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A review of finite-element methods for time-harmonic acoustics

Lonny L. Thompson
a�

Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921

State-of-the-art finite-element methods for time-harmonic acoustics governed by the Helmholtz equation are reviewed. Four 
major current challenges in the field are specifically addressed: the effective treatment of acoustic scattering in unbounded 
domains, including local and nonlocal absorbing boundary conditions, infinite elements, and absorbing layers; numerical 
dispersion errors that arise in the approximation of short unresolved waves, polluting resolved scales, and requiring a large 
computational effort; efficient algebraic equation solving methods for the resulting complex-symmetric � non-Hermitian� 
matrix systems including sparse iterative and domain decomposition methods; and a posteriori error estimates for the 
Helmholtz operator required for adaptive methods. Mesh resolution to control phase error and bound dispersion or pollution 
errors measured in global norms for large wave numbers in finite-element methods are described. Stabilized, multiscale, and 
other wave-based discretization methods developed to reduce this error are reviewed. A review of finite-element methods for 
acoustic inverse problems and shape optimization is also given. 

I. INTRODUCTION

Finite-element methods �FEM� for time-harmonic

acoustics governed by the reduced wave equation �Helm-

holtz equation� have been an active research area for nearly

40 years. Initial applications of finite-element methods for

time-harmonic acoustics focused on interior problems with

complex geometries including direct and modal coupling of

structural acoustic systems for forced vibration analysis, fre-

quency response of acoustic enclosures, and waveguides

�Craggs, 1972; Gladwell, 1966; Nefske et al., 1982; Petyt

et al., 1976; Young and Crocker, 1975; Zienkiewicz and

Newton, 1969�. In recent years, tremendous progress in the

development of improved finite-element methods for time-

harmonic acoustics including exterior problems in un-

bounded domains, which incorporate knowledge of wave be-

havior into the algorithm, combined with parallel sparse

iterative and domain decomposition solvers, are moving the

application of FEM into the higher frequency �wave number�
regimes.

The exterior acoustics problem in unbounded domains

presents a special challenge for finite-element methods. In

order to use the FEM for exterior problems, the unbounded

domain is usually truncated by an artificial boundary � yield-

ing a bounded computational domain �; see Fig. 1. Reduc-

ing the size of the bounded domain reduces the computation

cost, but must be balanced by the ability to minimize any

spurious wave reflection with a computationally efficient and

geometrically flexible truncation boundary treatment. The

first complete finite-element approach for modeling acoustic

radiation and scattering in unbounded domains appears in the

impedance matching technique presented by Hunt et al.

1974, 1975. Recent numerical treatments including infinite

elements, absorbing layers, local absorbing boundary condi-

tions, and exact nonlocal boundary conditions have proven to

be effective in handling acoustic scattering problems in un-

bounded domains, especially for large-scale problems requir-

ing iterative and parallel solution methods and for modeling

inhomogeneities and acoustic-structure interaction. The

method of choice depends on the shape and complexity of

the scattering object, inhomogeneities, frequency range, and

resolution requirements, among other parameters.

A natural way of modeling the acoustic region exterior

to a scattering/radiating object is to introduce a boundary

element discretization of the surface S based on an integral

representation of the exact solution in the exterior �Burton

and Miller, 1971; Colton and Kreiss, 1983; Walsh et al.,

2004�. Using the free-space Green’s function �fundamental

solution�, the boundary element method �BEM� only requires

surface discretization on S, reducing the d-dimensional prob-

lem to a �d−1�-dimensional one, and automatically satisfies

the required Sommerfeld radiation condition at infinity

�Sommerfeld, 1912�. The BEM naturally incorporates sur-

face impedance conditions but is limited in the ability to

model complex, inhomogeneous regions. Application of the

classical BEM for acoustic scattering requires solution of

large, dense, complex linear systems due to the nonlocal sup-

port of the fundamental solution leading to high computa-

tional expense and storage requirements.

The finite-element method �FEM� is able to solve prob-

lems in nonhomogeneous media and allows for a natural

coupling with complex structures. For exterior problems in

unbounded domains, special techniques are required to re-

duce spurious reflection to a level below that of the discreti-

zation error. The numerical advantage of the FEM is that

they lead to sparse matrices, which by avoiding calculations

on zeros, significantly speed up computations and reduce

memory requirements. Complexity estimates �Harari and

Hughes, 1992� and numerical evidence �Burnett, 1994� have

shown that domain-based methods such as the FEM are ana�
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In this paper, recent developments in finite-element

methods for time-harmonic acoustics, including treatments

of unbounded domains are reviewed. Topics include local

and nonlocal Dirichlet-to-Neumann �DtN� nonreflecting

boundary conditions, infinite elements, and absorbing layers

for exterior problems; discretization methods which reduce

numerical dispersion error arising in the approximation of

short unresolved waves; efficient algebraic equation solving

methods including sparse iterative and domain decomposi-

tion methods; a posteriori error estimates, adaptive methods;

acoustic inverse problems, and shape optimization.

II. THE EXTERIOR PROBLEM IN UNBOUNDED
DOMAINS

Let V be the domain of an object with boundary S. The

exterior domain is defined by the unbounded region R

=R3 \V. Time-harmonic acoustics is governed by the Helm-

holtz differential equation. For exterior problems defined on

unbounded domains, solutions are required to satisfy the

Sommerfeld radiation condition at infinity �Sommerfeld,

1912�. The differential form of the boundary-value problem

for exterior problems in unbounded domains may be stated

for a general impedance surface condition as: Given wave

number-dependent boundary data g�x ;k��C, ��x ;k��C;

Find the complex-valued scalar field u�x ;k��C, such that

�2u + k2u = 0, in R = R
3 \ V �1�

�u

�n
+ �u = g, on S �2�

lim
r→�

r� �u

�r
− iku� = 0. �3�

Here, u�x� represents the spatial part of the acoustic pressure

or velocity potential, with wavenumber k�C, Im�k��0. The

sign convention for the phase is e−i�t, where i=�−1 and �

is the natural frequency. The normal derivative ��u /�n�
ª�u ·n defines the gradient in the direction of the unit

outward vector normal to S. In the above, r= �x� is a radius

centered near the origin of the sound source. The Sommer-

feld radiation condition �3� allows only outgoing waves pro-

portional to exp�ikr� at infinity. The radiation condition

requires that energy flux at infinity be positive, thus en-

suring unique solutions.

Finite-element methods typically introduce an artificial

boundary �, which divides the original unbounded domain

into two regions: a bounded computational domain � dis-

cretized with the finite-element method and an infinite re-

sidual region D=R \�; see Fig. 1. Reducing the size of the

bounded computational domain decreases the computational

cost and memory storage. Methods for modeling the exterior

complement D=R \�, i.e., the infinite region exterior to the

artificial boundary �, can be divided into three main catego-

ries: local or nonlocal absorbing �nonreflecting� boundary

conditions, infinite elements, and absorbing layers. Infinite

element methods represent the exterior complement by as-

suming a radial approximation with outgoing wave behavior.

