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Alisoltani et al. 2

ABSTRACT1

One of the most challenging facets of dynamic ride-sharing problems is the automated matching2

process, especially in large-scale networks where the number of received requests is huge. Match-3

ing users to trips is very challenging in real-time since it must happen very quickly while it must4

ensure high quality solutions. In this paper, we rely on an exact solving method to ensure the5

quality of the solution, while using AI-based techniques to limit the number of requests that we6

feed to the solver. More precisely, we propose a clustering method based on a new space-time7

shareability function to put the most shareable trips inside separate clusters. Each cluster is then8

managed with a proposed heuristic framework in order to solve the matching problem inside each9

cluster. To validate our proposal, we employ the proposed method on the network of Lyon city in10

France, with half-million requests in the morning peak from 6 to 10 AM. The results demonstrate11

that the algorithm can provide high-quality solutions in a short time for large-scale problems.12

13

14

Keywords: Dynamic ride-sharing, Clustering, Shareability function, Optimal fleet management.15
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Alisoltani et al. 3

INTRODUCTION1

Ridesharing originated as a general concept where individual travelers share a vehicle for a trip2

and split travel costs with others that have similar itineraries and time schedules (Furuhata et al.,3

1). The spread of mobile devices and the development of Global Positioning System (GPS) make4

it possible for all the transport operators to adapt in real-time the transportation supply to travel5

demand (Zargayouna et al., 2). These options make it possible to have access to the vehicles’ posi-6

tion at any time and perform the matching process of ride-sharing in real-time. These possibilities7

have led to the development and progress of a new type of ride-sharing which is called real-time8

ride-sharing, also known as dynamic ride-sharing or ad hoc ride-sharing. Dynamic ride-sharing9

refers to a system that supports an automatic ride-matching process between participants on very10

short notice or even en-route (Agatz et al., 3).11

The first issue in this application is matching the passengers and the fleet vehicles by solv-12

ing a fleet management problem. Effective and efficient optimization technology that matches13

drivers and riders in real-time is one of the necessary components for a successful dynamic ride-14

share system (Agatz et al., 4). Matching users to trips is very challenging in real-time since it must15

happen very quickly. Clustering methods enhance the scalability of matching methods by reducing16

the search space, making it possible to parallelize and balance the computing workload, and as a17

consequence speeding up the matching computations.18

In this paper, we propose a clustering method based on a “Shareability Function” (SF) that19

considers all the trips’ possible matching situations. Two trips can be shared either in parallel (pas-20

sengers are in the same vehicle at some point) or in sequence (Alisoltani et al., 5). The shareability21

function computes the extra travel time that the vehicle has to spend to service each matching situa-22

tion, compared to the situation where each trip is serviced independently without sharing. Then the23

shareability function for each two trips is the minimum computed value among the three different24

situations (parallel, sequence and independence). So, when the shareability function is low for two25

specific requests, it means that they have high potential to be shared efficiently. We propose a clus-26

tering method based on this new function to put the most shareable trips in separate clusters. We27

propose a heuristic method to solve the matching problem inside each cluster. The final algorithm28

can provide high quality solutions in a short time for large-scale problems.29

It is crucial to consider the interactions between the system and the network traffic in dy-30

namic ride-sharing system evaluation. Also, it is important to consider other vehicles like personal31

cars besides the ride-sharing service vehicles in the network. In this paper, we define two differ-32

ent models to simulate the functioning of the proposed dynamic ride-sharing system: The “plant33

model”, based on Macroscopic Fundamental Diagram (MFD), is used to simulate the real traffic34

conditions and considers both service vehicles and personal vehicles in the network; The “pre-35

diction model”, based on the current mean speed, is used to calculate the travel times during the36

assignment process (Alisoltani et al., Alisoltani et al., 5, 6).37

To validate our approach, we employ the proposed method on the real data of Lyon city in38

France with half-million requests in the morning peak from 6 to 10 AM. To demonstrate the clus-39

tering method’s performance, we have compared the proposed method with two other clustering-40

based methods from the literature (spatial and temporal clustering). The results show that the41

method proposed in this paper can make a significant improvement in the quality of the solution42

and the computation time.43

Since ride-shares are established on-demand, a ride-sharing system is similar to other on-44

demand forms of passenger transit such as taxis and dial-a-ride services like airport shuttles (Fu-45
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Alisoltani et al. 4

ruhata et al., 1). The clustering method proposed in this study can be used for other similar systems.1

