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A review of finite-element methods for time-harmonic acoustics

State-of-the-art finite-element methods for time-harmonic acoustics governed by the Helmholtz equation are reviewed. Four major current challenges in the field are specifically addressed: the effective treatment of acoustic scattering in unbounded domains, including local and nonlocal absorbing boundary conditions, infinite elements, and absorbing layers; numerical dispersion errors that arise in the approximation of short unresolved waves, polluting resolved scales, and requiring a large computational effort; efficient algebraic equation solving methods for the resulting complex-symmetric ͑ non-Hermitian͒ matrix systems including sparse iterative and domain decomposition methods; and a posteriori error estimates for the Helmholtz operator required for adaptive methods. Mesh resolution to control phase error and bound dispersion or pollution errors measured in global norms for large wave numbers in finite-element methods are described. Stabilized, multiscale, and other wave-based discretization methods developed to reduce this error are reviewed. A review of finite-element methods for acoustic inverse problems and shape optimization is also given.

I. INTRODUCTION

Finite-element methods ͑FEM͒ for time-harmonic acoustics governed by the reduced wave equation ͑Helmholtz equation͒ have been an active research area for nearly 40 years. Initial applications of finite-element methods for time-harmonic acoustics focused on interior problems with complex geometries including direct and modal coupling of structural acoustic systems for forced vibration analysis, frequency response of acoustic enclosures, and waveguides ͑Craggs, 1972; [START_REF] Gladwell | A variational formulation of damped acoustostructural vibration problems[END_REF][START_REF] Nefske | Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice[END_REF][START_REF] Petyt | A finite element method for determining the acoustic modes of irregular shaped cavities[END_REF][START_REF] Young | Prediction of transmission loss in mufflers by the finite element method[END_REF][START_REF] Zienkiewicz | Coupled vibrations of a structure submerged in a compressible fluid[END_REF] In recent years, tremendous progress in the development of improved finite-element methods for timeharmonic acoustics including exterior problems in unbounded domains, which incorporate knowledge of wave behavior into the algorithm, combined with parallel sparse iterative and domain decomposition solvers, are moving the application of FEM into the higher frequency ͑wave number͒ regimes.

The exterior acoustics problem in unbounded domains presents a special challenge for finite-element methods. In order to use the FEM for exterior problems, the unbounded domain is usually truncated by an artificial boundary ⌫ yielding a bounded computational domain ⍀; see Fig. 1. Reducing the size of the bounded domain reduces the computation cost, but must be balanced by the ability to minimize any spurious wave reflection with a computationally efficient and geometrically flexible truncation boundary treatment. The first complete finite-element approach for modeling acoustic radiation and scattering in unbounded domains appears in the impedance matching technique presented by [START_REF] Hunt | Finite-element approach to acoustic radiation from elastic structures[END_REF][START_REF] Hunt | Finiteelement approach to acoustic scattering from elastic structures[END_REF] Recent numerical treatments including infinite elements, absorbing layers, local absorbing boundary condi-tions, and exact nonlocal boundary conditions have proven to be effective in handling acoustic scattering problems in unbounded domains, especially for large-scale problems requiring iterative and parallel solution methods and for modeling inhomogeneities and acoustic-structure interaction. The method of choice depends on the shape and complexity of the scattering object, inhomogeneities, frequency range, and resolution requirements, among other parameters.

A natural way of modeling the acoustic region exterior to a scattering/radiating object is to introduce a boundary element discretization of the surface S based on an integral representation of the exact solution in the exterior ͑Burton [START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary-value problems[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory ͑Wiley-Interscience[END_REF][START_REF] Walsh | Boundary element modeling of the external human auditory system[END_REF] Using the free-space Green's function ͑fundamental solution͒, the boundary element method ͑BEM͒ only requires surface discretization on S, reducing the d-dimensional problem to a ͑d -1͒-dimensional one, and automatically satisfies the required Sommerfeld radiation condition at infinity ͑Sommerfeld, 1912͒. The BEM naturally incorporates surface impedance conditions but is limited in the ability to model complex, inhomogeneous regions. Application of the classical BEM for acoustic scattering requires solution of large, dense, complex linear systems due to the nonlocal support of the fundamental solution leading to high computational expense and storage requirements.

The finite-element method ͑FEM͒ is able to solve problems in nonhomogeneous media and allows for a natural coupling with complex structures. For exterior problems in unbounded domains, special techniques are required to reduce spurious reflection to a level below that of the discretization error. The numerical advantage of the FEM is that they lead to sparse matrices, which by avoiding calculations on zeros, significantly speed up computations and reduce memory requirements. Complexity estimates ͑Harari and Hughes, 1992͒ and numerical evidence ͑Burnett, 1994͒ have shown that domain-based methods such as the FEM are an a͒ Electronic mail: lonny.thompson@ces.clemson.edu

In this paper, recent developments in finite-element methods for time-harmonic acoustics, including treatments of unbounded domains are reviewed. Topics include local and nonlocal Dirichlet-to-Neumann ͑DtN͒ nonreflecting boundary conditions, infinite elements, and absorbing layers for exterior problems; discretization methods which reduce numerical dispersion error arising in the approximation of short unresolved waves; efficient algebraic equation solving methods including sparse iterative and domain decomposition methods; a posteriori error estimates, adaptive methods; acoustic inverse problems, and shape optimization.

II. THE EXTERIOR PROBLEM IN UNBOUNDED DOMAINS

Let V be the domain of an object with boundary S. The exterior domain is defined by the unbounded region R = R 3 \ V. Time-harmonic acoustics is governed by the Helmholtz differential equation. For exterior problems defined on unbounded domains, solutions are required to satisfy the Sommerfeld radiation condition at infinity ͑Sommerfeld, 1912͒. The differential form of the boundary-value problem for exterior problems in unbounded domains may be stated for a general impedance surface condition as: Given wave number-dependent boundary data g͑x ; k͒ C, ␤͑x ; k͒ C; Find the complex-valued scalar field u͑x ; k͒ C, such that