Matched absorbing layers attempt to decay outgoing waves

FIG. 1. Artificial truncation boundary � defining finite computational do-

main � for the exterior problem.

effective alternative to the BEM for exterior acoustics prob-

lems, especially for large systems due to the sparse structure 
of the resulting system matrices. With the recent develop-

ments in fast multipole methods which accelerate the calcu-

lation of matrix-vector products in iterative integral methods 
�Chen and Chen, 2004; Chew et al., 1997, 2004; Darrigrand, 
2002; Darve, 2000; Epton and Dembart, 1995; Fischer et al., 
2004; Greengard et al., 1998; Gumerov and Duraiswami, 
2004; Rockhlin, 1993; Sakuma and Yasuda, 2002; Schneider, 
2003�, the method with the best efficiency is less clear, yet 
the FEM retains the advantages of robustness and natural 
integration with other discrete models in coupled problems. 
It is also possible to couple the finite method with boundary 
integral methods �Fischer and Gaul, 2005�, and other 
domain-based methods such as global Trefftz-based wave 
methods which are effective at high frequencies on moderate 
geometrical complexity �Van Hal et al., 2003�.

A difficulty of the standard Galerkin FEM applied to 
short-wave problems with wavelengths smaller than the geo-

metrical parameters defining the domain has been the ability 
to accurately resolve oscillating wave solutions at higher fre-

quencies �wave numbers�. The difficulty of simultaneously 
achieving accuracy and efficiency at high wave numbers has 
been cited as one of the most challenging problems in scien-

tific computation �Zienkiewicz, 2000�. The failure to ad-

equately control numerical dispersion errors not only inaccu-

rately approximates the oscillatory part of the solution, but 
has a global pollution effect that builds up over the whole 
computational domain. The pollution effect is related to the 
loss of stability of the Helmholtz operator at large wave 
numbers. Due to challenges in accurately resolving short 
wave solutions at higher frequencies, many alternative and 
creative finite-element methods have been developed in the 
last decade including high-order methods, stabilized Galer-

kin methods, multiscale variational methods, and other 
wave-based discretization methods. A common theme of 
many of these improved finite-element methods is that they 
incorporate knowledge of wave behavior into the solution 
algorithm. Other recent improvements which are pushing the 
FEM into larger wave number regimes include the develop-

ment of efficient iterative solvers with accelerating precon-

ditioners, and domain decomposition parallel solution meth-

ods for the resulting sparse complex-symmetric �non-

Hermitian� matrix systems arising from discretization of the 
Helmholtz operator.
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in a relatively thin layer exterior to �. For the nonreflecting

�absorbing� boundary conditions, the outgoing wave solution

in D is represented by a relation of the unknown solution and

its derivative on the artificial truncation boundary �. Options

include matching exact analytical series solutions Hunt et al.,

1974, 1975, as used in the nonlocal Dirichlet-to-Neumann

�DtN� map �Keller and Givoli, 1989�, and various local ap-

proximations. The artificial boundary � is usually taken to be

a surface defined in separable coordinates for efficiency, e.g.,

a sphere or spheroid. Formulations on nonseparable bound-

aries have also been developed; in this case the formulations

are usually applied directly to the surface of the scatterer,

thus completely avoiding discretization in �, e.g., Antoine,

2002; Antoine et al., 1999; Shirron and Dey, 2002. Un-

bounded domain treatments may also be derived for acoustic

waveguide problems �Bayliss et al., 1983; Givoli, 1999;

Murphy and Ching-Bing, 1989�.
For absorbing boundary conditions, the originally un-

bounded exterior problem is replaced by an equivalent re-

duced problem defined on the bounded domain �: Find

u�x��C, such that

�2u + k2u = 0, in � �4�

�u

�n
+ �u = g, on S �5�

�u

�n
= Bu, on � �6�

where B is a linear operator called the Dirichlet-to-Neumann

�DtN� map relating Dirichlet data to the outward normal de-

rivative of the solution on �. The DtN operator B approxi-

mates the Sommerfeld radiation condition at a finite bound-

ary �, and must satisfy the condition Im�u ,Bu���0 to

ensure unique solutions. The DtN operator B is usually

either a differential �local� or integral �nonlocal� operator,

or combination of both. Physically, the DtN operator B

represents radiation admittance relating pressure u �Di-

richlet data� to normal velocity vn which is proportional to

the normal derivative �u /�n= i��vn �Neumann data�, on

the truncation boundary �.

III. LOCAL ABSORBING BOUNDARY CONDITIONS

Absorbing boundary conditions should annihilate any

spurious reflections at the artificial boundary �which are in-

coming�. For local absorbing boundary conditions defined on

a sphere, the development is based on the idea of annihilat-

ing radial terms in the Atkinson-Wilcox radial expansion in

powers of 1 /kr �Atkinson, 1949; Wilcox, 1956�

u�r,�,	;k� =
eikr

ikr
	
l=0

�
f l��,	;k�

�kr�l
. �7�

mogeneous and may not contain any objects/obstacles. Bay-

liss et al. �1982� showed that a sequence of local differential

operators can be used to annihilate terms in this expansion.

The first two local operators acting on the expansion for u,

with their corresponding remainders are

G1u = � �

�r
− B1�u = O�1/kr�3, �8�

G2u = � �

�r
+

2

r
− B1�� �

�r
− B1�u = O�1/kr�5, �9�

where

B1 = ik −
1

r
. �10�

In the case of the second-order operator G2, the second-order

radial derivative is replaced by second-order angular deriva-

tives using the Helmholtz equation expressed in spherical

coordinates. Setting the remainders to zero results in ap-

proximate local radiation boundary conditions which are eas-

ily implemented in standard finite-element methods. The

corresponding local BGT boundary conditions are defined by

relating the radial �normal� derivative to Dirichlet data in the

form of the differential map,

�u

�r
= B ju , �11�

where for j=1, the first-order operator B1 is defined in �10�
and for j=2, the second-order BGT operator is

B2 = B1 +
1

2B1

��. �12�

The second-order angular derivatives appearing in �12� are

defined by

��u ª �� · ��u =
1

r2 sin �

�

��
�sin �

�u

��
� +

1

r2 sin2 �

�2u

�	2
,

where

�� ª

1

r

�

��
e� +

1

r sin �

�

�	
e	.

The corresponding weak �variational� form of the

boundary value problem with the B2 BGT operator is: Find

the trial solution u, such that, for all test functions w

This expansion is valid for radius r� r0, where r0 is the 
radius of a spherical �or spheroidal� surface circumscribing 
the target/radiator, labeled S in Fig. 1, and any inhomogene-

ities of the domain �. Outside r0, and in particular the radius 
R of the truncation surface, the exterior domain must be ho-