The remainder of this paper is structured as follows. Next section is the literature review2

on ride-sharing and clustering methods. In the third section, we explain our clustering method for3

dynamic ride-sharing. Then we define our travelers matching algorithm and describe the two simu-4

lation models used as plant and prediction models respectively. I section "Experiments" we present5

the case study we used and provide the results of our experiments. The last section concludes this6

paper.7

LITERATURE REVIEW8

In this section, we review the latest studies on different solution methods and clustering approaches9

for real-time and dynamic ride-sharing.10

Dynamic ride-sharing problem addresses short-term matching or even en-route matching11

(Agatz et al., 3). This fact makes the assignment problem more complex. In some studies, re-12

searchers try to narrow the feasible solution space to make the computations faster and be able to13

assign the vehicles to the requests that are coming at each time to the system. For example, Liu14

et al. (7) present a method to tighten travelers time windows and eliminate unnecessary variables15

and constraints to narrow the solution space.16

Recently Mourad et al. (8) has presented a survey of models and algorithms for optimizing17

shared mobility, and they have shown that one of the most critical problems in the solution for18

these systems is computation time and the solutions quality.19

Compared to these approaches, this paper proposes a method that combines the benefits20

of exact solving in terms of solution quality and the benefits of heuristics and meta-heuristics in21

terms of computation time and scalability. On the one side, we present an algorithm based on22

branch-and-bound that can provide the optimal solution for small instances of the problem. On the23

other side, we introduce a method based on clustering that groups the requests and put the most24

shareable trips in the same clusters. The exact algorithm is executed with the requests inside each25

cluster. A rolling horizon approach is introduced to handle the trip requests in real-time. We show26

that the clustering method provides high-quality solutions while reducing the computation time27

significantly.28

The number of request for the mobility service at every time is huge in the large-scale prob-29

lems and the complexity of the solution method for the matching problem increases exponentially30

by small increase in the service demand. It is substantial to consider that the patterns of demands31

and the patterns of supplies are spatially and temporally dependent (Wang et al., 9). Consider-32

ing these dependencies, clustering methods can be applied to scale down the problems and make33

the computations faster. In the literature, there are clustering methods to handle large-scale prob-34

lems, like dividing the time into several time slots or dividing the space into several clusters, road35

segments, or cells (Davis et al., Qi and Liu, 10, 11)36

To address the ride-matching problem in large-scale configurations, Pelzer et al. (12) pro-37

pose to partition the road network into distinct regions which represent certain sub-structures of38

the road network. Zuo et al. (13) propose a clustering-based request matching and route plan-39

ning algorithm whose basic operations are merging requested trips on road networks. Qiang and40

Shuang-Shuang (14) propose an algorithm that uses the dataset of taxi get-off points and performs41

a clustering of taxis on urban roads. They compare their method with classical clustering methods.42

However, the taxi clustering data in their study are conducted in a static environment. In Chen et al.43

(15), all pickup points are partitioned into several clusters, the vehicles dispatching and the ride-44

TRB 2022 Annual Meeting Original paper



Alisoltani et al. 5

sharing problem are solved in each cluster. Bard and Jarrah (16) show that an appropriate solution1

for large-scale problems is clustering the demand nodes and downsizing the network. To speed up2

the computation, Some researches try to limit the feasible region with clustering methods. In these3

methods, the demand nodes in the network are usually divided into geographically dense clusters4

(Özdamar and Demir, Sáez et al., 17, 18). Li and Chung (19) propose an extended insertion algo-5

rithm in conjunction with a Tabu search method, and a cluster-first-route-second approach to find6

heuristic solutions.7

Santi et al. (20) introduce the notion of a shareability network to quantify the spatial and8

temporal compatibility of individual trips in a dynamic environment. In this network, two trips are9

shareable if they would incur a delay of no more than five minutes. Then, Vazifeh et al. (21) address10

the minimum fleet problem in on-demanded urban mobility. They enrich the idea of shareability11

network to model the sharing of vehicles instead of rides. In these clustering methods, the trips12

are clustered based solely on the situation of the origin points. However, in ride-sharing, other13