ٌ 2 u + k 2 u =0, inR = R 3 \ V ͑1͒ ץu ץn + ␤u = g,o n S ͑2͒ lim r→ϱ rͩ ץu ץr -ikuͪ =0. ͑3͒ 
Here, u͑x͒ represents the spatial part of the acoustic pressure or velocity potential, with wavenumber k C,Im͑k͒ ജ 0. The sign convention for the phase is e -it , where i = ͱ -1 and is the natural frequency. The normal derivative ͑ץu / ץn͒ ª ٌu • n defines the gradient in the direction of the unit outward vector normal to S. In the above, r = ʈxʈ is a radius centered near the origin of the sound source. The Sommerfeld radiation condition ͑3͒ allows only outgoing waves proportional to exp͑ikr͒ at infinity. The radiation condition requires that energy flux at infinity be positive, thus ensuring unique solutions. Finite-element methods typically introduce an artificial boundary ⌫, which divides the original unbounded domain into two regions: a bounded computational domain ⍀ discretized with the finite-element method and an infinite residual region D = R \ ⍀; see Fig. 1. Reducing the size of the bounded computational domain decreases the computational cost and memory storage. Methods for modeling the exterior complement D = R \ ⍀, i.e., the infinite region exterior to the artificial boundary ⌫, can be divided into three main categories: local or nonlocal absorbing ͑nonreflecting͒ boundary conditions, infinite elements, and absorbing layers. Infinite element methods represent the exterior complement by assuming a radial approximation with outgoing wave behavior. Matched absorbing layers attempt to decay outgoing waves effective alternative to the BEM for exterior acoustics problems, especially for large systems due to the sparse structure of the resulting system matrices. With the recent developments in fast multipole methods which accelerate the calculation of matrix-vector products in iterative integral methods ͑Chen and [START_REF] Chen | Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics[END_REF][START_REF] Chew | Fast solution methods in electromagnetics[END_REF][START_REF] Chew | Review of large scale computing in electromagnetics with fast integral equation solvers[END_REF][START_REF] Darrigrand | Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation[END_REF][START_REF] Darve | The fast multipole method ͑i͒: Error analysis and asymptotic complexity[END_REF][START_REF] Epton | Multipole translation theory for three-dimensional Laplace and Helmholtz equations[END_REF][START_REF] Fischer | A multipole Galerkin boundary element method for acoustics[END_REF][START_REF] Greengard | Accelerating fast multipole methods for the Helmholtz equation at low frequencies[END_REF][START_REF] Gumerov | Computation of scattering from clusters of spheres using the fast multipole method[END_REF][START_REF] Rockhlin | Diagonal forms of the translation operators for the Helmholtz equation in three dimensions[END_REF][START_REF] Sakuma | Fast multipole boundary element method for large scale steady state sound field analysis. I. Setup and validation[END_REF][START_REF] Schneider | Application of fast methods for acoustic scattering and radiation problems[END_REF], the method with the best efficiency is less clear, yet the FEM retains the advantages of robustness and natural integration with other discrete models in coupled problems. A difficulty of the standard Galerkin FEM applied to short-wave problems with wavelengths smaller than the geometrical parameters defining the domain has been the ability to accurately resolve oscillating wave solutions at higher frequencies ͑wave numbers͒. The difficulty of simultaneously achieving accuracy and efficiency at high wave numbers has been cited as one of the most challenging problems in scientific computation ͑Zienkiewicz, 2000͒. The failure to adequately control numerical dispersion errors not only inaccurately approximates the oscillatory part of the solution, but has a global pollution effect that builds up over the whole computational domain. The pollution effect is related to the loss of stability of the Helmholtz operator at large wave numbers. Due to challenges in accurately resolving short wave solutions at higher frequencies, many alternative and creative finite-element methods have been developed in the last decade including high-order methods, stabilized Galerkin methods, multiscale variational methods, and other wave-based discretization methods. A common theme of many of these improved finite-element methods is that they incorporate knowledge of wave behavior into the solution algorithm. Other recent improvements which are pushing the FEM into larger wave number regimes include the development of efficient iterative solvers with accelerating preconditioners, and domain decomposition parallel solution methods for the resulting sparse complex-symmetric ͑non-Hermitian͒ matrix systems arising from discretization of the Helmholtz operator. in a relatively thin layer exterior to ⌫. For the nonreflecting ͑absorbing͒ boundary conditions, the outgoing wave solution in D is represented by a relation of the unknown solution and its derivative on the artificial truncation boundary ⌫. Options include matching exact analytical series solutions [START_REF] Hunt | Finite-element approach to acoustic radiation from elastic structures[END_REF][START_REF] Hunt | Finiteelement approach to acoustic scattering from elastic structures[END_REF], as used in the nonlocal Dirichlet-to-Neumann ͑DtN͒ map ͑Keller and Givoli, 1989͒, and various local approximations. The artificial boundary ⌫ is usually taken to be a surface defined in separable coordinates for efficiency, e.g., a sphere or spheroid. Formulations on nonseparable boundaries have also been developed; in this case the formulations are usually applied directly to the surface of the scatterer, thus completely avoiding discretization in ⍀, e.g., [START_REF] Antoine | An algorithm coupling the OSRC and FEM for the computation of an approximate scattered acoustic field by a non-convex body[END_REF][START_REF] Antoine | Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape[END_REF][START_REF] Shirron | Acoustic infinite elements for nonseparable geometries[END_REF] Unbounded domain treatments may also be derived for acoustic waveguide problems ͑Bayliss et [START_REF] Kang | Finite element method and natural boundary reduction[END_REF][START_REF] Givoli | Recent advances in the DtN FE method[END_REF][START_REF] Murphy | A finite-element model for ocean acoustic propagation and scattering[END_REF] For absorbing boundary conditions, the originally unbounded exterior problem is replaced by an equivalent reduced problem defined on the bounded domain ⍀: Find u͑x͒ C, such that

ٌ 2 u + k 2 u =0, in⍀ ͑4͒ ץu ץn + ␤u = g,o n S ͑5͒ ץu ץn = Bu,o n ⌫ ͑6͒
where 

G 1 u = ͩ ץ ץr -B 1 ͪu=O͑1/kr͒ 3 , ͑8͒ G 2 u = ͩ ץ ץr + 2 r -B 1 ͪͩ ץ ץr -B 1 ͪu=O͑1/kr͒ 5 , ͑9͒
where

B 1 = ik - 1 r . ͑10͒
In the case of the second-order operator G 2 , the second-order radial derivative is replaced by second-order angular derivatives using the where for j = 1, the first-order operator B 1 is defined in ͑10͒ and for j = 2, the second-order BGT operator is

B 2 = B 1 + 1 2B 1 ⌬ ⌫ . ͑12͒
The second-order angular derivatives appearing in ͑12͒ are defined by

⌬ ⌫ u ª ٌ ⌫ • ٌ ⌫ u = 1 r 2 sin ץ ץ ͩsi n ץu ץ ͪ+ 1 r 2 sin 2 ץ 2 u ץ 2 ,
where

ٌ ⌫ ª 1 r ץ ץ e + 1 r sin ץ ץ e .
The corresponding weak ͑variational͒ form of the boundary value problem with the B 2 BGT operator is: Find the trial solution u, such that, for all test functions w This expansion is valid for radius rr 0 , where r 0 is the radius of a spherical ͑or spheroidal͒ surface circumscribing the target/radiator, labeled S in Fig. 1, and any inhomogeneities of the domain ⍀. Outside r 0 , and in particular the radius R of the truncation surface, the exterior domain must be ho- 

B͑w,u͒ -B ⌫ ͑w,u͒ = F͑w͒, ͑13͒ where B͑w,u͒ ª ͵ ⍀ ٌ͑w • ٌu -k 2 wu͒dx + ͵ S ␤wuds, B ⌫ ͑w,u͒ ª ͵ ⌫ B 1 wud⌫ -͵ ⌫ 1 2B 1 ٌ ⌫ w • ٌ ⌫ ud⌫,
u h ͑x͒ = ͚ i=1 N dof N i ͑x͒d i = N T ͑x͒d, ͑14͒
where N R N dof is a column vector of standard C 0 basis functions, and d C N dof is a column vector containing the N dof unknown nodal values d i = u h ͑x i ͒, where u h ͑x i ͒ is the approximation of the solution u at node x i . Using a standard Galerkin finite-element approximation, test ͑weight-ing͒ functions w h are expressed as a linear span of the same basis functions. Substitution into ͑13͒ leads to the sparse, complex-symmetric ͑non-Hermitian͒ linear algebraic system,

Zd = f, Z = ͑S -k 2 M -K ⌫ ͒, ͑15͒
with matrix coefficients

͑S͒ ij = ͵ ⍀ ٌ N i • ٌN j dx + ͵ S ␤N i N j ds, ͑M͒ ij = ͵ ⍀ N i N j dx, ͑K ⌫ ͒ ij = ͵ ⌫ B 1 N i N j d⌫ -͵ ⌫ 1 2B 1 ٌ ⌫ N i • ٌ ⌫ N j d⌫.
The excitation vector

͑f͒ i = ͵ S N i gds, ͑16͒
is in general complex-valued, and wave number dependent.

The contribution from the local absorbing conditions are found in the k-dependent sparse matrix K ⌫ associated with node points on the boundary ⌫. Further details of the finiteelement implementation such as element mapping, integration, and assembly of element arrays are found in standard finite-element textbooks, e.g., [START_REF] Hughes | The Finite Element Method: Linear Static and Dynamic Finite Element Analysis ͑Dover Publications[END_REF][START_REF] Petyt | Introduction to Finite Element Vibration Analysis ͑Cambridge[END_REF].

