
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Figure 10: GPU Usage of NVIDIA Jetson Nano during FATRAF Training Phase

Running time evaluation640

641

In this experiment, the training time of the FATRAF learning model will642

be compared with the FL-VAE-LSTM model proposed in the recent work643

[19] of the same field and context.644

Whilst the settings for the FATRAF operation remains the same as de-645

scribed the above measurements, the training of the detection mechanism646

FL-VAE-LSTM is configured with 10 communication rounds in the VAE647

and LSTM phase each (as the convergence point), on top of the same Gas648

Pipeline data set.649

It is also worth mentioning that both of the detection learning models are650

trained on the GPU device of NVIDIA Jetson Nano. As Figure 11 illustrates,651

when training the 2 models on the same hardware, the training time of the652

hybrid of AE - Transformer - Fourier takes 1200 seconds overall, whilst the653

combination of VAE - LSTM needs around 5000 seconds to finish the training654

process.655

In conclusion, in this research, we have achieved our goal of reducing the656

training time of the learning model, which, as the results, fits much better657

to the IoT environment.658
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Figure 11: Memory Usage and Training time of FATRAF vs. FL-VAE-LSTM [19]

In addition, we extend our experiment to demonstrate the running time659

performance of the Hybrid Transformer-Fourier that replaces the attention660

sublayer with the Fourier transform sublayer. The Fourier transform is ap-661

plied to reduce the training time as well as the complexity, making the mech-662

anism more light-weight. As dealing with diverse problems, more Fourier663

layers may be employed to enhance the detection performance instead of664

traditional transformer encoder layers. To better understand the benefit of665

hybrid Transformer-Fourier over all-attention Transformer, Figure 12 illus-666

trates the relationship of how training time of these models is increased in667

proportion to the number of layers ranging from 2 to 10. The recorded time668

involves 10 rounds of training over the Gas Pipeline data set, after the au-669

toencoder phase. As the number of layers increases, learning time of the670

hybrid Transformer-Fourier model is proven to be more efficient than one of671

the all-attention transformer model.672
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Figure 12: Training time of Hybrid Transformer-Fourier model vs. All-Attention-Sublayer
Transformer model

Bandwidth Consumption673

674

Leveraging the Federated Learning technique, in FATRAF, each client675

sends all learnable parameters of the Transformer-Fourier block to the cloud676

server in each round. Figure 13 and Figure 14 depict the bandwidth occupied677

in the upstream and downstream link by each client in the edge-cloud trans-678

mission. Because the autoencoder training phase is entirely implemented679

within the local site, the clients do not exchange any information in this680

phase as illustrated in the first part of the graph. On the contrary, when681

the client enters the Transformer-Fourier training phase, in every communi-682

cation round, the model’s weight matrices are transferred to the cloud for683

federation (i.e., aggregation) when the local training is done. As can be seen684

in Figure 13 and Figure 14, there are 10 spikes of bandwidth occupation of685

around 45 KiB/s. Each spike spans no more than 2 seconds and corresponds686

to one transmission or reception of weight matrices in one round at the edge687

device. Such low communication cost will spare bandwidth for other infor-688

mation transmission in Industrial IoT systems, thus increasing the feasibility689

of the FATRAF architecture.690

29



0 200 400 600 800 1000 1200
Time (second)

0

10

20

30

40

Ra
te

 (K
iB

/s
)

FATRAF - Uplink Bandwidth

Figure 13: Bandwidth occupation in the Edge-Cloud upstream link of FATRAF
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Figure 14: Bandwidth occupation in the Edge-Cloud downstream link of FATRAF

Power Consumption691

692

To have a deeper insight on the performance and influence of our proposed693

model from the various aspects, power consumption at each edge device dur-694

ing the training phase is taken into account. In fact, power consumed in each695

electronic component within Industrial systems could also be a critical factor696

too, taking into account energy efficiency and keeping the earth green. Fig-697

ure 15 shows a sketch of how FATRAF consumes power during each phase in698
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the whole training duration. With an energy consumption baseline of around699

1000 mW when the Jetson client is not processing any task, the hardware700

extensively consumes around 5000-6000 mW during the autoencoder phase.701

Then during the course of training the Transformer-Fourier block, the power702

consumption of Jetson Nano declines and remains in the range of 4000-5000703

mW until the training process is done.704
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Figure 15: Power Consumption of NVIDIA Jetson Nano during the FATRAF Training
Phase

5. Conclusion705

In this paper, we have proposed an anomaly detection method that ap-706

plies the Federated Learning technique to make use of both advantages of707

distributed learning in different local areas and global updating for all local708

learning models - FATRAF. FATRAF has been proven to provide high detec-709

tion performance for time-series data in ICSs in comparison with cutting-edge710

proposed AD solutions, whilst achieving a remarkable improvement in run-711

ning time. The reduction of the training time of the learning model down712

to 1200 seconds paves the way for this AD solution to be re-trained more713

frequently during the factory operation. In turn, it helps the security archi-714

tecture in ICS to be able to frequently update changes in normal behaviors715

of the smart devices installed in a smart factory 4.0.716
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