combinations of trips should be considered. In this paper, we propose the concepts of "sequential14

index" and "Shareability index" to assess the possibility of serving two trips with the same car15

in sequence or by sharing the trips. Our proposal employs a method that reduces the number of16

required vehicles.17

Under the assumption of one person per ride, Alonso-Mora et al. (22) show that 98% of the18

taxi rides currently served by over 13,000 taxis could be served with just 3,000 taxis of capacity19

four in New York City. The proposed clustering method in this paper, seeks the potential trips to20

be shared in the same vehicle and makes sure that the matching algorithm can use the maximum21

capacity of a vehicle to serve the requests for a specific route.22

In a recent study, Yu et al. (23) consider the combination of the ride-sharing and public23

transportation services and formulate a mixed integer programming model for the multimodal24

transportation planning problem. They propose a heuristic approach (i.e., angle-based clustering25

algorithm) and compare its efficiency with the exact solution for different settings. They show26

that the clustering algorithm works well both in small and large settings. However, it is crucial to27

consider the interactions between the system and the network traffic in the ride-sharing problem.28

In this paper, we define two distinct models for the dynamic ride-sharing to calculate the travel29

times during the assignment and simulate real traffic conditions.30

CLUSTERING METHOD FOR DYNAMIC RIDE-SHARING31

Shareability function32

To perform the clustering on the requests (Nt) received by the system at time t, we define the33

“Shareability Function” (SFi, j) between request i and request j (∀i, j ∈ Nt). This function computes34

the difference between the travel time when the two trips are shared and the travel time to serve35

each trip individually, for each pair of requests.36

FIGURE 1 : Trip situations
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Alisoltani et al. 6

In case of sharing, we consider three different situations for each pair of trips (Fig. 1). In the1

first situation (1), two trips can be shared, and the vehicle first drops off the first passenger, and then2

it goes to the second passenger drop off (destination) point. In this situation, the travel time for the3

first passenger (T pi) would be the summation of her/his waiting time (Wsi), the travel time between4

her/his origin and the next passenger origin (TOOi, j) and the travel time between the next passenger5

origin and her/his destination (TOD j,i). Similarly, the travel time for the second passenger (T p j)6

would be the summation of her/his waiting time (Ws j), the travel time between her/his origin to7

the first passenger’s destination (TOD j,i) and the travel time from the first passenger’s destination8

and her/his destination (T DDi, j). So, SFi, j (shareability function for trips i and j) when two trips9

have the first situation can be computed as in equation 1.10

T pi +T p j =Wsi +TOOi, j +Ws j +TOD j,i +T DDi, j

∀i, j ∈ N

SF1
i, j = T pi +T p j− (TODi,i +TOD j, j +Wi +Wj)

(1)

In situation (2), the second passenger is served by the service vehicle while the first passen-11

ger is on board. Thus, the travel time for the second passenger (T p j) is the same as when served12

individually (summation of the waiting time and the time from the origin to the destination) and13

the travel time for the first passenger is the travel time of all the links from the first stop point (Oi)14

to the last one (D j):15

T pi +T p j =Wsi +TOOi, j +Ws j +TOD j, j +T DD j,i

∀i, j ∈ N

SF2
i, j = T pi +T p j− (TODi,i +TOD j, j +Wi +Wj)

(2)

In the third situation (3) that we consider for two trips, the trips are not shared, but the ve-16

hicle can serve two passengers sequentially (Alisoltani et al., 5). This situation must be considered17

in the shareability index in order to encourage putting these trips in the same group while solving18

the optimization problem. The travel time for both passengers in this situation is the same as when19

they are served individually. But the vehicle travel time can decrease if the travel time between20

the first destination and the second origin is less than the summation of the travel time between the21

first origin and the closest depot and the travel time between the start depot and the second origin.22

T pi +T p j =Wsi +TODi,i +Ws j +TOD j, j

∀i, j ∈ N

SF3
i, j = T pi +T p j− (TODi,i +TOD j, j +Wi +Wj)

SF3
i, j =Wsi +Ws j− (Wi +Wj)

(3)

The best situation for each two trips is the situation with minimum SF . So the algorithm23

chooses the condition that the additional travel time is minimum for sharing each pair of trips:24