The local support of the element shape functions gives the advantage of being able to handle complex geometries and producing sparse matrices which are solved efficiently by avoiding storage and computation of zero coefficients. For large three-dimensional problems at high wave numbers k, accurate resolution requires a large number of elements leading to large sparse matrices. In this case, iterative solvers are preferred over direct factorization methods due to the lower memory requirements and parallel computing performance.

Other local absorbing conditions which attempt to annihilate incoming waves include the Enquist and Majda ͑1977͒ and Feng ͑1983͒ conditions. In a numerical study by Shirron ͑1998͒, the accuracy of the BGT conditions are the most accurate, especially for low modes and tight boundaries. The first-and second-order BGT conditions have been widely used [START_REF] Bossut | Finite element modeling of radiating structures using dipolar damping elements[END_REF][START_REF] Kechroud | Preconditioning techniques for the solution of the Helmholtz equation by the finite element method[END_REF][START_REF] Tezaur | Iterative solution of largescale acoustic scattering problems with multiple right hand-sides by a domain decomposition method with lagrange multipliers[END_REF] and have been generalized to spheroidal ͑Grote and Keller, 1995͒ and arbitrary convex surfaces ͑Antoine et al., 1999͒. The use of spheroidal or rectangular coordinates allows the artificial boundary to obtain a tight fit around elongated objects. For spheroidal, and other convex shapes, the conditions tend to lose accuracy for higher wave numbers ͑Tezaur et al., 2002͒. Low-order approximate conditions require careful placement when computing the response over a range of frequencies; the size of the computational domain and the mesh density must be carefully selected to achieve a prescribed accuracy. If not placed sufficiently far from the radiating/scattering object, low-order local approximate absorbing boundary conditions may produce large spurious reflections which can pollute the entire numerical solution.

Complexity estimates show that it is usually more efficient to use high-order accurate absorbing conditions which enable smaller computational domains. The development of high-order local boundary conditions for which the order can be easily increased to a desired level are usually based on using auxiliary variables to eliminate higher-order derivatives ͑Givoli, 2004; [START_REF] Hagstrom | Radiation Boundary Conditions for the Numerical Simulation of Waves ͑Cambridge[END_REF][START_REF] Hagstrom | A formulation of asymptotic and exact boundary conditions using local operators[END_REF][START_REF] Huan | Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains[END_REF]Thompson et al., 2001;[START_REF] Van Joolen | High-order non-reflecting boundary conditions for dispersive waves in cartesian, cylindrical and spherical coordinate systems[END_REF]. While generally derived for the time-dependent case, time-harmonic counterparts are readily implemented with time derivatives replaced by i, = kc, where c is wave speed.

IV. THE DTN NONREFLECTING BOUNDARY CONDITION

An alternative to high-order local absorbing conditions are nonlocal DtN nonreflecting boundary conditions. The conceptual foundation and experimental validation for the DtN finite-element method are presented for both acoustic radiation and scattering in the impedance matching technique of [START_REF] Hunt | Finite-element approach to acoustic radiation from elastic structures[END_REF][START_REF] Hunt | Finiteelement approach to acoustic scattering from elastic structures[END_REF]. In Hunt ͑1974͒, the relationship between the pressure ͑Dirichlet data͒ and its normal derivative ͑Neumann data͒ on a spherical surface ⌫ is obtained using the surface Helmholtz integral equation with boundary condition ץu / ץn = iv n , and then by expanding the analyti- cal solution for the pressure u and normal velocity v n in terms of spherical harmonics and matching coefficients. In Keller and Givoli ͑1989͒ the DtN map on a sphere of radius R is constructed directly and implemented in the standard Galerkin finite-element method by expanding the outgoing acoustic field in a spherical harmonic series,

u͑r,,͒ = ͚ n=0 N-1 h n ͑kr͒ h n ͑kR͒ ͚ m=-n n u nm Y nm ͑,͒, ͑17͒
with coefficients

u nm = ͑u,Y nm ͒ S ª ͵ 0 2 ͵ 0 u͑R,,͒Y nm * dS. ͑18͒
In the above, dS = sin d d is the differential surface element on the unit sphere S, parametrized by 0Ͻ Ͻ ,0 Ͻ Ͻ 2, and

Y nm ͑,͒ = ͱ ͑2n +1͒ 4 ͑n -m͒! ͑n + m͒! P n m ͑cos ͒e im are angular spherical harmonics such that Y n,͑-m͒ = ͑-1͒ m Y nm * ;
the star denotes complex conjugate; and h n ͑kr͒ are outgoing radial spherical Hankel functions. The DtN map is then obtained by evaluating the normal derivative of ͑17͒ on the boundary at r = R, and implemented as a "natural" boundary condition with standard finite-element basis functions for u on the surface ⌫. Givoli ͑1999͒ recognized that the DtN finite-element method could be generalized to other boundary value problems with infinite domains. The operator is nonlocal since the coefficients u nm in ͑18͒ require integration over the whole surface. The DtN map exactly represents all harmonics in the solution up to the number of terms included in the truncated series expansion as measured by N. For higher harmonics n Ͼ N -1, the truncated DtN models the boundary ⌫ with the homogeneous Neumann condition ץu / ץr =0 at r = R. As a consequence, nonunique solutions may result when k 2 matches an interior resonance associated with the Laplacian operator. Harari and Hughes ͑1992͒ showed that this difficulty can be eliminated by using a sufficient number of harmonics N. However, the restriction may require more terms in the DtN map than may be necessary to achieve a desired accuracy, leading to a potential for excessive computation. This problem is circumvented if a modified truncated DtN operator ͑Grote and Keller, 1995͒ is used, M * = ͑M N -B N ͒ + B, where B is any computationally efficient approxi-mation to the DtN operator with the uniqueness property Im͑u , Bu͒ ⌫ 0, and ͑M N -B N ͒ is the truncation of M -B to the first N modes. The modified DtN condition provides unique solutions at all wave numbers irrespective of the number of harmonics N included in the series. Suitable operators B include local absorbing boundary conditions. The boundary condition B 2 is preferred over B 1 , since it provides an improved matrix preconditioner for iterative solvers and gives more accurate solutions when the number of harmonics N used in the truncated DtN series is not sufficient to capture important modes n Ͼ N -1 in the solution. Applying the local B 2 operator to ͑17͒ gives the modified DtN ץu ץr

= B 2 u + ͚ n=2 N-1 ␤ n ͚ m=-n n u nm Y nm ͑,͒, ͑19͒
where

␤ n = k h n Ј͑kR͒ h n ͑kR͒ + n͑n +1͒ 2B 1 r 2 -B 1 . ͑20͒
The B 1 modified DtN is a special case obtained by omitting the second term with n͑n +1͒ and starting the summation at n = 1. Thompson and Pinsky ͑1996͒ recognized that these conditions also annihilate up to the first N = 2 spherical modes corresponding to n = 0 and n = 1 in the expansion ͑17͒ and thus are equivalent to the first two localized DtN conditions derived in Harari and Hughes ͑1992͒.

Nonlocal conditions are very accurate, yet couple all solution unknowns on ⌫, thus potentially rendering a full dense matrix with associated solution cost and memory requirements. However, if separable boundaries are utilized such as spheres or spheroids, a special structure in the resulting data structures may be exploited to avoid storage of a full dense matrix. Bayliss et al. ͑1985͒ appear to be the first to recognize that a global DtN radiation boundary condition formed by a harmonic expansion, and relating Dirichlet-to-Neumann data on a separable boundary can be split as a vector outer product which then can be used to perform matrix-by-vector multiplies in iterative solvers without the need for assembling a dense matrix.