3



B�w,u� − B��w,u� = F�w� , �13�

where

B�w,u� ª

�

��w · �u − k2wu�dx + 

S

�wuds ,

B��w,u� ª 

�

B1wud� − 

�

1

2B1

��w · ��ud� ,

F�w� ª 

S

wgds ,

with differential surface area d�=R2sin � d� d	 on a spheri-

cal truncation boundary of radius R. The B1 and B2 opera-

tors both satisfy a required uniqueness condition,

Im�B��u ,u��
0 �or �0�, for all u evaluated on �, u�0

�Grote and Keller, 1995; Harari and Hughes, 1992�. The

differential operators Bj, j=1,2, are relatively simple to

implement and retain the local sparse structure of the

finite-element method. The local condition B2 is preferred

since, for a fixed radius, it is more accurate compared to

B1, as can be seen from the orders of the remainders in

�9�. Direct finite-element implementation of high-order

operators B j, j�3, are problematic in conventional finite-

element methods since regularity in angular derivatives

higher than standard C0��� are required �Givoli et al.,

1997�.
Conventional finite-element methods partition the com-

putational domain � into nonoverlapping subdomains �ele-

ments� �e with continuous piecewise polynomials. In the

standard h-version, basis �shape� functions Ni�x�, associated

with element nodes are C0 continuous interpolation functions

with compact support. The continuous approximation is writ-

ten as the linear combination,

uh�x� = 	
i=1

Ndof

Ni�x�di = NT�x�d , �14�

where N�R
Ndof is a column vector of standard C0 basis

functions, and d�C
Ndof is a column vector containing the

Ndof unknown nodal values di=uh�xi�, where uh�xi� is the

approximation of the solution u at node xi. Using a stan-

dard Galerkin finite-element approximation, test �weight-

ing� functions wh are expressed as a linear span of the

same basis functions. Substitution into �13� leads to the

sparse, complex-symmetric �non-Hermitian� linear alge-

braic system,

Zd = f, Z = �S − k2M − K�� , �15�

with matrix coefficients

�S�ij = 

�

� Ni · �N jdx + 

S

�NiN jds ,

�M�ij = 

�

NiN jdx ,

�K��ij = 

�

B1NiN jd� − 

�

1

2B1

��Ni · ��N jd� .

The excitation vector

�f�i = 

S

Nigds , �16�

is in general complex-valued, and wave number dependent.

The contribution from the local absorbing conditions are

found in the k-dependent sparse matrix K� associated with

node points on the boundary �. Further details of the finite-

element implementation such as element mapping, integra-

tion, and assembly of element arrays are found in standard

finite-element textbooks, e.g., Hughes, 2000; Petyt, 1990.

The local support of the element shape functions gives the

advantage of being able to handle complex geometries and

producing sparse matrices which are solved efficiently by

avoiding storage and computation of zero coefficients. For

large three-dimensional problems at high wave numbers k,

accurate resolution requires a large number of elements lead-

ing to large sparse matrices. In this case, iterative solvers are

preferred over direct factorization methods due to the lower

memory requirements and parallel computing performance.

Other local absorbing conditions which attempt to anni-

hilate incoming waves include the Enquist and Majda �1977�
and Feng �1983� conditions. In a numerical study by Shirron

�1998�, the accuracy of the BGT conditions are the most

accurate, especially for low modes and tight boundaries. The

first- and second-order BGT conditions have been widely

used Bossut and Decarpigny, 1989; Kechroud et al., 2004;

Tezaur et al., 2001 and have been generalized to spheroidal

�Grote and Keller, 1995� and arbitrary convex surfaces �An-

toine et al., 1999�. The use of spheroidal or rectangular co-

ordinates allows the artificial boundary to obtain a tight fit

around elongated objects. For spheroidal, and other convex

shapes, the conditions tend to lose accuracy for higher wave

numbers �Tezaur et al., 2002�. Low-order approximate con-

ditions require careful placement when computing the re-

sponse over a range of frequencies; the size of the computa-

tional domain and the mesh density must be carefully

selected to achieve a prescribed accuracy. If not placed suf-

ficiently far from the radiating/scattering object, low-order

local approximate absorbing boundary conditions may pro-

duce large spurious reflections which can pollute the entire

numerical solution.

Complexity estimates show that it is usually more effi-

cient to use high-order accurate absorbing conditions which

enable smaller computational domains. The development of

high-order local boundary conditions for which the order can

be easily increased to a desired level are usually based on

using auxiliary variables to eliminate higher-order deriva-

tives �Givoli, 2004; Hagstrom, 1999; Hagstrom and Hariha-

ran, 1998; Huan and Thompson, 2000; Thompson et al.,

2001; van Joolen et al., 2003�. While generally derived for

the time-dependent case, time-harmonic counterparts are

readily implemented with time derivatives replaced by i�,

�=kc, where c is wave speed.
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IV. THE DTN NONREFLECTING BOUNDARY
CONDITION

An alternative to high-order local absorbing conditions

are nonlocal DtN nonreflecting boundary conditions. The

conceptual foundation and experimental validation for the

DtN finite-element method are presented for both acoustic

radiation and scattering in the impedance matching technique

of Hunt et al., 1974, 1975. In Hunt �1974�, the relationship

between the pressure �Dirichlet data� and its normal deriva-

tive �Neumann data� on a spherical surface � is obtained

using the surface Helmholtz integral equation with boundary

condition �u /�n= i��vn, and then by expanding the analyti-

cal solution for the pressure u and normal velocity vn in

terms of spherical harmonics and matching coefficients. In

Keller and Givoli �1989� the DtN map on a sphere of radius

R is constructed directly and implemented in the standard

Galerkin finite-element method by expanding the outgoing

acoustic field in a spherical harmonic series,

u�r,�,	� = 	
n=0

N−1
hn�kr�
hn�kR� 	

m=−n

n

unmYnm��,	� , �17�

with coefficients

unm = �u,Ynm�S ª 

0

2 

0



u�R,�,	�Ynm
* dS . �18�

In the above, dS=sin� d� d	 is the differential surface el-

ement on the unit sphere S, parametrized by 0���, 0

�	�2, and

Ynm��,	� =��2n + 1�
4

�n − m�!
�n + m�!

Pn
m�cos ��eim	

are angular spherical harmonics such that Yn,�−m�= �−1�mYnm
* ;

the star denotes complex conjugate; and hn�kr� are outgoing

radial spherical Hankel functions. The DtN map is then ob-

tained by evaluating the normal derivative of �17� on the

boundary at r=R, and implemented as a “natural” boundary

condition with standard finite-element basis functions for u

on the surface �. Givoli �1999� recognized that the DtN

finite-element method could be generalized to other bound-

ary value problems with infinite domains. The operator is

nonlocal since the coefficients unm in �18� require integration

over the whole surface. The DtN map exactly represents all

harmonics in the solution up to the number of terms included

in the truncated series expansion as measured by N. For

higher harmonics n
N−1, the truncated DtN models the

boundary � with the homogeneous Neumann condition

�u /�r=0 at r=R. As a consequence, nonunique solutions

may result when k2 matches an interior resonance associated

with the Laplacian operator. Harari and Hughes �1992�
showed that this difficulty can be eliminated by using a suf-

ficient number of harmonics N. However, the restriction may

require more terms in the DtN map than may be necessary to

achieve a desired accuracy, leading to a potential for exces-

sive computation.

This problem is circumvented if a modified truncated

DtN operator �Grote and Keller, 1995� is used, M*= �MN

−BN�+B, where B is any computationally efficient approxi-

mation to the DtN operator with the uniqueness property

Im�u ,Bu���0, and �MN−BN� is the truncation of M−B to

the first N modes. The modified DtN condition provides

unique solutions at all wave numbers irrespective of the

number of harmonics N included in the series. Suitable op-

erators B include local absorbing boundary conditions. The

boundary condition B2 is preferred over B1, since it provides

an improved matrix preconditioner for iterative solvers and

gives more accurate solutions when the number of harmonics

N used in the truncated DtN series is not sufficient to capture

important modes n
N−1 in the solution. Applying the local

B2 operator to �17� gives the modified DtN

�u

�r
= B2u + 	

n=2

N−1

�n 	
m=−n

n

unmYnm��,	� , �19�

where

�n = k
hn��kR�

hn�kR�
+

n�n + 1�
2B1r2

− B1. �20�

The B1 modified DtN is a special case obtained by omitting

the second term with n�n+1� and starting the summation at

n=1. Thompson and Pinsky �1996� recognized that these

conditions also annihilate up to the first N=2 spherical

modes corresponding to n=0 and n=1 in the expansion �17�
and thus are equivalent to the first two localized DtN condi-

tions derived in Harari and Hughes �1992�.
Nonlocal conditions are very accurate, yet couple all so-

lution unknowns on �, thus potentially rendering a full dense

matrix with associated solution cost and memory require-

ments. However, if separable boundaries are utilized such as

spheres or spheroids, a special structure in the resulting data

structures may be exploited to avoid storage of a full dense

matrix. Bayliss et al. �1985� appear to be the first to recog-

nize that a global DtN radiation boundary condition formed

by a harmonic expansion, and relating Dirichlet-to-Neumann

data on a separable boundary can be split as a vector outer

product which then can be used to perform matrix-by-vector

multiplies in iterative solvers without the need for assem-

bling a dense matrix.