SFi, j = min{SF1
i, j,SF2

i, j,SF3
i, j} (4)
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Clustering based on a dissimilarity function1

After computing the shareability function, we have the function value for each pair of requests that2

creates a “shareability matrix”. The shareability matrix is a dissimilarity matrix for the received3

requests: the higher the value, the least likely the two requests will be served together. In our4

approach, this matrix is used in the clustering process. We perform the clustering using the com-5

puted dissimilarity matrix. When we make clusters based on the SF , we put in the same cluster6

the trip requests that have more potential to be shared (the trips that have lower SF). There are two7

main categories of algorithms for clustering based on the shareability matrix, both are potentially8

relevant for our large-scale ride-sharing application:9

1. Partitional clustering algorithms (Celebi, 24) cluster the data into k clusters. One of the10

usual algorithms for partitioned clustering is k-means clustering. K-means clustering is11

simple, fast, and flexible.12

2. Hierarchical clustering methods in which the clusters are arranged in a tree-like struc-13

ture. Hierarchical clustering can be divided into Agglomerative hierarchical clustering14

(AHC) and divisive clustering (Vora et al., 25).15

In Qiang and Shuang-Shuang (14), the authors have compared the hierarchical clustering and k-16

means clustering for urban taxi carpooling in a static environment. They show that compactness17

and separation are almost the same for hierarchical and k-means clustering for large cluster sizes.18

However, in dynamic large-scale problems, the results might be different. Besides, computation19

time becomes the critical criterion in this context. Thus, in our experiments, we implement both20

clustering methods and we assess their performance, considering both solutions quality and com-21

putation time.22

Multidimentional scaling and k-means clustering23

K-Means method is a partitional clustering approach for decomposing the problem into indepen-24

dent subsets. It defines clusters of data based on their similarity, minimizing within-cluster vari-25

ances. In the clustering procedure, the preferred number of clusters (k) should be specified in the26

algorithm before execution. The most common algorithm uses an iterative refinement technique.27

A common initialization step associates each observation (data point) with a cluster, and computes28

the set of cluster centroids as the mean of the observations of the cluster. Afterward, iterations will29

serve to optimize the clusters.30

k-means clustering takes place based on the distance between points. Based on the study31

in Paea and Baird (26), to be able to apply the appropriate k-mean clustering method, we need to32

convert the dissimilarity matrix into a distance matrix. Therefore, we use the multidimensional33

scaling method and change the shareability matrix into a distance matrix (Wang and Boyer, 27).34

Note that we have implemented the method using the mathtoolbox in C++).35

After extracting the distance matrix, we are able to create the same size clusters for the36

data received at every assignment time step and put the most shareable trips in separate clusters37

using the modified k-means clustering method. This k-mean clustering is used to obtain clusters38

in preferred sizes (Ganganath et al., 28). Accordingly, considering the objective function value,39

we can find the best trade-off between cluster size and computation time. Putting the requests in40

clusters can also provide the opportunity for parallel computations. So the problem is divided into41
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Alisoltani et al. 8

multiple sub-problems, and we favor a uniform distribution of requests among clusters to decrease1

computation times and facilitate parallel computations of each sub-problem.2

Hierarchical clustering3

Hierarchical clustering offers a flexible and no-parametric approach and is an algorithm that builds4

hierarchy of clusters (Murtagh, 29).5

We use the agglomerative hierarchical method, which starts with taking singleton clusters6

(that contain only one request per cluster) at the bottom level and continue merging two clusters at7

a time to build a bottom-up hierarchy of the clusters (Reddy and Vinzamuri, 30).8

MATCHING ALGORITHM FOR DYNAMIC RIDE-SHARING9

The matching algorithm aims to identify the travelers who can share their trips and assign them10

to a vehicle. In the assignment, it is important to consider both passengers’ and service provider’s11

objectives. According to the state-of-the-art, the most important operation objective for the service12

provider is to minimize the total travel time, and the total travel distance of vehicles (Ota et al., Qian13

et al., 31, 32). The passengers also need to get to the destination on time and have the minimum14

waiting time (Hyland and Mahmassani, 33). So we define the objective function for the matching15

algorithm as below where i is the index of passengers, and m is the index of vehicles, Wi is the16

waiting time for passenger i, T pi is the travel time for passenger i, T vm is the travel time for17

vehicle m, Dm is the travel distance for vehicle m and α , β , γ , and δ are the weights of each18

objective after normalization.19

min ∑
i∈P

(α.Wsi +β .T pi)+ ∑
m∈M

(γ.T vm +δ .Dm) (5)