The contribution of the DtN operator to the complexsymmetric ͑non-Hermitian͒ system matrix is defined by the admittance matrix,

K dtn = R 2 ͚ n=2 N-1 ␤ n ͚ m=-n n c nm c nm T , ͑21͒ 
where c nm = ͑N , Y nm ͒ S are vectors of size equal to the number of unknowns on the truncation boundary ⌫. Due to the special structure of the DtN map defined on a separable boundary as a summation of vector outer products, we recognize that the Sherman-Morrison algorithm in conjunction with direct solvers may be used to preserve the sparsity of the finite-element equations with a series of rank-1 vector updates. For Krylov subspace iterative solvers the computationally intensive kernel is the repeated operation of matrix-by-vector products with vector iterates. The special structure of the DtN matrix K dtn , as a summation of rank-1 vector updates can be exploited to avoid direct evaluation of matrix-vector products with K dtn with significantly reduced storage and cost ͑Oberai et al., 1998͒. The matrix-vector product of the DtN operator can also be carried out at the element level, preserving standard element-based data structures ͑Malhotra and Pinsky, 1996͒. Oberai et al. 1998, Thompson et al. ͑1999͒ have shown that the local operator K ⌫ provides a good approximation to the spectral properties of the complete system matrix which includes the DtN matrix K dtn , and thus can be used as an efficient preconditioner to accelerate convergence. Parallel iterative methods provide a means for dividing the problem into subsystems which when solved in parallel, provide compute time speedup, and for distributed-memory computer systems, the ability to scale up to very large systems. Ianculescu and Thompson ͑2003͒ showed that the symmetric outer-product structure of the DtN matrix K dtn can be exploited to compute in parallel with one collective communication per iteration with a vector size equal to the number of harmonics included in DtN series expansion; the effect on the overall communication is roughly that of a relatively small dot-product interprocessor communication. Numerical studies reported in Ianculescu and Thompson ͑in press͒ show that due to the special structure, and ability to tightly fit around scattering objects with minimal spurious reflection, the nonlocal DtN condition can be implemented with significant overall cost savings compared to the local operators B 1 and B 2 .

The extension of the B 2 modified DtN map in spheroidal coordinates suitable for finite-element implementation is given in [START_REF] Thompson | Finite element formulation of exact Dirichlet-to-Neumann radiation conditions on elliptic and spheroidal boundaries[END_REF]. Grote and Keller ͑1995͒ derived a related modified DtN condition for spheres and spheroids using the second-order BGT operator in native form involving second-order radial derivatives ͑instead of angular derivatives͒, a form which is not suitable for standard finite-element approximation. Further details and discussions of the properties of DtN nonreflecting boundary conditions are given in Givoli ͑1999͒ and Thompson and Pinsky ͑2004͒.

V. INFINITE ELEMENTS

the region ⍀ X exterior to ⌫ are usually separated into radial and angular functions; for a spherical boundary ⌫ with radius R ͑Astley, 2000͒,

w = ͚ ͚ c W ͑r͒N ͑,͒, ͑22͒ u = ͚ ͚ d U ͑r͒N ͑,͒. ͑23͒
In the above, N are angular basis functions which match the interior finite-element discretization on the surface ⌫. Radial functions are defined to match the outgoing wave character of the radial expansion ͑7͒,

U ͑r͒ = R ͑͒e ik͑r-R͒ .
Here, the radial basis functions R are polynomial functions in the inverse radius variable = ͑R / r͒, where r ª ʈxʈ Ͼ R is the radial position exterior to ⌫. Different definitions of the radial polynomial functions lead to changes in the conditioning of the resulting system matrix. Several alternatives for the radial test ͑weighting͒ functions have been proposed; the three most common choices are

W ͑r͒ = Ά U ͑r͒, Bettess -Burnett unconjugated U * ͑r͒, Burnett conjugated 2 U * ͑r͒, Astley -Leis conjugated.

·

Bettess ͑1977, 1992͒ pioneered the infinite element concept and selected the test function to be the same as the trial solution basis. Burnett ͑1994͒, Burnett and Holford 1998a, b extended the formulation to spheroidal and ellipsoidal coordinates, and was the first work to express the shape functions as separable tensor products of radial and transverse functions, resulting in improved performance and efficiency. A quantitative error analysis of the unconjugated infinite elements is given in Burnett and Holford ͑1998a͒. Alternatively, the weighting ͑test͒ function is conjugated. In the Astley-Leis infinite element ͑Astley et al., 1998a͒ the conjugated weighting function is scaled by a geometric factor. It was later recognized that this formulation fits within the variational framework of Leis ͑1986͒. The unconjugated infinite element leads to matrix coefficients involving one-dimensional radial infinite integrals which are oscillatory and well-defined, and can be evaluated using high-order Gauss-Legendre quadrature. For the conjugated elements, the oscillatory plane-wave components cancel so that the radial coefficients may be integrated analytically in closed form, resulting in wave number-independent matrices which are proportional to ik and k 2 , a feature which allows for a direct local timedependent counterpart ͑Astley et al., 1998b͒.

The unconjugated Burnett formulation, regardless of the definition for the radial function R , gives the highest accuracy in the near field, yet exhibits instability and illconditioning for higher radial orders ͑Ihlenburg, 2000; Shirron and Babuska, 1998͒. For the Astley-Leis conjugated schemes, although less accurate in the near field, in the case of a spherical boundary, R can be constructed so that the formulation remains stable and convergent in the far field ͑Astley, 2000; Astley and Hamilton, 2000, Dreyer and von 

VI. ABSORBING BOUNDARY LAYERS

The perfectly matched layer ͑PML͒ concept originally introduced by Berenger ͑1994͒ for electromagnetic waves is another option for modeling the far field for the exterior acoustics problem. The interface and PML are usually formulated in rectilinear Cartesian coordinates, allowing a tight fit around elongated objects ͑see Fig. 3͒, but can also be formulated in spherical and other general curvilinear coordinates. The idea is to introduce an exterior layer of finite thickness at an artificial interface such that outgoing plane waves are absorbed prior to reaching the outer-layer truncation boundary. By splitting the scalar field into nonphysical components satisfying equations which describe decaying waves, and proper selection of PML coefficients, plane-wave reflection for an arbitrary angle of incidence is theoretically eliminated.

In the absorbing layer ⍀ X , splitting the field in Cartesian coordinates x = ͑x 1 , x 2 , x 3 ͒ = ͑x , y , z͒, leads to a modified Helmholtz equation with complex-valued anisotropic material properties suitable for standard finite-element implementation ͑Harari et al., 2000;[START_REF] Turkel | Absorbing PML boundary layers for wave-like equations[END_REF][START_REF] Wu | A comparison of anisotropic PML to Berenger's PML and its application to the finiteelement method for EM scattering[END_REF],

ٌ • ͑D ٌ u͒ + k 2 su =0, in⍀ X . ͑24͒
The corresponding weak form in the complete computational

region ⍀ ഫ ⍀ X is ͵ ⍀ഫ⍀ X ٌ͑w • D ٌ u -k 2 sw • u͒dx = F͑w͒. ͑25͒
ner regions are all i values nonzero. Optimal placement of the interface, layer thickness, number of elements, and variation of absorption functions and their maximal value, which reduce error due to spurious reflection of decayed waves off the layer truncation boundary to be less than the discretization error, are open questions ͑Collino and Monk, 1998͒. The PML layer converges to perfect wave absorption as the thickness of the layer is increased ͑Tsynkov and Turkel, 2001͒. However, a compromise between a thin layer which requires a rapid variation of the absorption parameters and a thick layer which requires more elements is required ͑Turkel and Yefet, 1998͒.

VII. DISCRETIZATION METHODS FOR THE HELMHOLTZ EQUATION A. Galerkin finite-element methods

Accuracy of finite-element approximations based on Galerkin's method is characterized by phase ͑dispersion͒ errors. In order to control dispersion, the element size must be adapted to the wave number such that the number of elements per wavelength is held below a resolution limit. The resolution is determined by the nondimensional wave number kh=2h / , where is the wavelength and h is a measure of the element size. A discrete dispersion analysis can be used to quantify the limiting value on mesh resolution.