The contribution of the DtN operator to the complex-

symmetric �non-Hermitian� system matrix is defined by the

admittance matrix,

Kdtn = R2	
n=2

N−1

�n 	
m=−n

n

cnmcnm
T , �21�

where cnm= �N ,Ynm�S are vectors of size equal to the number

of unknowns on the truncation boundary �.

Due to the special structure of the DtN map defined on a

separable boundary as a summation of vector outer products,

we recognize that the Sherman-Morrison algorithm in con-

junction with direct solvers may be used to preserve the spar-

sity of the finite-element equations with a series of rank-1

vector updates. For Krylov subspace iterative solvers the

computationally intensive kernel is the repeated operation of

matrix-by-vector products with vector iterates. The special

structure of the DtN matrix Kdtn, as a summation of rank-1

vector updates can be exploited to avoid direct evaluation of
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matrix-vector products with Kdtn with significantly reduced

storage and cost �Oberai et al., 1998�. The matrix-vector

product of the DtN operator can also be carried out at the

element level, preserving standard element-based data struc-

tures �Malhotra and Pinsky, 1996�. Oberai et al. 1998, Th-

ompson et al. �1999� have shown that the local operator K�

provides a good approximation to the spectral properties of

the complete system matrix which includes the DtN matrix

Kdtn, and thus can be used as an efficient preconditioner to

accelerate convergence. Parallel iterative methods provide a

means for dividing the problem into subsystems which when

solved in parallel, provide compute time speedup, and for

distributed-memory computer systems, the ability to scale up

to very large systems. Ianculescu and Thompson �2003�
showed that the symmetric outer-product structure of the

DtN matrix Kdtn can be exploited to compute in parallel with

one collective communication per iteration with a vector size

equal to the number of harmonics included in DtN series

expansion; the effect on the overall communication is

roughly that of a relatively small dot-product interprocessor

communication. Numerical studies reported in Ianculescu

and Thompson �in press� show that due to the special struc-

ture, and ability to tightly fit around scattering objects with

minimal spurious reflection, the nonlocal DtN condition can

be implemented with significant overall cost savings com-

pared to the local operators B1 and B2.

The extension of the B2 modified DtN map in spheroidal

coordinates suitable for finite-element implementation is

given in Thompson et al., 1999. Grote and Keller �1995�
derived a related modified DtN condition for spheres and

spheroids using the second-order BGT operator in native

form involving second-order radial derivatives �instead of

angular derivatives�, a form which is not suitable for stan-

dard finite-element approximation. Further details and dis-

cussions of the properties of DtN nonreflecting boundary

conditions are given in Givoli �1999� and Thompson and

Pinsky �2004�.

V. INFINITE ELEMENTS

the region �X exterior to � are usually separated into radial

and angular functions; for a spherical boundary � with radius

R �Astley, 2000�,

w = 	
�

	
�

c��W��r�N���,	� , �22�

u = 	
�

	
�

d��U��r�N���,	� . �23�

In the above, N� are angular basis functions which match the

interior finite-element discretization on the surface �. Radial

functions are defined to match the outgoing wave character

of the radial expansion �7�,

U��r� = R����eik�r−R�.

Here, the radial basis functions R� are polynomial functions

in the inverse radius variable �= �R /r�, where rª �x�
R is

the radial position exterior to �. Different definitions of the

radial polynomial functions lead to changes in the condition-

ing of the resulting system matrix. Several alternatives for

the radial test �weighting� functions have been proposed; the

three most common choices are

W��r� = �
U��r� , Bettess – Burnett unconjugated

U�
*�r� , Burnett conjugated

�2U�
*�r� , Astley – Leis conjugated.

�
Bettess �1977, 1992� pioneered the infinite element con-

cept and selected the test function to be the same as the trial

solution basis. Burnett �1994�, Burnett and Holford 1998a, b

extended the formulation to spheroidal and ellipsoidal coor-

dinates, and was the first work to express the shape functions

as separable tensor products of radial and transverse func-

tions, resulting in improved performance and efficiency. A

quantitative error analysis of the unconjugated infinite ele-

ments is given in Burnett and Holford �1998a�. Alternatively,

the weighting �test� function is conjugated. In the Astley-Leis

infinite element �Astley et al., 1998a� the conjugated weight-

ing function is scaled by a geometric factor. It was later

recognized that this formulation fits within the variational

framework of Leis �1986�. The unconjugated infinite element

leads to matrix coefficients involving one-dimensional radial

infinite integrals which are oscillatory and well-defined, and

can be evaluated using high-order Gauss-Legendre quadra-

ture. For the conjugated elements, the oscillatory plane-wave

components cancel so that the radial coefficients may be in-

tegrated analytically in closed form, resulting in wave

number-independent matrices which are proportional to ik

and k2, a feature which allows for a direct local time-

dependent counterpart �Astley et al., 1998b�.
The unconjugated Burnett formulation, regardless of the

definition for the radial function R�, gives the highest accu-

racy in the near field, yet exhibits instability and ill-

conditioning for higher radial orders �Ihlenburg, 2000; Shir-

ron and Babuska, 1998�. For the Astley-Leis conjugated

schemes, although less accurate in the near field, in the case

of a spherical boundary, R� can be constructed so that the

formulation remains stable and convergent in the far field

�Astley, 2000; Astley and Hamilton, 2000, Dreyer and von

FIG. 2. Infinite element topology.

Infinite elements replace the nonreflecting boundary

condition on � with a single layer of elements with infinite 
extent. The infinite elements are constructed with radial 
wave functions which automatically satisfy the Sommerfeld 
condition �3� at infinity; see Fig. 2. Test and trial solutions in
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Estorff, 2003; Gerdes, 1998; Shirron and Babuska, 1998�.
However, the performance of both conjugated and unconju-

gated formulations deteriorates at larger wavenumbers and

highly elongated artificial interfaces �Astley and Coyette,

2001�.

VI. ABSORBING BOUNDARY LAYERS

The perfectly matched layer �PML� concept originally

introduced by Berenger �1994� for electromagnetic waves is

another option for modeling the far field for the exterior

acoustics problem. The interface and PML are usually for-

mulated in rectilinear Cartesian coordinates, allowing a tight

fit around elongated objects �see Fig. 3�, but can also be

formulated in spherical and other general curvilinear coordi-

nates. The idea is to introduce an exterior layer of finite

thickness at an artificial interface such that outgoing plane

waves are absorbed prior to reaching the outer-layer trunca-

tion boundary. By splitting the scalar field into nonphysical

components satisfying equations which describe decaying

waves, and proper selection of PML coefficients, plane-wave

reflection for an arbitrary angle of incidence is theoretically

eliminated.