The main constraints for the matching process are capacity constraints, time constraints,20

and assignment constraints. In addition, we have considered limitations on the number of sharing.21

The number of sharing for each passenger defines the allowed number of other passengers that22

can share their trip with this current passenger. So when the number of sharing is zero, it means23

that the service is not able to share and we just consider the in-sequence trips in the clustering24

function. But when we increase the number of sharing to one, it means that the service can serve25

2 passengers at the same time. Also, we made sure that there is a sufficient number of vehicles in26

the fleet to serve all the requests.27

The vehicle can be in two different situations. It is either circulating in the network to serve28

the on-board passengers (en-route vehicle) or waiting at a stop location for the new passengers29

(idle vehicle). Our proposed algorithm considers both situations. When the system receives a new30

request, it first checks the en-route vehicles that have not yet reached their maximal occupancy.31

So, the first part of the algorithm assigns the new requests in priority to en-route vehicles. The32

algorithm works to minimize the total travel time for both vehicles and passengers while respecting33

the capacity of the vehicle’s constraint and passengers’ time window constraint. For the remaining34

requests, the second part of the algorithm checks the idle vehicles waiting in depots to assign the35

passengers. For this step, we introduce an exact method based on the branch-and-cut concept.36

The method creates branches of routes and then chooses the optimal solution among the feasible37

routes. Fig. 2 shows this part of the algorithm. Then we introduce a rolling horizon method to38

solve the problem dynamically. The requests that are assumed to be known are the only ones over39

the next rolling horizon (20 minutes). We also use an “assignment time horizon” of 10 minutes.40
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That means that every 10 minutes, we execute our optimization algorithm while considering the1

requests of the next 20 minutes.2

We present a small example with four requests to show the execution of the algorithm. Ta-3

ble 1 presents the requests. Each request has an associated number of requested seats, a maximum4

number of accepted sharing, an earliest pick-up time and a latest arrival time.5

TABLE 1 : Example with 4 requests (configuration)

Request Travel distance demand nshare EPT LDT
1 19 1 3 8:00 8:45
2 11 2 2 8:00 8:25
3 24 2 1 8:15 9:00
4 18 2 3 8:30 9:20

The algorithm starts by creating branches of routes to serve the requests. It sends a car6

from the closest stop location to pick the passengers up at the origin point, and then it continues7

by adding the feasible points to the branches. First, the algorithm finds feasible branches. Figure8

3 shows the final feasible solutions for the problem. The algorithm can find four feasible solutions9

for the problem.10

TABLE 2 : Example with 4 requests (solutions)

Solution Total waiting time (s) Total travel distance (m) Number of cars
A 28 3030 4
B 51 2085 2
C 53 1785 2
D 29 2265 3

Table 2 shows the total passengers’ waiting time, total vehicles’ travel distance, and the11

number of vehicles for these solutions (note that the waiting time for passengers is the difference12

between the passengers’ pick up time and the passengers’ desired departure time). Solution A is13

when a car serves each passenger separately without sharing. In this solution, the waiting time is14

minimum, and the passengers wait for 28 seconds to be picked up. Solution B serves passengers15

1 and 4 with one car and passengers 2 and 3 with another car. It should be mentioned that in16

this solution, the trips are not shared. The first car serves passenger 1, and after dropping off this17

passenger, it goes to pick up passenger 4 at his destination. This solution increases the waiting time18

to 51 seconds, but it can reduce the travel distance from 3,030 meters to 2,085. Solution C serves19

the four requests with two cars like solution B. However, it shares the trip for passengers 2 and20

3, and it can make more significant progress in reducing the travel distance to 1,785 meters. The21

waiting time with this solution is 53 seconds. Solution D increases the waiting time just 1 second22

compared to solution A. It serves requests 3 and 4 with a car in sequence (without sharing) and23

requests 1 and 2 with two cars separately. If the weights for all the objective functions are equal,24

after normalizing the objective functions, the optimal solution will be solution C.25
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FIGURE 2 : Final assignment algorithm
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FIGURE 3 : Feasible routes for the example