For a uniform mesh of finite elements with piecewise linear interpolation in one dimension, and neglecting boundary conditions, the sparse system matrix Z is tridiagonal; neglecting sources, each interior equation corresponds to a repeated finite difference stencil centered at a typical node point x j of the form

Z 2 u h ͑x j-1 ͒ +2Z 1 u h ͑x j ͒ + Z 2 u h ͑x j+1 ͒ =0, ͑26͒
where Z 1 ͑kh͒ =1-͑kh͒ 2 / 3 and Z 2 ͑kh͒ =-͑kh͒ 2 /6-1 are coefficients obtained by assembly of element matrices. The solution of the difference stencil admits homogeneous planewave solutions of the form u h ͑x j ͒ = u 0 e ik ˜xj where k ˜is an unknown numerical wave number. Substituting this solution into the difference stencil leads to a dispersion relation relating the numerical wave number k ˜to the continuous wave number k of the form, cos͑k ˜h͒ =-Z 1 ͑kh͒ / Z 2 ͑kh͒. For small kh, a Taylor series expansion reveals the dispersion error of order ͑Thompson and Pinsky, 1994͒

͑k ˜-k͒/k =-1 24 ͑kh͒ 2 + O͑kh͒ 4 . ͑27͒

The numerical wave number remains real valued corresponding to propagating waves, provided ͉Z 1 ͑kh͒ / Z 2 ͑kh͉͒Ͻ 1, which requires the continuous wave number k to be bounded by the cutoff value, khഛ ͱ 12, corresponding to a minimum resolution of / h Ͼ 2, i.e., just under 2 elements per wavelength. Beyond this value, k ˜is complex valued, resulting in rapid amplitude decay ͑evanescent behavior͒. In the above, s=s 1 s 2 s 3 , and D=diag͵s 2 s 3 /s 1 ,s 1 s 3 /s 2 ,s 1 s 2 / s 3 ͖ is a diagonal, complex-valued material matrix, with coefficients s i ͑x i ͒=1+͑i i ͒/k, defined by a distribution of absorption functions i ͑x i ͒, i=1,2,3, usually taken to vary quadratically from a value of zero at the interface of the physical domain to a maximal value at the truncation of the layer. In the physical domain ⍀, s i =1, i=1,2,3. In layers normal to the x 1 direction, 2 = 3 =0. Only in cor-

B. Mesh resolution rules for low-order elements

Ihlenburg ͑1998͒, Ihlenburg and Babuska ͑1995͒ showed that the error measured in the usual L 2 integral norm, which characterizes averaged amplitude differences, is controlled by a wave number-dependent stability constant times the approximation error. For linear finite elements of size h,

ͩ͵ ⍀ ͉u h -u͉ 2 dx ͪ 1/2 ഛ ͑C 1 + C 2 kL͒͑kh͒ 2 , ͑28͒
where L is a characteristic length scale, and C 1 , C 2 are constants independent of the wave number and element size.

The meaning of ͑28͒ is that the integral norm is controlled by a sum of two errors, where the first term C 1 • ͑kh͒ 2 is proportional to the usual approximation error, and the second term C 2 • ͑kL͒͑kh͒ 2 has an additional dependence on kL. The second term has sometimes been referred to as a "pollution" error related to a loss of stability at large wave numbers ͑Bayliss et al., 1985͒. The second term increases even though the nondimensional wave number kh is held fixed with a constant number of elements per wavelength ͑ / h = constant͒. In general, however, if the number of elements per wavelength / h is increased ͑kh decreased͒, it follows that the second term also decreases, thus reducing the error in amplitudes. To control local approximation error it is often suggested that one take at least ten ͑ / h Ͼ 10͒ linear elements per wavelength for a phase error of a few percent, i.e., keep the element size below h Ͻ/10. However, to control amplitude error, a characteristic length scale of the domain, L, should be accounted for such that ͑kL͒͑kh͒ 2 Ͻ P, where P is an admissible pollution error determined from computational experience ͑Ihlenburg, 2003͒.

A simple way to improve both dispersion and pollution error for low-order elements is to use slightly underintegrated stiffness and mass matrices with special numerical quadrature rules. For 4-node bilinear quadrilateral and 8-node trilinear "brick" elements, use of quadrature evaluation points ± ͱ 2 / 3 in each direction in the parent element with unit weights gives a higher-order accurate dispersion error from O͑kh͒ 2 to O͑kh͒4 , ͑Challa, 1998͒. This same observation for 4-node quadrilateral elements was later rediscovered in Guddati and Yue ͑2004͒, where it was demonstrated numerically that the high-order accuracy is maintained for unstructured meshes. In Thompson and Kunthong ͑2005͒ it is shown that for 3-node linear triangle elements, the dispersion error is reduced from O͑kh͒ 2 to O͑kh͒ 4 by using three-quadrature points for the mass matrix m e sampled at ͑ , ,1--͒ = ͑1/3+ ͱ 10/6,1/3-ͱ 10/12,1/3 -ͱ 10/ 12͒ in natural coordinates with three symmetric per- mutations and conventional weights ͚ j=1 3 W j =1, W j =1/3. For

C. High-order approximation

Dispersion error can be minimized by using higher-order polynomial approximations, e.g., hp-version of FEM and spectral elements. The number of elements per wavelength to obtain a given discretization error depends strongly on the order of the element basis functions. A dispersion analysis similar to that outlined above for linear elements can be carried out for high-order polynomials of order p ജ 2, and after condensation of internal solution unknowns, a dispersion relation in the same form as the linear p = 1 case is obtained. Thompson and[START_REF] Thompson | Complex wavenumber Fourier analysis of the p-version finite element method[END_REF][START_REF] Ihlenburg | Finite Element Analysis of Acoustic Scattering ͑Springer[END_REF] show that the relative phase error is O͑kh͒ 2p . The cutoff value prior to evanescent behavior grows with the increase of approximation order p; however, before reaching this value the numerical wave number is complex valued on small "stopping band" intervals ͑Thompson and Pinsky, 1995͒. As a result, kh should be kept below the first cutoff value of khഛ ͱ 12.

Ihlenburg ͑1998͒ showed that the error measured in the H 1 ͑⍀͒ global norm is order kL͑kh/2p͒ 2p , and thus for quadratic and higher-order elements p ജ 2, and resolved waves such that kh/ p is small, the dispersion is relatively small. For high wave numbers khӷ 1, Ainsworth ͑2004͒ has shown that dispersion error is virtually eliminated when p is increased to a regime in which the error decays at a super-exponential rate, such that 2p +1Ͼ kh+ c͑kh͒ 1/3 , where c is a user-defined constant; c = 2 is suggested. Since higher-order elements generally provide greater computational efficiency, fewer degrees of freedom are generally needed to achieve a given discretization error for oscillatory wave solutions [START_REF] Deraemaeker | Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two, and three dimensions[END_REF][START_REF] Dey | Evaluation of p-FEM approximations for mid-frequency elasto-acoustics[END_REF][START_REF] Thompson | Complex wavenumber Fourier analysis of the p-version finite element method[END_REF] For high-order quadrilateral elements with quadratic Lagrange polynomial basis functions of order p = 2, highorder accuracy is achieved by evaluating the stiffness and mass matrices with special quadrature points 1 =-3 = -ͱ 13/ 15, 2 = 0, and corresponding weights W 1 = W 3 =5/13, W 2 = 16/ 13, in each natural coordinate direction ͑Challa, 1998͒.