In the absorbing layer �X, splitting the field in Cartesian

coordinates x= �x1 ,x2 ,x3�= �x ,y ,z�, leads to a modified

Helmholtz equation with complex-valued anisotropic mate-

rial properties suitable for standard finite-element implemen-

tation �Harari et al., 2000; Turkel and Yefet, 1998; Wu et al.,

1997�,

� · �D � u� + k2su = 0, in �X. �24�

The corresponding weak form in the complete computational

region ���X is



���X

��w · D � u − k2sw · u�dx = F�w� . �25�

ner regions are all �i values nonzero. Optimal placement

of the interface, layer thickness, number of elements, and

variation of absorption functions and their maximal value,

which reduce error due to spurious reflection of decayed

waves off the layer truncation boundary to be less than the

discretization error, are open questions �Collino and

Monk, 1998�. The PML layer converges to perfect wave

absorption as the thickness of the layer is increased �Tsyn-

kov and Turkel, 2001�. However, a compromise between a

thin layer which requires a rapid variation of the absorp-

tion parameters and a thick layer which requires more

elements is required �Turkel and Yefet, 1998�.

VII. DISCRETIZATION METHODS FOR THE
HELMHOLTZ EQUATION

A. Galerkin finite-element methods

Accuracy of finite-element approximations based on

Galerkin’s method is characterized by phase �dispersion� er-

rors. In order to control dispersion, the element size must be

adapted to the wave number such that the number of ele-

ments per wavelength is held below a resolution limit. The

resolution is determined by the nondimensional wave num-

ber kh=2h /�, where � is the wavelength and h is a mea-

sure of the element size. A discrete dispersion analysis can be

used to quantify the limiting value on mesh resolution.

For a uniform mesh of finite elements with piecewise

linear interpolation in one dimension, and neglecting bound-

ary conditions, the sparse system matrix Z is tridiagonal;

neglecting sources, each interior equation corresponds to a

repeated finite difference stencil centered at a typical node

point x j of the form

Z2uh�x j−1� + 2Z1uh�x j� + Z2uh�x j+1� = 0, �26�

where Z1�kh�=1− �kh�2 /3 and Z2�kh�=−�kh�2 /6−1 are coef-

ficients obtained by assembly of element matrices. The solu-

tion of the difference stencil admits homogeneous plane-

wave solutions of the form uh�x j�=u0eik̃xj where k̃ is an

unknown numerical wave number. Substituting this solution

into the difference stencil leads to a dispersion relation relat-

ing the numerical wave number k̃ to the continuous wave

number k of the form, cos�k̃h�=−Z1�kh� /Z2�kh�. For small

kh, a Taylor series expansion reveals the dispersion error

of order �Thompson and Pinsky, 1994�

�k̃ − k�/k = −
1

24
�kh�2 + O�kh�4. �27�

The numerical wave number remains real valued correspond-

ing to propagating waves, provided �Z1�kh� /Z2�kh���1,

which requires the continuous wave number k to be bounded

by the cutoff value, kh��12, corresponding to a minimum

resolution of � /h
2, i.e., just under 2 elements per wave-

length. Beyond this value, k̃ is complex valued, resulting

in rapid amplitude decay �evanescent behavior�.

FIG. 3. Absorbing layer topology.

In the above, s=s1s2s3, and D=diag
s2s3 /s1 ,s1s3 /s2 ,s1s2 /

s3� is a diagonal, complex-valued material matrix, with 
coefficients si�xi�=1+ �i� i� /k, defined by a distribution of 
absorption functions � i�xi�, i=1,2 ,3,  usually taken to vary 
quadratically from a value of zero at the interface of the 
physical domain to a maximal value at the truncation of 
the layer. In the physical domain �, si =1,  i=1,2 ,3.  In  
layers normal to the x1 direction, �2 =�3 =0. Only in cor-
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B. Mesh resolution rules for low-order elements

Ihlenburg �1998�, Ihlenburg and Babuska �1995� showed

that the error measured in the usual L2 integral norm, which

characterizes averaged amplitude differences, is controlled

by a wave number-dependent stability constant times the ap-

proximation error. For linear finite elements of size h,

�

�

�uh − u�2dx�1/2

� �C1 + C2kL��kh�2, �28�

where L is a characteristic length scale, and C1 ,C2 are con-

stants independent of the wave number and element size.

The meaning of �28� is that the integral norm is controlled by

a sum of two errors, where the first term C1 · �kh�2 is propor-

tional to the usual approximation error, and the second term

C2 · �kL��kh�2 has an additional dependence on kL. The sec-

ond term has sometimes been referred to as a “pollution”

error related to a loss of stability at large wave numbers

�Bayliss et al., 1985�. The second term increases even

though the nondimensional wave number kh is held fixed

with a constant number of elements per wavelength �� /h

=constant�. In general, however, if the number of elements

per wavelength � /h is increased �kh decreased�, it follows

that the second term also decreases, thus reducing the er-

ror in amplitudes. To control local approximation error it

is often suggested that one take at least ten �� /h
10�
linear elements per wavelength for a phase error of a few

percent, i.e., keep the element size below h�� /10. How-

ever, to control amplitude error, a characteristic length

scale of the domain, L, should be accounted for such that

�kL��kh�2� P, where P is an admissible pollution error

determined from computational experience �Ihlenburg,

2003�.
A simple way to improve both dispersion and pollution

error for low-order elements is to use slightly underinte-

grated stiffness and mass matrices with special numerical

quadrature rules. For 4-node bilinear quadrilateral and

8-node trilinear “brick” elements, use of quadrature evalua-

tion points ±�2/3 in each direction in the parent element

with unit weights gives a higher-order accurate dispersion

error from O�kh�2 to O�kh�4, �Challa, 1998�. This same ob-

servation for 4-node quadrilateral elements was later redis-

covered in Guddati and Yue �2004�, where it was demon-

strated numerically that the high-order accuracy is

maintained for unstructured meshes. In Thompson and Kun-

thong �2005� it is shown that for 3-node linear triangle ele-

ments, the dispersion error is reduced from O�kh�2 to O�kh�4

by using three-quadrature points for the mass matrix me

sampled at �� ,� ,1−�−��= �1/3+�10/6 ,1 /3−�10/12,1 /3

−�10/12� in natural coordinates with three symmetric per-

mutations and conventional weights 	 j=1
3 W j =1, W j =1/3. For

C. High-order approximation

Dispersion error can be minimized by using higher-order

polynomial approximations, e.g., hp-version of FEM and

spectral elements. The number of elements per wavelength to

obtain a given discretization error depends strongly on the

order of the element basis functions. A dispersion analysis

similar to that outlined above for linear elements can be car-

ried out for high-order polynomials of order p�2, and after

condensation of internal solution unknowns, a dispersion re-

lation in the same form as the linear p=1 case is obtained.

Thompson and Pinsky �1994� and Ihlenburg �1998� show

that the relative phase error is O�kh�2p. The cutoff value prior

to evanescent behavior grows with the increase of approxi-

mation order p; however, before reaching this value the nu-

merical wave number is complex valued on small “stopping

band” intervals �Thompson and Pinsky, 1995�. As a result, kh

should be kept below the first cutoff value of kh��12.