SIMULATION MODELS FOR DYNAMIC RIDE-SHARING1

The ride-sharing service’s optimization system uses estimates for the predicted travel time obtained2

from a so-called "prediction model". When the fleet management plan is executed, a gap usually3

exists between the estimation and the real traffic condition. The so-called "plant model" requires4

dynamic adjustment of the initial assignment to fit with the conditions observed, and we use it to5

represent the real traffic condition.6

To provide a realistic service, in the proposed simulation component of the dynamic ride-7

sharing system, we accurately distinguish the prediction and the plant models.8

The trip-based MFD is used as the plant model (Ameli et al., 34) to consider individual9

trips while keeping a very simple description of traffic dynamics (Lamotte and Geroliminis, Ameli,10

35, 36). The general principle is to derive the inflow and outflow curves. When n(t) is the number11

of en-route vehicles at time t and the mean speed of travelers is V (n(t)) at every time t, the travel12

distance Li by a car i entering at time t−T (t) must satisfy the following equation:13

Li =
∫ t

t−T (t)
V (n(s))ds (6)

The function V (n(t)) is the speed macroscopic fundamental diagram and can be derived14

from common observations for a transportation network (Leclercq et al., 37). For more details on15

the functioning of trip-based MFD, readers can refer to (Mariotte and Leclercq, 38).16

The prediction model estimates the traffic situation for the next assignment time horizon17

(every 10 minutes) to carry out travel time prediction during optimization. In our method, we18

assign the passengers to the cars based on this prediction. The prediction model is based on the19

direct travel time from each point i to j based on the current mean speed and the associated shortest20

path between the two points for the next 10 minutes. Then the optimization algorithm assigns all21

the requests for the next 10 minutes to the en-route cars or empty waiting cars.22

In the rolling horizon method, the assignment procedure rolls over a specific horizon for23

the requests announced of a particular optimization step. As stated earlier, the rolling horizon in24
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this paper is 20 minutes, and the optimization time step is 10 minutes. So, the requests of the next1

20 minutes that have not yet been assigned are optimized every 10 minutes. Some requests are2

re-optimized every 10 minutes. If a trip has been assigned to a vehicle which has left the depot, the3

algorithm does not assign it again, but if a trip is in the schedule of a waiting vehicle, the algorithm4

places it in the set of optimized trips in the particular horizon and re-optimizes it.5

In this method, every T H
2 time step, we stop the simulations and solve a new assignment6

problem for the requests over a new full rolling horizon (T H). Some requests may arrive just after7

the end of a simulation period, and this method prevents the system from being myopic to the new8

demand.9

EXPERIMENTS10

Case study11

In this paper, we use data from the network of Lyon city (the second-largest urban area of France)12

to evaluate the impact of proposed clustering method. The network area is more than 80 km213

and the origins/destinations (ODs) set contains 11,314 points (Ameli et al., 39). Fig. 4 shows the14

network of the city.15

FIGURE 4 : Network of Lyon

The network is loaded with travelers of all ODs with a given departure time to represent the16

morning peak hour from 6 AM to 10 AM. The number of trips during this period is 484,690. We17

have 279,382 personal trips in the network and 205,308 demand for the service cars in the system.18

The service provider has a fleet of vehicles in a ride-sharing system to serve the service re-19

quests. Participating service vehicles start up from a number of known locations or depots and after20

serving the assigned requests, they stop at this allowed locations to wait for the next passengers.21
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Determining the proper clustering method1

As we said in section 4.2, we can use either the k-means clustering method or the hierarchical2

method to cluster the requests based on the presented shareability matrix. In our method, both3

the quality of the clustering method and the computation time are very important. The time com-4

plexity of k-means is linear, while that of hierarchical clustering is quadratic. Besides, k-means5

clustering requires prior knowledge of number k of clusters and also needs to use mutidimensional6

scaling to convert the similarity matrix into the distance matrix. On the other side, we can stop7

at whatever number of clusters we find appropriate in hierarchical clustering by interpreting the8

dendrogram. As we use the agglomerative hierarchical method, we can have larger clusters faster9

with the hierarchical method.10

TABLE 3 : Clustering methods comparison

Method Number of requests Objective function (normalized value) Computation time (s)
Exact