D. Stabilized Galerkin methods

For low-order elements, reduced dispersion error may be achieved using residual-based methods such as Galerkin least-squares ͑GLS͒ and related methods. Least-squares stabilization stands out among the numerous approaches that have been proposed for reducing resolution requirements of standard Galerkin finite-element methods for time-harmonic acoustics by combining substantial improvement in accuracy with simple implementation. In the GLS method the Galerkin variational form is modified by appending residuals of the governing Helmholtz equation in a consistent leastsquares form ͑Harari and Hughes, 1992͒,

B͑w,u͒ + ͵ ⍀ ˜LwLudx = F͑w͒. ͑29͒
Here, L = ٌ 2 + k 2 is the Helmholtz differential operator, and ⍀ ˜denotes integration over element interiors. The element parameter is usually determined from discrete dispersion 4-node tetrahedral elements for three-dimensional analysis, using the special quadrature rule ͑ , , ,1---͒=͑1/4 + ͱ 21/8,1/4-ͱ 21/24,1/4-ͱ 21/24,1/4-ͱ 21/24͒, with multiplicity 4, and standard weights͵ j analysis and selected to minimize or eliminate dispersion error in the numerical solution.

For two-dimensional quadrilateral ͑Q4͒ elements, the value of is determined by enforcing numerical and continuous wave numbers to coincide k ˜= k ͑Thompson and Pinsky, 1995͒ = 1

k 2 ͫ 1-6 ͑kh͒ 2 ͩ 1 -cos ␣ x 2 + cos ␣ x + 1 -cos ␣ y 2 + cos ␣ y ͪͬ, ͑30͒
⍀ ˜lized methods within the VMS framework are given in Harari, 2004.

E. Wave-based discretization methods

Wave-based methods exploit known solutions such as plane waves, or other analytical solutions to define or enrich the approximate solution space. Element-free methods ͑EFM͒ based on moving least-squares, and partition-of-unity methods ͑PUM͒, provide a means to incorporate analytical wave functions within local basis functions. For the Helmholtz equation solutions can be approximated using increasing numbers of basis functions in the form of plane waves ͑Babuska and [START_REF] Babuska | The partition of unity method[END_REF][START_REF] Bettess | A numerical integration scheme for special finite elements for the Helmholtz equation[END_REF][START_REF] Laghrouche | Short wave modelling using special finite elements[END_REF][START_REF] Laghrouche | Modeling of short wave diffraction problems using approximating systems of plane waves[END_REF][START_REF] Melenk | The partition of unity method: basic theory and applications[END_REF]; in 2D problems, V = ͕e ik͑xcos m +ysin m ͒ , m =2m / n͖, where m =0,1,..., n -1, n =1,2,.... Suleau and Bouillard ͑2000͒ have shown that dispersion and pollution errors can be reduced by adding a sufficient number of plane-wave basis functions within the element-free moving least-squares method. Plane-wave basis functions have also been multiplied with standard piecewise polynomial shape functions as a partition-of-unity finite element method ͑Laghrouche and [START_REF] Laghrouche | Short wave modelling using special finite elements[END_REF][START_REF] Strouboulis | The design and analysis of the generalized finite element method[END_REF] The general integral that arises in the element matrices can be written as the product of plane waves, and polynomials. Such integrals are highly oscillatory and difficult to evaluate efficiently using standard techniques. Burnett and Soroka ͑1972͒ and Pierce et al. ͑2002͒ offer well-proven techniques for evaluating highly oscillatory integrals. Ortiz and Sanchez ͑2001͒ derive special integration techniques which isolate the oscillatory effects to one dimension. Another approach to reducing integration costs is given in [START_REF] Bettess | A numerical integration scheme for special finite elements for the Helmholtz equation[END_REF][START_REF] Laghrouche | Modeling of short wave diffraction problems using approximating systems of plane waves[END_REF] While reducing dispersion and pollution error, a drawback of these approaches is the potential for ill-conditioning of the resulting system matrices which may disrupt the practical convergence of the method. Empirical rules relating condition number, number of wave directions, and wave number are given in [START_REF] Laghrouche | Modeling of short wave diffraction problems using approximating systems of plane waves[END_REF] Least-squares methods ͑Monk and Wang, 1999; Stojek, 1998͒ minimize the least-squares difference in jumps of the solution and its normal derivative across element edges. The use of discontinuous solution spaces allows for the use of a plane-wave basis. The ultraweak variational formulation ͑Cessenat and [START_REF] Cessenat | Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation[END_REF][START_REF] Cessenat | Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem[END_REF][START_REF] Huttunen | Computational aspects of the ultra-weak variational formulation[END_REF] is another approach to using discontinuous local plane-wave solutions of the Helmholtz equation on each element. In this approach integration-by-parts is used to derive a variational formulation that weakly enforces continuity conditions between elements via local transmitting impedance conditions. An advantage of this approach is that integrations are carried out over element boundaries only and can be evaluated in closed form. Other wave-based methods are the weak element method ͑Goldstein, 1986͒, and the iterative defectcorrection meshless method ͑Lacroix et al., 2003͒. A difficulty with wave-based methods is that plane-wave, or other free-wave solutions, used as basis functions, often lead to ill-conditioning of the resulting system matrix as the number where ͑␣ x ,␣ y ͒=kh͑cos,sin͒. For uniform meshes this value eliminates dispersion error for plane waves in the angular direction. In general, solutions to the Helmholtz equation can be expanded in terms of plane waves with the predominant direction unknown a priori. By preselecting the angle 0 =/8 in ͑30͒, the phase error, while not eliminated, is reduced significantly for all other wave angles ͑Thompson and Pinsky, 1995͒. For unstructured finite-element meshes the Laplacian operator appearing in ͑29͒ is usually neglected and the element size h can be taken as an average over the mesh or h= ͱ A, where A is the element area. Numerical evidence shows that the GLS-FEM is relatively insensitive to the precise definition of the measure of element size ͑Harari and Magoules, 2004;[START_REF] Harari | Recent developments in finite element methods for structural acoustics[END_REF][START_REF] Thompson | A stabilized MITC element for accurate wave response in Reissner-Mindlin plates[END_REF]. The additional cost of computing the GLS contribution is trivial, yet gives substantial improvement in accuracy, even on unstructured meshes. Values for on triangle, quadratic, and trilinear brick elements are given in [START_REF] Harari | Reducing dispersion of linear triangular elements for the Helmholtz equation[END_REF][START_REF] Harari | Recent developments in finite element methods for structural acoustics[END_REF][START_REF] Thompson | A Galerkin least squares finite element method for the two-dimensional Helmholtz equation[END_REF]. Successful generalization of residual based methods to waves in plate bending elements and acoustic fluid-structure interaction are given in Thompson, 2003, andThompson and[START_REF] Thompson | Dispersion analysis of stabilized finite element methods for acoustic fluid interaction with Reissner-Mindlin plates[END_REF] Many of the generalized Galerkin methods can be derived within the variational multiscale ͑VMS͒ framework ͑Hughes et al., 1998͒, including the method of residual-free bubbles ͑Franca et al., 1997͒, also related to nearly optimal Petrov-Galerkin methods ͑Barbone and Harari, 2001͒. For the GLS method defined in ͑29͒, the mesh-dependent stability parameter may be interpreted as an algebraic approximation of a global integral operator for unresolved fine scales obtained by a separation of coarse finite-element polynomials and enhanced fine scales within the VMS framework. Multiscale considerations also underlie the residualbased method in Oberai and Pinsky, 2000, which includes the Helmholtz residual in least-squares form over element interiors ˜⍀, plus an additional residual defined over interelement boundaries ˜⌫. In this case, the variational form assuming negligible Laplacian operation is

B͑w,u͒ + k 2 ͑w,u͒ -͑␥w,͠u ,n ͒͡ ˜⌫ -͑␥͠w ,n ͡,u͒ ˜⌫ = F͑w͒,
where ͠u ,n ͡ is the jump in discontinuous gradients across common element edges. Using this framework, Oberai and Pinsky ͑2000͒ find mesh parameters and ␥ for Q4 linear quadrilateral elements which produce a leading order phase error for all plane-wave directions of order O͑kh͒ 6 ; a substantial improvement over standard Galerkin linear Q4 elements. Further discussions relating residual and other stabi-

IX. ITERATIVE SOLUTION METHODS

The system of equations Zd= f, Z C N dof ϫN dof , resulting from the Galerkin FEM applied to the Helmholtz equation is sparse, complex, and symmetric ͑non-Hermitian and generally not diagonally dominant͒. Direct solution methods based on Gaussian elimination or factorization become exceedingly expensive both in terms of memory and computation when solving large systems of this class, especially for larger wave numbers. The primary iterative solution method for these types of systems are complex versions of Krylov subspace methods. In order to accelerate convergence a preconditioner is required. Standard preconditioners such as incomplete LU factorization ͑ILU͒ are optimal for matrices with diagonal dominance. However, the matrices which arise from the Helmholtz equation can be indefinite without diagonal dominance, making standard ILU not as practical and can exhibit breakdown at high wave numbers.