Ihlenburg �1998� showed that the error measured in the

H1��� global norm is order kL�kh /2p�2p, and thus for qua-

dratic and higher-order elements p�2, and resolved waves

such that kh / p is small, the dispersion is relatively small. For

high wave numbers kh�1, Ainsworth �2004� has shown that

dispersion error is virtually eliminated when p is increased to

a regime in which the error decays at a super-exponential

rate, such that 2p+1
kh+c�kh�1/3, where c is a user-defined

constant; c=2 is suggested. Since higher-order elements gen-

erally provide greater computational efficiency, fewer de-

grees of freedom are generally needed to achieve a given

discretization error for oscillatory wave solutions �Derae-

maeker et al., 1999; Dey, 2003; Thompson and Pinsky,

1994�. For high-order quadrilateral elements with quadratic

Lagrange polynomial basis functions of order p=2, high-

order accuracy is achieved by evaluating the stiffness and

mass matrices with special quadrature points �1=−�3=

−�13/15, �2=0, and corresponding weights W1=W3=5/13,

W2=16/13, in each natural coordinate direction �Challa,

1998�.

D. Stabilized Galerkin methods

For low-order elements, reduced dispersion error may be

achieved using residual-based methods such as Galerkin

least-squares �GLS� and related methods. Least-squares sta-

bilization stands out among the numerous approaches that

have been proposed for reducing resolution requirements of

standard Galerkin finite-element methods for time-harmonic

acoustics by combining substantial improvement in accuracy

with simple implementation. In the GLS method the Galer-

kin variational form is modified by appending residuals of

the governing Helmholtz equation in a consistent least-

squares form �Harari and Hughes, 1992�,

B�w,u� + 

�̃

�LwLudx = F�w� . �29�

Here, L=�2+k2 is the Helmholtz differential operator, and

�̃ denotes integration over element interiors. The element

parameter � is usually determined from discrete dispersion

4-node tetrahedral elements for three-dimensional analysis,

using the special quadrature rule �� ,� ,� ,1−� −� −��= �1/4

+�21/8 ,1 /4−�21/24,1 /4−�21/24,1 /4−�21/24�, with

multiplicity 4, and standard weights
 j
4
=1W j =1,  W j =1/4,  

yields increased phase accuracy compared to standard Galer-

kin.
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analysis and selected to minimize or eliminate dispersion

error in the numerical solution.

For two-dimensional quadrilateral �Q4� elements, the

value of � is determined by enforcing numerical and continu-

ous wave numbers to coincide k̃=k �Thompson and Pinsky,

1995�

� =
1

k2�1 −
6

�kh�2�1 − cos �x

2 + cos �x

+
1 − cos �y

2 + cos �y

�� , �30�

�̃

lized methods within the VMS framework are given in

Harari, 2004.

E. Wave-based discretization methods

Wave-based methods exploit known solutions such as

plane waves, or other analytical solutions to define or enrich

the approximate solution space. Element-free methods

�EFM� based on moving least-squares, and partition-of-unity

methods �PUM�, provide a means to incorporate analytical

wave functions within local basis functions. For the Helm-

holtz equation solutions can be approximated using increas-

ing numbers of basis functions in the form of plane waves

�Babuska and Melenk, 1997; Bettess et al., 2003; Lagh-

rouche and Bettess, 2000; Laghrouche et al., 2002; Melenk

and Babuska, 1996�; in 2D problems, V

= eik�xcos�m+ysin�m� ,�m=2m /n�, where m=0,1 , . . ., n−1, n

=1,2 , . . .. Suleau and Bouillard �2000� have shown that dis-

persion and pollution errors can be reduced by adding a suf-

ficient number of plane-wave basis functions within the

element-free moving least-squares method. Plane-wave basis

functions have also been multiplied with standard piecewise

polynomial shape functions as a partition-of-unity finite ele-

ment method �Laghrouche and Bettess, 2000; Strouboulis et

al., 2000�. The general integral that arises in the element

matrices can be written as the product of plane waves, and

polynomials. Such integrals are highly oscillatory and diffi-

cult to evaluate efficiently using standard techniques. Burnett

and Soroka �1972� and Pierce et al. �2002� offer well-proven

techniques for evaluating highly oscillatory integrals. Ortiz

and Sanchez �2001� derive special integration techniques

which isolate the oscillatory effects to one dimension. An-

other approach to reducing integration costs is given in Bett-

ess et al., 2003; Laghrouche et al., 2002. While reducing

dispersion and pollution error, a drawback of these ap-

proaches is the potential for ill-conditioning of the resulting

system matrices which may disrupt the practical convergence

of the method. Empirical rules relating condition number,

number of wave directions, and wave number are given in

Laghrouche et al., 2002.

Least-squares methods �Monk and Wang, 1999; Stojek,

1998� minimize the least-squares difference in jumps of the

solution and its normal derivative across element edges. The

use of discontinuous solution spaces allows for the use of a

plane-wave basis. The ultraweak variational formulation

�Cessenat and Despres, 2003, 1998; Huttunen et al., 2002� is

another approach to using discontinuous local plane-wave

solutions of the Helmholtz equation on each element. In this

approach integration-by-parts is used to derive a variational

formulation that weakly enforces continuity conditions be-

tween elements via local transmitting impedance conditions.

An advantage of this approach is that integrations are carried

out over element boundaries only and can be evaluated in

closed form. Other wave-based methods are the weak ele-

ment method �Goldstein, 1986�, and the iterative defect-

correction meshless method �Lacroix et al., 2003�. A diffi-

culty with wave-based methods is that plane-wave, or other

free-wave solutions, used as basis functions, often lead to

ill-conditioning of the resulting system matrix as the number

where ��x ,�y�=kh�cos, sin�. For uniform meshes this 
value eliminates dispersion error for plane waves in the 
angular direction. In general, solutions to the Helmholtz 
equation can be expanded in terms of plane waves with 
the predominant direction unknown a priori. By preselect-

ing the angle0 = /8  in  �30�, the phase error, while not 
eliminated, is reduced significantly for all other wave

angles �Thompson and Pinsky, 1995�. For unstructured 
finite-element meshes the Laplacian operator appearing in 
�29� is usually neglected and the element size h can be 
taken as an average over the mesh or h=�A, where A is 
the element area. Numerical evidence shows that the GLS-

FEM is relatively insensitive to the precise definition of 
the measure of element size �Harari and Magoules, 2004; 
Harari et al., 1996; Thompson and Thangavelu, 2002�. The 
additional cost of computing the GLS contribution is 
trivial, yet gives substantial improvement in accuracy, 
even on unstructured meshes. Values for � on triangle, 
quadratic, and trilinear brick elements are given in Harari 
and Nogueira, 2002; Harari et al., 1996; Thompson and 
Pinsky, 1995. Successful generalization of residual based 
methods to waves in plate bending elements and acoustic 
fluid—structure interaction are given in Thompson, 2003, 
and Thompson and Sankar, 2001.