112 29.99 12966.00
1092 1924.00 288000.00

K-means clustering
112 30.96 100.10

1092 1994.18 1134.00
4482 7761.03 5340.00

11160 20773.70 20981.10
Hierarchical clustering

112 30.96 99.03
1092 1994.59 1131.10
4482 7791.90 5187.50

11160 20905.87 19950.00

To choose the best clustering method, we have compared both methods considering the11

quality of objective function and the computation time for different sizes of problems.12

Table 3 shows the objective function and computation time with k-means clustering and13

hierarchical clustering method for different sizes of problems.14

To have a baseline for the comparisons, we have computed the optimal objective function15

(solution method without clustering) for 112 and 1,092 requests. In both clustering methods, we16

try to have clusters with 50 requests to ensure potential trips to be shared inside the clusters for17

both test cases with 50 requests and 1092 requests.18

K-means clustering and hierarchical clustering methods increase the objective function by19

3.22% for 112 requests and 3.64% and 3.66% for 1,092 requests, compared to the optimal solu-20

tion. Both clustering methods can decrease the computation time from 216 minutes to less than 221

minutes. This shows that both clustering methods are very effective in terms of reducing the com-22

putation time while keeping the quality of the solution acceptable. Then, by increasing the number23

of requests, the computation time for both methods exponentially increases (the major part of the24

k-means method computation time is dedicated to the multidimensional scaling method, which25

exponentially increases by increasing the size of the problem).26

K-means can give smaller objective function while hierarchical computation can result in27
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a lower time. For 11,160 requests, the objective function is 0.64% lower for the k-means method,1

while the computation time is 5% more.2

In our Lyon6 + Villeurbanne test case, the maximum number of requests is 11,235. So3

we can use k-means clustering for this test case to have better solutions. However, for the Lyon4

network, we have more than 200,000 service requests. So the hierarchical method is a better5

solution for this network, since it is faster as it works directly with the similarity matrix, and it can6

provide high-quality solutions.7

The size of clusters8

We try to have the same size clusters (to avoid too big or too small clusters) to keep the computation9

time low and have the opportunity for sharing in all the clusters.10

There are different methods in the literature to choose the optimal size of clusters. Here,11

the quality of the clusters (how similar are points within a cluster) is very important. Furthermore,12

we have to be sure that the clusters are separated from each others, and the possibility of sharing13

two trips from two different clusters is minimum. Thus the best way to find the optimal size of14

clusters is to use the Sum of Squares method (SS) (Krzanowski and Lai, 40). It is a clustering15

validation method that chooses the optimal size of clusters by minimizing the Within-cluster Sum16

of Squares (WSS) (a measure of how tight each cluster is) and maximizing the Between-cluster17

Sum of Squares (BSS) (a measure of how separated each cluster is from the others). We compute18

the WSS and BSS for all the clusters in different periods to evaluate the optimal size of clusters in19

different demand situations.20

K-means clustering21

We compute the sum of squares for k-means clustering with cluster sizes from 10 to 50. Fig. 522

shows that when the size of clusters is 30, we can find the best trade-off between WSS and BSS.23

So, we choose 30 as the size of clusters when we want to cluster the service requests with k-means24

clustering.25

TABLE 4 : Sum of Squares method for k-means clustering

Number Size of clusters
1 10
2 20
3 30
4 40
5 50

Hierarchical clustering26

In the hierarchical method, we can keep the first cluster of the desired size at the bottom of the27

dendrogram to have the same size clusters (Hippocamplus, 41). The crucial point here is to find28

an approximation for the size of clusters in the hierarchical method. As we have explained earlier,29

we use the hierarchical clustering when the number of demand is huge. So, we analyze the size30

of clusters from 75 to 300. Also, in large-scale networks with high levels of traffic congestion, the31

demand density is different in different times of a day (during the on-set and off-set of congestion).32

TRB 2022 Annual Meeting Original paper



Alisoltani et al. 15

FIGURE 5 : Sum of squares method for finding the optimal size of clusters in k-means clus-
tering

So we perform the analysis for the hierarchical clustering in four different times of the morning1

peak to be able to decide about the clusters size considering different conditions.2

TABLE 5 : Sum of Squares method for hierarchical clustering

Number Size of clusters
1 75
2 100
3 125
4 150
5 175
6 200
7 225
8 250
9 275
10 300