One possible approach is to recast the complexsymmetric system into Hermitian positive-definite form by multiplying by the Hermitian transpose, resulting in the normal equations Z H Zd= Z H f. The above system can be solved with the well-known conjugate gradient iterative method, with incomplete Cholesky factorization or other preconditioners. A difficulty of this approach is that the condition number of Z H Z is the square of Z, so that convergence may be slow. Another possibility is to replace the complexsymmetric system ͑A + iB͒͑x + iy͒ = a + ib, with a real symmetric system,

ͫ AB B -A ͬͫ x -y ͬ = ͫ a b ͬ,
where A R N dof ϫN dof and B R N dof ϫN dof . However, in this form, the system may become even more difficult to precondition. Specialized preconditioners based on the original complex-symmetric matrix Z appear to give the best results with significant acceleration, even at high wave numbers. In Made ͑2001͒, prior to incomplete factorization, the real part of the preconditioning matrix is made less indefinite, by perturbations to the diagonal entries. This was shown to exhibit significant reduction of iteration counts in the GMRES method ͑Saad and Schultz, 1986͒. A similar idea is used in [START_REF] Erlangga | On a class of preconditioners for solving the Helmholtz equation[END_REF] with a shifted-Laplace preconditioner built on the modified Helmholtz equation ٌ 2ik 2 , which is a generalization of the preconditioners introduced in Bayliss et al. ͑1983͒. In Kechroud et al. ͑2004͒ incomplete LU factorization with threshold ͑ILUT͒, and the Crout form of ILU were used as preconditioners combined with the GMRES iterative solver. It was reported that stagnation issues arise with high fill-in. The authors promise improvements by adding a damping parameter during the factorization process. Multifrontal incomplete factorization methods have also been applied to complex-symmetric indefinite systems with good results ͑Qu and Fish, 2002͒.

Suitable iterative solvers for sparse complex symmetric matrix systems other than GMRES include BICG-STAB ͑Vander Vorst, 1992͒, QMR ͑Freund, 1991͒ and TF-QMR ͑Freund, 1993͒ methods. Some numerical comparisons of the alterna-of wave functions per element is increased, or refined element meshes are used. Another approach which may be derived in the framework of multiscale methods is the discontinuous enrichment method ͑DEM͒, where standard finiteelement polynomial field is enriched within each element by adding plane-wave basis functions, and Lagrange multipliers are introduced at element interfaces to enforce a weak continuity of the solution ͑Farhat et al., 2003͒. Using element level condensation, the system matrices are reported to be better conditioned than the PUM.

VIII. A POSTERIORI ERROR ESTIMATES AND ADAPTIVE METHODS

Adaptive methods use a posteriori error estimates to control discretization error in the numerical solution ͑Ainsworth and Oden, 2000͒. A posteriori error estimates are computed by postprocessing the numerical solution. For standard finite-element methods, a posteriori error estimates are used to control mesh refinement, both element size h, and polynomial order p distribution. The most common a posteriori error estimates are residual ͑both explicit and implicit͒, and recovery type. Implicit residual methods involve the solution of local or global problems which usually require very little cost compared to solving the original finite-element solution. Explicit methods relate the residual of the original governing equation localized to each element and do not require solving any auxiliary problems. Since the residual is a measure of numerical error, the error estimate can be used as a refinement indicator for adaptive strategies.

Stewart and Hughes ͑1996͒ used explicit residual methods based on the use of adjoint equations and duality arguments to develop adaptive strategies for the finite-element discretization of the Helmholtz equation. The error estimator depends on a stability constant which is approximated by solving global eigenvalue problems, which may be costly to compute. Irimie and Bouillard ͑2001͒ use standard explicit residual methods to estimate the error for the Helmholtz equation. Babuska et al. ͑1997͒ andBouillard ͑1999͒ studied implicit element residual methods to estimate the finiteelement error. Bouillard and Ihlenburg ͑1998, 1999͒ studied the gradient recovery-based error estimators based on the Zienkiewicz-Zhu patch recovery technique, and found that the estimator converges with mesh refinement for all wave numbers, although the estimate underestimates the error at high wave number. Attempts to estimate the pollution error are studied in Babuska et al. ͑1997͒. Initial studies of goaloriented adaptive methods which measure the error in quantities of interest other than global norms are reported in [START_REF] Peraire | Asymptotic a posteriori finite element bounds for the outputs of noncoercive problems: The Helmholtz and Burgers equations[END_REF][START_REF] Sarrate | A posteriori finite element error bounds for non-linear outputs of the Helmholtz equation[END_REF] For finite-element solutions with sufficient resolution and for which the pollution error is under control, i.e., kL͑kh͒ 2 Ӷ1, the quality of both the residual-based error estimators and recovery-type methods are good. However, since local error estimators do not detect pollution error, the quality deteriorates as the wave number k increases.

tive iterative solvers are reported in Mazzia and Pini ͑2003͒ and elsewhere. The best combination of iterative solver and preconditioner seems to be problem dependent. From the author's experience, BICG-STAB appears to be robust for complex-symmetric systems at high wave number.

Other preconditioning approaches include analytic factorization methods ͑Gander and Nataf, 2001͒ and fictitious domain methods ͑FDM͒. The FDM is based on embedding the original domain into a larger one with a simple geometry ͑Marchuk et al., 1986͒. In the algebraic FDM ͑closely related to capacitance matrix methods͒ the linear system resulting from the finite-element discretization is replaced by an equivalent, but enlarged, system corresponding to a simpleshaped domain containing the original domain. In this enlarged, yet simplified form, efficient iterative preconditioners are constructed based on locally perturbed orthogonal fitted meshes. Applications of the algebraic FDM for acoustic scattering are reported in [START_REF] Elman | Efficient iterative solution of the three-dimensional Helmholtz equation[END_REF][START_REF] Ernst | A finite-element capacitance matrix method for exterior Helmholtz problems[END_REF][START_REF] Heikkola | Fictitious domain methods for the numerical solution of three-dimensional acoustic scattering problems[END_REF][START_REF] Heikkola | A parallel fictitious domain method for the three-dimensional Helmholtz equation[END_REF] Other solver techniques for the Helmholtz equation include multigrid methods ͑Brandt and Livshitz, 1997; [START_REF] Elman | A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations[END_REF][START_REF] Lee | Firstorder system least-squares for the Helmholtz equation[END_REF]Vanele et al., 1998͒. For acoustic scattering problems, the incident field is often represented by a plane wave, u inc ͑x͒ = exp͑ikx • ͒, = ͑cos ␣ , sin ␣ cos ␤ , sin ␣ sin ␤͒ with a sweep over different incident directions ␣ and ␤. This leads to a problem with fixed left-hand-side matrix and multiple right-hand-side forcing vectors. [START_REF] Malhotra | Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm[END_REF] show how to efficiently solve the multiple right-hand-side problem with QMR methods.

A. Multifrequency solution methods

Often a large number of frequency ͑wave number͒ efficiently with the nonlocal modified DtN by utilizing the special structure of the admittance matrix. Efficient algorithms based on this PVL approach over multiple frequencies have not been demonstrated for the general case of frequency dependent excitation f͑k͒ which is required for general acoustic scattering and radiation problems.