Many of the generalized Galerkin methods can be de-

rived within the variational multiscale �VMS� framework 
�Hughes et al., 1998�, including the method of residual-free 
bubbles �Franca et al., 1997�, also related to nearly optimal 
Petrov-Galerkin methods �Barbone and Harari, 2001�. For 
the GLS method defined in �29�, the mesh-dependent stabil-

ity parameter � may be interpreted as an algebraic approxi-

mation of a global integral operator for unresolved fine 
scales obtained by a separation of coarse finite-element poly-

nomials and enhanced fine scales within the VMS frame-

work. Multiscale considerations also underlie the residual-

based method in Oberai and Pinsky, 2000, which includes 
the Helmholtz residual in least-squares form over element

interiors �̃, plus an additional residual defined over interele-

ment boundaries �̃. In this case, the variational form assum-
ing negligible Laplacian operation is

B�w,u� + k2��w,u� − ��w,�u,n���̃ − ���w,n�,u��̃ = F�w� ,

where �u,n� is the jump in discontinuous gradients across 
common element edges. Using this framework, Oberai and 
Pinsky �2000� find mesh parameters � and � for Q4 linear 
quadrilateral elements which produce a leading order phase 
error for all plane-wave directions of order O�kh�6; a sub-

stantial improvement over standard Galerkin linear Q4 ele-

ments. Further discussions relating residual and other stabi-
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IX. ITERATIVE SOLUTION METHODS

The system of equations Zd= f, Z�C
Ndof�Ndof, resulting

from the Galerkin FEM applied to the Helmholtz equation is

sparse, complex, and symmetric �non-Hermitian and gener-

ally not diagonally dominant�. Direct solution methods based

on Gaussian elimination or factorization become exceedingly

expensive both in terms of memory and computation when

solving large systems of this class, especially for larger wave

numbers. The primary iterative solution method for these

types of systems are complex versions of Krylov subspace

methods. In order to accelerate convergence a preconditioner

is required. Standard preconditioners such as incomplete LU

factorization �ILU� are optimal for matrices with diagonal

dominance. However, the matrices which arise from the

Helmholtz equation can be indefinite without diagonal domi-

nance, making standard ILU not as practical and can exhibit

breakdown at high wave numbers.

One possible approach is to recast the complex-

symmetric system into Hermitian positive-definite form by

multiplying by the Hermitian transpose, resulting in the nor-

mal equations ZHZd=ZHf. The above system can be solved

with the well-known conjugate gradient iterative method,

with incomplete Cholesky factorization or other precondi-

tioners. A difficulty of this approach is that the condition

number of ZHZ is the square of Z, so that convergence may

be slow. Another possibility is to replace the complex-

symmetric system �A+ iB��x+ iy�=a+ ib, with a real sym-

metric system,

�A B

B − A
�� x

− y
� = �a

b
� ,

where A�R
Ndof�Ndof and B�R

Ndof�Ndof. However, in this

form, the system may become even more difficult to pre-

condition.

Specialized preconditioners based on the original

complex-symmetric matrix Z appear to give the best results

with significant acceleration, even at high wave numbers. In

Made �2001�, prior to incomplete factorization, the real part

of the preconditioning matrix is made less indefinite, by per-

turbations to the diagonal entries. This was shown to exhibit

significant reduction of iteration counts in the GMRES method

�Saad and Schultz, 1986�. A similar idea is used in Erlangga

et al., 2004 with a shifted-Laplace preconditioner built on the

modified Helmholtz equation �2− ik2, which is a generaliza-

tion of the preconditioners introduced in Bayliss et al.

�1983�. In Kechroud et al. �2004� incomplete LU factoriza-

tion with threshold �ILUT�, and the Crout form of ILU were

used as preconditioners combined with the GMRES iterative

solver. It was reported that stagnation issues arise with high

fill-in. The authors promise improvements by adding a

damping parameter during the factorization process. Multi-

frontal incomplete factorization methods have also been ap-

plied to complex-symmetric indefinite systems with good re-

sults �Qu and Fish, 2002�.
Suitable iterative solvers for sparse complex symmetric

matrix systems other than GMRES include BICG-STAB �Vander

Vorst, 1992�, QMR �Freund, 1991� and TF-QMR �Freund,

1993� methods. Some numerical comparisons of the alterna-

of wave functions per element is increased, or refined ele-

ment meshes are used. Another approach which may be de-

rived in the framework of multiscale methods is the discon-

tinuous enrichment method �DEM�, where standard finite-

element polynomial field is enriched within each element by 
adding plane-wave basis functions, and Lagrange multipliers 
are introduced at element interfaces to enforce a weak con-

tinuity of the solution �Farhat et al., 2003�. Using element 
level condensation, the system matrices are reported to be 
better conditioned than the PUM.

VIII. A POSTERIORI ERROR ESTIMATES AND 
ADAPTIVE METHODS

Adaptive methods use a posteriori error estimates to 
control discretization error in the numerical solution 
�Ainsworth and Oden, 2000�. A posteriori error estimates are 
computed by postprocessing the numerical solution. For 
standard finite-element methods, a posteriori error estimates 
are used to control mesh refinement, both element size h, and 
polynomial order p distribution. The most common a poste-

riori error estimates are residual �both explicit and implicit�, 
and recovery type. Implicit residual methods involve the so-

lution of local or global problems which usually require very 
little cost compared to solving the original finite-element so-

lution. Explicit methods relate the residual of the original 
governing equation localized to each element and do not 
require solving any auxiliary problems. Since the residual is 
a measure of numerical error, the error estimate can be used 
as a refinement indicator for adaptive strategies.

Stewart and Hughes �1996� used explicit residual meth-

ods based on the use of adjoint equations and duality argu-

ments to develop adaptive strategies for the finite-element 
discretization of the Helmholtz equation. The error estimator 
depends on a stability constant which is approximated by 
solving global eigenvalue problems, which may be costly to 
compute. Irimie and Bouillard �2001� use standard explicit 
residual methods to estimate the error for the Helmholtz 
equation. Babuska et al. �1997� and Bouillard �1999� studied 
implicit element residual methods to estimate the finite-

element error. Bouillard and Ihlenburg �1998, 1999� studied 
the gradient recovery-based error estimators based on the 
Zienkiewicz-Zhu patch recovery technique, and found that 
the estimator converges with mesh refinement for all wave 
numbers, although the estimate underestimates the error at 
high wave number. Attempts to estimate the pollution error 
are studied in Babuska et al. �1997�. Initial studies of goal-

oriented adaptive methods which measure the error in quan-

tities of interest other than global norms are reported in Per-

aire and Patera, 1999; Sarrate et al., 1999. For finite-element 
solutions with sufficient resolution and for which the pollu-

tion error is under control, i.e., kL�kh�2�1, the quality of 
both the residual-based error estimators and recovery-type 
methods are good. However, since local error estimators do 
not detect pollution error, the quality deteriorates as the wave 
number k increases.
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tive iterative solvers are reported in Mazzia and Pini �2003�
and elsewhere. The best combination of iterative solver and

preconditioner seems to be problem dependent. From the au-

thor’s experience, BICG-STAB appears to be robust for

complex-symmetric systems at high wave number.

Other preconditioning approaches include analytic fac-

torization methods �Gander and Nataf, 2001� and fictitious

domain methods �FDM�. The FDM is based on embedding

the original domain into a larger one with a simple geometry

�Marchuk et al., 1986�. In the algebraic FDM �closely related

to capacitance matrix methods� the linear system resulting

from the finite-element discretization is replaced by an

equivalent, but enlarged, system corresponding to a simple-

shaped domain containing the original domain. In this en-

larged, yet simplified form, efficient iterative preconditioners

are constructed based on locally perturbed orthogonal fitted

meshes. Applications of the algebraic FDM for acoustic scat-

tering are reported in Elman and O’Leary, 1998; Ernst, 1996;

Heikkola et al., 1999, 2003. Other solver techniques for the

Helmholtz equation include multigrid methods �Brandt and

Livshitz, 1997; Elman et al., 2001; Lee et al., 2000; Vanele

et al., 1998�.
For acoustic scattering problems, the incident field is

often represented by a plane wave, uinc�x�=exp�ikx ·��, �

= �cos � , sin � cos � , sin � sin �� with a sweep over different

incident directions � and �. This leads to a problem with

fixed left-hand-side matrix and multiple right-hand-side forc-

ing vectors. Malhotra et al. �1997� show how to efficiently

solve the multiple right-hand-side problem with QMR meth-

ods.