Fig. 6 shows the SS method at different times of the simulations. Increasing the size of3

clusters decreases the BSS. It means that more number of clusters can ensure that the clusters4

are separate from each others. We have determined the cluster sizes that minimize the WSS and5

maximize the BSS. At 6 and 7 AM, the cluster sizes 100 and 125 can make this trade-off between6

WSS and BSS. At 8 and 9 AM, the best cluster sizes are 125 and 150. Therefore, the best cluster7

size to do the simulations for this scale is 125.8

Comparing the shareability clustering method with spatial and temporal methods9

Some researches on ride-sharing use clustering methods to scale-down the matching problem and10

compute the assignment for the service vehicles faster. They usually divide the space geographi-11

cally and use a spatial clustering to downsize the problem (Chen et al., 15). The important factor12

in spatial clustering is the distance between the trips’ origins. So two corresponding trips can be13

in the same cluster if the distance between their origins is small. Another approach is to cluster14

the trips based on the time in a temporal clustering method. In the temporal clustering, we put two15

TRB 2022 Annual Meeting Original paper



Alisoltani et al. 16

FIGURE 6 : Sum of squares method for finding the optimal size of clusters in hierarchical
clustering

trips is the same cluster based on their departure time and their position. Here, we compare the1

proposed clustering based on shareability function with spatial clustering and temporal clustering2

methods to show the quality of our proposal.3

FIGURE 7 : Comparing clustering methods’ objective function (market-share=50%)

We compare the objective function and the computation time for the existing methods in the4

literature and our proposed shareability clustering method. Figures 7 and 8 show the comparison5
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FIGURE 8 : Comparing clustering methods’ computation time (market-share=50%)

for five different cluster sizes when the market-share is 50% (market-share is the percentage of the1

total network demand that can be served by the ride-sharing service). Our proposed shareability2

function with k-means clustering method can provide the best objective function (when the size3

of clusters is 50 for this market-share). So the objective function for the shareability function and4

k-mean clustering is considered as a base, and the percentage of difference for other methods is5

computed considering this basic scenario in the first figure. The performance of spatial clustering6

is poor compared to the other methods. Even in the best situation, the spatial clustering’s objec-7

tive function is 4.04% more than the shareability method with k-means clustering. The temporal8

clustering can perform better than spatial clustering, but it can not outperform our (space-time)9

shareability clustering method. The objective function for temporal clustering is 1.99% more than10

k-means clustering when the size of clusters is 50. As we have to convert the shareability matrix11

into a distance matrix using multidimensional scaling method to be able to use the k-means clus-12

tering, for big clusters (like cluster size of 50 here) the computation time increases exponentially.13

However, with the cluster size of 30, the algorithm can give a high-quality solution in a short time.14

As we can apply the hierarchical clustering directly on the shareability matrix to put the shareable15

trips in different clusters, the computation time for shareability function with hiearchical cluster-16

ing is small. But the k-mean clustering can perform better in terms of quality of the clusters with17

our proposed shareability function. Choosing the proper clustering method for the shareability18

function highly depends on the scale of the problem and the demand density, as multidimensional19

scaling is time-consuming and significantly reduces the possibility to use k-means with a large20

number of vehicles.21

CONCLUSION22

In this paper, we proposed a new clustering method based on a space-time shareability function23

for large-scale real-time ridesharing. The method puts the most shareable trips together inside the24

same clusters. We implemented both partitioned clustering (k-means clustering) and hierarchical25
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clustering methods on the shareability matrix to cluster the requests. Then, we described a method1

to solve the matching problem inside each cluster. To evaluate the method, we employed the2

proposed method on the network of Lyon city in France with half-million requests in the morning3

peak from 6 to 10 AM. The results showed that the proposed clustering method produces high-4

quality solutions close to the optimal situation while reducing the computation time significantly.5

The clustering method proposed in this study can be used for other similar systems, such as taxis6

and dial-a-ride services.7

We have used earlier versions of this method to assess the impact of real-time ridesharing8

on road transportation networks (Alisoltani et al., 42). In our future works, we plan to assess its9

impact on large-scale multimodal networks, i.e. considering all available modes of transportation,10

and not only private cars using GeoTwin multi-agent simulation platform (Bauguion et al., 43).11
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