B. Domain decomposition methods

Domain decomposition methods provide an effective means of problem subdivision for parallel processing. Classical Schur complement-based domain-decomposition methods have difficulties when applied to the Helmholtz equation since the inversion of the matrix A i = ͑S ik 2 M i ͒ defined on each interior subdomain will be singular when the wave number corresponds to a resonance frequency ͑eigenvalue͒ of the pencil ͑K i , M i ͒. The first resonance will occur at a resolution of less than two subdomains per wavelength ͑Thompson et al., 2001͒.

Kim ͑1998͒ uses the Robin-type impedance ͑transmis-sion͒ interface conditions presented in Benamou and Despres ͑1997͒ and Despres ͑1993͒ in a Schwarz-type domain decomposition method to improve convergence; however, the iteration count increases with many subdomains. Cai et al. ͑1998͒ demonstrated an overlapping Schwarz method with GMRES acceleration and coarse grid corrections to improve convergence. Another additive Schwarz domain decomposition method with the Robin-type subdomain interface transmission conditions has been proposed in Susan-Resiga and Atassi ͑1998͒, where the nonlocal DtN nonreflecting boundary condition is computed with an iterative lag to maintain sparsity of the parallel subdomain solves. In Larsson ͑1999͒ a preconditioned restarted GMRES iterative method is used for the solving the Helmholtz equation, including nonlocal nonreflecting boundary conditions. Domain decomposition is used with a Schur complement algorithm and fast preconditioners for the subdomains to accelerate convergence.

In [START_REF] Farhat | Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems[END_REF][START_REF] Tezaur | Threedimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries[END_REF], a nonoverlapping domain decomposition method called FETI-H, based on two-level Lagrange multipliers and the alternating Robin-type transmission conditions at subdomain interfaces of the continuous operator form A ͑s͒ = ik, presented in Benamou and Despres ͑1997͒ and Despres ͑1993͒, is used to solve the Helmholtz equation with second-order local nonreflecting boundaries. The matrices restricted to each subdomain ⍀ s are Z ͑s͒ = ͑S ͑s͒k 2 M ͑s͒ -K ⌫ ͑s͒ + ikA ͑s͒ ͒. Here, A ͑s͒ are regularization matrices associated with the operator A ͑s͒ = ik, and defined by integration over subdomain interfaces,

d ͑s͒ T A ͑s͒ d ͑s͒ = ͚ t=1 t s p ⑀ st ͵ ץ⍀ s പץ⍀ t u 2 .
Here, d ͑s͒ is the unknown vector restricted to subdomain ⍀ s , and ⑀ st ͕0,±1͖, ⑀ st =-⑀ ts . The use of regularization matrices for the Helmholtz operator provides for a unique solution on each subdomain. Inclusion of the alternating regularization matrix on the interface boundaries cancel upon global assembly, thus reverting to the original problem, and leading to nonsingular and invertible matrices Z ͑s͒ . The transmission evaluations are required over a broad band to characterize the system response or when an inverse Fourier transform is needed to construct a corresponding time-domain solution.

Since the complex-symmetric matrix Z=͑S-k 2 M-K ⌫ ͒ is wave number dependent, the solution generally involves a separate inversion at each wave number k, causing the computation cost to grow linearly with the number of wave number evaluations. For problems with frequency-independent excitation f, matrix Padé approximation via the Lanczos ͑PVL͒ process can be used to obtain an efficient algorithm which grows sublinearly for the simultaneous solution of the Helmholtz equation over multiple frequencies in a window based on a Krylov projection to a subspace of much smaller dimension than the original system size ͑Feldmann [START_REF] Feldmann | Efficient linear circuit analysis by Padé approximation via the Lanczos process[END_REF][START_REF] Freund | Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation[END_REF][START_REF] Simoncini | On the numerical solutions of ͑ 2 a + b + c͒x = b and application to structural dynamics[END_REF]Perotti, 2002͒. Wagner et al. 2003a, b show that the PVL process can be implemented conditions can be interpreted as a simple local preconditioner of the linear system condensed on the interface. Improved transmission conditions with tangential derivatives of the form A ͑s͒ = ␣ ͑s͒ + ␤ ͑s͒ ץ 2 2 , with coefficients ␣ ͑s͒ , ␤ ͑s͒ , and unit tangential vector , have been derived based on Fourier analysis of the Steklov-Poincaré operators in a half-space ͑Collino et al., 2000͒. Optimized coefficients have been chosen to minimize the convergence rate of the Jacobi algorithm in the closely related additive Schwarz method with no overlap ͑Gander et al., 2002͒. In [START_REF] Magoules | Optimal discrete transmission conditions for a nonoverlapping domain decomposition method for the Helmholtz equation[END_REF] shown that the optimal augmented interface operator A ͑s͒ is the Schur complement of the outer domain. Approximations of this Schur complement with sparse approximate inverse methods and incomplete factorization are investigated.

X. ACOUSTIC INVERSE PROBLEMS AND SHAPE OPTIMIZATION

Acoustic inverse problems which involve determining the shape of a body from an acoustic far-field pattern for the scattering of time-harmonic waves can be interpreted as a nonlinear ill-posed operator equation with the operator mapping the boundary onto the far field. Regularized Newton iterative methods provide accurate and robust solutions to the inverse obstacle scattering equation ͑Kress, 2003͒. Gradient-type methods based on regularized Newton or quasi-Newton optimization requires computation of shape derivatives. The derivatives are computed from solutions to the Helmholtz equation with different right-hand sides corresponding to the number of parameters in the boundary representation. Implementation of the regularized Newton method which incorporates exact sensitivities of far-field patterns with iterative finite-element solutions to the direct timeharmonic problem are given in Farhat et al. ͑2002͒. An alternate Newton-type method calculates the shape derivatives efficiently by solving an associated adjoint problem ͑Feijoo et al., 2004͒. The adjoint method for the computation of shape derivatives and smoothing for finding regular solutions is related to the shape optimization problem ͑Jameson, 1988͒, where observations of a numerical solution to the Helmholtz equation provides an objective function which is formulated as a multipoint nonlinear optimization problem. Habbal ͑1998͒ and Bangtsson et al. ͑2003͒ consider shape optimization of a sound barrier and acoustic horn, respectively, using the regularized Newton iterations and the finiteelement method. The shape optimization problem is solved using a gradient-based search method where the gradient is provided by solving the associated adjoint equations. Developments in coupled FEM-BEM structural-acoustic optimization and sensitivity analysis are reported in Fritze ͑2005͒ and Marburg ͑2002͒.

XI. CONCLUSION

FIG. 1 .

 1 FIG. 1. Artificial truncation boundary ⌫ defining finite computational domain ⍀ for the exterior problem.

  It is also possible to couple the finite method with boundary integral methods ͑Fischer and Gaul, 2005͒, and other domain-based methods such as global Trefftz-based wave methods which are effective at high frequencies on moderate geometrical complexity ͑Van Hal et al., 2003͒.

FIG. 2 .

 2 FIG. 2. Infinite element topology.

FIG. 3 .

 3 FIG. 3. Absorbing layer topology.

  Djellouli et al. ͑2001͒ present an approach based on Padé approximation to compute multifrequency evaluations efficiently by solving a reference scattering problem with multiple excitation vectors and local BGT boundary conditions to characterize frequency derivatives of the scattered field. In Ingel ͑2000͒ and Thompson et al. ͑2001͒, domain decomposition concepts are combined with interpolation of substructure ͑subdomain͒ matrices over frequency bands of interest to accelerate multifrequency solutions.

=1 W j =1, W j =1/4, yields increased phase accuracy compared to standard Galerkin.

ACKNOWLEDGMENTS

I thank the anonymous reviewers for valuable comments and suggestions which greatly improved the quality of this article.