A. Multifrequency solution methods

Often a large number of frequency �wave number�

efficiently with the nonlocal modified DtN by utilizing the

special structure of the admittance matrix. Efficient algo-

rithms based on this PVL approach over multiple frequencies

have not been demonstrated for the general case of frequency

dependent excitation f�k� which is required for general

acoustic scattering and radiation problems.

B. Domain decomposition methods

Domain decomposition methods provide an effective

means of problem subdivision for parallel processing. Clas-

sical Schur complement-based domain-decomposition meth-

ods have difficulties when applied to the Helmholtz equation

since the inversion of the matrix Ai= �Si−k2Mi� defined on

each interior subdomain will be singular when the wave

number corresponds to a resonance frequency �eigenvalue�
of the pencil �Ki ,Mi�. The first resonance will occur at a

resolution of less than two subdomains per wavelength �Th-

ompson et al., 2001�.
Kim �1998� uses the Robin-type impedance �transmis-

sion� interface conditions presented in Benamou and Despres

�1997� and Despres �1993� in a Schwarz-type domain de-

composition method to improve convergence; however, the

iteration count increases with many subdomains. Cai et al.

�1998� demonstrated an overlapping Schwarz method with

GMRES acceleration and coarse grid corrections to improve

convergence. Another additive Schwarz domain decomposi-

tion method with the Robin-type subdomain interface trans-

mission conditions has been proposed in Susan-Resiga and

Atassi �1998�, where the nonlocal DtN nonreflecting bound-

ary condition is computed with an iterative lag to maintain

sparsity of the parallel subdomain solves. In Larsson �1999�
a preconditioned restarted GMRES iterative method is used for

the solving the Helmholtz equation, including nonlocal non-

reflecting boundary conditions. Domain decomposition is

used with a Schur complement algorithm and fast precondi-

tioners for the subdomains to accelerate convergence.

In Farhat et al. �2000� and Tezaur et al. �2002�, a non-

overlapping domain decomposition method called FETI-H,

based on two-level Lagrange multipliers and the alternating

Robin-type transmission conditions at subdomain interfaces

of the continuous operator form A�s�= ik, presented in Ben-

amou and Despres �1997� and Despres �1993�, is used to

solve the Helmholtz equation with second-order local nonre-

flecting boundaries. The matrices restricted to each subdo-

main �s are Z�s�= �S�s�−k2M�s�−K
�

�s�
+ ikA�s��. Here, A�s� are

regularization matrices associated with the operator A�s�= ik,

and defined by integration over subdomain interfaces,

d�s�T

A�s�d�s� = 	
t=1
t�s

p

�st

��s���t

u2.

Here, d�s� is the unknown vector restricted to subdomain �s,

and �st
� 0, ±1�, �st=−�ts. The use of regularization matrices

for the Helmholtz operator provides for a unique solution on

each subdomain. Inclusion of the alternating regularization

matrix on the interface boundaries cancel upon global assem-

bly, thus reverting to the original problem, and leading to

nonsingular and invertible matrices Z�s�. The transmission

evaluations are required over a broad band to characterize 
the system response or when an inverse Fourier transform is 
needed to construct a corresponding time-domain solution. 
Since the complex-symmetric matrix Z= �S−k2M−K�� is 
wave number dependent, the solution generally involves a 
separate inversion at each wave number k, causing the com-

putation cost to grow linearly with the number of wave num-

ber evaluations. Djellouli et al. �2001� present an approach 
based on Padé approximation to compute multifrequency 
evaluations efficiently by solving a reference scattering prob-

lem with multiple excitation vectors and local BGT boundary 
conditions to characterize frequency derivatives of the scat-

tered field. In Ingel �2000� and Thompson et al. �2001�, do-

main decomposition concepts are combined with interpola-

tion of substructure �subdomain� matrices over frequency 
bands of interest to accelerate multifrequency solutions.

For problems with frequency-independent excitation f, 
matrix Padé approximation via the Lanczos �PVL� process 
can be used to obtain an efficient algorithm which grows 
sublinearly for the simultaneous solution of the Helmholtz 
equation over multiple frequencies in a window based on a 
Krylov projection to a subspace of much smaller dimension 
than the original system size �Feldmann and Freund, 1995; 
Freund, 1999; Simoncini and Perotti, 2002�. Wagner et al. 
2003a, b show that the PVL process can be implemented
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conditions can be interpreted as a simple local preconditioner

of the linear system condensed on the interface. Improved

transmission conditions with tangential derivatives of the

form A�s�=��s�+��s���2
2

, with coefficients ��s� ,��s�, and unit

tangential vector �, have been derived based on Fourier

analysis of the Steklov-Poincaré operators in a half-space

�Collino et al., 2000�. Optimized coefficients have been cho-

sen to minimize the convergence rate of the Jacobi algorithm

in the closely related additive Schwarz method with no over-

lap �Gander et al., 2002�. In Magoules et al., 2004, it is

shown that the optimal augmented interface operator A�s� is

the Schur complement of the outer domain. Approximations

of this Schur complement with sparse approximate inverse

methods and incomplete factorization are investigated.

X. ACOUSTIC INVERSE PROBLEMS AND SHAPE
OPTIMIZATION

Acoustic inverse problems which involve determining

the shape of a body from an acoustic far-field pattern for the

scattering of time-harmonic waves can be interpreted as a

nonlinear ill-posed operator equation with the operator map-

ping the boundary onto the far field. Regularized Newton

iterative methods provide accurate and robust solutions to

the inverse obstacle scattering equation �Kress, 2003�.
Gradient-type methods based on regularized Newton or

quasi-Newton optimization requires computation of shape

derivatives. The derivatives are computed from solutions to

the Helmholtz equation with different right-hand sides corre-

sponding to the number of parameters in the boundary rep-

resentation. Implementation of the regularized Newton

method which incorporates exact sensitivities of far-field pat-

terns with iterative finite-element solutions to the direct time-

harmonic problem are given in Farhat et al. �2002�. An al-

ternate Newton-type method calculates the shape derivatives

efficiently by solving an associated adjoint problem �Feijoo

et al., 2004�. The adjoint method for the computation of

shape derivatives and smoothing for finding regular solutions

is related to the shape optimization problem �Jameson,

1988�, where observations of a numerical solution to the

Helmholtz equation provides an objective function which is

formulated as a multipoint nonlinear optimization problem.

Habbal �1998� and Bangtsson et al. �2003� consider shape

optimization of a sound barrier and acoustic horn, respec-

tively, using the regularized Newton iterations and the finite-

element method. The shape optimization problem is solved

using a gradient-based search method where the gradient is

provided by solving the associated adjoint equations. Devel-

opments in coupled FEM-BEM structural-acoustic optimiza-

tion and sensitivity analysis are reported in Fritze �2005� and

Marburg �2002�.

XI. CONCLUSION
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